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Abstract

With the rise of cryptocurrencies, many new applications and approaches leveraging the
decentralization of blockchains have emerged. Blockchains are full-stack distributed sys-
tems in which multiple sub-systems interact together. Although most of the deployed
blockchains and decentralized applications running on them need better scalability and
performance, their security is undoubtedly another critical factor for their success. Due to
the complexity of blockchains and many decentralized applications, their security assess-
ment and analysis require a more holistic view than in the case of traditional distributed
or centralized systems.

In this thesis, we summarize our contributions to the security of blockchains and a few
types of decentralized applications. In detail, we contribute to the standardization of vul-
nerability/threat analysis by proposing a security reference architecture for blockchains.
Then, we contribute to the security of consensus protocols in single-chain Proof-of-Work
blockchains and their resistance to selfish mining attacks, undercutting attacks as well as
greedy transaction selection attacks on blockchains with Direct Acyclic Graphs. Next,
we contribute to cryptocurrency wallets by proposing a new classification of authentica-
tion schemes as well as a novel approach to two-factor authentication based on One-Time
Passwords. Next, we contribute to the area of e-voting by proposing a practical board-
room voting protocol that we later extend to its scalable version supporting millions of
participants, while maintaining its security and privacy properties. In the area of e-voting,
we also propose a novel repetitive voting framework, enabling vote changes in between
elections while avoiding peak-end effects. Finally, we contribute to secure logging with
blockchains and trusted computing by proposing a new approach to a centralized ledger
that guarantees non-equivocation, integrity, censorship evidence, and other features. In
the follow-up contribution to secure logging, we built on top of our centralized ledger and
propose an interoperability protocol for central bank digital currencies, which provides
atomicity of transfer operations.
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Chapter 1

Introduction

The popularity of blockchain systems has rapidly increased in recent years, mainly due
to the decentralization of control that they aim to provide. Blockchains are full-stack dis-
tributed systems in which multiple layers, (sub)systems, and dynamics interact together.
Hence, they should leverage a secure and resilient networking architecture, a robust con-
sensus protocol, and a safe environment for building higher-level applications. Although
most of the deployed blockchains need better scalability and well-aligned incentives to
unleash their full potential, their security is undoubtedly a critical factor for their success.
As these systems are actively being developed and deployed, it is often challenging to
understand how secure they are, or what security implications are introduced by some
specific components they consist of. Moreover, due to their complexity and novelty (e.g.,
built-in protocol incentives), their security assessment and analysis require a more holistic
view than in the case of traditional distributed systems.

In this work, we first present our contributions to the standardization of vulnerabili-
ty/threat analysis and modeling in blockchains, and then we present our contributions to
particular areas in blockchains’ consensus protocols, cryptocurrency wallets, electronic
voting, and secure logging with the focus on security and/or privacy aspects. In the fol-
lowing, we introduce these areas and outline our contributions.

1.1 Standardization in Threat Modeling

Although some standardization efforts have already been undertaken in the field of block-
chains and distributed ledgers, they are either specific to a particular platform [Ent19] or
still under development [[SO19b, ISO19a]. Hence, there is a lack of platform-agnostic
standards in blockchain implementation, interoperability, services, and applications, as
well as the analysis of its security threats [Goal9, Barl8]]. All of these areas are challeng-
ing, and it might take years until they are standardized and agreed upon across a diverse
spectrum of stakeholders.

We believe that it is critical to provide blockchain stakeholders (developers, users,
standardization bodies, regulators, etc.) with a comprehensive systematization of knowl-
edge about the security and privacy aspects of today’s blockchain systems. We aim to

2



1.2. CONSENSUS PROTOCOLS 3

achieve this goal, with a particular focus on system design and architectural aspects. We
do not limit our work to an enumeration of security issues, but additionally, discuss the
origins of those issues while listing possible countermeasures and mitigation techniques
together with their potential implications. In sum, we propose the security reference ar-
chitecture (SRA) for blockchains, which is based on models that demonstrate the stacked
hierarchy of different threat categories (similar to the ISO/OSI hierarchy [Zim80]) and
is inspired by security modeling performed in the cloud computing [LTM™ 11} XXT3]].
As our next contribution in this direction, we enrich the threat-risk assessment standard
ISO/IEC 15408 [Coml7] to fit the blockchain infrastructure. We achieve this by embed-
ding the stacked model into this standard. More details in this direction of our research
are elaborated in [Chapter 3

1.2 Consensus Protocols

While the previous area of the thesis was theoretical and analytical, in the current area
of consensus protocols we aim to investigate practical security aspects of blockchains,
and their consensus protocols in particular. Consensus protocols represent a means to
provide naturally incentivized decentralization, immutability, and other features of block-
chains (see [Section 2.1.1). Therefore, modeling and simulation of consensus protocols
in terms of security and incentives is an important research direction. There exist several
principally different categories of consensus protocols such as Proof-of-Resource (PoR),
Proof-of-Stake, and Byzantine-Fault-Tolerant protocols (see [Section 3.4), each of them
potentially vulnerable to different types of threats. Nevertheless, in this research area, we
focus on PoR protocols and Proof-of-Work (PoW) protocols in particular.

As our first contribution, we design StrongChain [SRHS19] consensus protocol that
improves the resistance of Nakamoto consensus [Nak08] to selfish mining by rewarding
partial partial PoW puzzle solutions and incorporating them to the total “weight” of the
chain. While the idea of rewarding partial puzzle solutions is not novel [ZSS™ 18, [PS17,
Riz16], StrongChain achieves resistance to selfish mining in a space-efficient manner that
does not create a new vulnerability (such as selfish mining on a subchain in [ZSS™18]).
At the same time, StrongChain improves on accuracy of distributed time and decreases
the reward variance of miners, and thus it creates better conditions for more decentralized
mining.

Our second contribution is in the area of consensus protocols that utilize Directed
Acyclic Graphs (DAGs) to solve the limited processing throughput of traditional single-
chain Proof-of-Work (PoW) blockchains. Many such protocols (e.g., Inclusive [LSZ15l],
GHOSTDAG [SWZ21]], PHANTOM [SWZ21]], SPECTRE [SLZ16], Prism [BKT™19])
utilize a random transaction selection (RTS) strategy to avoid transaction duplicates across
parallel blocks in DAG and thus maximize the network throughput. However, these works
have not rigorously examined incentive-oriented greedy behaviors when transaction selec-
tion deviates from the protocol, which motivated our research. Therefore, we first perform
a generic game-theoretic analysis abstracting several DAG-based blockchain protocols
that use the RTS strategy [PBH+], and we prove that such a strategy does not constitute
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a Nash equilibrium. Then, we design a simulator [PHMH?24] and perform experiments
confirming that greedy actors who do not follow the RTS strategy can profit more than
honest miners and harm the processing throughput of the protocol [PBH+]. We show that
this effect is indirectly proportional to the network propagation delay. Finally, we show
that greedy miners are incentivized to form a shared mining pool to increase their profits,
which undermines decentralization and degrades the design of the protocols in question.
Finally, we elaborate on a few techniques to mitigate such incentive attacks.

In our last contribution, we mainly focus on the undercutting attacks in the transaction-
fee-based regime (i.e., without block rewards) of PoW blockchains with the longest chain
fork-choice rule. Note that such a regime is expected to occur in Bitcoin’s consensus
protocol around the year 2140. Additionally, we focus on two closely related problems:
(1) fluctuations in mining revenue and (2) the mining gap — i.e., a situation, in which
the immediate reward from transaction fees does not cover miners’ expenditures. To
mitigate these issues, we propose a solution [BHS23] that splits transaction fees from a
mined block into two parts — (1) an instant reward for the miner of a block and (2) a
deposit sent to one or more fee-redistribution smart contracts (FRSCs) that are part of
the consensus protocol. At the same time, these FRSCs reward the miner of a block
with a certain fraction of the accumulated funds over a predefined time. This setting
enables us to achieve several interesting properties that improve the incentive stability
and security of the protocol, which is beneficial for honest miners. With our solution,
the fraction of DEFAULT-COMPLIANT miners who strictly do not execute undercutting
attacks is lowered from the state-of-the-art [CKWN16al] result of 66% to 30%. More
details in this direction of our research are presented in [Chapter 4

1.3 Cryptocurrency Wallets

With the recent rise in the popularity of cryptocurrencies, the security and management of
crypto-tokens have become critical. We have witnessed many attacks on users and wal-
let providers, which have resulted in significant financial losses. To remedy these issues,
several wallet solutions have been proposed. According to the previous work [ECBS18,
BMC™15], there are a few categories of common (single-factor) key management ap-
proaches, such as password-protected/password-derived wallets, hardware wallets, and
server-side/client-side hosted wallets. Each category has its respective drawbacks and
vulnerabilities.

To increase the security of former wallet categories, multi-factor authentication (MFA)
is often used, which enables spending crypto-tokens only when several secrets are used
together. However, we emphasize that different security implications stem from the multi-
factor authentication executed against a centralized party (e.g., username/password or
Google Authenticator) and against the blockchain itself. In the former, the authentication
factor is only as secure as the centralized party, while the latter provides stronger security
that depends on the assumption of an honest majority of decentralized consensus nodes
(i.e., miners) and the security of cryptographic primitives used.

