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Abstract
With the rise of cryptocurrencies, many new applications and approaches leveraging the
decentralization of blockchains have emerged. Blockchains are full-stack distributed sys-
tems in which multiple sub-systems interact together. Although most of the deployed
blockchains and decentralized applications running on them need better scalability and
performance, their security is undoubtedly another critical factor for their success. Due to
the complexity of blockchains and many decentralized applications, their security assess-
ment and analysis require a more holistic view than in the case of traditional distributed
or centralized systems.

In this thesis, we summarize our contributions to the security of blockchains and a few
types of decentralized applications. In detail, we contribute to the standardization of vul-
nerability/threat analysis by proposing a security reference architecture for blockchains.
Then, we contribute to the security of consensus protocols in single-chain Proof-of-Work
blockchains and their resistance to selfish mining attacks, undercutting attacks as well as
greedy transaction selection attacks on blockchains with Direct Acyclic Graphs. Next,
we contribute to cryptocurrency wallets by proposing a new classification of authentica-
tion schemes as well as a novel approach to two-factor authentication based on One-Time
Passwords. Next, we contribute to the area of e-voting by proposing a practical board-
room voting protocol that we later extend to its scalable version supporting millions of
participants, while maintaining its security and privacy properties. In the area of e-voting,
we also propose a novel repetitive voting framework, enabling vote changes in between
elections while avoiding peak-end effects. Finally, we contribute to secure logging with
blockchains and trusted computing by proposing a new approach to a centralized ledger
that guarantees non-equivocation, integrity, censorship evidence, and other features. In
the follow-up contribution to secure logging, we built on top of our centralized ledger and
propose an interoperability protocol for central bank digital currencies, which provides
atomicity of transfer operations.
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Chapter 1

Introduction

The popularity of blockchain systems has rapidly increased in recent years, mainly due
to the decentralization of control that they aim to provide. Blockchains are full-stack dis-
tributed systems in which multiple layers, (sub)systems, and dynamics interact together.
Hence, they should leverage a secure and resilient networking architecture, a robust con-
sensus protocol, and a safe environment for building higher-level applications. Although
most of the deployed blockchains need better scalability and well-aligned incentives to
unleash their full potential, their security is undoubtedly a critical factor for their success.
As these systems are actively being developed and deployed, it is often challenging to
understand how secure they are, or what security implications are introduced by some
specific components they consist of. Moreover, due to their complexity and novelty (e.g.,
built-in protocol incentives), their security assessment and analysis require a more holistic
view than in the case of traditional distributed systems.

In this work, we first present our contributions to the standardization of vulnerabili-
ty/threat analysis and modeling in blockchains, and then we present our contributions to
particular areas in blockchains’ consensus protocols, cryptocurrency wallets, electronic
voting, and secure logging with the focus on security and/or privacy aspects. In the fol-
lowing, we introduce these areas and outline our contributions.

1.1 Standardization in Threat Modeling

Although some standardization efforts have already been undertaken in the field of block-
chains and distributed ledgers, they are either specific to a particular platform [Ent19] or
still under development [ISO19b, ISO19a]. Hence, there is a lack of platform-agnostic
standards in blockchain implementation, interoperability, services, and applications, as
well as the analysis of its security threats [Goa19, Bar18]. All of these areas are challeng-
ing, and it might take years until they are standardized and agreed upon across a diverse
spectrum of stakeholders.

We believe that it is critical to provide blockchain stakeholders (developers, users,
standardization bodies, regulators, etc.) with a comprehensive systematization of knowl-
edge about the security and privacy aspects of today’s blockchain systems. We aim to

2



1.2. CONSENSUS PROTOCOLS 3

achieve this goal, with a particular focus on system design and architectural aspects. We
do not limit our work to an enumeration of security issues, but additionally, discuss the
origins of those issues while listing possible countermeasures and mitigation techniques
together with their potential implications. In sum, we propose the security reference ar-
chitecture (SRA) for blockchains, which is based on models that demonstrate the stacked
hierarchy of different threat categories (similar to the ISO/OSI hierarchy [Zim80]) and
is inspired by security modeling performed in the cloud computing [LTM+11, XX13].
As our next contribution in this direction, we enrich the threat-risk assessment standard
ISO/IEC 15408 [Com17] to fit the blockchain infrastructure. We achieve this by embed-
ding the stacked model into this standard. More details in this direction of our research
are elaborated in Chapter 3.

1.2 Consensus Protocols

While the previous area of the thesis was theoretical and analytical, in the current area
of consensus protocols we aim to investigate practical security aspects of blockchains,
and their consensus protocols in particular. Consensus protocols represent a means to
provide naturally incentivized decentralization, immutability, and other features of block-
chains (see Section 2.1.1). Therefore, modeling and simulation of consensus protocols
in terms of security and incentives is an important research direction. There exist several
principally different categories of consensus protocols such as Proof-of-Resource (PoR),
Proof-of-Stake, and Byzantine-Fault-Tolerant protocols (see Section 3.4), each of them
potentially vulnerable to different types of threats. Nevertheless, in this research area, we
focus on PoR protocols and Proof-of-Work (PoW) protocols in particular.

As our first contribution, we design StrongChain [SRHS19] consensus protocol that
improves the resistance of Nakamoto consensus [Nak08] to selfish mining by rewarding
partial partial PoW puzzle solutions and incorporating them to the total “weight” of the
chain. While the idea of rewarding partial puzzle solutions is not novel [ZSS+18, PS17,
Riz16], StrongChain achieves resistance to selfish mining in a space-efficient manner that
does not create a new vulnerability (such as selfish mining on a subchain in [ZSS+18]).
At the same time, StrongChain improves on accuracy of distributed time and decreases
the reward variance of miners, and thus it creates better conditions for more decentralized
mining.

Our second contribution is in the area of consensus protocols that utilize Directed
Acyclic Graphs (DAGs) to solve the limited processing throughput of traditional single-
chain Proof-of-Work (PoW) blockchains. Many such protocols (e.g., Inclusive [LSZ15],
GHOSTDAG [SWZ21], PHANTOM [SWZ21], SPECTRE [SLZ16], Prism [BKT+19])
utilize a random transaction selection (RTS) strategy to avoid transaction duplicates across
parallel blocks in DAG and thus maximize the network throughput. However, these works
have not rigorously examined incentive-oriented greedy behaviors when transaction selec-
tion deviates from the protocol, which motivated our research. Therefore, we first perform
a generic game-theoretic analysis abstracting several DAG-based blockchain protocols
that use the RTS strategy [PBH+], and we prove that such a strategy does not constitute
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a Nash equilibrium. Then, we design a simulator [PHMH24] and perform experiments
confirming that greedy actors who do not follow the RTS strategy can profit more than
honest miners and harm the processing throughput of the protocol [PBH+]. We show that
this effect is indirectly proportional to the network propagation delay. Finally, we show
that greedy miners are incentivized to form a shared mining pool to increase their profits,
which undermines decentralization and degrades the design of the protocols in question.
Finally, we elaborate on a few techniques to mitigate such incentive attacks.

In our last contribution, we mainly focus on the undercutting attacks in the transaction-
fee-based regime (i.e., without block rewards) of PoW blockchains with the longest chain
fork-choice rule. Note that such a regime is expected to occur in Bitcoin’s consensus
protocol around the year 2140. Additionally, we focus on two closely related problems:
(1) fluctuations in mining revenue and (2) the mining gap – i.e., a situation, in which
the immediate reward from transaction fees does not cover miners’ expenditures. To
mitigate these issues, we propose a solution [BHS23] that splits transaction fees from a
mined block into two parts – (1) an instant reward for the miner of a block and (2) a
deposit sent to one or more fee-redistribution smart contracts (FRSCs) that are part of
the consensus protocol. At the same time, these FRSCs reward the miner of a block
with a certain fraction of the accumulated funds over a predefined time. This setting
enables us to achieve several interesting properties that improve the incentive stability
and security of the protocol, which is beneficial for honest miners. With our solution,
the fraction of DEFAULT-COMPLIANT miners who strictly do not execute undercutting
attacks is lowered from the state-of-the-art [CKWN16a] result of 66% to 30%. More
details in this direction of our research are presented in Chapter 4.

1.3 Cryptocurrency Wallets

With the recent rise in the popularity of cryptocurrencies, the security and management of
crypto-tokens have become critical. We have witnessed many attacks on users and wal-
let providers, which have resulted in significant financial losses. To remedy these issues,
several wallet solutions have been proposed. According to the previous work [ECBS18,
BMC+15], there are a few categories of common (single-factor) key management ap-
proaches, such as password-protected/password-derived wallets, hardware wallets, and
server-side/client-side hosted wallets. Each category has its respective drawbacks and
vulnerabilities.

To increase the security of former wallet categories, multi-factor authentication (MFA)
is often used, which enables spending crypto-tokens only when several secrets are used
together. However, we emphasize that different security implications stem from the multi-
factor authentication executed against a centralized party (e.g., username/password or
Google Authenticator) and against the blockchain itself. In the former, the authentication
factor is only as secure as the centralized party, while the latter provides stronger security
that depends on the assumption of an honest majority of decentralized consensus nodes
(i.e., miners) and the security of cryptographic primitives used.

In our first contribution in this direction, we propose a classification scheme [HBH+20b]



1.4. ELECTRONIC VOTING 5

for cryptocurrency wallets that distinguishes between the authentication factors validated
against the blockchain and a centralized party (or a device). We apply this classification
to several existing wallets that we also compare in terms of various security features.

In our second contribution, we focus on the security vs. usability of wallets using MFA
against the blockchain, provided by the wallets from a split control category [ECBS18].
MFA in these wallets can be constructed by threshold cryptography wallets [GGK+15,
Myc19], multi-signatures [Arm16, Ele18, Tru19, Cop19], and state-aware smart-contracts
[Unc18, Tec18, Con19a]. The last class of wallets is of our concern, as spending rules
and security features can be encoded in a smart contract. Although there are several
smart-contract wallets using MFA against the blockchain [Unc18, Con19a], to the best of
our knowledge, none of them provides an air-gapped authentication in the form of short
OTPs similar to Google Authenticator. Therefore, we propose SmartOTPs [HBH+20a],
a framework for smart-contract cryptocurrency wallets, which provides 2FA against data
stored on the blockchain. The first factor is represented by the user’s private key and
the second factor by OTPs. To produce OTPs, the authenticator device of SmartOTPs
utilizes hash-based cryptographic constructs, namely a pseudo-random function, a Merkle
tree, and hash chains. We propose a novel combination of these elements that minimizes
the amount of data transferred from the authenticator to the client, which enables us to
implement the authenticator in a fully air-gapped setting. SmartOTPs provide protection
against three exclusively occurring attackers: the attacker who possesses the user’s private
key or the attacker who possesses the user’s authenticator or the attacker that tampers with
the client. More details in this direction of our research are presented in Chapter 5.

1.4 Electronic Voting

Voting is an integral part of democratic governance, where eligible participants can cast
a vote for their representative choice (e.g., candidate or policy) through a secret ballot.
Electronic voting (e-voting) is usually centralized and suffers from a single point of failure
that can be manifested in censorship, tampering, and issues with the availability of a
service. To improve some features of e-voting, decentralized blockchain-based solutions
can be employed, where the blockchain represents a public bulletin board that in contrast
to a centralized bulletin board provides extremely high availability, censorship resistance,
and correct code execution. A blockchain ensures that all entities in the voting system
have the same view of the actions made by others due to its immutability and append-only
features. A few blockchain-based e-voting solutions have been proposed in recent years,
mostly focusing on boardroom voting [MSH17, PR18, LSY+20, YLS+18] or small-scale
voting [SGY20, DMMM18, LSY+20].

Decentralization was a desired property of e-voting even before the invention of block-
chains. For example, (partially) decentralized e-voting that uses the homomorphic prop-
erties of El-Gamal encryption was introduced by Cramer et al. [CGS97]. It assumes a
threshold number of honest election authorities to provide the privacy of vote. How-
ever, when this threshold is adversarial, it does not protect from computing partial tallies,
making statistical inferences about it, or even worse – revealing the vote choices of partic-
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ipants. A solution that removed trust in tallying authorities was for the first time proposed
by Kiayias and Yung [KY02] in their privacy-preserving self-tallying boardroom voting
protocol. A similar protocol was later proposed by Hao et al. [HRZ10], which was later
extended to a blockchain environment by McCorry et al. [MSH17] in their Open Vote
Network (OVN). An interesting property of OVN is that it requires only a single honest
voting participant to maintain the privacy of the votes. However, OVN supports only two
vote choices (based on [HRZ10]), assumes no stalling participants, requires expensive on-
chain tally computation, and does not scale in the number of participants. The scalability
of OVN was partially improved by Seifelnasr et al. [SGY20], but retaining the limitation
of 2 choices and missing robustness.

In our first contribution within blockchain-based electronic voting, we introduce BBB-
Voting [HLS23], a similar blockchain-based approach for decentralized voting such as
OVN, but in contrast to OVN, BBB-Voting supports 1-out-of-k choices and provides
robustness that enables recovery from stalling participants. We make a cost-optimized
implementation using an Ethereum-based environment, which we compare with OVN
and show that our work decreases the costs for voters by 13.5% in normalized gas con-
sumption. Finally, we show how BBB-Voting can be extended to support the number
of participants limited only by the expenses paid by the semi-trusted1 authority and the
computing power to obtain the tally.

In our second contribution, we introduce SBvote [SH23] (as an extension of BBB-
Voting), a blockchain-based self-tallying voting protocol that is scalable in the number
of voters, and therefore suitable for large-scale elections. The evaluation of our proof-
of-concept implementation shows that the protocol’s scalability is limited only by the
underlying blockchain platform. Despite the limitations imposed by the throughput of
the blockchain platforms, SBvote can accommodate elections with millions of voters. We
evaluated the scalability of SBvote on two public smart contract platforms – Gnosis and
Harmony.

In our last contribution, we propose Always on Voting (AoV) [VSH23] – a repeti-
tive blockchain-based voting framework that allows participants to continuously vote and
change elected candidates or policies without waiting for the next elections. Participants
are permitted to privately change their vote at any point in time, while the effect of their
change is manifested at the end of each epoch, whose duration is shorter than the time
between two main elections. To thwart the problem of peak-end effect in epochs, the ends
of epochs are randomized and made unpredictable, while preserved within soft bounds.
In AoV, we make the synergy between a Bitcoin puzzle oracle, verifiable delay function,
and smart contract properties to achieve these goals. AoV can be integrated with vari-
ous existing blockchain-based e-voting solutions. More details in this direction of our
research are presented in Chapter 6.