In our first contribution in this direction, we propose a classification scheme [HBH™20b]]
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for cryptocurrency wallets that distinguishes between the authentication factors validated
against the blockchain and a centralized party (or a device). We apply this classification
to several existing wallets that we also compare in terms of various security features.

In our second contribution, we focus on the security vs. usability of wallets using MFA
against the blockchain, provided by the wallets from a split control category [ECBS18]].
MFA in these wallets can be constructed by threshold cryptography wallets [GGK™ 15,
Myc19], multi-signatures [Arm16, Ele18, Trul9, Cop19], and state-aware smart-contracts
[Uncl18| Tecl8, IConl19al]. The last class of wallets is of our concern, as spending rules
and security features can be encoded in a smart contract. Although there are several
smart-contract wallets using MFA against the blockchain [[Unc18| /Con19a], to the best of
our knowledge, none of them provides an air-gapped authentication in the form of short
OTPs similar to Google Authenticator. Therefore, we propose SmartOTPs [HBH+20a],
a framework for smart-contract cryptocurrency wallets, which provides 2FA against data
stored on the blockchain. The first factor is represented by the user’s private key and
the second factor by OTPs. To produce OTPs, the authenticator device of SmartOTPs
utilizes hash-based cryptographic constructs, namely a pseudo-random function, a Merkle
tree, and hash chains. We propose a novel combination of these elements that minimizes
the amount of data transferred from the authenticator to the client, which enables us to
implement the authenticator in a fully air-gapped setting. SmartOTPs provide protection
against three exclusively occurring attackers: the attacker who possesses the user’s private
key or the attacker who possesses the user’s authenticator or the attacker that tampers with
the client. More details in this direction of our research are presented in

1.4 Electronic Voting

Voting is an integral part of democratic governance, where eligible participants can cast
a vote for their representative choice (e.g., candidate or policy) through a secret ballot.
Electronic voting (e-voting) is usually centralized and suffers from a single point of failure
that can be manifested in censorship, tampering, and issues with the availability of a
service. To improve some features of e-voting, decentralized blockchain-based solutions
can be employed, where the blockchain represents a public bulletin board that in contrast
to a centralized bulletin board provides extremely high availability, censorship resistance,
and correct code execution. A blockchain ensures that all entities in the voting system
have the same view of the actions made by others due to its immutability and append-only
features. A few blockchain-based e-voting solutions have been proposed in recent years,
mostly focusing on boardroom voting [MSH17,[PR18|ILSY"20, YLS™18]| or small-scale
voting [SGY20, DMMM18| [LSY20].

Decentralization was a desired property of e-voting even before the invention of block-
chains. For example, (partially) decentralized e-voting that uses the homomorphic prop-
erties of El-Gamal encryption was introduced by Cramer et al. [CGS97]. It assumes a
threshold number of honest election authorities to provide the privacy of vote. How-
ever, when this threshold is adversarial, it does not protect from computing partial tallies,
making statistical inferences about it, or even worse — revealing the vote choices of partic-
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ipants. A solution that removed trust in tallying authorities was for the first time proposed
by Kiayias and Yung [KYO2]] in their privacy-preserving self-tallying boardroom voting
protocol. A similar protocol was later proposed by Hao et al. [HRZ10], which was later
extended to a blockchain environment by McCorry et al. [MSHI17] in their Open Vote
Network (OVN). An interesting property of OVN is that it requires only a single honest
voting participant to maintain the privacy of the votes. However, OVN supports only two
vote choices (based on [HRZ10]), assumes no stalling participants, requires expensive on-
chain tally computation, and does not scale in the number of participants. The scalability
of OVN was partially improved by Seifelnasr et al. [SGY20], but retaining the limitation
of 2 choices and missing robustness.

In our first contribution within blockchain-based electronic voting, we introduce BBB-
Voting [HLS23|], a similar blockchain-based approach for decentralized voting such as
OVN, but in contrast to OVN, BBB-Voting supports 1-out-of-k choices and provides
robustness that enables recovery from stalling participants. We make a cost-optimized
implementation using an Ethereum-based environment, which we compare with OVN
and show that our work decreases the costs for voters by 13.5% in normalized gas con-
sumption. Finally, we show how BBB-Voting can be extended to support the number
of participants limited only by the expenses paid by the semi—truste authority and the
computing power to obtain the tally.

In our second contribution, we introduce SBvote [SH23|| (as an extension of BBB-
Voting), a blockchain-based self-tallying voting protocol that is scalable in the number
of voters, and therefore suitable for large-scale elections. The evaluation of our proof-
of-concept implementation shows that the protocol’s scalability is limited only by the
underlying blockchain platform. Despite the limitations imposed by the throughput of
the blockchain platforms, SBvote can accommodate elections with millions of voters. We
evaluated the scalability of SBvote on two public smart contract platforms — Gnosis and
Harmony.

In our last contribution, we propose Always on Voting (AoV) [VSH23] — a repeti-
tive blockchain-based voting framework that allows participants to continuously vote and
change elected candidates or policies without waiting for the next elections. Participants
are permitted to privately change their vote at any point in time, while the effect of their
change is manifested at the end of each epoch, whose duration is shorter than the time
between two main elections. To thwart the problem of peak-end effect in epochs, the ends
of epochs are randomized and made unpredictable, while preserved within soft bounds.
In AoV, we make the synergy between a Bitcoin puzzle oracle, verifiable delay function,
and smart contract properties to achieve these goals. AoV can be integrated with vari-
ous existing blockchain-based e-voting solutions. More details in this direction of our

research are presented in

I'The authority is only trusted to do identity management of participants honestly, which is an equivalent
trust model as in OVN.
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1.5 Secure Logging

Centralized ledger systems designed for secure logging are append-only databases pro-
viding immutability (i.e., tamper resistance) as a core property. To facilitate their append-
only feature, cryptographic constructions, such as hash chains or hash trees, are usually
deployed. Traditionally, public ledger systems are centralized, and controlled by a sin-
gle entity that acts as a trusted party. In such a setting, ledgers are being deployed in
various applications, including payments, logging, timestamping services, repositories,
or public logs of various artifacts (e.g., keys [MBB™15, ICDGM109]], certificates issued
by authorities [LLK13]], and binaries [FDP™14]). Unfortunately, centralized ledgers have
also several drawbacks, like a lack of efficient verifiability or a higher risk of censorship
and equivocation.

In our first contribution to secure logging, we propose Aquareum [HS20], a framework
for centralized ledgers mitigating their main limitations. Aquareum employs a trusted ex-
ecution environment (TEE) and a public smart contract platform to provide verifiability,
non-equivocation, and mitigation of censorship. In Aquareum, a ledger operator deploys
a pre-defined TEE enclave code, which verifies the consistency and correctness of the
ledger for every ledger update. Then, proof produced by the enclave is published at an
existing public smart contract platform, guaranteeing that the given snapshot of the ledger
is verified and no alternative snapshot of this ledger exists. Furthermore, whenever a
client suspects that her query (or transaction) is censored, she can (confidentially) request
a resolution of the query via the smart contract platform. The ledger operator noticing the
query is obligated to handle it by passing the query to the enclave that creates a public
proof of query resolution and publishes it using the smart contract platform. With such
a censorship-evident design, an operator is publicly visible when misbehaving, thus the
clients can take appropriate actions (e.g., sue the operator) or encode some automated
service-level agreements into their smart contracts. Since Aquareum is integrated with a
Turing-complete virtual machine, it allows arbitrary transaction processing logic, includ-
ing tokens or client-specified smart contracts.

In our second contribution, we present CBDC-AquaSphere, a protocol that uses a
combination of a trusted execution environment (TEE) and a public blockchain to enable
interoperability over independent centralized CBDC ledgers (based on Aquareum). Our
interoperability protocol uses a custom adaptation of atomic swap protocol and is exe-
cuted by any pair of CBDC instances to realize a one-way transfer. It ensures features
such as atomicity, verifiability, correctness, censorship resistance, and privacy while of-
fering high scalability in terms of the number of CBDC instances. Our approach enables
two possible deployment scenarios that can be combined: (1) CBDC instances represent
central banks of multiple countries, and (2) CBDC instances represent the set of retail
banks and a paramount central bank of a single country. More details in this direction of
our research are presented in |Chapter '/
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Table 1.1: The author’s contributions to the selected papers related to this thesis. Essential con-
tribution is depicted in black, partial (still important) contribution is depicted in gray, minor or
no contribution is depicted in white, and non-applicable field is depicted by a cross. The papers
highlighted in bold are attached to this thesis.

1.6 Author’s Contribution

In we describe the author’s contributions to the papers contained in this thesisE]
Since there is no standard metric assessing the qualitative and quantitative contributions,
the table describes the author’s contribution to common parts in the process of creating a
paper in computer science.