1The authority is only trusted to do identity management of participants honestly, which is an equivalent
trust model as in OVN.
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1.5 Secure Logging

Centralized ledger systems designed for secure logging are append-only databases pro-
viding immutability (i.e., tamper resistance) as a core property. To facilitate their append-
only feature, cryptographic constructions, such as hash chains or hash trees, are usually
deployed. Traditionally, public ledger systems are centralized, and controlled by a sin-
gle entity that acts as a trusted party. In such a setting, ledgers are being deployed in
various applications, including payments, logging, timestamping services, repositories,
or public logs of various artifacts (e.g., keys [MBB+15, CDGM19], certificates issued
by authorities [LLK13], and binaries [FDP+14]). Unfortunately, centralized ledgers have
also several drawbacks, like a lack of efficient verifiability or a higher risk of censorship
and equivocation.

In our first contribution to secure logging, we propose Aquareum [HS20], a framework
for centralized ledgers mitigating their main limitations. Aquareum employs a trusted ex-
ecution environment (TEE) and a public smart contract platform to provide verifiability,
non-equivocation, and mitigation of censorship. In Aquareum, a ledger operator deploys
a pre-defined TEE enclave code, which verifies the consistency and correctness of the
ledger for every ledger update. Then, proof produced by the enclave is published at an
existing public smart contract platform, guaranteeing that the given snapshot of the ledger
is verified and no alternative snapshot of this ledger exists. Furthermore, whenever a
client suspects that her query (or transaction) is censored, she can (confidentially) request
a resolution of the query via the smart contract platform. The ledger operator noticing the
query is obligated to handle it by passing the query to the enclave that creates a public
proof of query resolution and publishes it using the smart contract platform. With such
a censorship-evident design, an operator is publicly visible when misbehaving, thus the
clients can take appropriate actions (e.g., sue the operator) or encode some automated
service-level agreements into their smart contracts. Since Aquareum is integrated with a
Turing-complete virtual machine, it allows arbitrary transaction processing logic, includ-
ing tokens or client-specified smart contracts.

In our second contribution, we present CBDC-AquaSphere, a protocol that uses a
combination of a trusted execution environment (TEE) and a public blockchain to enable
interoperability over independent centralized CBDC ledgers (based on Aquareum). Our
interoperability protocol uses a custom adaptation of atomic swap protocol and is exe-
cuted by any pair of CBDC instances to realize a one-way transfer. It ensures features
such as atomicity, verifiability, correctness, censorship resistance, and privacy while of-
fering high scalability in terms of the number of CBDC instances. Our approach enables
two possible deployment scenarios that can be combined: (1) CBDC instances represent
central banks of multiple countries, and (2) CBDC instances represent the set of retail
banks and a paramount central bank of a single country. More details in this direction of
our research are presented in Chapter 7.
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Paper Topic Approach Proofs Implementation Experiments
Security

Analysis

Literature

Review
Writing

[BHS23]

[DHV+23]

[HHR19]

[HHMH19]

[HBH+20a]

[HPH+23]

[HS20]

[HVHS19]

[HVR+20]

[HTT+20]

[PBMH21]

[PHMH23]

[PBH+]

[SH23]

[SRHS19b]

[HLS23]

[VSH23]

Table 1.1: The author’s contributions to the selected papers related to this thesis. Essential con-
tribution is depicted in black, partial (still important) contribution is depicted in gray, minor or
no contribution is depicted in white, and non-applicable field is depicted by a cross. The papers
highlighted in bold are attached to this thesis.

1.6 Author’s Contribution
In Table 1.1, we describe the author’s contributions to the papers contained in this thesis.2

Since there is no standard metric assessing the qualitative and quantitative contributions,
the table describes the author’s contribution to common parts in the process of creating a
paper in computer science.

1.7 Organization of the Thesis
The rest of the thesis is organized as follows. In Chapter 2, we describe preliminaries
and background related to this thesis. Next, in Chapter 3, we describe our contributions
to the standardization of threat modeling for blockchains, and we introduce the security
reference architecture as a layered model. Chapter 4 summarizes our contributions to the
security of the consensus protocol in blockchains – in particular, we focus on Proof-of-

2Note that the table contains alphabetic ordering of papers by the author names.
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Work (PoW) protocols: we describe StrongChain, transaction selection (incentive) attacks
on DAG-based blockchains, and undercutting attacks on PoW blockchains. In Chapter 5,
we deal with cryptocurrency wallets, where we describe our proposed classification of
authentication schemes for such wallets as well as SmartOTPs, our contribution to the
two-factor authentication on blockchains, and its security. Then, in Chapter 6, we focus
on electronic voting using blockchains as an instance of a public bulletin board, and we
describe our proposals BBB-Voting and SBvote as well as the always-on-voting frame-
work for repetitive voting, accompanied with the analysis of their security and privacy
aspects. Chapter 7 focuses on secure logging, where we present Aquareum, a central-
ized ledger based on blockchain and trusted computing; later in this chapter, we build
on Aquareum and propose an interoperability protocol for central bank digital curren-
cies called CBDC-AquaSphere. Chapter 8 concludes the paper and outlines our future
research directions.



Chapter 2

Background

In this chapter, we summarize the background and preliminaries of the thesis. The reader
familiar with the topics of blockchain, trusted computing, and integrity-preserving data
structures can skip this chapter and proceed to Chapter 3. This chapter is based on the
papers [HVHS19, HVR+20, SRHS19, VSH23, HS20, HPH+23].

The blockchain is a data structure representing an append-only distributed ledger that
consists of entries (a.k.a., transactions) aggregated within ordered blocks. The order of the
blocks is agreed upon by mutually untrusting participants running a consensus protocol
– these participants are also referred to as nodes. The blockchain is resistant against
modifications by design since blocks are linked using a cryptographic hash function, and
each new block has to be agreed upon by nodes running a consensus protocol.

A transaction is an elementary data entry that may contain arbitrary data, e.g., an order
to transfer native cryptocurrency (i.e., crypto-tokens), a piece of application code (i.e.,
smart contract), the execution orders of such application code, etc. Transactions sent to a
blockchain are validated by all nodes that maintain a replicated state of the blockchain.

2.1 Features of Blockchains

Blockchains were initially introduced as a means of coping with the centralization of
monetary assets management, resulting in their most popular application – a decentralized
cryptocurrency with a native crypto-token. Nevertheless, other blockchain applications
have emerged, benefiting from features other than decentralization, e.g., privacy, energy
efficiency, throughput, etc. We split the features of blockchains into inherent and non-
inherent ones, where the former involves “traditional” features that were aimed to provide
by all blockchains while the latter involves features specific to particular blockchain types.
These features are summarized in the following.

2.1.1 Inherent Features

Decentralization: is achieved by a distributed consensus protocol – the protocol ensures
that each modification of the ledger is a result of interaction among participants. In

10
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the consensus protocol, participants are equal, i.e., no single entity is designed as
an authority. An important result of decentralization is resilience to node failures.

Censorship Resistance: is achieved due to decentralization, and it ensures that each
valid transaction is processed and included in the blockchain.

Immutability: means that the history of the ledger cannot be easily modified – it requires
a significant quorum of colluding nodes. The immutability of history is achieved
by a cryptographic one-way function (i.e., a hash function) that creates integrity-
preserving links between the previous record (i.e., block) and the current one. In this
way, integrity-preserving chains (e.g., blockchains) or graphs (e.g., direct acyclic
graphs [SLZ16, Tea18, Pop16] or trees [SZ13]) are built in an append-only fashion.
However, the immutability of new blocks is not immediate and depends on the time
to the finality of a particular consensus protocol (see Section 2.4).

Availability: although distributed ledgers are highly redundant in terms of data storage
(i.e., full nodes store replicated data), the main advantage of such redundancy is
paid off by the extremely high availability of the system. This feature may be of
special interest to applications that cannot tolerate outages.

Auditability: correctness of each transaction and block recorded in the blockchain can
be validated by any participating node, which is possible due to the publicly-known
rules of a consensus protocol.

Transparency: the transactions stored in the blockchain as well as the actions of protocol
participants are visible to other participants and in most cases even to the public.

2.1.2 Non-Inherent Features

Additionally to the inherent features, blockchains may be equipped with other features
that aim to achieve extra goals. Below we list a few examples of such non-inherent fea-
tures.
Energy Efficiency: running an open distributed ledger often means that scarce resources

are wasted (e.g., Proof-of-Work). However, there are available consensus protocols
that do not waste scarce resources, but instead emulate the consumption of scarce
resources (i.e., Proof-of-Burn), or the interest rate on an investment (i.e., Proof-of-
Stake). See examples of these protocols in Section 3.4.

Scalability: describes how the consensus protocol scales when the number of partici-
pants increases. Protocols whose behavior is not negatively affected by an increas-
ing number of participants have high scalability.

Throughput: represents the number of transactions that can be processed per unit of
time. Some consensus protocols have only a small throughput (e.g., Proof-of-
Work), while others are designed with the intention to maximize throughput (e.g.,
Byzantine Fault Tolerant (BFT) protocols with a small number of participants).

Privacy & Anonymity: by design, data recorded on a public blockchain is visible to
all nodes or public, which may lead to privacy and anonymity issues. Therefore,
multiple solutions increasing anonymity (e.g., ring signatures [RST01] in Monero)
and privacy (e.g., zk-SNARKs [BSCTV14] in Zcash) were proposed in the context
of cryptocurrencies, while other efforts have been made in privacy-preserving smart
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Figure 2.1: Involved parties with their interactions and hierarchy.

contract platforms [KMS+16, CZK+19a].
Accountability and Non-Repudiation: if blockchains or applications running on top of

them are designed in such a way that identities of nodes (or application users) are
known and verified, accountability and non-repudiation of actions performed can
be provided too.

2.2 Involved Parties

Blockchains usually involve three native types of parties that can be organized into a
hierarchy, according to the actions that they perform (see Figure 2.1):
(1) Consensus nodes (a.k.a., miners in Proof-of-Resource protocols) actively participate

in the underlying consensus protocol. These nodes can read the blockchain and
write to it by appending new transactions. Additionally, they can validate the
blockchain and thus check whether writes of other consensus nodes are correct.
Consensus nodes can prevent malicious behaviors (e.g., by not appending invalid
transactions, or ignoring an incorrect chain).

(2) Validating nodes read the entire blockchain, validate it, and disseminate transactions.
Unlike consensus nodes, validating nodes cannot write to the blockchain, and thus
they cannot prevent malicious behaviors. On the other hand, they can detect mali-
cious behavior since they possess copies of the entire blockchain.

(3) Lightweight nodes (a.k.a., clients or Simplified Payment Verification (SPV) clients)
benefit from most of the blockchain functionalities, but they are equipped only with
limited information about the blockchain. These nodes can read only fragments of
the blockchain (usually block headers) and validate only a small number of transac-
tions that concern them, while they rely on consensus and validating nodes. There-
fore, they can detect only a limited set of attacks, pertaining to their own transac-
tions.
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Additional Involved Parties

Note that besides native types of involved parties, many applications using or running on
the blockchain introduce their own (centralized) components.

2.3 Types of Blockchains

Based on how a new node enters a consensus protocol, we distinguish the following block-
chain types:
Permissionless blockchains allow anyone to join the consensus protocol without permis-

sion. To prevent Sybil attacks, this type of blockchains usually requires consensus
nodes to establish their identities by running a Proof-of-Resource protocol, where
the consensus power of a node is proportional to its resources allocated.

Permissioned blockchains require a consensus node to obtain permission to join the con-
sensus protocol from a centralized or federated authority(ies), while nodes usually
have equal consensus power (i.e., one vote per node).

Semi-Permissionless blockchains require a consensus node to obtain some form of per-
mission (i.e., stake) before joining the protocol; however, such permission can be
given by any consensus node. The consensus power of a node is proportional to the
stake that it has.

2.4 Design Goals of Consensus Protocols

2.4.1 Standard Design Goals – Liveness and Safety

The standard design goals of consensus protocols are liveness and safety. To meet these
goals, an eventual-synchrony network model [DLS88] is usually assumed due to its sim-
plicity. In this model, upper bounds are put on an asynchronous delivery of each message,
hence each message is eventually/synchronously delivered. Liveness ensures that all valid
transactions are eventually processed – i.e., if a transaction is received by a single honest
node, it will eventually be delivered to all honest nodes. Safety ensures that if an honest
node accepts (or rejects) a transaction, then all other honest nodes make the same decision.
Usually, consensus protocols satisfy safety and liveness only under certain assumptions:
the minimal fraction of honest consensus power or the maximal fraction of adversarial
consensus power. With regard to safety, literature often uses the term finality and time to
finality. Finality represents the sequence of the blocks from the genesis block up to the
block B, where it can be assumed that this sequence of blocks is infeasible to overturn.
To reach finality up to the block B, several successive blocks need to be appended after
B – the number of such blocks is referred to as the number of confirmations.
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2.4.2 Specific Design Goals
As a result of this study, we learned that standard design goals of the consensus protocol
should be amended by specific design goals related to the type of the blockchain. In per-
missionless type, elimination of Sybil entities, a fresh and fair leader/committee election,
and non-interactive verification of the consensus result is required to meet. In contrast,
the (semi)-permissionless types do not require the elimination of Sybil entities.

2.4.3 Means to Achieve Design Goals
Simulation of the Verifiable Random Function (VRF). To ensure a fresh and fair
leader/committee election, all consensus nodes should contribute to the pseudo-randomness
generation that determines the fresh result of the election. This can be captured by the con-
cept of the VRF [MRV99], which ensures the unpredictability and fairness of the election
process. Therefore, the leader/committee election process can be viewed as a simulation
of VRF [WHH+19]. Due to the properties of VRF, the correctness of the election result
can be verified non-interactively after the election took place.

Incentive and Rewarding Schemes. An important aspect for protocol designers is to
include a rewarding/incentive scheme that motivates consensus nodes to participate hon-
estly in the protocol. In the context of public (permissionless) blockchains that introduce
their native crypto-tokens, this is achieved by block creation rewards as well as transac-
tion fees, and optionally penalties for misbehavior. Transaction fees and block creation
rewards are attributed to the consensus node(s) that create a valid block (e.g., [Nak08]),
although alternative incentive schemes rewarding more consensus nodes at the same time
are also possible (e.g., [SRHS19]). While transaction fees are included in a particular
transaction, the block reward is usually part of the first transaction in the block (a.k.a.,
coinbase transaction).

2.5 Basis of Consensus Protocols
Lottery and voting are two marginal techniques that deal with the establishment of a con-
sensus [Hyp17]. However, in addition to them, their combinations have become popular.