1.7 Organization of the Thesis

The rest of the thesis is organized as follows. In we describe preliminaries
and background related to this thesis. Next, in we describe our contributions
to the standardization of threat modeling for blockchains, and we introduce the security
reference architecture as a layered model. summarizes our contributions to the
security of the consensus protocol in blockchains — in particular, we focus on Proof-of-

Note that the table contains alphabetic ordering of papers by the author names.
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Work (PoW) protocols: we describe StrongChain, transaction selection (incentive) attacks
on DAG-based blockchains, and undercutting attacks on PoW blockchains. In
we deal with cryptocurrency wallets, where we describe our proposed classification of
authentication schemes for such wallets as well as SmartOTPs, our contribution to the
two-factor authentication on blockchains, and its security. Then, in we focus
on electronic voting using blockchains as an instance of a public bulletin board, and we
describe our proposals BBB-Voting and SBvote as well as the always-on-voting frame-
work for repetitive voting, accompanied with the analysis of their security and privacy
aspects. focuses on secure logging, where we present Aquareum, a central-
ized ledger based on blockchain and trusted computing; later in this chapter, we build
on Aquareum and propose an interoperability protocol for central bank digital curren-
cies called CBDC-AquaSphere. concludes the paper and outlines our future
research directions.



Chapter 2

Background

In this chapter, we summarize the background and preliminaries of the thesis. The reader
familiar with the topics of blockchain, trusted computing, and integrity-preserving data
structures can skip this chapter and proceed to [Chapter 3| This chapter is based on the
papers [HVHS19, HVR+20, SRHS19, [VSH23| [HS20, HPH" 23]

The blockchain is a data structure representing an append-only distributed ledger that
consists of entries (a.k.a., transactions) aggregated within ordered blocks. The order of the
blocks is agreed upon by mutually untrusting participants running a consensus protocol
— these participants are also referred to as nodes. The blockchain is resistant against
modifications by design since blocks are linked using a cryptographic hash function, and
each new block has to be agreed upon by nodes running a consensus protocol.

A transaction is an elementary data entry that may contain arbitrary data, e.g., an order
to transfer native cryptocurrency (i.e., crypto-tokens), a piece of application code (i.e.,
smart contract), the execution orders of such application code, etc. Transactions sent to a
blockchain are validated by all nodes that maintain a replicated state of the blockchain.

2.1 Features of Blockchains

Blockchains were initially introduced as a means of coping with the centralization of
monetary assets management, resulting in their most popular application — a decentralized
cryptocurrency with a native crypto-token. Nevertheless, other blockchain applications
have emerged, benefiting from features other than decentralization, e.g., privacy, energy
efficiency, throughput, etc. We split the features of blockchains into inherent and non-
inherent ones, where the former involves “traditional” features that were aimed to provide
by all blockchains while the latter involves features specific to particular blockchain types.
These features are summarized in the following.

2.1.1 Inherent Features

Decentralization: is achieved by a distributed consensus protocol — the protocol ensures
that each modification of the ledger is a result of interaction among participants. In

10
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the consensus protocol, participants are equal, i.e., no single entity is designed as
an authority. An important result of decentralization is resilience to node failures.

Censorship Resistance: is achieved due to decentralization, and it ensures that each
valid transaction is processed and included in the blockchain.

Immutability: means that the history of the ledger cannot be easily modified — it requires
a significant quorum of colluding nodes. The immutability of history is achieved
by a cryptographic one-way function (i.e., a hash function) that creates integrity-
preserving links between the previous record (i.e., block) and the current one. In this
way, integrity-preserving chains (e.g., blockchains) or graphs (e.g., direct acyclic
graphs [SLZ16| Teal8|, Pop16] or trees [SZ13]) are built in an append-only fashion.
However, the immutability of new blocks is not immediate and depends on the time
to the finality of a particular consensus protocol (see [Section 2.4)).

Availability: although distributed ledgers are highly redundant in terms of data storage
(i.e., full nodes store replicated data), the main advantage of such redundancy is
paid off by the extremely high availability of the system. This feature may be of
special interest to applications that cannot tolerate outages.

Auditability: correctness of each transaction and block recorded in the blockchain can
be validated by any participating node, which is possible due to the publicly-known
rules of a consensus protocol.

Transparency: the transactions stored in the blockchain as well as the actions of protocol
participants are visible to other participants and in most cases even to the public.

2.1.2 Non-Inherent Features

Additionally to the inherent features, blockchains may be equipped with other features
that aim to achieve extra goals. Below we list a few examples of such non-inherent fea-
tures.

Energy Efficiency: running an open distributed ledger often means that scarce resources
are wasted (e.g., Proof-of-Work). However, there are available consensus protocols
that do not waste scarce resources, but instead emulate the consumption of scarce
resources (i.e., Proof-of-Burn), or the interest rate on an investment (i.e., Proof-of-
Stake). See examples of these protocols in

Scalability: describes how the consensus protocol scales when the number of partici-
pants increases. Protocols whose behavior is not negatively affected by an increas-
ing number of participants have high scalability.

Throughput: represents the number of transactions that can be processed per unit of
time. Some consensus protocols have only a small throughput (e.g., Proof-of-
Work), while others are designed with the intention to maximize throughput (e.g.,
Byzantine Fault Tolerant (BFT) protocols with a small number of participants).

Privacy & Anonymity: by design, data recorded on a public blockchain is visible to
all nodes or public, which may lead to privacy and anonymity issues. Therefore,
multiple solutions increasing anonymity (e.g., ring signatures [RSTO01] in Monero)
and privacy (e.g., zk-SNARKSs [BSCTV14] in Zcash) were proposed in the context
of cryptocurrencies, while other efforts have been made in privacy-preserving smart
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Figure 2.1: Involved parties with their interactions and hierarchy.

contract platforms [KMS™16,|/CZK™ 19al.

Accountability and Non-Repudiation: if blockchains or applications running on top of
them are designed in such a way that identities of nodes (or application users) are
known and verified, accountability and non-repudiation of actions performed can
be provided too.

2.2 Involved Parties

Blockchains usually involve three native types of parties that can be organized into a

hierarchy, according to the actions that they perform (see [Figure 2.1):

(1) Consensus nodes (a.k.a., miners in Proof-of-Resource protocols) actively participate
in the underlying consensus protocol. These nodes can read the blockchain and
write to it by appending new transactions. Additionally, they can validate the
blockchain and thus check whether writes of other consensus nodes are correct.
Consensus nodes can prevent malicious behaviors (e.g., by not appending invalid
transactions, or ignoring an incorrect chain).

(2) Validating nodes read the entire blockchain, validate it, and disseminate transactions.
Unlike consensus nodes, validating nodes cannot write to the blockchain, and thus
they cannot prevent malicious behaviors. On the other hand, they can detect mali-
cious behavior since they possess copies of the entire blockchain.

(3) Lightweight nodes (a.k.a., clients or Simplified Payment Verification (SPV) clients)
benefit from most of the blockchain functionalities, but they are equipped only with
limited information about the blockchain. These nodes can read only fragments of
the blockchain (usually block headers) and validate only a small number of transac-
tions that concern them, while they rely on consensus and validating nodes. There-
fore, they can detect only a limited set of attacks, pertaining to their own transac-
tions.
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Additional Involved Parties

Note that besides native types of involved parties, many applications using or running on
the blockchain introduce their own (centralized) components.

2.3 Types of Blockchains

Based on how a new node enters a consensus protocol, we distinguish the following block-
chain types:

Permissionless blockchains allow anyone to join the consensus protocol without permis-
sion. To prevent Sybil attacks, this type of blockchains usually requires consensus
nodes to establish their identities by running a Proof-of-Resource protocol, where
the consensus power of a node is proportional to its resources allocated.

Permissioned blockchains require a consensus node to obtain permission to join the con-
sensus protocol from a centralized or federated authority(ies), while nodes usually
have equal consensus power (i.e., one vote per node).

Semi-Permissionless blockchains require a consensus node to obtain some form of per-
mission (i.e., stake) before joining the protocol; however, such permission can be
given by any consensus node. The consensus power of a node is proportional to the
stake that it has.

2.4 Design Goals of Consensus Protocols

2.4.1 Standard Design Goals — Liveness and Safety

The standard design goals of consensus protocols are liveness and safety. To meet these
goals, an eventual-synchrony network model [DLS88]| is usually assumed due to its sim-
plicity. In this model, upper bounds are put on an asynchronous delivery of each message,
hence each message is eventually/synchronously delivered. Liveness ensures that all valid
transactions are eventually processed — i.e., if a transaction is received by a single honest
node, it will eventually be delivered to all honest nodes. Safety ensures that if an honest
node accepts (or rejects) a transaction, then all other honest nodes make the same decision.
Usually, consensus protocols satisfy safety and liveness only under certain assumptions:
the minimal fraction of honest consensus power or the maximal fraction of adversarial
consensus power. With regard to safety, literature often uses the term finality and time to
finality. Finality represents the sequence of the blocks from the genesis block up to the
block B, where it can be assumed that this sequence of blocks is infeasible to overturn.
To reach finality up to the block B, several successive blocks need to be appended after
B — the number of such blocks is referred to as the number of confirmations.
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2.4.2 Specific Design Goals

As a result of this study, we learned that standard design goals of the consensus protocol
should be amended by specific design goals related to the type of the blockchain. In per-
missionless type, elimination of Sybil entities, a fresh and fair leader/committee election,
and non-interactive verification of the consensus result is required to meet. In contrast,
the (semi)-permissionless types do not require the elimination of Sybil entities.