Lottery-Based Protocols. These protocols provide consensus by running a lottery that
elects a leader/committee, who produces the block. The advantages of lottery-based ap-
proaches are a small network traffic overheads and high scalability (in the number of
consensus nodes) since the process is usually non-interactive (e.g., [Nak08], [CXS+17],
[KRDO17]). However, a disadvantage of this approach is the possibility of multiple
“winners” being elected, who propose conflicting blocks, which naturally leads to in-
consistencies called forks. Forks are resolved by fork-choice rules, which compute the
difficulty of each branch and select the one. For the longest chain rule, the chain with
the largest number of blocks is selected in the case of a conflict, while for the strongest
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chain rule, the selection criteria involve the quality of each block in the chain (e.g.,
[SLZ16, SZ13, Tan17, ZSS+18, SRHS19]). Note that the possibility of forks in this
category of protocols causes an increase of the time to finality, which in turn might enable
some attacks such as double-spending.

Voting-Based Protocols. In this group of protocols, the agreement on transactions is
reached through the votes of all participants. Examples include Byzantine Fault Tolerant
(BFT) protocols – which require the consensus of a majority quorum (usually 2

3
) of all

consensus nodes (e.g., [CL+99, AMQ13, BKM18, KR18, DMPZ14]). The advantage of
this category is a low-latency finality due to a negligible likelihood of forks. The protocols
from this group suffer from low scalability, and thus their throughput forms a trade-off
with scalability (i.e., the higher the number of nodes, the lower the throughput).

Combinations. To improve the scalability of voting-based protocols, it is desirable to
shrink the number of consensus nodes participating in the voting by a lottery, so that only
nodes of such a committee vote for a block (e.g., [GHM+17], [DPS19], [TH18], [ZIL17],
[KR18]). Another option to reduce active voting nodes is to split them into several groups
(a.k.a., shards) that run a consensus protocol in parallel (e.g., [KJG+18, ZMR18]). Such
a setting further increases the throughput in contrast to the single-group option, but on the
other hand, it requires a mechanism that accomplishes inter-shard transactions.

2.6 Failure Models in Distributed Consensus Protocols
The relevant literature mentions two main failure models for consensus protocols [Sch90]:
Fail-Stop Failures: A node either stops its operation or continues to operate, while ob-

viously exposing its faulty behavior to other nodes. Hence, all other nodes are
aware of the faulty state of that node (e.g., tolerated in Paxos [L+98], Raft [OO14],
Viewstamped Replication [OL88]).

Byzantine Failures: In this model, the failed nodes (a.k.a., Byzantine nodes) may per-
form arbitrary actions, including malicious behavior targeting the consensus pro-
tocol and collusions with other Byzantine nodes. Hence, the Byzantine failure
model is of particular interest to security-critical applications, such as blockchains
(e.g., Nakamoto’s consensus [Nak08], pure BFT protocols [CL+99], [AMQ13],
[BKM18], [CP02], and hybrid protocols [GHM+17, KJG+18, ZMR18]).

2.7 Nakamoto Consensus and Bitcoin
The Nakamoto consensus protocol allows decentralized and distributed network com-
prised of mutually distrusting participants to reach an agreement on the state of the global
distributed ledger (i.e., blockchain) [Nak08]. To resolve any forks of the blockchain the
protocol specifies to always accept the longest chain as the current one. Bitcoin is a peer-
to-peer cryptocurrency that deploys Nakamoto consensus as its core mechanism to avoid
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double-spending. Transactions spending bitcoins are announced to the Bitcoin network,
where miners validate, serialize all non-included transactions, and try to create (mine) a
block of transactions with a PoW embedded into the block header. A valid block must
fulfill the condition that for a cryptographic hash function H , the hash value of the block
header is less than the target T .

2.7.1 Incentive Scheme
Brute-forcing the nonce (together with some other fields) is the only way to produce the
PoW, which costs computational resources of the miners. To incentivize miners, the Bit-
coin protocol allows the miner who finds a block to insert a coinbase transaction minting
a specified amount of new bitcoins and collecting transaction fees offered by the included
transactions. Currently, every block mints 6.25 new bitcoins. This amount is halved every
four years, upper-bounding the number of bitcoins that will be created to a fixed total of
21 million coins. It implies that after around the year 2140, no new coins will be cre-
ated, and the transaction fees will be the only source of reward for miners. Because of its
design, Bitcoin is a deflationary currency.

In the original white paper, Nakamoto heuristically argues that the consensus proto-
col remains secure as long as a majority (> 50%) of the participants’ computing power
honestly follow the rules specified by the protocol, which is compatible with their own
economic incentives.

2.7.2 Difficulty and Fork-Choice Rule
The overall hash rate of the Bitcoin network and the difficulty of the PoW determine
how long it takes to generate a new block for the whole network (the block interval). To
stabilize the block interval at about 10 minutes for the constantly changing total mining
power, the Bitcoin network adjusts the target T every 2016 blocks (about two weeks, i.e.,
a difficulty window) according to the following formula

Tnew = Told ·
Time of the last 2016 blocks

2016 · 10 minutes
. (2.1)

In simple terms, the difficulty increases if the network is finding blocks faster than every
10 minutes, and decrease otherwise. With dynamic difficulty, Nakamoto’s longest chain
fork-choice rule was considered as a bug,1 as it is trivial to produce long chains that have
low difficulty. The rule was replaced by the strongest-PoW chain rule where competing
chains are measured in terms of PoW they aggregated. As long as there is one chain with
the highest PoW, this chain is chosen as the current one.

2.7.3 UTXO Model
Bitcoin introduced and uses the unspent transaction output (UTXO) model. The validity
of a Bitcoin transaction is verified by executing a script proving that the transaction sender

1https://goo.gl/thhusi

https://goo.gl/thhusi
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is authorized to redeem unspent coins. Also, the Bitcoin scripting language offers a mech-
anism (OP RETURN) for recording data on the blockchain, which facilitates third-party
applications built-on Bitcoin.

2.7.4 Light Clients and Simple Payment Verification (SPV)

Bitcoin proposes the simplified payment verification (SPV) protocol, that allows resource-
limited clients to verify that a transaction is indeed included in a block provided only with
the block header and a short transaction’s inclusion proof. The key advantage of the pro-
tocol is that SPV clients can verify the existence of a transaction without downloading or
storing the whole block. SPV clients are provided only with block headers and on-demand
request from the network inclusion proofs of the transactions they are interested in.

2.8 Integrity Preserving Data Structures

2.8.1 Merkle Tree

A Merkle tree [Mer89] is a data structure based on the binary tree in which each leaf
node contains a hash of a single data block, while each non-leaf node contains a hash of
its concatenated children. At the top of a Merkle tree is the root hash, which provides a
tamper-evident summary of the contents. A Merkle tree enables efficient verification as
to whether some data are associated with a leaf node by comparing the expected root hash
of a tree with the one computed from a hash of the data in the query and the remaining
nodes required to reconstruct the root hash (i.e., proof or authentication path). The recon-
struction of the root hash has the logarithmic time and space complexity, which makes the
Merkle tree an efficient scheme for membership verification. The Merkle tree is utilized
for example in Bitcoin (and other blockchains) for aggregation of transactions within a
block into the root hash, providing the integrity snapshot and at the same time enabling
SPV clients to download only data related to authentication path of the transaction whose
inclusion in a block is to be verified.

To provide a membership verification of element xi in the list of elements X =
{xi}, i ≥ 1, the Merkle tree supports the following operations:

• MkRoot(X)→ Root: an aggregation of all elements of the list X by a Merkle
tree, providing a single value Root.

• MkProof(xi,X)→ πmk: a Merkle proof generation for the ith element xi present
in the list of all elements X .

• πmk.Verify(xi,Root)→ {True,False}: verification of the Merkle proof πmk,
witnessing that xi is included in the list X that is aggregated by the Merkle tree
with the root hash Root.
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2.8.2 History Tree
A Merkle tree has been primarily used for proving membership. However, Crosby and
Wallach [CW09] extended its application for an append-only tamper-evident log, denoted
as a history tree. A history tree is the Merkle tree, in which leaf nodes are added in
an append-only fashion, and which allows to produce logarithmic proofs witnessing that
arbitrary two versions of the tree are consistent (i.e., one version of the tree is an extension
of another). Therefore, once added, a leaf node cannot be modified or removed.

A history tree brings a versioned computation of hashes over the Merkle tree, en-
abling to prove that different versions (i.e., commitments) of a log, with distinct root
hashes, make consistent claims about the past. To provide a tamper-evident history sys-
tem [CW09], the log represented by the history tree L supports the following operations:

• L.add(x)→ Cj: appending of the record x to L, returning a new commitment Cj

that represents the most recent value of the root hash of the history tree.

• L.IncProof(Ci,Cj)→ πinc: an incremental proof generation between two com-
mitments Ci and Cj , where i ≤ j.

• L.MemProof(i,Cj)→ πmem: a membership proof generation for the record xi

from the commitment Cj , where i ≤ j.

• πinc.Verify(Ci,Cj)→ {True,False}: verification of the incremental proof πinc,
witnessing that the commitment Cj contains the same history of records xk, k ∈
{0, . . . , i} as the commitment Ci, where i ≤ j.

• πmem.Verify(i,xi,Cj)→ {True,False}: verification of the membership proof
πmem, witnessing that xi is the ith record in the jth version of L, fixed by the
commitment Cj , i ≤ j.

• πinc.DeriveNewRoot()→ Cj: a reconstruction of the commitment Cj from the
incremental proof πinc that was generated by L.IncProof(Ci, Cj).

• πinc.DeriveOldRoot()→ Ci: a reconstruction of the commitment Ci from the
incremental proof πinc that was generated by L.IncProof(Ci, Cj).

2.8.3 Radix and Merkle-Patricia Tries
Radix trie serves as a key-value storage. In the Radix trie, every node at the l-th layer
of the trie has the form of ⟨(p0, p1, . . . , pn), v⟩, where v is a stored value and all pi, i ∈
{0, 1, . . . , n} represent the pointers on the nodes in the next (lower) layer l+1 of the trie,
which is selected by following the (l + 1)-th item of the key. Note that key consists of an
arbitrary number of items that belong to an alphabet with n symbols (e.g., hex symbols).
Hence, each node of the Radix trie has n children and to access a leaf node (i.e., data v),
one must descend the trie starting from the root node while following the items of the key
one-by-one. Note that Radix trie requires underlying database of key-value storage that
maps pointers to nodes. However, Radix trie does not contain integrity protection, and
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when its key is too long (e.g., hash value), the Radix trie will be sparse, thus imposing a
high overhead for storage of all the nodes on the path from the root to values.

Merkle Patricia Trie (MPT) [Woo14a, Ray19] is a combination of the Merkle tree
(see Section 2.8.1) and Radix trie data structures, and similar the Radix Trie, it serves as
a key-value data storage. However, in contrast to Radix trie, the pointers are replaced by
a cryptographically secure hash of the data in nodes, providing integrity protection. In
detail, MPT guarantees integrity by using a cryptographically secure hash of the value
for the MPT key as well as for the realization of keys in the underlying database that
maps the hashes of nodes to their content; therefore, the hash of the root node of the
MPT represents an integrity snapshot of the whole MPT trie. Next, Merkle-Patricia trie
introduces the extension nodes, due to which, there is no need to keep a dedicated node
for each item of the path in the key. The MPT trie T supports the following operations:

T.root→ Root: accessing the hash of the root node of MPT, which is stored as a key
in the underlying database.

• T.add(k,x)→ Root: adding the value x with the key k to T while obtaining the
new hash value of the root node.

• T.get(k)→ {x,⊥}: fetching a value x that corresponds to key k; return ⊥ if no
such value exists.

• T.delete(k)→ {True,False}: deleting the entry with key equal to k, returning
True upon success, False otherwise.

• T.MptProof(k)→ {πmpt, πmpt}: a MPT (inclusion / exclusion) proof genera-
tion for the entry with key k.

• πmpt.Verify(k,Root)→ {True,False}: verification of the MPT proof πmpt,
witnessing that entry with the key k is in the MPT whose hash of the root node
is equal to Root.

• πmpt.VerifyNeg(k,Root)→ {True,False}: verification of the negative MPT
proof, witnessing that entry with the key k is not in the MPT with the root hash
equal to Root.

2.9 Verifiable Delay Function
The functionality of Verifiable Delay Function (VDF) [BBBF18] is similar to a time lock,2

but in addition to it, by providing a short proof, a verifier may easily check if the prover
knows the output of the VDF. The function is effectively serialized, and parallel pro-
cessing does not help to speed up VDF computation. A moderate amount of sequen-
tial computation is required to compute VDF. Given a time delay t, a VDF must satisfy

2Time locks are computational problems that can only be solved by running a continuous computation
for a given amount of time.
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the following conditions: for any input x, anyone equipped with commercial hardware
can find y = VDF(x, t) in t sequential steps, but an adversary with p parallel processing
units must not distinguish y from a random number in significantly fewer steps. Fur-
ther, given output y of VDF, the prover can supply a proof π to a verifier, who may
check the output y = VDF(x, t) using π in logarithmic time w.r.t. time delay t (i.e.,
V DF V erify(y, π)

?
= True).

Finally, the safety factor Amax is defined as the time ratio that the adversary is es-
timated to run VDF computation faster on proprietary hardware as opposed to a benign
VDF computation using commercial hardware (see Drake [Dra18]). CPU over-clocking
records [SF20] indicate that Amax = 10 is a reasonable estimate.

2.10 Atomic Swap
A basic atomic swap assumes two parties A and B owning crypto-tokens in two different
blockchains. A and B wish to execute cross-chain exchange atomically and thus achieve
a fairness property, i.e., either both of the parties receive the agreed amount of crypto-
tokens or neither of them. First, this process involves an agreement on the amount and
exchange rate, and second, the execution of the exchange itself.

In a centralized scenario [Mic03], the approach is to utilize a trusted third party for the
execution of the exchange. In contrast to the centralized scenario, blockchains allow us
to execute such an exchange without a requirement of the trusted party. The atomic swap
protocol [Bit18c] enables conditional redemption of the funds in the first blockchain to B
upon revealing of the hash pre-image (i.e., secret) that redeems the funds on the second
blockchain to A. The atomic swap protocol is based on two Hashed Time-Lock Contracts
(HTLC) that are deployed by both parties in both blockchains.

Although HTLCs can be implemented by Turing-incomplete smart contracts with sup-
port for hash-locks and time-locks, for clarity, we provide a description assuming Turing-
complete smart contracts, requiring four transactions:

1. A chooses a random string x (i.e., a secret) and computes its hash h(x). Using h(x),
A deploys HTLCA on the first blockchain and sends the agreed amount to it, which
later enables anybody to do a conditional transfer of that amount to B upon calling
a particular method of HTLCA with x = h(x) as an argument (i.e., hash-lock).
Moreover, A defines a time-lock, which, when expired, allows A to recover funds
into her address by calling a dedicated method: this is to prevent aborting of the
protocol by another party.

2. When B notices that HTLCA has been already deployed, she deploys HTLCB on
the second blockchain and sends the agreed amount there, enabling a conditional
transfer of that amount to A upon revealing the correct pre-image of h(x) (h(x) is
visible from already deployed HTLCA). B also defines a time-lock in HTLCB to
handle abortion by A.

3. Once A notices deployed HTLCB, she calls a method of HTLCB with revealed x,
and in turn, she obtains the funds on the second blockchain.
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4. Once B notices that x was revealed by A on the second blockchain, she calls a
method of HTLCA with x as an argument, and in turn, she obtains the funds on the
first blockchain.

If any of the parties aborts, the counter-party waits until the time-lock expires and redeems
the funds.

2.11 Trusted Execution Environment
Trusted Execution Environment (TEE) is a hardware-based component that can securely
execute arbitrary code in an isolated environment. TEE uses cryptography primitives and
hardware-embedded secrets that protect data confidentiality and the integrity of computa-
tions. In particular, the adversary model of TEE usually includes privileged applications
and an operating system, which may compromise unprivileged user-space applications.
There are several practical instances of TEE, such as Intel Software Guard Extensions
(SGX) [AGJS13, MAB+13, HLP+13] available at Intel’s CPUs or based on RISC-V ar-
chitecture such as Keystone-enclave [Enc19] and Sanctum [CLD16]. In the context of this
work (i.e., Chapter 7), we built on top of Intel SGX, therefore we adopt the terminology
introduced by it.

Intel SGX. Intel SGX is a set of instructions that ensures hardware-level isolation of
protected user-space codes called enclaves. An enclave process cannot execute system
calls but can read and write memory outside the enclave. Thus isolated execution in SGX
may be viewed as an ideal model in which a process is guaranteed to be executed correctly
with ideal confidentiality, while it might run on a potentially malicious operating system.

Intel SGX allows a local process or a remote system to securely communicate with
the enclave as well as execute verification of the integrity of the enclave’s code. When
an enclave is created, the CPU outputs a report of its initial state, also referred to as a
measurement, which is signed by the private key of TEE and encrypted by a public key
of Intel Attestation Service (IAS). The hardware-protected signature serves as the proof
that the measured code is running in an SGX-protected enclave, while the encryption by
IAS public key ensures that the SGX-equipped CPU is genuine and was manufactured by
Intel. This proof is also known as a quote or attestation, and it can be verified by a local
process or by a remote system. The enclave process-provided public key can be used by a
verifier to establish a secure channel with the enclave or to verify the signature during the
attestation. We assume that a trustworthy measurement of the enclave’s code is available
for any client that wishes to verify an attestation.

2.12 Central Bank Digital Currency (CBDC)
CBDC is often defined as a digital liability backed and issued by a central bank that is
widely available to the general public. CBDC encompasses many potential benefits such
as efficiency and resiliency, flexible monetary policies, and enables enhanced control of
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tax evasion and money laundering [KAD+20]. However, regulations, privacy and identity
management issues, as well as design vulnerabilities are potential risks that are shared
with cryptocurrencies. Many blockchain-based CBDC projects rely on using some sort of
stable coins adapting permissioned blockchains due to their scalability and the capability
to establish specific privacy policies, as compared to public blockchains [SI21, ZH21].
Therefore, the level of decentralization and coin volatility are two main differences be-
tween blockchain-based CBDCs and common cryptocurrencies. These CBDCs are often
based on permissioned blockchain projects such as Corda [BCGH16], variants of Hyper-
ledger [Hyp22], and Quorum [EKR17].

CDBC solutions are often designed as multi-layer projects [JX22]. Wholesale CBDC
targets communication of financial institutions and inter-bank settlements. Retail CBDC
includes accessibility to the general public or their customers.



Chapter 3

Standardization in Threat Modeling

In this chapter, we present our contribution to standardization for threat modeling and it
is based on the papers [HVHS19] [HVR+20] (see also Section 3.9). In particular, we in-
troduce the security reference architecture (SRA) for blockchains, which adopts a stacked
model (similar to the ISO/OSI) describing the nature and hierarchy of various security
and privacy aspects. The SRA contains four layers: (1) the network layer, (2) the consen-
sus layer, (3) the replicated state machine layer, and (4) the application layer. At each of
these layers, we identify known security threats, their origin, and countermeasures, while
we also analyze several cross-layer dependencies. Next, to enable better reasoning about
the security aspects of blockchains by the practitioners, we propose a blockchain-specific
version of the threat-risk assessment standard ISO/IEC 15408 by embedding the stacked
model into this standard. Finally, we provide designers of blockchain platforms and ap-
plications with a design methodology following the model of SRA and its hierarchy.

3.1 Methodology and Scope
We aim to consolidate the literature, categorize found vulnerabilities and threats accord-
ing to their origin, and as a result, we create four main categories (also referred to as
layers). At the level of particular main categories, we apply sub-categorization that is
based on the existing knowledge and operation principles specific to such subcategories,
especially concerning the security implications. If some subcategories impose equivalent
security implications, we merge them into a single subcategory. See the road-map of all
the categories in Figure 3.1. Our next aim is to indicate and explain the co-occurrences or
relations of multiple threats, either at the same main category or across more categories.

3.2 Security Reference Architecture
We present two models of the security reference architecture, which facilitate systematic
studying of vulnerabilities and threats related to the blockchains and applications running
on top of them. First, we introduce the stacked model, which we then project into the
threat-risk assessment model.

23
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Figure 3.1: Stacked model of the security reference architecture.

3.2.1 Stacked Model

To classify the security aspects of blockchains, we utilize a stacked model consisting
of four layers (see Figure 3.1). A similar stacked model was already proposed in the
literature [WHH+19], but in contrast to it, we preserve only such a granularity level that
enables us to isolate security threats and their nature, which is the key focus of our work.
In the following, we briefly describe each layer.
(1) The network layer consists of the data representation and network services planes.

The data representation plane deals with the storage, encoding, and protection of
data, while the network service plane contains the discovery and communication
with protocol peers, addressing, routing, and naming services.

(2) The consensus layer deals with the ordering of transactions, and we divide it into
three main categories according to the protocol type: Byzantine Fault Tolerant,
Proof-of-Resource, and Proof-of-Stake protocols.

(3) The replicated state machine (RSM) layer deals with the interpretation of transac-
tions, according to which the state of the blockchain is updated. In this layer, trans-
actions are categorized into two parts, where the first part deals with the privacy
of data in transactions as well as the privacy of the users who created them, and
the second part – smart contracts – deals with the security and safety aspects of
decentralized code execution in this environment.

(4) The application layer contains the most common end-user functionalities and ser-
vices. We divide this layer into two groups. The first group represents the applica-
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tions that provide common functionalities for most of the higher-level blockchain
applications, and it contains the following categories: wallets, exchanges, oracles,
filesystems, identity management, and secure timestamping. We refer to this group
as applications of the blockchain ecosystem. The next group of application types
resides at a higher level and focuses on providing certain end-user functionality.
This group contains categories such as e-voting, notaries, identity management,
auctions, escrows, etc.

3.2.2 Threat-Risk Assessment Model

To better capture the security-related aspects of blockchain systems, we introduce a threat-
risk model (see Figure 3.2) that is based on the template of ISO/IEC 15408 [Com17] and
projection of our stacked model (see Figure 3.1). This model includes the following
components and actors:
Owners are blockchain users who run any type of node and they exist at the application

layer and the consensus layer. Owners possess crypto-tokens, and they might use or
provide blockchain-based applications and services. Additionally, owners involve
consensus nodes that earn crypto-tokens from running the consensus protocol.

Assets are present at the application layer, and they consist of monetary value (i.e.,
crypto-tokens or other tokens) as well as the availability of application-layer ser-
vices and functionalities built on top of blockchains (e.g., notaries, escrows, data
provenance, auctions). The authenticity of users, the privacy of users, and the pri-
vacy of data might also be considered as application-specific assets. Furthermore,
we include here the reputation of service providers using the blockchain services.

Threat agents are spread across all the layers of the stacked model, and they mostly
involve malicious users whose intention is to steal assets, break functionalities, or
disrupt services. However, threat agents might also be inadvertent entities, such
as developers of smart contracts who unintentionally create bugs and designers of
blockchain applications who make mistakes in the design or ignore some issues.

Threats facilitate various attacks on assets, and they exist at all layers of the stacked
model. Threats arise from vulnerabilities in the network, smart contracts, appli-
cations, from consensus protocol deviations, violations of consensus protocol as-
sumptions.

Countermeasures protect owners from threats by minimizing the risk of compromis-
ing/losing the assets. Alike the threats and threat agents, countermeasures can be
applied at each of the layers of our stacked model, and they involve various secu-
rity/privacy/safety solutions, incentive schemes, reputation techniques, best prac-
tices, etc. Nevertheless, we emphasize that their utilization usually imposes some
limitations such as higher complexity and additional performance overheads (e.g.,
resulting in decreased throughput).

Risks are related to the application layer, and they are caused by threats and their agents.
Risks may lead to a loss of monetary assets, a loss of privacy, a loss of reputation,
service malfunctions, and disruptions of services and applications (i.e., availability
issues).
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Figure 3.2: Threat-risk assessment model of the security reference architecture.

The owners wish to minimize the risk caused by threats that arise from threat agents.
Within our stacked model, different threat agents appear at each layer. At the network
layer, there are service providers including parties managing IP addresses and DNS
names. The threats at this layer arise from man-in-the-middle (MITM) attacks, network
partitioning, de-anonymization, and availability attacks. Countermeasures contain pro-
tection of availability, naming, routing, anonymity, and data. At the consensus layer,
consensus nodes may be malicious and wish to alter the outcome of the consensus proto-
col by deviating from it. Moreover, if they are powerful enough, malicious nodes might
violate assumptions of consensus protocols to take over the execution of the protocol or
cause its disruption. The countermeasures include well-designed economic incentives,
strong consistency, decentralization, and fast finality solutions. At the RSM layer, the
threat agents may stand for developers who (un)intentionally introduce semantic bugs in
smart contracts (intentional bugs represent backdoors) as well as users and external ad-
versaries running lightweight nodes who pose threats due to the exploitation of such bugs.
Countermeasures include safe languages, static/dynamic analysis, formal verification, au-
dits, best practices, and design patterns. Other threats of the RSM layer are related to
compromising the privacy of data and user identities with mitigation techniques involving
mixers, privacy-preserving cryptography constructs (e.g., non-interactive zero-knowledge
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proofs (NIZKs), ring signatures, blinding signatures, homomorphic encryption) as well as
usage of trusted hardware (respecting its assumptions and attacker models declared). At
the application layer, threat agents are broad and involve arbitrary internal or external ad-
versaries such as users, service providers, malware, designers of applications and services,
manufactures of trusted execution environments (TEE) for concerned applications (e.g.,
oracles, auctions), authorities in the case of applications that require them for arbitration
(e.g., escrows, auctions) or filtering of users (e.g., e-voting, auctions), token issuers. The
threats on this layer might arise from false data feeds, censorship by application-specific
authorities (e.g., auctions, e-voting), front running attacks, disruption of the availability
of centralized components, compromising application-level privacy, misbehaving of the
token issuer, misbehaving of manufacturer of TEE or permanent hardware (HW) faults
in TEE. Examples of mitigation techniques are multi-factor authentication, HW wallets
with displays for signing transactions, redundancy/distributions of some centralized com-
ponents, reputation systems, and privacy preserving-constructs as part of the applications
themselves. We elaborate closer on vulnerabilities, threats, and countermeasures (or mit-
igation techniques) related to each layer of the stacked model in the following sections.

Involved Parties & Blockchain’s Life-Cycle. In Chapter 2, we presented several types
of involved parties in the blockchain infrastructure (see Figure 2.1). We emphasize that
these parties are involved in the operational stage of the blockchain’s life-cycle. How-
ever, in the design and development stages of the blockchain’s life-cycle, programmers
and designers should also be considered as potential threat agents who influence the secu-
rity aspects of the whole blockchain infrastructure (regardless of whether their intention
is malicious or not). This is of great concern especially for applications built on top of
blockchains (i.e., at the application layer) since these applications are usually not thor-
oughly reviewed by the community or public, as it is typical for other (lower) layers.

3.3 Network Layer
Blockchains usually introduce peer-to-peer overlay networks built on top of other net-
works. Hence, blockchains inherit security and privacy issues from their underlying
networks. In our model (see Figure 3.1), we divide the network layer into data repre-
sentation and network services sub-planes. The data representation plane is protected
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Figure 3.3: Vulnerabilities, threats, and defenses in private networks (network layer).
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by cryptographic primitives that ensure data integrity, user authentication, and optionally
confidentiality, privacy, anonymity, non-repudiation, and accountability. The main ser-
vices provided by the network layer are peer management and discovery, which rely on
the internals of the underlying network, such as domain name resolution (i.e., DNS) or
network routing protocols. Based on permission to join the blockchain system, the net-
works are either private or public. We model security threats and mitigation techniques
for both private and public networks as vulnerability/threat/defense (VTD) graphs in Fig-
ure 3.3 and Figure 3.4, and we refer the interested reader to our paper [HVR+20] for more
details.
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3.4 Consensus Layer
The consensus layer of the stacked model deals with the ordering of transactions, while
the interpretation of them is left for the RSM layer (see Section 3.5). The consensus layer
includes three main categories of consensus protocols concerning different principles of
operation and thus their security aspects – Proof-of-Resource Protocols (PoR), Byzantine
Fault Tolerant (BFT) Protocols, and Proof-of-Stake Protocols (PoS). Nevertheless, we
can identify vulnerabilities and threats that are generic to all categories. Next, we outline
modeling of security threats and mitigation techniques generic to all consensus protocols
as VTD graphs in Figure 3.5, while particular categories of protocols are modeled in
Figure 3.7, Figure 3.8, and Figure 3.6. For details about these categories and their threats,
we refer the interested reader to our paper [HVR+20].
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Figure 3.9: Vulnerabilities, threats, and defenses of privacy threats (RSM layer).

3.5 Replicated State Machine Layer
The Replicated State Machine (RSM) layer is responsible for the interpretation and execu-
tion of transactions that are already ordered by the consensus layer. Concerning security
threats for this layer are related to the privacy of users, privacy and confidentiality of data,
and smart contract-specific bugs. We split the security threats of the RSM layer into two
parts: standard transactions and smart contracts.