2.4.3 Means to Achieve Design Goals

Simulation of the Verifiable Random Function (VRF). To ensure a fresh and fair
leader/committee election, all consensus nodes should contribute to the pseudo-randomness
generation that determines the fresh result of the election. This can be captured by the con-
cept of the VRF [MRV99], which ensures the unpredictability and fairness of the election
process. Therefore, the leader/committee election process can be viewed as a simulation
of VRF [WHHT™19]. Due to the properties of VREF, the correctness of the election result
can be verified non-interactively after the election took place.

Incentive and Rewarding Schemes. An important aspect for protocol designers is to
include a rewarding/incentive scheme that motivates consensus nodes to participate hon-
estly in the protocol. In the context of public (permissionless) blockchains that introduce
their native crypto-tokens, this is achieved by block creation rewards as well as transac-
tion fees, and optionally penalties for misbehavior. Transaction fees and block creation
rewards are attributed to the consensus node(s) that create a valid block (e.g., [NakOS]),
although alternative incentive schemes rewarding more consensus nodes at the same time
are also possible (e.g., [SRHS19]). While transaction fees are included in a particular
transaction, the block reward is usually part of the first transaction in the block (a.k.a.,
coinbase transaction).

2.5 Basis of Consensus Protocols

Lottery and voting are two marginal techniques that deal with the establishment of a con-
sensus [Hyp17]]. However, in addition to them, their combinations have become popular.

Lottery-Based Protocols. These protocols provide consensus by running a lottery that
elects a leader/committee, who produces the block. The advantages of lottery-based ap-
proaches are a small network traffic overheads and high scalability (in the number of
consensus nodes) since the process is usually non-interactive (e.g., [Nak08], [CXS™17],
[KRDO17]). However, a disadvantage of this approach is the possibility of multiple
“winners” being elected, who propose conflicting blocks, which naturally leads to in-
consistencies called forks. Forks are resolved by fork-choice rules, which compute the
difficulty of each branch and select the one. For the longest chain rule, the chain with
the largest number of blocks is selected in the case of a conflict, while for the strongest
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chain rule, the selection criteria involve the quality of each block in the chain (e.g.,
[SLZ16, SZ13| Tan17, ZSS™18, SRHS19]]). Note that the possibility of forks in this
category of protocols causes an increase of the time to finality, which in turn might enable
some attacks such as double-spending.

Voting-Based Protocols. In this group of protocols, the agreement on transactions is
reached through the votes of all participants. Examples include Byzantine Fault Tolerant
(BFT) protocols — which require the consensus of a majority quorum (usually %) of all
consensus nodes (e.g., [CLT99, [AMQ13, BKM18, [KR18, DMPZ14])). The advantage of
this category is a low-latency finality due to a negligible likelihood of forks. The protocols
from this group suffer from low scalability, and thus their throughput forms a trade-off
with scalability (i.e., the higher the number of nodes, the lower the throughput).

Combinations. To improve the scalability of voting-based protocols, it is desirable to
shrink the number of consensus nodes participating in the voting by a lottery, so that only
nodes of such a committee vote for a block (e.g., [GHM™17], [DPS19]], [TH18], [ZIL17],
[KR18]). Another option to reduce active voting nodes is to split them into several groups
(a.k.a., shards) that run a consensus protocol in parallel (e.g., [KIG™ 18, ZMR18])). Such
a setting further increases the throughput in contrast to the single-group option, but on the
other hand, it requires a mechanism that accomplishes inter-shard transactions.

2.6 Failure Models in Distributed Consensus Protocols

The relevant literature mentions two main failure models for consensus protocols [Sch90]:

Fail-Stop Failures: A node either stops its operation or continues to operate, while ob-
viously exposing its faulty behavior to other nodes. Hence, all other nodes are
aware of the faulty state of that node (e.g., tolerated in Paxos [L"98]], Raft [0OO14],
Viewstamped Replication [OL&S8]).

Byzantine Failures: In this model, the failed nodes (a.k.a., Byzantine nodes) may per-
form arbitrary actions, including malicious behavior targeting the consensus pro-
tocol and collusions with other Byzantine nodes. Hence, the Byzantine failure
model is of particular interest to security-critical applications, such as blockchains
(e.g., Nakamoto’s consensus [NakO8], pure BFT protocols [CL"99], [AMQ13],
[BKM18], [CP02]], and hybrid protocols [GHM 17, KIG" 18, ZMR18]).

2.7 Nakamoto Consensus and Bitcoin

The Nakamoto consensus protocol allows decentralized and distributed network com-
prised of mutually distrusting participants to reach an agreement on the state of the global
distributed ledger (i.e., blockchain) [NakO8|]. To resolve any forks of the blockchain the
protocol specifies to always accept the longest chain as the current one. Bitcoin is a peer-
to-peer cryptocurrency that deploys Nakamoto consensus as its core mechanism to avoid
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double-spending. Transactions spending bitcoins are announced to the Bitcoin network,
where miners validate, serialize all non-included transactions, and try to create (mine) a
block of transactions with a PoW embedded into the block header. A valid block must
fulfill the condition that for a cryptographic hash function H, the hash value of the block
header is less than the target 7.

2.7.1 Incentive Scheme

Brute-forcing the nonce (together with some other fields) is the only way to produce the
PoW, which costs computational resources of the miners. To incentivize miners, the Bit-
coin protocol allows the miner who finds a block to insert a coinbase transaction minting
a specified amount of new bitcoins and collecting transaction fees offered by the included
transactions. Currently, every block mints 6.25 new bitcoins. This amount is halved every
four years, upper-bounding the number of bitcoins that will be created to a fixed total of
21 million coins. It implies that after around the year 2140, no new coins will be cre-
ated, and the transaction fees will be the only source of reward for miners. Because of its
design, Bitcoin is a deflationary currency.

In the original white paper, Nakamoto heuristically argues that the consensus proto-
col remains secure as long as a majority (> 50%) of the participants’ computing power
honestly follow the rules specified by the protocol, which is compatible with their own
economic incentives.

2.7.2 Difficulty and Fork-Choice Rule

The overall hash rate of the Bitcoin network and the difficulty of the PoW determine
how long it takes to generate a new block for the whole network (the block interval). To
stabilize the block interval at about 10 minutes for the constantly changing total mining
power, the Bitcoin network adjusts the target 1" every 2016 blocks (about two weeks, i.e.,
a difficulty window) according to the following formula

Time of the last 2016 blocks
2016 - 10 minutes '

In simple terms, the difficulty increases if the network is finding blocks faster than every
10 minutes, and decrease otherwise. With dynamic difficulty, Nakamoto’s longest chain
fork-choice rule was considered as a bug[] as it is trivial to produce long chains that have
low difficulty. The rule was replaced by the strongest-PoW chain rule where competing
chains are measured in terms of PoW they aggregated. As long as there is one chain with
the highest PoW, this chain is chosen as the current one.

Tnew = Told : (21)

2.7.3 UTXO Model

Bitcoin introduced and uses the unspent transaction output (UTXO) model. The validity
of a Bitcoin transaction is verified by executing a script proving that the transaction sender

'https://goo.gl/thhusi
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is authorized to redeem unspent coins. Also, the Bitcoin scripting language offers a mech-
anism (OP_RETURN) for recording data on the blockchain, which facilitates third-party
applications built-on Bitcoin.

2.7.4 Light Clients and Simple Payment Verification (SPV)

Bitcoin proposes the simplified payment verification (SPV) protocol, that allows resource-
limited clients to verify that a transaction is indeed included in a block provided only with
the block header and a short transaction’s inclusion proof. The key advantage of the pro-
tocol is that SPV clients can verify the existence of a transaction without downloading or
storing the whole block. SPV clients are provided only with block headers and on-demand
request from the network inclusion proofs of the transactions they are interested in.

2.8 Integrity Preserving Data Structures

2.8.1 Merkle Tree

A Merkle tree [Mer89] is a data structure based on the binary tree in which each leaf
node contains a hash of a single data block, while each non-leaf node contains a hash of
its concatenated children. At the top of a Merkle tree is the root hash, which provides a
tamper-evident summary of the contents. A Merkle tree enables efficient verification as
to whether some data are associated with a leaf node by comparing the expected root hash
of a tree with the one computed from a hash of the data in the query and the remaining
nodes required to reconstruct the root hash (i.e., proof or authentication path). The recon-
struction of the root hash has the logarithmic time and space complexity, which makes the
Merkle tree an efficient scheme for membership verification. The Merkle tree is utilized
for example in Bitcoin (and other blockchains) for aggregation of transactions within a
block into the root hash, providing the integrity snapshot and at the same time enabling
SPV clients to download only data related to authentication path of the transaction whose
inclusion in a block is to be verified.

To provide a membership verification of element x; in the list of elements X =
{z;},i > 1, the Merkle tree supports the following operations:

* MkRoot(X) — Root: an aggregation of all elements of the list X by a Merkle
tree, providing a single value Root.

¢ MkProof(x;, X) — 7™k: a Merkle proof generation for the ith element x; present
in the list of all elements X.

o« ™k Verify(x;, Root) — {True, False}: verification of the Merkle proof 7™,
witnessing that x; is included in the list X that is aggregated by the Merkle tree
with the root hash Root.
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2.8.2 History Tree

A Merkle tree has been primarily used for proving membership. However, Crosby and
Wallach [CWO09] extended its application for an append-only tamper-evident log, denoted
as a history tree. A history tree is the Merkle tree, in which leaf nodes are added in
an append-only fashion, and which allows to produce logarithmic proofs witnessing that
arbitrary two versions of the tree are consistent (i.e., one version of the tree is an extension
of another). Therefore, once added, a leaf node cannot be modified or removed.

A history tree brings a versioned computation of hashes over the Merkle tree, en-
abling to prove that different versions (i.e., commitments) of a log, with distinct root
hashes, make consistent claims about the past. To provide a tamper-evident history sys-
tem [CWOQ9], the log represented by the history tree L supports the following operations:

* L.add(x) — C;j: appending of the record x to L, returning a new commitment C;
that represents the most recent value of the root hash of the history tree.

¢ L.IncProof(C;, C;) — m'™¢: an incremental proof generation between two com-
mitments C; and C};, where ¢ < j.

* L. MemProof(i, C;) — 7™°™: a membership proof generation for the record z;
from the commitment C}, where 7 < j.

« min¢ Verify (C;, C;) — {True, False}: verification of the incremental proof 7,
witnessing that the commitment C; contains the same history of records z,k €
{0,...,7} as the commitment C;, where 7 < j.

o ™™ Verify (i, x;, C;) — {True, False}: verification of the membership proof
mmem witnessing that x; is the ith record in the jth version of L, fixed by the
commitment C;, ¢ < j.

« 77¢ DeriveNewRoot() — C;: a reconstruction of the commitment C; from the
incremental proof ¢ that was generated by L.IncProof(C;, C;).

o 7in¢ DeriveOldRoot() — C;: a reconstruction of the commitment C; from the
incremental proof 77™¢ that was generated by L.IncProof(C;, C;).

2.8.3 Radix and Merkle-Patricia Tries

Radix trie serves as a key-value storage. In the Radix trie, every node at the [-th layer
of the trie has the form of ((pg, p1,...,pn), v), where v is a stored value and all p;, i €
{0,1,...,n} represent the pointers on the nodes in the next (lower) layer [ + 1 of the trie,
which is selected by following the (I + 1)-th item of the key. Note that key consists of an
arbitrary number of items that belong to an alphabet with n symbols (e.g., hex symbols).
Hence, each node of the Radix trie has n children and to access a leaf node (i.e., data v),
one must descend the trie starting from the root node while following the items of the key
one-by-one. Note that Radix trie requires underlying database of key-value storage that
maps pointers to nodes. However, Radix trie does not contain integrity protection, and
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when its key is too long (e.g., hash value), the Radix trie will be sparse, thus imposing a
high overhead for storage of all the nodes on the path from the root to values.

Merkle Patricia Trie (MPT) [Wool4a, Ray19] is a combination of the Merkle tree
(see and Radix trie data structures, and similar the Radix Trie, it serves as
a key-value data storage. However, in contrast to Radix trie, the pointers are replaced by
a cryptographically secure hash of the data in nodes, providing integrity protection. In
detail, MPT guarantees integrity by using a cryptographically secure hash of the value
for the MPT key as well as for the realization of keys in the underlying database that
maps the hashes of nodes to their content; therefore, the hash of the root node of the
MPT represents an integrity snapshot of the whole MPT trie. Next, Merkle-Patricia trie
introduces the extension nodes, due to which, there is no need to keep a dedicated node
for each item of the path in the key. The MPT trie 7" supports the following operations:

T.root — Root: accessing the hash of the root node of MPT, which is stored as a key
in the underlying database.

T.add(k,x) — Root: adding the value = with the key & to 7" while obtaining the
new hash value of the root node.

» T.get(k) — {x, L}: fetching a value x that corresponds to key k; return L if no
such value exists.

» T.delete(k) — {True, False}: deleting the entry with key equal to k, returning
T'rue upon success, F'alse otherwise.

« T.MptProof (k) — {7™Pt 7™Ptl: a MPT (inclusion / exclusion) proof genera-
tion for the entry with key .

« 7Pt Verify(k, Root) — {True, False}: verification of the MPT proof 7",
witnessing that entry with the key k£ is in the MPT whose hash of the root node
is equal to Root.

« 7Pt VerifyNeg(k, Root) — {True, False}: verification of the negative MPT
proof, witnessing that entry with the key £ is not in the MPT with the root hash
equal to Root.

2.9 Verifiable Delay Function

The functionality of Verifiable Delay Function (VDF) [BBBF18] is similar to a time lockE]
but in addition to it, by providing a short proof, a verifier may easily check if the prover
knows the output of the VDF. The function is effectively serialized, and parallel pro-
cessing does not help to speed up VDF computation. A moderate amount of sequen-
tial computation is required to compute VDF. Given a time delay ¢, a VDF must satisfy

Time locks are computational problems that can only be solved by running a continuous computation
for a given amount of time.
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the following conditions: for any input z, anyone equipped with commercial hardware
can find y = VDF(z,t) in ¢ sequential steps, but an adversary with p parallel processing
units must not distinguish y from a random number in significantly fewer steps. Fur-
ther, given output y of VDF, the prover can supply a proof 7 to a verifier, who may
check the output y = VDF(x,t) using 7 in logarithmic time w.r.t. time delay ¢ (i.e.,

VDF Verify(y,n) Z True).

Finally, the safety factor A,,., is defined as the time ratio that the adversary is es-
timated to run VDF computation faster on proprietary hardware as opposed to a benign
VDF computation using commercial hardware (see Drake [Dral8]]). CPU over-clocking
records [SF20] indicate that A,,,, = 10 is a reasonable estimate.

2.10 Atomic Swap

A basic atomic swap assumes two parties A and B owning crypto-tokens in two different
blockchains. A and B wish to execute cross-chain exchange atomically and thus achieve
a fairness property, i.e., either both of the parties receive the agreed amount of crypto-
tokens or neither of them. First, this process involves an agreement on the amount and
exchange rate, and second, the execution of the exchange itself.

In a centralized scenario [Mic03], the approach is to utilize a trusted third party for the
execution of the exchange. In contrast to the centralized scenario, blockchains allow us
to execute such an exchange without a requirement of the trusted party. The atomic swap
protocol [Bitl18cl] enables conditional redemption of the funds in the first blockchain to B
upon revealing of the hash pre-image (i.e., secret) that redeems the funds on the second
blockchain to A. The atomic swap protocol is based on two Hashed Time-Lock Contracts
(HTLC) that are deployed by both parties in both blockchains.

Although HTLCs can be implemented by Turing-incomplete smart contracts with sup-
port for hash-locks and time-locks, for clarity, we provide a description assuming Turing-
complete smart contracts, requiring four transactions:

1. A chooses a random string z (i.e., a secret) and computes its hash 4 (x). Using h(z),
A deploys HT LC) on the first blockchain and sends the agreed amount to it, which
later enables anybody to do a conditional transfer of that amount to B upon calling
a particular method of HT'LC with x = h(z) as an argument (i.e., hash-lock).
Moreover, A defines a time-lock, which, when expired, allows A to recover funds
into her address by calling a dedicated method: this is to prevent aborting of the
protocol by another party.

2. When B notices that H7T'LC'y has been already deployed, she deploys H1'LC'g on
the second blockchain and sends the agreed amount there, enabling a conditional
transfer of that amount to A upon revealing the correct pre-image of h(x) (h(zx) is
visible from already deployed HT LC). B also defines a time-lock in HT LC'g to
handle abortion by A.

3. Once A notices deployed HT LCg, she calls a method of HT LCy with revealed x,
and in turn, she obtains the funds on the second blockchain.
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4. Once B notices that x was revealed by A on the second blockchain, she calls a
method of HT LC, with x as an argument, and in turn, she obtains the funds on the
first blockchain.

If any of the parties aborts, the counter-party waits until the time-lock expires and redeems
the funds.

2.11 Trusted Execution Environment

Trusted Execution Environment (TEE) is a hardware-based component that can securely
execute arbitrary code in an isolated environment. TEE uses cryptography primitives and
hardware-embedded secrets that protect data confidentiality and the integrity of computa-
tions. In particular, the adversary model of TEE usually includes privileged applications
and an operating system, which may compromise unprivileged user-space applications.
There are several practical instances of TEE, such as Intel Software Guard Extensions
(SGX) [AGJS13, MABT 13, [HLP13]] available at Intel’s CPUs or based on RISC-V ar-
chitecture such as Keystone-enclave [Enc19]] and Sanctum [[CLD16]. In the context of this
work (i.e., [Chapter 7), we built on top of Intel SGX, therefore we adopt the terminology
introduced by it.