3.5.1 Transaction Protection
Transactions containing plain-text data are digitally signed by private keys of users, en-
abling anybody to verify the validity of transactions with the corresponding public keys.
However, such an approach provides only pseudonymous identities that can be traced to
real IP addresses (and sometimes to identities) by a network-eavesdropping adversary,
and moreover, it does not ensure the confidentiality of data [FHZ+19]. Therefore, several
blockchain-embedded mechanisms for the privacy of data and user identities were pro-
posed in the literature, which we review in [HVR+20]. Note that some privacy-preserving
techniques can be applied also on the application layer of our stacked model but imposing
higher programming overheads and costs, which is common in the case of blockchain
platforms that do not support them natively. We outline modeling of security threats and
mitigation techniques related to transactions and their privacy as VTD graphs in Fig-
ure 3.9. For details of particular vulnerabilities and threats, we refer the interested reader
to our paper [HVR+20].

3.5.2 Smart Contracts
Smart contracts introduced to automate legal contracts, now serve as a method for build-
ing decentralized applications on blockchains. They are usually written in a blockchain-
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Figure 3.10: Vulnerabilities, threats, and defenses of smart contract platforms (RSM layer).

specific programming language that may be Turing-complete (i.e., contain arbitrary pro-
gramming logic) or only serve for limited purposes. We outline modeling of security
threats and mitigation techniques related to smart contracts as VTD graphs in Figure 3.9.
For details of particular vulnerabilities and threats, we refer the interested reader to our
paper [HVR+20].

3.6 Application Layer: Ecosystem Applications
We present a functionality-oriented categorization of the applications running on or uti-
lizing the blockchain in Figure 3.11, where we depict hierarchy in the inheritance of secu-
rity aspects among particular categories. In this categorization, we divide the applications
into categories according to the main functionality/goal that is to be achieved by using the
blockchain. Security threats of this layer are mostly specific to particular types of appli-
cations. Nevertheless, there are a few application-level categories that are often utilized
by other higher-level applications. In the current section, we isolate such categories into a
dedicated application-level group denoted as an ecosystem, while we cover the rest of the
applications in Section 3.7. The group of ecosystem applications contains five categories,
and we outline their security threats and mitigation techniques in VTD graphs as follows:
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Figure 3.11: Hierarchy in inheritance of security aspects across categories of the application layer.
Dotted arrows represent application-specific and optional dependencies.
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Figure 3.12: Vulnerabilities, threats, and defenses of the crypto-token & wallets category.

(1) crypto-tokens and wallets (see Figure 3.12), (2) exchanges (see Figure 3.13), (3)
oracles (see Figure 3.14), (4) filesystems (see Figure 3.15), (5) identity management
(see Figure 3.16), and (6) secure-timestamping (see Figure 3.17). For details of these
categories of applications and their security threats and mitigation techniques, we refer
the interested reader to our paper [HVR+20].
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Figure 3.13: Vulnerabilities, threats, and defenses of the exchanges category.
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Figure 3.15: Vulnerabilities, threats, and defenses of the filesystems category.
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Figure 3.16: Vulnerabilities, threats, and defenses of the identity management category.

Secure Timestamping

V: Inaccuracy and 
Imprecision

of Timestamps

T: Disputes Requiring 
Time Accuracy 

V: Aggregation Delays

D: Timestamping
Authorities

D: Partial Solutions for 
Timestamp Computation

(Consensus Layer)T: Disputes Requiring 
Finer Time Granularity

D: One Transaction per
Hash of Record

V: Offline Storage
of Timestamped Data

T: Availability Attacks
D: Decentralized

Filesystems

Figure 3.17: Vulnerabilities, threats, and defenses of the secure timestamping category.



3.7. APPLICATION LAYER: HIGHER-LEVEL APPLICATIONS 35

E-Voting

V: Absent Receipt-
Freeness

T: Post-Voting 
Coercion 

V: Violation of Security 
Goals in Identity 

Management 

T: Inherited from 
Identity Management

D: Inherited from 
Identity Management  

D: Receipt-Free Voting 
Protocols 

T: Vote-Selling

V: Authority as a Single-
Point-of-Failure T: Disruption of the

Protocol by Authority

D: Deposit-Based
Bonds

T: Non-Voting
Colluding Voters

V: Mis-Aligned 
Incentives

T: Non-Voting
Voter Saboteur

D: Fault-Tolerant
Protocols

V: Lacking Fault
Tolerance

D: Replace Authority by
an Arbitrary Voter 

T: Censoring of 
Voters

D: Use Identity 
Management Solution
and Eliminate Authority

V: Unmanaged Voting 
in Permissionless 

Blockchains

T: Double Voting
(Sybil Voting)

D: Use Trusted 
Authority

V: Absent Self-Tallying
for the Last Voter

T: Premature Tally
Computation 

D: Commitment Scheme
for Votes

Figure 3.18: Vulnerabilities, threats, and defenses of the e-voting category.
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3.7 Application Layer: Higher-Level Applications
In this section, we focus on more specific higher-level applications as opposed to ecosys-
tem applications. In detail, we deal with eight categories of applications, and we outline
their security threats and mitigation techniques in VTD graphs as follows: (1) e-voting
(see Figure 3.18), (2) reputation systems (see Figure 3.19), (3) data provenance (see
Figure 3.21), (4) notaries (see Figure 3.22), (5) direct trading (see Figure 3.20), (6) es-
crows (see Figure 3.23), (7) auctions (see Figure 3.24), and (8) general application of
blockchains. For details of these categories of applications and their security threats and
mitigation techniques, we refer the interested reader to our paper [HVR+20].
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Figure 3.20: Vulnerabilities, threats, and defenses of the direct trading category.
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Figure 3.21: Vulnerabilities, threats, and defenses of the data provenance category.
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Figure 3.22: Vulnerabilities, threats, and defenses of the notaries category.
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Figure 3.24: Vulnerabilities, threats, and defenses of the auctions category.

3.8 Lessons Learned

In this section, we summarize lessons learned concerning the security reference archi-
tecture (SRA) and its practical utilization. First, we describe the hierarchy of security
dependencies among particular layers of the SRA. Second, assuming such a hierarchy,
we describe a security-oriented methodology for designers of blockchain platforms and
applications. Finally, we summarize the design goals of particular blockchain types and
discuss the security-specific features of the blockchains.

3.8.1 Hierarchy of Dependencies in the SRA

In the proposed model of the SRA, we observe that consequences of vulnerabilities pre-
sented at lower layers of the SRA are manifested in the same layers and/or at higher layers,
especially at the application layer. Therefore, we refer to security dependencies of these
layers on lower layers or the same layers, i.e., reflexive and bottom-up dependencies. We
describe these two types of dependencies in the following.

Reflexive Dependencies. If a layer of the SRA contains some assets, it also contains
a reflexive security dependency on the countermeasures presented in the same layer. It
means that a countermeasure at a particular layer protects the assets presented in the same
layer. For example, in the case of the consensus layer whose protocols reward consen-
sus nodes for participation, the countermeasures against selfish mining attacks protect
rewards (i.e., crypto-tokens) of consensus nodes. In the case of the RSM layer, the pri-
vacy of user identities and data is protected by various countermeasures of this layer (e.g.,
blinding signatures, secure multiparty computations). Another group of reflexive security
dependencies is presented at the application layer. Although the application layer contains
some bottom-up security dependencies (see Figure 3.11), we argue that with regard to the



38 CHAPTER 3. STANDARDIZATION IN THREAT MODELING

overall stacked model of the SRA they can be viewed as reflexive security dependencies
of the application layer.

Bottom-Up Dependencies. If a layer of the SRA contains some assets, besides reflexive
security dependencies, it also contains bottom-up security dependencies on the counter-
measures of all lower layers. Hence, the consequences of vulnerabilities presented at
lower layers of SRA might be manifested at the same layers (i.e., reflexive dependen-
cies) but more importantly, they are manifested at higher layers, especially at the appli-
cation layer. For example, context-sensitive transactions and partial solutions as counter-
measures of the consensus layer can protect against front-running attacks of intra-chain
DEXes, which occur at the application layer. Another example represents programming
bugs in the RSM layer, which influence the correct functionality at the application layer.
The eclipse attack is an example that impacts the consensus layer from the network layer –
a victim consensus node operates over the attacker-controlled chain, and thus causes a loss
of crypto-tokens by a consensus node and at the same time it decreases honest consensus
power of the network. In turn, this might simplify selfish mining attacks at the consensus
layer, which in turn might impact the correct functionality of a blockchain-based applica-
tion at the application layer. Bottom-up security dependencies are also presented in the
context of the application layer, as we have already mentioned in Section 3.6.

3.8.2 Methodology for Designers

A hierarchy of security dependencies in the SRA can be utilized during the design of new
blockchain-based solutions. When designing a new blockchain platform or a new block-
chain application, we recommend designers to specify requirements on the blockchain
features (see Section 2.1) and afterward analyze design options and their attack surfaces at
the first three layers of the stacked model of SRA. We briefly summarize the pros and cons
of particular categories within the first three layers of SRA in Table 3.1, while security
threats and mitigations are covered in Section 3.3, Section 3.4, and Section 3.5.

On top of that, we recommend the designers of a new blockchain application to an-
alyze particular options and their security implications at the application layer of SRA.
We list the pros and cons of a few categories from the application layer in Table 3.2,1

while security threats and mitigation techniques of this layer are elaborated in Section 3.6
and Section 3.7. During this process, we recommend the designers to follow security
dependencies of the target category on other underlying categories (see Figure 3.11) if
their decentralized variants are used (which is a preferable option from the security point-
of-view). For example, if one intends to design a decentralized reputation system, she is
advised to study the security threats from the reputation system category and its recursive
dependencies on e-voting, identity management, crypto-tokens & wallets, and (option-
ally) filesystems.

1Note that the table contains only categories with specified sub-categorizations that represent the subject
to a comparison.
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Figure 3.25: Standard and specific design goals of consensus protocols.

Divide and Conquer. If a designer of the blockchain application is also designing a
blockchain platform, we recommend her to split the functionality of the solution with the
divide-and-conquer approach respecting particular layers of our stacked model. In detail,
if some functionality is specific to the application layer, then it should be implemented
at that layer. Such an approach minimizes the attack surface of a solution and enables
isolating the threats to specific layers, where they are easier to protect from and reviewed
by the community. A contra-example is to incorporate a part of application layer func-
tionality/validation into the consensus layer. The consensus layer should deal only with
the ordering of transactions, and it should be agnostic to the application.

Nevertheless, it is worth noting that the divide-and-conquer approach might not be
suitable for some very specific cases. For example, some decentralized filesystems might
combine data storage as an application-layer service with the proof-of-storage consensus
algorithm, presented at the consensus layer. Therefore, the consensus layer also embeds a
part of functionality from the application layer. However, when filesystems are in security
dependencies of the target application other than filesystems, one should realize that they
are usually running on a different blockchain or infrastructure than the target application,
and this exception is not a concern.

3.8.3 Blockchain Types & Design Goals

We learned that the type of a blockchain (see Section 2.3) implies the specific design goals
of its consensus protocol (see Figure 3.25), which must be considered on top of the stan-
dard design goals (i.e., liveness and safety) and the inherent features (see Section 2.1.1)
during the design of a particular blockchain platform and its consensus protocol. In the
following, we elaborate on such specific design goals.

Permissionless Type. The first design goal is to eliminate Sybil entities – such elimina-
tion can be done by requiring that some amount of scarce resources is spent for extension
of the blockchain, and hence no Sybil entity can participate. This implies that no pure
PoS protocol can be permissionless since it never spends resources on running a consen-
sus protocol. The next design goal is a fresh and fair leader/committee election, which
ensures that each consensus node influences the result of a consensus commensurately to
the number of scarce resources spent. Moreover, freshness avoids the prediction of the
selected nodes, and therefore elected nodes cannot become the subject of targeted DoS
attacks. The last design goal is the non-interactive verification of the consensus result by
any node – i.e., any node can verify the result of the consensus based on the data presented
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in the blockchain.

Permissioned and Semi-Permissionless Types. These types of blockchains require
fresh and fair leader/committee election as well as non-interactive verification of the re-
sult of the consensus. However, in contrast to the permissionless blockchains, they do not
require a means for the elimination of Sybil entities, as permission to enter the system is
given by a centralized entity (i.e., permissioned type) or any existing consensus node (i.e.,
semi-permissionless type).

Blockchain Types and Incentives. We observed that no application running on a pub-
lic (permissioned) blockchain has been able to work without introducing crypto-tokens
(i.e., an incentive scheme), even if the use case is not financial in nature, e.g., e-voting,
notaries, secure timestamping, or reputation systems. In these blockchains, incentive
schemes serve as a means for the elimination of Sybil entities, besides other purposes.
The situation is different in the context of private (permissioned) blockchains, which are
usually provisioned by a single organization or a consortium and do not necessarily need
crypto-tokens to operate. Misaligned incentives can cause consensus-level vulnerabili-
ties, e.g., when it becomes profitable to drop blocks of other nodes to earn higher mining
rewards [ES18] or transaction fees [CKWN16b]. The design of incentive mechanisms is
a research field by itself and we refer the reader to the work of Leonardos et al. [LRP20].

3.8.4 Security-Specific Features of Blockchains

We realized that consensus protocols are the target of most financially-oriented attacks
on the decentralized infrastructure of blockchains, even if such attacks might originate
from the network layer (e.g., routing and eclipse attacks). The goal of these attacks is to
overturn and re-order already ordered blocks while doing double-spending. Hence, the
finality is the most security-critical feature of the consensus layer. The finality differs
per various categories of the consensus layer. The best finality is achieved in the pure
BFT protocols, and the worse finality is achieved in the single-leader-based PoR and
PoS protocols. On the other hand, combinations of the BFT with PoS protocols (i.e.,
introducing committees) slightly deteriorate the finality of BFT in a probabilistic ratio that
is commensurate to the committee size. In the case of PoR protocols with partial solutions,
finality is improved as opposed to pure PoR protocols; however, it is also probabilistic,
depending on the number of partial solutions.

3.8.5 Limitations in the Literature and Practice

Applications of Blockchains. Although the literature contains surveys and overviews
[CDP18, ZXD+18, WG18] of blockchain-based applications, these works introduce only
domain-oriented categorizations (i.e., categories such financial, governance, security, ed-
ucation, supply chain, etc.) and they do not investigate the security aspects and function-
alities that these applications leverage on and whether some of the applications do not



belong to the same category from the security and functionality point-of-view. To ad-
dress this limitation, we provide a security-driven functionality-oriented categorization of
blockchain-based applications (see Section 3.6), which is agnostic to an application do-
main and thus can generalize different application scenarios. Furthermore, our proposed
categorization enables us to model security and functionality-based dependencies among
particular categories, which is not possible with state-of-the-art categorizations.

Centralization. Even though blockchains are meant to be fully decentralized, we have
seen that this does not hold at some layers of the SRA – the network and application lay-
ers, in particular. In the network layer, some attacks are possible due to centralized DNS
bootstrapping, while in the application layer a few categories utilize centralized compo-
nents to ensure some functionality that cannot run on-chain or its provisioning would be
too expensive and slow, which, however, forms the trade-off with the security. Some ap-
plications might depend on components from other application categories (e.g., identity
management) but implementing these components in a centralized fashion, even though
there exist some decentralized variants that are gaining popularity (e.g., DIDs [W3C19a]
for identity management).

3.9 Contributing Papers
The papers that contributed to this research direction are enumerated in the following,
while highlighted papers are attached to this thesis in their original form.
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be traced to IPs
• all data of transactions are publicly visible

Standard Approach
+ Mixers

• privacy identity protection
of users in a group
• ease of verification

• additional complexity, in some cases
unlinkability by the mixer or involved
parties in a group
• all data of transactions are
publicly visible

NIZKs and
Ring-Signatures

• identities are anonymized to the extend
of the group

• additional computation overheads
for running the schemes

MPC
Blinding Signatures,
Layered-Encryption

• unlinkability for all involved parties
• additional computation overheads
for running the schemes

Pr
ot

ec
tin

g
D

at
a

NIZKs, Blinding
Signatures, Homomor-
phic Encryption

• privacy of data in cryptocurrency
platforms

• additional computation overheads
for running the schemes

Trusted Transaction
Managers,
Trusted Hardware,
MPC

• privacy of data in transactions
of smart contract platforms

• additional computation overheads
for running the schemes

Sm
ar

t
C

on
tr

ac
ts Turing-Complete

Languages
• smart contracts may contain an arbitrary
programming logic

• wide surface for making the
programming bugs that often results
in vulnerabilities

Turing-Incomplete
Languages • small attack surface and emphasis on safety

• the programming logic serves only
for limited purposes

Table 3.1: Pros and cons of various categories within the first three layers of the stacked model.
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Application
Category Subcategory Pros Cons

W
al

le
ts

Server-Side
Hosted
Wallets

• simplicity of control for end-users
• no storage requirements for end-users

• keys stored at the server, susceptibility to
the theft of keys by external or internal attacks
• single-point-of-failure, availability attacks

Client-Side
Hosted
Wallets

• simplicity of control for end-users
• no storage requirements for end-users
• keys stored locally

• single-point-of-failure, availability attacks
• possibility of key theft by malware
• possibility of tampering attacks

Self-Sovereign
Wallets

• keys stored locally
or in a dedicated hardware device

• moderate storage requirements for end-users
• more difficult control for end-users
• extra device to carry in the case of hardware wallet

E
xc

ha
ng

es

Centralized
Exchange

• a high throughput and speed of operations
• the simplicity of control for end-users
• low costs for exchange transactions
• trading of obscure crypto-tokens

• risk of insider threat due to centralization
• external threats to exchange infrastructure
• overheads for secure storage of secrets
• a fee specified by the operator

Direct
Cross-Chain

Exchange

• fairness of the exchange
• no fee to any operator

• costs for 4 transactions of the atomic swap
• user has to find the counter-order on her own
• counter-orders might not exist
• a lower throughput than in a centralized exchange
• a higher complexity for end-users

Cross-Chain
DEX

• fairness of the exchange
• order matching made by DEX
• trading of obscure crypto-tokens

• costs for 4 or 6 transactions of the atomic swap
• a lower throughput than in a centralized exchange
• a fee specified by the operator

Intra-Chain
DEX

• fairness of the exchange
• uniform finality for every pair
• a high speed of operations

• a limited number of pairs specific to the target platform
• a fee specified by the operator
• costs for smart contract execution

O
ra

cl
es

Prediction
Markets

• early (close to accurate) estimation
of the future event’s result
• decentralization

• possible conflict of interest
• a limited set of data specific to a few events
• a long time to obtain a final result, especially in
the case of disputes

Centralized
Data Feeds

• wide range of data
• fast provisioning time
• handling of private parameters of requests
• censorship evidence

• centralization (accidentally or intentionally wrong data)
• availability issues

Oracle
Networks

• decentralization
• wide range of data
• fast provisioning time

• unsupported private parameters of requests
• publicly visible data and requests

Fi
le

sy
st

em
s

Fully
Replicated FSs

with Ledger

• a high availability
• accountability and auditability

• a high storage overheads and operational costs
• a high price

Partially
Replicated FSs

with Ledger

• reasonably high availability
• accountability and auditability
• a lower price than in a full replication

• attack vectors specific to partial replication

Partially
Replicated FSs
without Ledger

• reasonably high availability
• a lower price than in a full replication

• a lack of native accountability and auditability
• low durability due to a lack of incentives for storage

Centralized
Storage of

Off-Chain Data

• a low price
• accountability and auditability • a low availability

Table 3.2: Pros and cons of some categories from the application layer.



Chapter 4

Consensus Protocols

In this chapter, we present our contributions to the area of consensus protocols in block-
chains and their security, which belong to the consensus layer of our security reference ar-
chitecture (see Chapter 3). In particular, this chapter is focused on Proof-of-Work (PoW)
consensus protocols and is based on the papers [SRHS19, PBH+, PHB+23, PHMH24,
BHS23] (see also Section 4.4).

First, we address the selfish mining attack by revising the Nakamoto Consensus pro-
tocol used in Bitcoin into a new design called StrongChain [SRHS19], and we show that
StrongChain mitigates this attack in our simulation experiments. Next, we demonstrate
the existence of incentive attacks [PBH+, PHMH24, PBMH21] on several DAG-based
PoW consensus protocols with random transaction selection by game theoretical analy-
sis and simulation, while we also elaborate on a few mitigation techniques.1 Finally, we
address the problems of undercutting attacks and the mining gap in a sole transaction-
fee-based regime of PoW blockchains by proposing fee-redistribution smart contracts
[BHS23] as a modification of the Nakamoto Consensus. In the following, we briefly in-
troduce these research directions and summarize our contributions, while in later sections
we go into more detail.

Selfish Mining Attack & StrongChain

Selfish mining [ES14] is a strategy where the attacker holding a fraction α of total mining
power can earn more than α of total rewards by occupying more than α of the total mined
blocks. Selfish mining became a profitable strategy after reaching a certain mining power
threshold by the attacker – e.g., 33% in Bitcoin.2 The key principle of selfish mining is that
the attacker keeps building her secret chain that poses a fork w.r.t., the honest chain and
releases it when the honest chain starts to “catch up” with the attacker’s chain, overriding
the honest chain since miners accept the longer (attacker’s) chain as the canonical one and
continue to mine on it. This causes honest miners to waste their work/resources on the
chain that is abandoned.

1Note that we first analyzed this attack on PHANTOM and its optimization GHOSTDAG [PBMH21],
and later we generalized this attack and applied it to more concerned protocols [PBH+].

2Nevertheless, it can be arbitrarily low in the case sole transaction-fee-based regime.
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Nakamoto consensus [Nak08] is PoW consensus protocol that stands behind the Bit-
coin – the most successful cryptocurrency so far. However, despite its unprecedented suc-
cess, Bitcoin suffers from many inefficiencies. In particular, Bitcoin’s consensus mech-
anism has been proven to be incentive-incompatible (e.g., mostly by selfish mining), its
high reward variance causes centralization (by creating mining pools), and its hardcoded
deflation raises questions about its long-term sustainability with regard to the mining gap
and sole transaction-fee-based regime.

Therefore, we revise the Bitcoin consensus mechanism by proposing StrongChain,
a scheme that introduces transparency and incentivizes participants to collaborate rather
than to compete. The core design of StrongChain is to utilize the computing power aggre-
gated on the blockchain which is invisible and “wasted” in Bitcoin by default. Introducing
relatively easy, although important changes to Bitcoin’s design enable us to improve many
crucial aspects of Bitcoin-like cryptocurrencies making them more secure, efficient, and
profitable for participants. Most importantly, StrongChain improves the threshold where
the selfish mining strategy starts to be profitable by 10% in contrast to Bitcoin. See further
details on StrongChain in Section 4.1.

Incentive Attacks on DAG-based Blockchains

Blockchains inherently suffer from the processing throughput bottleneck, as consensus
must be reached for each block within the chain. One approach to solve this problem is to
increase the block creation rate. However, such an approach has drawbacks. If blocks are
not propagated through the network before a new block is created, a soft fork might occur,
in which two concurrent blocks reference the same parent block. A soft fork is resolved
in a short time by a fork-choice rule, and thus only one block is eventually accepted. All
transactions in an orphaned (a.k.a., stale) block are discarded. As a result, consensus
nodes that created orphaned blocks wasted their resources and did not get rewarded.

As a response to the above issue, several proposals (e.g., Inclusive [LSZ15], PHAN-
TOM [SWZ21], GHOSTDAG [SWZ21], SPECTRE [SLZ16]) have substituted a sin-
gle chaining data structure for unstructured direct acyclic graph, while another proposal
in this direction employed structured DAG (i.e., Prism [BKT+19]). Such a structure
can maintain multiple interconnected chains and thus theoretically increase processing
throughput. The assumption of concerned dag-oriented solutions is to abandon transac-
tion selection purely based on the highest fees since this approach intuitively increases the
probability that the same transaction is included in more than one block (hereafter trans-
action collision). Instead, these approaches use the random transaction selection (i.e.,
RTS) 3 strategy to avoid transaction collisions. Although the consequences of deviating
from such a strategy might seem intuitive, no one has yet thoroughly analyzed the perfor-
mance and robustness of concerned dag-based approaches under incentive attacks aimed
at transaction selection.

3Note that RTS involves certain randomness in transaction selection but does not necessarily equals to
uniform random transaction selection (to be in line with the works utilizing Inclusive [LSZ15], such as
PHANTOM, GHOSTDAG [SWZ21], SPECTRE [SLZ16], as well as the implementation of GHOSTDAG
called Kaspa [Som22]).



46 CHAPTER 4. CONSENSUS PROTOCOLS

Therefore, we focus on the impact of incentive attacks caused by greedy4 actors in
above-mentioned dag-oriented designs of consensus protocols. In particular, we study
the situation where a greedy attacker deviates from the protocol by not following the
RTS strategy that is assumed by the mentioned DAG-based approaches. We make a hy-
pothesis stating that the attacker deviating from RTS strategy might earn greater rewards
as compared to honest participants, and such an attacker harms transaction throughput
since transaction collision is increased. We verify and prove our hypothesis in a game
theoretical analysis and show that RTS does not constitute Nash equilibrium. Next, we
substantiate conclusions from game theoretical analysis by a few simulation experiments
on the abstracted DAG-PROTOCOL, which confirm that a greedy actor who selects trans-
actions based on the highest fee profits significantly more than honest miners following
the RTS. In another experiment, we demonstrate that multiple greedy actors can signifi-
cantly reduce the effective transaction throughput by increasing the transaction collision
rate across parallel chains of DAGs. Finally, we show that greedy actors have an incentive
to form a mining pool to increase their relative profits, which degrades the decentraliza-
tion of the concerned DAG-oriented designs. See further details on these incentive attacks
together with potential mitigation techniques in Section 4.2.

Undercutting Attacks & Transaction-Fee-based Regime

In Bitcoin and its numerous clones, the block reward is divided by two approx. every four
years (i.e., after every 210k blocks), which will eventually result in a zero block reward
around the year 2140 and thus a pure transaction-fee-based regime. There was only very
little research made to investigate the properties of transaction-fee-based regimes, which
motivated our work.

Before 2016, there was a belief that the dominant source of the miners’ income does
not impact the security of the blockchain. However, Carlsten et al. [CKWN16a] pointed
out the effects of the high variance of the miners’ revenue per block caused by exponen-
tially distributed block arrival time in the transaction-fee-based protocols. The authors
showed that undercutting (i.e., forking) a wealthy block is a profitable strategy for a mali-
cious miner. Nevertheless, literature [DGK+20, MKV23] showed that this attack is viable
even in blockchains containing traditional block rewards due to front-running competition
of arbitrage bots who are willing to extremely increase transaction fees to earn Maximum
Extractable Value profits.

Therefore, we focus on mitigation of the undercutting attack in the transaction-fee-
based regime of the single chain PoW blockchains – i.e., blockchains that prefer avail-
ability over consistency within the CAP theorem and thus are designed to resolve forks
often. We also discuss related problems present (not only) in a transaction-fee-based
regime. In particular, we focus on minimizing the mining gap [CKWN16a, TE18a], (i.e.,
the situation, where the immediate reward from transaction fees does not cover miners’
expenditures) as well as balancing significant fluctuations in miners’ revenue. To mitigate
these issues, we propose a solution that splits transaction fees from a mined block into
two parts – (1) an instant reward for the miner and (2) a deposit sent into one or more

4Greedy actors deviate from the protocol to increase their profits.
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fee-redistribution smart contracts (FRSCs). At the same time, these FRSCs reward the
miner of a block with a certain fraction of the accumulated funds over a fixed number
of blocks, thereby emulating the moving average on a portion of the transaction fees.
We evaluate our approach using various fractions of the transaction fees (split across the
miner and FRSC) and experiment with the various numbers and lengths of FRSCs –
we demonstrate that usage of multiple FRSCs of various lengths has the best advantages
mitigating the problems we are addressing. Finally, we perform a simulation demon-
strating that the threshold of DEFAULT-COMPLIANT miners who strictly do not execute
undercutting attack is lowered from 66% (as reported in [CKWN16a]) to 30% with our
approach. See further details on undercutting attacks and our solution in Section 4.3.

In the following section, we detail the individual directions of our research.