Intel SGX. Intel SGX is a set of instructions that ensures hardware-level isolation of
protected user-space codes called enclaves. An enclave process cannot execute system
calls but can read and write memory outside the enclave. Thus isolated execution in SGX
may be viewed as an ideal model in which a process is guaranteed to be executed correctly
with ideal confidentiality, while it might run on a potentially malicious operating system.

Intel SGX allows a local process or a remote system to securely communicate with
the enclave as well as execute verification of the integrity of the enclave’s code. When
an enclave is created, the CPU outputs a report of its initial state, also referred to as a
measurement, which is signed by the private key of TEE and encrypted by a public key
of Intel Attestation Service (IAS). The hardware-protected signature serves as the proof
that the measured code is running in an SGX-protected enclave, while the encryption by
IAS public key ensures that the SGX-equipped CPU is genuine and was manufactured by
Intel. This proof is also known as a qguote or attestation, and it can be verified by a local
process or by a remote system. The enclave process-provided public key can be used by a
verifier to establish a secure channel with the enclave or to verify the signature during the
attestation. We assume that a trustworthy measurement of the enclave’s code is available
for any client that wishes to verify an attestation.

2.12 Central Bank Digital Currency (CBDC)

CBDC is often defined as a digital liability backed and issued by a central bank that is
widely available to the general public. CBDC encompasses many potential benefits such
as efficiency and resiliency, flexible monetary policies, and enables enhanced control of
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tax evasion and money laundering [KAD™20]. However, regulations, privacy and identity
management issues, as well as design vulnerabilities are potential risks that are shared
with cryptocurrencies. Many blockchain-based CBDC projects rely on using some sort of
stable coins adapting permissioned blockchains due to their scalability and the capability
to establish specific privacy policies, as compared to public blockchains [SI21, [ZH21].
Therefore, the level of decentralization and coin volatility are two main differences be-
tween blockchain-based CBDCs and common cryptocurrencies. These CBDCs are often
based on permissioned blockchain projects such as Corda [BCGH16]], variants of Hyper-
ledger [Hyp22], and Quorum [EKR17].

CDBC solutions are often designed as multi-layer projects [JX22]. Wholesale CBDC
targets communication of financial institutions and inter-bank settlements. Retail CBDC
includes accessibility to the general public or their customers.



Chapter 3

Standardization in Threat Modeling

In this chapter, we present our contribution to standardization for threat modeling and it
is based on the papers [HVHS19] [HVR+20] (see also[Section 3.9). In particular, we in-
troduce the security reference architecture (SRA) for blockchains, which adopts a stacked
model (similar to the ISO/OSI) describing the nature and hierarchy of various security
and privacy aspects. The SRA contains four layers: (1) the network layer, (2) the consen-
sus layer, (3) the replicated state machine layer, and (4) the application layer. At each of
these layers, we identify known security threats, their origin, and countermeasures, while
we also analyze several cross-layer dependencies. Next, to enable better reasoning about
the security aspects of blockchains by the practitioners, we propose a blockchain-specific
version of the threat-risk assessment standard ISO/IEC 15408 by embedding the stacked
model into this standard. Finally, we provide designers of blockchain platforms and ap-
plications with a design methodology following the model of SRA and its hierarchy.

3.1 Methodology and Scope

We aim to consolidate the literature, categorize found vulnerabilities and threats accord-
ing to their origin, and as a result, we create four main categories (also referred to as
layers). At the level of particular main categories, we apply sub-categorization that is
based on the existing knowledge and operation principles specific to such subcategories,
especially concerning the security implications. If some subcategories impose equivalent
security implications, we merge them into a single subcategory. See the road-map of all
the categories in Our next aim is to indicate and explain the co-occurrences or
relations of multiple threats, either at the same main category or across more categories.

3.2 Security Reference Architecture

We present two models of the security reference architecture, which facilitate systematic
studying of vulnerabilities and threats related to the blockchains and applications running
on top of them. First, we introduce the stacked model, which we then project into the
threat-risk assessment model.

23
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Figure 3.1: Stacked model of the security reference architecture.

3.2.1 Stacked Model

To classify the security aspects of blockchains, we utilize a stacked model consisting

of four layers (see [Figure 3.1). A similar stacked model was already proposed in the

literature [WHH™ 19]], but in contrast to it, we preserve only such a granularity level that
enables us to isolate security threats and their nature, which is the key focus of our work.

In the following, we briefly describe each layer.

(1) The network layer consists of the data representation and network services planes.
The data representation plane deals with the storage, encoding, and protection of
data, while the network service plane contains the discovery and communication
with protocol peers, addressing, routing, and naming services.

(2) The consensus layer deals with the ordering of transactions, and we divide it into
three main categories according to the protocol type: Byzantine Fault Tolerant,
Proof-of-Resource, and Proof-of-Stake protocols.

(3) The replicated state machine (RSM) layer deals with the interpretation of transac-
tions, according to which the state of the blockchain is updated. In this layer, trans-
actions are categorized into two parts, where the first part deals with the privacy
of data in transactions as well as the privacy of the users who created them, and
the second part — smart contracts — deals with the security and safety aspects of
decentralized code execution in this environment.

(4) The application layer contains the most common end-user functionalities and ser-
vices. We divide this layer into two groups. The first group represents the applica-
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tions that provide common functionalities for most of the higher-level blockchain
applications, and it contains the following categories: wallets, exchanges, oracles,
filesystems, identity management, and secure timestamping. We refer to this group
as applications of the blockchain ecosystem. The next group of application types
resides at a higher level and focuses on providing certain end-user functionality.
This group contains categories such as e-voting, notaries, identity management,
auctions, €scrows, etc.

3.2.2 Threat-Risk Assessment Model

To better capture the security-related aspects of blockchain systems, we introduce a threat-

risk model (see that is based on the template of ISO/IEC 15408 [Com17] and

projection of our stacked model (see [Figure 3.1). This model includes the following
components and actors:

Owners are blockchain users who run any type of node and they exist at the application
layer and the consensus layer. Owners possess crypto-tokens, and they might use or
provide blockchain-based applications and services. Additionally, owners involve
consensus nodes that earn crypto-tokens from running the consensus protocol.

Assets are present at the application layer, and they consist of monetary value (i.e.,
crypto-tokens or other tokens) as well as the availability of application-layer ser-
vices and functionalities built on top of blockchains (e.g., notaries, escrows, data
provenance, auctions). The authenticity of users, the privacy of users, and the pri-
vacy of data might also be considered as application-specific assets. Furthermore,
we include here the reputation of service providers using the blockchain services.

Threat agents are spread across all the layers of the stacked model, and they mostly
involve malicious users whose intention is to steal assets, break functionalities, or
disrupt services. However, threat agents might also be inadvertent entities, such
as developers of smart contracts who unintentionally create bugs and designers of
blockchain applications who make mistakes in the design or ignore some issues.

Threats facilitate various attacks on assets, and they exist at all layers of the stacked
model. Threats arise from vulnerabilities in the network, smart contracts, appli-
cations, from consensus protocol deviations, violations of consensus protocol as-
sumptions.

Countermeasures protect owners from threats by minimizing the risk of compromis-
ing/losing the assets. Alike the threats and threat agents, countermeasures can be
applied at each of the layers of our stacked model, and they involve various secu-
rity/privacy/safety solutions, incentive schemes, reputation techniques, best prac-
tices, etc. Nevertheless, we emphasize that their utilization usually imposes some
limitations such as higher complexity and additional performance overheads (e.g.,
resulting in decreased throughput).

Risks are related to the application layer, and they are caused by threats and their agents.
Risks may lead to a loss of monetary assets, a loss of privacy, a loss of reputation,
service malfunctions, and disruptions of services and applications (i.e., availability
issues).
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Figure 3.2: Threat-risk assessment model of the security reference architecture.