4.1 StrongChain

4.1.1 Bitcoin’s Drawbacks
There are multiple drawbacks of Bitcoin that undermine its security promises and raise
questions about its future. Bitcoin has been proved to be incentive-incompatible [Eya15,
SSZ16, ES14, TE18b]. Namely, in some circumstances, the miners’ best strategy is to
not announce their found solutions immediately, but instead withhold them for some time
period (e.g., selfish mining [ES18]). Another issue is that the increasing popularity of the
system tends towards its centralization. Strong competition between miners resulted in a
high reward variance, thus to stabilize their revenue miners started grouping their com-
puting power by forming mining pools. Over time, mining pools have come to dominate
the computing power of the system, and although they are beneficial for miners, large
mining pools are risky for the system as they have multiple ways of abusing the protocol
[KAC12, Eya15, ES14, SSZ16]. Also, a few researchers rigorously analyzed one of the
impacts of Bitcoin’s deflation [MB15, CKWN16a, TE18b]. Their results indicate that
Bitcoin may be unsustainable in the long term, mainly due to decreasing miners’ rewards
that will eventually stop at all. Besides that, unusually for a transaction system, Bitcoin
is designed to favor availability over consistency. This choice was motivated by its open
and permissionless spirit, but in the case of inconsistencies (i.e., forks in the blockchain)
the system can be slow to converge.

4.1.2 Overview of Proposed Approach
Motivated by these drawbacks, we propose StrongChain, a simple yet powerful revision
of the Bitcoin consensus mechanism. Our main intuition is to design a system such that
the mining process is more transparent and collaborative, i.e., miners get better knowledge
about the mining power of the system and they are incentivized to solve puzzles together
rather than compete. In order to achieve it, in the heart of the StrongChain’s design we
employ weak solutions, i.e., puzzle solutions with a PoW that is significant yet insuffi-
cient for a standard solution. We design our system, such that a) weak solutions are part
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of the consensus protocol, b) their finders are rewarded independently, and c) miners have
incentives to announce own solutions and append solutions of others immediately. We
show that with these changes, the mining process is becoming more transparent, collabo-
rative, secure, efficient, and decentralized. Surprisingly, we also show how our approach
can improve the freshness properties offered by Bitcoin.

4.1.3 Details
In our scheme, miners solve a puzzle as today but in addition to publishing solutions, they
exchange weak solutions too (i.e., almost-solved puzzles). The lucky miner publishes her
solution that embeds gathered weak solutions (pointing to the same previous block) of
other miners. Such a published block better reflects the aggregated PoW of a block, which
in the case of a fork can indicate that more mining power is focused on a given branch
(i.e., actually it proves that more computing power “believes” that the given branch is
correct). Another crucial change is to redesign the Bitcoin reward system, such that the
finders of weak solutions are also rewarded. Following lessons learned from mining pool
attacks, instead of sharing rewards among miners, our scheme rewards weak solutions
proportionally to their PoW contributed to a given block and all rewards are independent
of other solutions of the block.5

There are a few intuitions behind these design choices. First, a selfish miner finding
a new block takes a high risk by keeping this block secret. This is because blocks have
a better granularity due to honest miners exchanging partial solutions and strengthening
their prospective block, which in the case of a fork would be stronger than the older block
kept secret (i.e., the block of the selfish miner). Secondly, miners are actually incentivized
to collaborate by a) exchanging their weak solutions, and b) by appending weak solutions
submitted by other miners. For the former case, miners are rewarded whenever their
solutions are appended, hence keeping them secret can be unprofitable for them. For the
latter case, a miner appending weak solutions of others only increases the strength of her
potential block, and moreover, appending these solutions does not negatively influence the
miner’s potential reward. Finally, our approach comes with another benefit. Proportional
rewarding of weak solutions decreases the reward variance, thus miners do not have to
join large mining pools in order to stabilize their revenue. This could lead to a higher
decentralization of mining power on the network.

Mining

As in Bitcoin, in StrongChain miners authenticate transactions by collecting them into
blocks whose headers are protected by a certain amount of PoW. A simplified description
of a block mining procedure in StrongChain is presented as the mineBlock() function
in Algorithm 1. Namely, every miner tries to solve a PoW puzzle by computing the
hash function over a newly created header. The header is constantly being changed by
modifying its nonce field,6 until a valid hash value is found. Whenever a miner finds a

5Note, that this change requires a Bitcoin hard fork.
6In fact, other fields can be modified too if needed.
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Algorithm 1: Pseudocode of StrongChain.
1 function mineBlock()
2 weakHdrsTmp ← ∅;
3 for nonce ∈ {0, 1, 2, ...} do
4 hdr ← createHeader(nonce);
5 /* check if the header meets the strong target */
6 htmp ← H(hdr);
7 if htmp < Ts then
8 B ← createBlock(hdr ,weakHdrsTmp,Txs);
9 broadcast(B);

10 return; /* signal to mine with the new block */

11 /* check if the header meets the weak target */
12 if htmp < Tw then
13 weakHdrsTmp.add(hdr);
14 broadcast(hdr);

15 function onRecvWeakHdr(hdr)
16 hw ← H(hdr);
17 assert(Ts ≤ hw < Tw and validHeader(hdr));
18 assert(hdr .PrevHash == H (lastBlock .hdr)) ;
19 weakHdrsTmp.add(hdr);

20 function rewardBlock(B)
21 /* reward block finder with R */
22 reward(B.hdr.Coinbase,R+B.TxFees);
23 w ← γ ∗ Ts/Tw; /* reward weak headers proportionally */
24 for hdr ∈ B .weakHdrSet do
25 reward(hdr.Coinbase, w ∗ c ∗R);

26 function validateBlock(B)
27 assert(H(B.hdr) < Ts and validHeader(B.hdr));
28 assert(B .hdr .PrevHash == H (lastBlock .hdr)) ;
29 assert(validTransactions(B));
30 for hdr ∈ B .weakHdrSet do
31 assert(Ts ≤ H(hdr) < Tw and validHeader(hdr));
32 assert(hdr .PrevHash == H (lastBlock .hdr));

33 function chainPoW(chain)
34 sum← 0;
35 for B ∈ chain do
36 /* for each block compute its aggregated PoW */
37 Ts ← B .hdr .Target ;
38 sum← sum+ Tmax/Ts;
39 for hdr ∈ B .weakHdrSet do
40 sum← sum+ Tmax/Tw;

41 return sum;

42 function getTimestamp(B)
43 sumT ← B .hdr .Timestamp;
44 sumW ← 1 .0 ;
45 /* average timestamp by the aggregated PoW */
46 w ← Ts/Tw;
47 for hdr ∈ B .weakHdrSet do
48 sumT ← sumT + w ∗ hdr.T imestamp;
49 sumW ← sumW + w;

50 return sumT/sumW ;

header hdr whose hash value h = H(hdr) is smaller than the strong target Ts, i.e., a h
that satisfies the following:

h < Ts,
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then the corresponding block is announced to the network and becomes, with all its trans-
actions and metadata, part of the blockchain. We refer to headers of included blocks as
strong headers.

One of the main differences with Bitcoin is that our mining protocol handles also
headers whose hash values do not meet the strong target Ts, but still are low enough to
prove a significant PoW. We call such a header a weak header and its hash value h has to
satisfy the following:

Ts ≤ h < Tw, (4.1)

where Tw > Ts and Tw is called the weak target.
Whenever a miner finds such a block header, she adds it to her local list of weak

headers (i.e., weakHdrsTmp) and she propagates the header among all miners. Then every
miner that receives this information first validates it (see onRecvWeakHdr()) by checking
whether

• the header points to the last strong header,
• its other fields are correct (see Section 50),
• and Equation 4.1 is satisfied.

Afterward, miners append the header to their lists of weak headers. We do not limit the
number of weak headers appended, although this number is correlated with the Tw/Ts

ratio. Finally, miners continue the mining process in order to find a strong header. In this
process, a miner keeps creating candidate headers by computing hash values and checking
whether the strong target is met. Every candidate header “protects” all collected weak
headers (note that all of these weak headers point to the same previous strong header).

In order to keep the number of found weak headers close to a constant value, Strong-
Chain adjusts the difficulty Tw of weak headers every 2016 blocks immediately following
the adjustment of the difficulty Ts of the strong headers according to Equation 2.1, such
that the ratio Tw/Ts is kept at a constant.

Block Layout and Validation

A block in our scheme consists of transactions, a list of weak headers, and a strong header
that authenticates these transactions and weak headers. Strong and weak headers in our
system inherit the fields from Bitcoin headers and additionally enrich it by a new field. A
block header consists of the following fields:

• PrevHash: is a hash of the previous block header,
• Target : is the value encoding the current target defining the difficulty of finding

new blocks,
• Nonce: is a nonce, used to generate PoW,
• Timestamp: is a Unix timestamp,
• TxRoot : is the root of the Merkle tree [Mer88] aggregating all transactions of the

block, and
• Coinbase: represents an address of the miner that will receive a reward.

As our protocol rewards finders of weak headers (see details in Section 50), every weak
header has to be accompanied with the information necessary to identify its finder. Oth-
erwise, a finder of a strong block could maliciously claim that some (or all) weak headers
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Figure 4.1: An example of a blockchain fragment with strong headers, weak headers, and binding
and regular transactions.

were found by her and get rewards for them. For this purpose and for efficiency, we intro-
duced a new 20B-long header field named Coinbase. With the introduction of this field,
StrongChain headers are 100B long. But on the other hand, there is no longer any need
for Bitcoin coinbase transactions.

Weak headers are exchanged among nodes as part of a block, hence it is necessary
to protect the integrity of all weak headers associated with the block. To realize it, we
introduce a special transaction, called a binding transaction, which contains a hash value
computed over the weak headers. This transaction is the first transaction of each block and
it protects the collected weak headers. Whenever a strong header is found, it is announced
together with all its transactions and collected weak headers, therefore, this field protects
all associated weak headers. To encode this field we utilize the OP RETURN operation as
follows:

OP RETURN H (hdr0∥hdr1∥...∥hdrn), (4.2)

where hdri is a weak header pointing to the previous strong header. Since weak headers
have redundant fields (the PrevHash, Target, and Version fields have the same values as
the strong header), we propose to save bandwidth and storage by not including these fields
into the data of a block. This modification reduces the size of a weak header from 100B
to 60B only, which is especially important for SPV clients who keep downloading new
block headers.

With our approach, a newly mined and announced block can encompass multiple
weak headers. Weak headers, in contrast to strong headers, are not used to authenticate
transactions, and they are even stored and exchanged without their corresponding transac-
tions. Instead, the main purpose of including weak headers is to contribute and reflect the
aggregated mining power concentrated on a given branch of the blockchain. We present
a fragment of a blockchain of StrongChain in Figure 4.1. As depicted in the figure, each
block contains a single strong header, transactions, and a set of weak headers aggregated
via a binding transaction.

On receiving a new block, miners validate the block by checking the following (see
validateBlock() in Algorithm 1):

1. The strong header is protected by the PoW and points to the previous strong header.
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2. Header fields have correct values (i.e., the version, target, and timestamp are set
correctly).

3. All included transactions are correct and protected by the strong header. This check
also includes checking that all weak headers collected are protected by a binding
transaction included in the block.

4. All included weak headers are correct: a) they meet the targets as specified in Equa-
tion 4.1, b) their PrevHash fields point to the previous strong header, and c) their
version, targets, and timestamps have correct values.

If the validation is successful, the block is accepted as part of the blockchain.

Forks

One of the main advantages of our approach is that blocks reflect their aggregated mining
power more precisely. Each block beside its strong header contains multiple weak headers
that contribute to the block’s PoW. In the case of a fork, our scheme relies on the strongest
chain rule, however, the PoW is computed differently than in Bitcoin. For every chain its
PoW is calculated as presented by the chainPoW() procedure in Algorithm 1. Every chain
is parsed and for each of its blocks the PoW is calculated by adding:

1. the PoW of the strong header, computed as Tmax/Ts, where Tmax is the maximum
target value, and

2. the accumulated PoW of all associated weak headers, counting each weak header
equally as Tmax/Tw.

Then the chain’s PoW is expressed as just the sum of all its blocks’ PoW. Such an aggre-
gated chain’s PoW is compared with the competing chain(s). The chain with the largest
aggregated PoW is determined as the current one. As difficulty in our protocol changes
over time, the strong target Ts and PoW of weak headers are relative to the maximum
target value Tmax. We assume that nodes of the network check whether every difficulty
window is computed correctly (we skipped this check in our algorithms for easy descrip-
tion).

Including and empowering weak headers in our protocol moves away from Bitcoin’s
“binary” granularity and gives blocks better expression of the PoW they convey. An
example is presented in Figure 4.2. For instance, nodes having the blocks Bi and B′i can
immediately decide to follow the block Bi as it has more weak headers associated, thus it
has accumulated more PoW than the block B′i.

An exception to this rule is when miners solve conflicts. Namely, on receiving a new
block, miners run the algorithm as presented, however, they also take into consideration
PoW contributions of known weak headers that point to the last blocks. For instance, for
a one-block-long fork within the same difficulty window, if a block B includes l weak
headers and a miner knows of k weak headers pointing to B, then that miner will select
B over any competing block B′ that includes l′ weak and has k′ known weak headers
pointing to it if l + k > l′ + k′. Note that this rule incentivizes miners to propagate their
solutions as quickly as possible as competing blocks become “stronger” over time.
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Figure 4.2: An example of a forked blockchain in StrongChain.

Rewarding Scheme

The rewards distribution is another crucial aspect of StrongChain and it is presented by
the rewardBlock() procedure from Algorithm 1. The miner that found the strong header
receives the full reward R. Moreover, in contrast to Bitcoin, where only the “lucky”
miner is paid the full reward, in our scheme all miners that have contributed to the block’s
PoW (i.e., whose weak headers are included) are paid by commensurate rewards to the
provided PoW. A weak header finder receive a fraction of R, i.e., γ ∗ c ∗ R ∗ Ts/Tw,
as a reward for its corresponding solution contributing to the total PoW of a particular
branch, where the γ parameter influences the relative impact of weak header rewards
and c is just a scaling constant. Moreover, we do not limit weak header rewards and
miners can get multiple rewards for their weak headers within a single block. Similar
reward mechanisms are present in today’s mining pools, but unlike them, weak header
rewards in StrongChain are independent of each other. Therefore, the reward scheme is
not a zero-sum game and miners cannot increase their own rewards by dropping weak
headers of others – they can only lose since their potential strong blocks would have
less aggregated PoW without others’ weak headers. Furthermore, weak header rewards
decrease significantly the mining variance as miners can get steady revenue, making the
system more decentralized and collaborative. In Table 4.1, we estimate a size reduction
of the largest Bitcoin mining pools in 2019 with StrongChain while maintaining the same
reward variance. In sum, StrongChain can offer 75x-105x size reduction.

As mentioned before, the number of weak headers of a block is unlimited, they are
rewarded independently (i.e., do not share any reward), and all block rewards in our sys-
tem are proportional to the PoW contributed. In such a setting, a mechanism incentivizing
miners to terminate a block creation is needed (without such a mechanism, miners could
keep creating huge blocks with weak headers only). In order to achieve this, StrongChain
always attributes block transaction fees (B.TxFees) to the finder of the strong header
(who also receives the full reward R).