The owners wish to minimize the risk caused by threats that arise from threat agents.
Within our stacked model, different threat agents appear at each layer. At the network
layer, there are service providers including parties managing IP addresses and DNS
names. The threats at this layer arise from man-in-the-middle (MITM) attacks, network
partitioning, de-anonymization, and availability attacks. Countermeasures contain pro-
tection of availability, naming, routing, anonymity, and data. At the consensus layer,
consensus nodes may be malicious and wish to alter the outcome of the consensus proto-
col by deviating from it. Moreover, if they are powerful enough, malicious nodes might
violate assumptions of consensus protocols to take over the execution of the protocol or
cause its disruption. The countermeasures include well-designed economic incentives,
strong consistency, decentralization, and fast finality solutions. At the RSM layer, the
threat agents may stand for developers who (un)intentionally introduce semantic bugs in
smart contracts (intentional bugs represent backdoors) as well as users and external ad-
versaries running lightweight nodes who pose threats due to the exploitation of such bugs.
Countermeasures include safe languages, static/dynamic analysis, formal verification, au-
dits, best practices, and design patterns. Other threats of the RSM layer are related to
compromising the privacy of data and user identities with mitigation techniques involving
mixers, privacy-preserving cryptography constructs (e.g., non-interactive zero-knowledge
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proofs (NIZKs), ring signatures, blinding signatures, homomorphic encryption) as well as
usage of trusted hardware (respecting its assumptions and attacker models declared). At
the application layer, threat agents are broad and involve arbitrary internal or external ad-
versaries such as users, service providers, malware, designers of applications and services,
manufactures of trusted execution environments (TEE) for concerned applications (e.g.,
oracles, auctions), authorities in the case of applications that require them for arbitration
(e.g., escrows, auctions) or filtering of users (e.g., e-voting, auctions), token issuers. The
threats on this layer might arise from false data feeds, censorship by application-specific
authorities (e.g., auctions, e-voting), front running attacks, disruption of the availability
of centralized components, compromising application-level privacy, misbehaving of the
token issuer, misbehaving of manufacturer of TEE or permanent hardware (HW) faults
in TEE. Examples of mitigation techniques are multi-factor authentication, HW wallets
with displays for signing transactions, redundancy/distributions of some centralized com-
ponents, reputation systems, and privacy preserving-constructs as part of the applications
themselves. We elaborate closer on vulnerabilities, threats, and countermeasures (or mit-
igation techniques) related to each layer of the stacked model in the following sections.

Involved Parties & Blockchain’s Life-Cycle. In|Chapter 2| we presented several types
of involved parties in the blockchain infrastructure (see [Figure 2.1). We emphasize that
these parties are involved in the operational stage of the blockchain’s life-cycle. How-
ever, in the design and development stages of the blockchain’s life-cycle, programmers
and designers should also be considered as potential threat agents who influence the secu-
rity aspects of the whole blockchain infrastructure (regardless of whether their intention
is malicious or not). This is of great concern especially for applications built on top of
blockchains (i.e., at the application layer) since these applications are usually not thor-
oughly reviewed by the community or public, as it is typical for other (lower) layers.

3.3 Network Layer

Blockchains usually introduce peer-to-peer overlay networks built on top of other net-
works. Hence, blockchains inherit security and privacy issues from their underlying
networks. In our model (see [Figure 3.1)), we divide the network layer into data repre-
sentation and network services sub-planes. The data representation plane is protected
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Figure 3.3: Vulnerabilities, threats, and defenses in private networks (network layer).
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by cryptographic primitives that ensure data integrity, user authentication, and optionally
confidentiality, privacy, anonymity, non-repudiation, and accountability. The main ser-
vices provided by the network layer are peer management and discovery, which rely on
the internals of the underlying network, such as domain name resolution (i.e., DNS) or
network routing protocols. Based on permission to join the blockchain system, the net-
works are either private or public. We model security threats and mitigation techniques
for both private and public networks as vulnerability/threat/defense (VTD) graphs in [Fig-]
fure 3.3|and [Figure 3.4} and we refer the interested reader to our paper for more
details.
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3.4 Consensus Layer

The consensus layer of the stacked model deals with the ordering of transactions, while
the interpretation of them is left for the RSM layer (see[Section 3.5)). The consensus layer
includes three main categories of consensus protocols concerning different principles of
operation and thus their security aspects — Proof-of-Resource Protocols (PoR), Byzantine
Fault Tolerant (BFT) Protocols, and Proof-of-Stake Protocols (PoS). Nevertheless, we
can identify vulnerabilities and threats that are generic to all categories. Next, we outline
modeling of security threats and mitigation techniques generic to all consensus protocols
as VTD graphs in while particular categories of protocols are modeled in
[Figure 3.7| [Figure 3.8| and [Figure 3.6 For details about these categories and their threats,
we refer the interested reader to our paper [HVR+20].
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Figure 3.6: Vulnerabilities, threats, and defenses of BFT protocols (consensus layer).
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Figure 3.9: Vulnerabilities, threats, and defenses of privacy threats (RSM layer).

3.5 Replicated State Machine Layer

The Replicated State Machine (RSM) layer is responsible for the interpretation and execu-
tion of transactions that are already ordered by the consensus layer. Concerning security
threats for this layer are related to the privacy of users, privacy and confidentiality of data,
and smart contract-specific bugs. We split the security threats of the RSM layer into two
parts: standard transactions and smart contracts.

3.5.1 Transaction Protection

Transactions containing plain-text data are digitally signed by private keys of users, en-
abling anybody to verify the validity of transactions with the corresponding public keys.
However, such an approach provides only pseudonymous identities that can be traced to
real IP addresses (and sometimes to identities) by a network-eavesdropping adversary,
and moreover, it does not ensure the confidentiality of data [FHZ™ 19]]. Therefore, several
blockchain-embedded mechanisms for the privacy of data and user identities were pro-
posed in the literature, which we review in [HVR+20]. Note that some privacy-preserving
techniques can be applied also on the application layer of our stacked model but imposing
higher programming overheads and costs, which is common in the case of blockchain
platforms that do not support them natively. We outline modeling of security threats and
mitigation techniques related to transactions and their privacy as VID graphs in
For details of particular vulnerabilities and threats, we refer the interested reader
to our paper [HVR+20].

3.5.2 Smart Contracts

Smart contracts introduced to automate legal contracts, now serve as a method for build-
ing decentralized applications on blockchains. They are usually written in a blockchain-
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Figure 3.10: Vulnerabilities, threats, and defenses of smart contract platforms (RSM layer).

specific programming language that may be Turing-complete (i.e., contain arbitrary pro-
gramming logic) or only serve for limited purposes. We outline modeling of security
threats and mitigation techniques related to smart contracts as VTD graphs in
For details of particular vulnerabilities and threats, we refer the interested reader to our
paper [HVR+20].

3.6 Application Layer: Ecosystem Applications

We present a functionality-oriented categorization of the applications running on or uti-
lizing the blockchain in|[Figure 3.11] where we depict hierarchy in the inheritance of secu-
rity aspects among particular categories. In this categorization, we divide the applications
into categories according to the main functionality/goal that is to be achieved by using the
blockchain. Security threats of this layer are mostly specific to particular types of appli-
cations. Nevertheless, there are a few application-level categories that are often utilized
by other higher-level applications. In the current section, we isolate such categories into a
dedicated application-level group denoted as an ecosystem, while we cover the rest of the
applications in[Section 3.7 The group of ecosystem applications contains five categories,
and we outline their security threats and mitigation techniques in VTD graphs as follows:
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(1) crypto-tokens and wallets (see [Figure 3.12), (2) exchanges (see [Figure 3.13)), (3)
oracles (see [Figure 3.14)), (4) filesystems (see [Figure 3.13), (5) identity management
(see [Figure 3.16)), and (6) secure-timestamping (see [Figure 3.17). For details of these

categories of applications and their security threats and mitigation techniques, we refer

the interested reader to our paper [HVR+20].
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Figure 3.17: Vulnerabilities, threats, and defenses of the secure timestamping category.
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Figure 3.18: Vulnerabilities, threats, and defenses of the e-voting category.
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Figure 3.19: Vulnerabilities, threats, and defenses of the reputation systems category.

D: Filtering Legitimate

T: Bad-Mouthing Participants

D: Spending
Reputation Resources

IS
=2 /

3.7 Application Layer: Higher-Level Applications

In this section, we focus on more specific higher-level applications as opposed to ecosys-
tem applications. In detail, we deal with eight categories of applications, and we outline
their security threats and mitigation techniques in VTD graphs as follows: (1) e-voting

(see [Figure 3.18)), (2) reputation systems (see [Figure 3.19)), (3) data provenance (see
[Figure 3.21), (4) notaries (see [Figure 3.22)), (5) direct trading (see [Figure 3.20), (6) es-
crows (see[Figure 3.23), (7) auctions (see [Figure 3.24)), and (8) general application of

blockchains. For details of these categories of applications and their security threats and
mitigation techniques, we refer the interested reader to our paper [HVR+20].
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Figure 3.20: Vulnerabilities, threats, and defenses of the direct trading category.
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Figure 3.21: Vulnerabilities, threats, and defenses of the data provenance category.
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Figure 3.22: Vulnerabilities, threats, and defenses of the notaries category.
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Figure 3.23: Vulnerabilities, threats, and defenses of the escrows category.
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Figure 3.24: Vulnerabilities, threats, and defenses of the auctions category.
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3.8 Lessons Learned

In this section, we summarize lessons learned concerning the security reference archi-
tecture (SRA) and its practical utilization. First, we describe the hierarchy of security
dependencies among particular layers of the SRA. Second, assuming such a hierarchy,
we describe a security-oriented methodology for designers of blockchain platforms and
applications. Finally, we summarize the design goals of particular blockchain types and
discuss the security-specific features of the blockchains.

3.8.1 Hierarchy of Dependencies in the SRA

In the proposed model of the SRA, we observe that consequences of vulnerabilities pre-
sented at lower layers of the SRA are manifested in the same layers and/or at higher layers,
especially at the application layer. Therefore, we refer to security dependencies of these
layers on lower layers or the same layers, i.e., reflexive and bottom-up dependencies. We
describe these two types of dependencies in the following.

Reflexive Dependencies. If a layer of the SRA contains some assets, it also contains
a reflexive security dependency on the countermeasures presented in the same layer. It
means that a countermeasure at a particular layer protects the assets presented in the same
layer. For example, in the case of the consensus layer whose protocols reward consen-
sus nodes for participation, the countermeasures against selfish mining attacks protect
rewards (i.e., crypto-tokens) of consensus nodes. In the case of the RSM layer, the pri-
vacy of user identities and data is protected by various countermeasures of this layer (e.g.,
blinding signatures, secure multiparty computations). Another group of reflexive security
dependencies is presented at the application layer. Although the application layer contains
some bottom-up security dependencies (see [Figure 3.11)), we argue that with regard to the
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overall stacked model of the SRA they can be viewed as reflexive security dependencies
of the application layer.

Bottom-Up Dependencies. If a layer of the SRA contains some assets, besides reflexive
security dependencies, it also contains bottom-up security dependencies on the counter-
measures of all lower layers. Hence, the consequences of vulnerabilities presented at
lower layers of SRA might be manifested at the same layers (i.e., reflexive dependen-
cies) but more importantly, they are manifested at higher layers, especially at the appli-
cation layer. For example, context-sensitive transactions and partial solutions as counter-
measures of the consensus layer can protect against front-running attacks of intra-chain
DEXes, which occur at the application layer. Another example represents programming
bugs in the RSM layer, which influence the correct functionality at the application layer.
The eclipse attack is an example that impacts the consensus layer from the network layer —
a victim consensus node operates over the attacker-controlled chain, and thus causes a loss
of crypto-tokens by a consensus node and at the same time it decreases honest consensus
power of the network. In turn, this might simplify selfish mining attacks at the consensus
layer, which in turn might impact the correct functionality of a blockchain-based applica-
tion at the application layer. Bottom-up security dependencies are also presented in the
context of the application layer, as we have already mentioned in

3.8.2 Methodology for Designers

A hierarchy of security dependencies in the SRA can be utilized during the design of new
blockchain-based solutions. When designing a new blockchain platform or a new block-
chain application, we recommend designers to specify requirements on the blockchain
features (see and afterward analyze design options and their attack surfaces at
the first three layers of the stacked model of SRA. We briefly summarize the pros and cons
of particular categories within the first three layers of SRA in while security
threats and mitigations are covered in|Section 3.3} [Section 3.4} and [Section 3.5|

On top of that, we recommend the designers of a new blockchain application to an-
alyze particular options and their security implications at the application layer of SRA.
We list the pros and cons of a few categories from the application layer in
while security threats and mitigation techniques of this layer are elaborated in
and During this process, we recommend the designers to follow security
dependencies of the target category on other underlying categories (see if
their decentralized variants are used (which is a preferable option from the security point-
of-view). For example, if one intends to design a decentralized reputation system, she is
advised to study the security threats from the reputation system category and its recursive
dependencies on e-voting, identity management, crypto-tokens & wallets, and (option-
ally) filesystems.

INote that the table contains only categories with specified sub-categorizations that represent the subject
to a comparison.
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Divide and Conquer. If a designer of the blockchain application is also designing a
blockchain platform, we recommend her to split the functionality of the solution with the
divide-and-conquer approach respecting particular layers of our stacked model. In detail,
if some functionality is specific to the application layer, then it should be implemented
at that layer. Such an approach minimizes the attack surface of a solution and enables
isolating the threats to specific layers, where they are easier to protect from and reviewed
by the community. A contra-example is to incorporate a part of application layer func-
tionality/validation into the consensus layer. The consensus layer should deal only with
the ordering of transactions, and it should be agnostic to the application.

Nevertheless, it is worth noting that the divide-and-conquer approach might not be
suitable for some very specific cases. For example, some decentralized filesystems might
combine data storage as an application-layer service with the proof-of-storage consensus
algorithm, presented at the consensus layer. Therefore, the consensus layer also embeds a
part of functionality from the application layer. However, when filesystems are in security
dependencies of the target application other than filesystems, one should realize that they
are usually running on a different blockchain or infrastructure than the target application,
and this exception is not a concern.

3.8.3 Blockchain Types & Design Goals

We learned that the type of a blockchain (see[Section 2.3)) implies the specific design goals
of its consensus protocol (see [Figure 3.25), which must be considered on top of the stan-
dard design goals (i.e., liveness and safety) and the inherent features (see
during the design of a particular blockchain platform and its consensus protocol. In the
following, we elaborate on such specific design goals.

Permissionless Type. The first design goal is to eliminate Sybil entities — such elimina-
tion can be done by requiring that some amount of scarce resources is spent for extension
of the blockchain, and hence no Sybil entity can participate. This implies that no pure
PoS protocol can be permissionless since it never spends resources on running a consen-
sus protocol. The next design goal is a fresh and fair leader/committee election, which
ensures that each consensus node influences the result of a consensus commensurately to
the number of scarce resources spent. Moreover, freshness avoids the prediction of the
selected nodes, and therefore elected nodes cannot become the subject of targeted DoS
attacks. The last design goal is the non-interactive verification of the consensus result by
any node —i.e., any node can verify the result of the consensus based on the data presented
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in the blockchain.

Permissioned and Semi-Permissionless Types. These types of blockchains require
fresh and fair leader/committee election as well as non-interactive verification of the re-
sult of the consensus. However, in contrast to the permissionless blockchains, they do not
require a means for the elimination of Sybil entities, as permission to enter the system is
given by a centralized entity (i.e., permissioned type) or any existing consensus node (i.e.,
semi-permissionless type).

Blockchain Types and Incentives. We observed that no application running on a pub-
lic (permissioned) blockchain has been able to work without introducing crypto-tokens
(i.e., an incentive scheme), even if the use case is not financial in nature, e.g., e-voting,
notaries, secure timestamping, or reputation systems. In these blockchains, incentive
schemes serve as a means for the elimination of Sybil entities, besides other purposes.
The situation is different in the context of private (permissioned) blockchains, which are
usually provisioned by a single organization or a consortium and do not necessarily need
crypto-tokens to operate. Misaligned incentives can cause consensus-level vulnerabili-
ties, e.g., when it becomes profitable to drop blocks of other nodes to earn higher mining
rewards [ES18]] or transaction fees [CKWN16b]. The design of incentive mechanisms is
a research field by itself and we refer the reader to the work of Leonardos et al. [LRP20]].

3.8.4 Security-Specific Features of Blockchains

We realized that consensus protocols are the target of most financially-oriented attacks
on the decentralized infrastructure of blockchains, even if such attacks might originate
from the network layer (e.g., routing and eclipse attacks). The goal of these attacks is to
overturn and re-order already ordered blocks while doing double-spending. Hence, the
finality is the most security-critical feature of the consensus layer. The finality differs
per various categories of the consensus layer. The best finality is achieved in the pure
BFT protocols, and the worse finality is achieved in the single-leader-based PoR and
PoS protocols. On the other hand, combinations of the BFT with PoS protocols (i.e.,
introducing committees) slightly deteriorate the finality of BFT in a probabilistic ratio that
is commensurate to the committee size. In the case of PoR protocols with partial solutions,
finality is improved as opposed to pure PoR protocols; however, it is also probabilistic,
depending on the number of partial solutions.

3.8.5 Limitations in the Literature and Practice

Applications of Blockchains. Although the literature contains surveys and overviews
[CDPI18|, ZXD™ 18, [WG18] of blockchain-based applications, these works introduce only
domain-oriented categorizations (i.e., categories such financial, governance, security, ed-
ucation, supply chain, etc.) and they do not investigate the security aspects and function-
alities that these applications leverage on and whether some of the applications do not



belong to the same category from the security and functionality point-of-view. To ad-
dress this limitation, we provide a security-driven functionality-oriented categorization of
blockchain-based applications (see [Section 3.6)), which is agnostic to an application do-
main and thus can generalize different application scenarios. Furthermore, our proposed
categorization enables us to model security and functionality-based dependencies among
particular categories, which is not possible with state-of-the-art categorizations.

Centralization. Even though blockchains are meant to be fully decentralized, we have
seen that this does not hold at some layers of the SRA — the network and application lay-
ers, in particular. In the network layer, some attacks are possible due to centralized DNS
bootstrapping, while in the application layer a few categories utilize centralized compo-
nents to ensure some functionality that cannot run on-chain or its provisioning would be
too expensive and slow, which, however, forms the trade-off with the security. Some ap-
plications might depend on components from other application categories (e.g., identity
management) but implementing these components in a centralized fashion, even though
there exist some decentralized variants that are gaining popularity (e.g., DIDs [W3C19a]
for identity management).

3.9 Contributing Papers

The papers that contributed to this research direction are enumerated in the following,
while highlighted papers are attached to this thesis in their original form.
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