Note that in our rewarding scheme, the amount of newly minted coins is always at
least R, and consequently, unlike Bitcoin or Ethereum [Woo14a], the total supply of the
currency in our protocol is not upper-bounded. This design decision is made in accordance
with recent results on the long-term instability of deflationary cryptocurrencies [MB15,
CKWN16a, TE18b].
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Mining Pool Pool Size Size
Bitcoin StrongChain Reduction

BTC.com 18.1% 0.245% 74×
F2Pool 14.1% 0.172% 82×
AntPool 11.7% 0.135% 87×
SlushPool 9.1% 0.099% 92×
ViaBTC 7.5% 0.079% 95×
BTC.TOP 7.1% 0.074% 96×
BitClub 3.1% 0.030% 103×
DPOOL 2.6% 0.025% 104×
Bitcoin.com 1.9% 0.018% 106×
BitFury 1.7% 0.016% 106×

Table 4.1: Largest Bitcoin mining pools and the corresponding pool sizes in StrongChain offering
the same relative reward variance (Tw/Ts = 1024 and γ = 10).

Timestamps

In StrongChain, we follow the Bitcoin rules on constraining timestamps (see Section 2.7),
however, we redefine how block timestamps are interpreted. Instead of solely relying on
a timestamp put by the miner who mined the block, block timestamps in our system
are derived from the strong header and all weak headers included in the corresponding
block. The algorithm to derive a block’s timestamp is presented as getTimestamp() in
Algorithm 1. A block’s timestamp is determined as a weighted average timestamp over
the strong header’s timestamp and all timestamps of the weak headers included in the
block. The strong header’s timestamp has a weight of 1, while weights of weak header
timestamps are determined as their PoW contributed (namely, a weak header’s timestamp
has a weight of the ratio between the strong target and the weak target). Therefore, the
timestamp value is adjusted proportionally to the mining power associated with a given
block. That change reflects an average time of the block creation and mitigates miners
that intentionally or misconfigured put incorrect timestamps into the blockchain.

SPV Clients

Our protocol supports light SPV clients. With every new block, an SPV client is updated
with the following information:

hdr , hdr0 , hdr1 , ..., hdrn ,BTproof , (4.3)

where hdr is a strong header, hdri are associated weak headers, and BTproof is an inclu-
sion proof of a binding transaction that contains a hash over the weak headers (see Equa-
tion 4.2). Note that headers contain redundant fields, thus as described in Section 50, they
can be provided to SPV clients efficiently.

With this data, the client verifies fields of all headers, computes the PoW of the block
(analogous, as in chainPoW() from Algorithm 1), and validates the BTproof proof to
check whether all weak headers are correct, and whether the transaction is part of the
blockchain (the proof is validated against TxRoot of hdr). Afterward, the client saves the
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strong header hdr and its computed PoW, while other messages (the weak headers and the
proof) can be dropped.

4.1.4 Experiments
We executed a few experiments in the original paper. Nevertheless, for the purpose of
this thesis we show only the results of experiments that demonstrate improved threshold
of selfish mining profitability. We will consider the selfish mining strategy of [ES14],
described as follows:

• The attacker does not propagate a newly found block until she finds at least a second
block on top of it, and then only if the difference in difficulty between her chain and
the strongest known alternative chain is between zero and R.

• The attacker adopts the strongest known alternative chain if its difficulty is at least
greater than her own by R.

In Figure 4.3a, we have depicted the profitability of this selfish mining strategy for
different choices of Tw/Ts. As we can see, for Tw/Ts = 1024 the probability of being
‘ahead’ after two strong blocks is so low that the strategy only begins to pay off when the
attackers’ mining power share is close to 43% — this is an improvement over Bitcoin,
where the threshold is closer to 33%.

StrongChain does introduce new adversarial strategies based on the mining of new
weak headers. Some examples include not broadcasting any newly found weak blocks
(“reclusive” mining), refusing to include the weak headers of other miners (“spiteful”
mining), and postponing the publication of a new strong block and wasting the weak
headers found by other miners in the meantime. In the former case, the attacker risks
losing their weak blocks, whereas in both of the latter two cases, the attacker risks their
strong block going stale as other blocks and weak headers are found. Hence, these are not
cost-free strategies. Furthermore, because the number of weak headers does not affect the
difficulty rescale, the attacker’s motive for increasing the stale rate of other miners’ weak
headers is less obvious (although in the long run, an adversarial miner could push other
miners out of the market entirely, thus affecting the difficulty rescale).

In Figure 4.3b, we have displayed the relative payout (with respect to the total rewards)
of a reclusive α-strong miner — this strategy does not pay for any α < 0.5. In Figure 4.3c,
we have depicted the relative payoff of a spiteful mine who does not include other miners’
weak blocks unless necessary (i.e., unless others’ weak blocks together contribute more
than R to the difficulty, which would mean that any single block found by the spiteful
miner would always go stale). For low latencies (the graphs were generated with an aver-
age latency of 0.53 seconds), the strategy is almost risk-free, and the attacker does manage
to hurt other miners more than herself, leading to an increased relative payout. However,
as displayed in Figure 4.3d, there are no absolute gains, even mild losses. As mentioned
earlier, the weak headers do not affect the difficulty rescale so there is no short-term in-
centive to engage in this behavior — additionally there is little gain in computational
overhead as the attacker still needs to process her own weak headers.
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(a) Relative payoff of a selfish miner following
the strategy of [ES14], compared to an (1−α)-
strong honest miner.
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(b) Relative payoff of a reclusive miner who
does not broadcast her weak blocks.
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(c) Relative payoff (with respect to the re-
wards of all miners combined) of a spiteful
miner, who does not include other miners’
weak blocks unless necessary.
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(d) Absolute payoff of a spiteful miner, with
12.5 BTC on average awarded per block.

Figure 4.3: Payoffs of an α-strong adversarial miner for different strategies. We consider Bitcoin
and StrongChain with different choices of Tw/Ts, with γ = log2(Tw/Ts).

4.2 Incentive Attacks on DAG-Based Blockchains

4.2.1 Problem Definition & Scope
Let there be a PoW blockchain network that uses the Nakamoto consensus (NC) and con-
sists of honest and greedy miners, with the greedy miners holding a fraction adversarial-
mining-power of the total mining power (i.e., adversarial mining power). Then, we denote
the network propagation delay in seconds as network-propagation-delay and the block
creation time in seconds as block-creation-rate. We assume that the minimum value of
block-creation-rate is constrained by network-propagation-delay of the blockchain net-
work. It is well-known that Nakamoto-style blockchains generate stale blocks (a.k.a.,
orphan blocks). As a result, a fraction of the mining power is wasted. The rate at which
stale blocks are generated increases when block-creation-rate is decreased, which is one
of the reasons why Bitcoin maintains a high block-creation-rate of 600s.
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DAG-Oriented Designs

Many DAG-oriented designs were proposed to allow a decrease of block-creation-rate
while utilizing stale blocks in parallel chains, which should increase the transaction through-
put. Although there are some dag-oriented designs that do not address the problem of
increasing transaction throughput (e.g., IoTA [SM20], Nano [LeM18], Byteball [Ant16]),
we focus on the specific group of solutions addressing this problem, such as Inclusive
[LSZ15], GHOSTDAG, PHANTOM [SWZ21], SPECTRE [SLZ16], and Prism [BKT+19].
We are targeting the RTS strategy, which is a common property of this group of protocols.
In the RTS, the miners do not take into account transaction fees of all included trans-
actions; instead, they select transactions to blocks randomly – although not necessarily
uniformly at random (e.g., [Som22]). In this way, these designs aim to eliminate transac-
tion collision within parallel blocks of the dag structure. Nevertheless, the interpretation
of randomness in RTS is not enforced/verified by these designs, and miners are trusted to
ignore fees of all (or the majority (e.g., [Som22]) of) transactions for the common “well-
being” of the protocol. Contrary, miners of blockchains such as Bitcoin use a well-known
transaction selection mechanism that maximizes profit by selecting transactions of the
block based on the highest fees – we refer to this strategy as the greedy strategy in this
work.

Assumptions

We assume a generic DAG-oriented consensus protocol using the RTS strategy (denoted
as DAG-PROTOCOL). Then, we assume that the incentive scheme of DAG-PROTOCOL

relies on transaction fees (but additionally might also rely on block rewards),7 and trans-
actions are of the same size.8 Let us assume that the greedy miners may only choose
a different transaction selection strategy to make more profit than honest miners. Then,
we assume that DAG-PROTOCOL uses rewarding where the miner of the block phantom-
block gets rewarded for all unique not-yet-mined transactions in phantom-block (while
she is not rewarded for transaction duplicates mined before).

Identified Problems – Incentive Attacks

Although the assumptions stated above might seem intuitive, there is no related work
studying the impact of greedy miners deviating from the RTS strategy on any of the
considered DAG-PROTOCOLs ([SWZ21],[SLZ16],[LSZ15],[BKT+19]) and the effect it
might have on the throughput of these protocols as well as a fair distribution of earned
rewards. Note that we assume GHOSTDAG, PHANTOM, and SPECTRE are utilizing
the RTS strategy that was proposed in the Inclusive protocol [SLZ16], as recommended
by the (partially overlapping) authors of these works – this is further substantiated by the

7Note that block rewards would not change the applicability of our incentive attacks, and the constraints
defined in the game theoretic model (see Section 4.2.2) would remain met even with them.

8Note that this assumption serves only for simplification of the follow-up sections. Transactions of
different sizes would require normalizing fees by the sizes of transactions to obtain an equivalent setup (i.e.,
a fee per Byte).
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practical implementation of GHOSTDAG/PHANTOM called Kaspa [Som22], which uti-
lizes a variant of RTS strategy that selects a majority portion of transactions in a block
uniformly random, while a small portion of the block capacity is seized by the transaction
selected based on the highest fees. Nevertheless, besides potentially increased transac-
tion collision rate, even such an approach enables more greedy behavior. We make a
hypothesis for our incentive attacks:

Hypothesis 1. A greedy transaction selection strategy will decrease the relative profit of
honest miners as well as transaction throughput in the DAG-PROTOCOL.9

4.2.2 Game Theoretical Analysis
In this section, we model a DAG-PROTOCOL10 as a two-player game, in which the honest
player/phenotype (Phon) uses the RTS strategy and the greedy player/phenotype (Pgrd)
uses the greedy transaction selection strategy. We assume that the fees of transactions
vary – the particular variance of fees is agnostic to this analysis. We present the game
theoretical approach widely used to analyze interactions of players (i.e., consensus nodes)
in the blockchain. Several works attempted to study the outcomes of different scenarios in
blockchain networks (e.g., [LLW+19, WBW+21, SDS+20]) but none of them addressed
the case of DAG-PROTOCOLS and their transaction selection. In game theoretic terms,
we examine the following hypothesis:

Hypothesis 2. So-called (honest) honest-behavior with RTS is a Subgame Perfect Nash
Equilibrium (SPNE) in an infinitely repeated DAG-PROTOCOL game. This was presented
in Inclusive [LSZ15] and we will contradict it.

Model of the DAG-PROTOCOL

Players in DAG-PROTOCOL receive transaction fees after a delay. To simplify analy-
sis, we can divide the flow of transactions into rounds of the game. This allows us to
study player behavior within defined time. In each round, players make decisions and
receive payoffs. Since no round is explicitly marked as the last one, this game is repeated
infinitely.

We model DAG-PROTOCOL in the form of an infinitely repeated two players game
with a base game

Γ = ({Phon, Pgrd}; {honest, greedy};Uhon, Umal), (4.4)

where Phon is the player’s determination to play honest strategy and Pgrd the player’s
determination to the greedy-behavior. Pure strategy honest is interpreted as the RTS, while
greedy strategy represents picking the transactions with the highest fees. Payoff functions

9Note that the greedy transaction selection strategy deviates from the DAG-PROTOCOL and thus is
considered adversarial.

10Note that we consider DAG-based designs under this generic term of DAG-PROTOCOLS to simplify
the description but not to claim that all DAG-PROTOCOLS (with RTS) can be modeled as we do.
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are depicted in Table 4.2, where the profits in the strategic profiles (honest, honest) and
(greedy, greedy) are uniformly distributed between players. In the following, we analyze
the model in five possible scenarios with generic levels a, b, c, d of the payoffs.

Analysis of the Model

For purposes of our analysis, lets start with the assumption that greedy-behavior is more
attractive and profitable than honest-behavior. Otherwise, there would be no reason to
investigate Hypothesis 2. Thus, let us consider c > a as the basic constraint. We also
assume c > b, meaning that honest-behavior loses against greedy-behavior in the cases
of (honest, greedy) and (greedy, honest) profiles. These basic constraints yield the fol-
lowing scenarios:

• Scenario 1: d > c > a > b,
• Scenario 2: c > d > a > b,
• Scenario 3: c > a > d > b,
• Scenario 4: c > a > b > d,
• Scenario 5: where a = d and c > a, c > b.

Note that we do not assume the case a = b since the presence of Pgrd will drain all
high-fee transactions that Phon would originally obtain.
The following provides a high-level summary of the scenarios. For a more comprehensive
analysis, we refer the refer to the full version of our paper [PHB+23].

• Scenarios 1 and 2 are covered just for a sake of completeness. If the transaction
fees were to cause such game outcomes, there would be no need to trust in honest-
behavior, and the system would settle in the unique (greedy, greedy) Pure Nash
Equilibrium (PNE).

• Scenario 3A Purely Non-Cooperative Interpretation. In Scenario 3, both players
(Phon and Pgrd) are incentivized to choose the greedy greedy strategy, even though
this leads to a worse overall outcome for both of them. This is because each player
can do better by betraying the other player than by cooperating. This situation is
known as a Prisoner’s dilemma [OR94].

Proof. (Informal) Strategy greedy strictly dominates honest and thus (greedy, gree-
dy) is the unique PNE.

Corollary 1. If Phon is willing to follow the social norm of using the DAG protocol,
then Pgrd’s best response is also to use the greedy strategy. This is because Phon’s
cooperation is not credible, and Pgrd can always benefit from betraying Phon.

• Scenario 3B When Some Coordination is Allowed. It is possible for players to
coordinate their behavior and achieve a better outcome for both of them, both playing
honest strategy. It must be common knowledge to the players that Phon uses grim
trigger strategy [OR94, MS06]. This means that Phon will cooperate as long as Pgrd

cooperates. However, if Pgrd defects even once (playing greedy), then Phon will
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Phon/Pgrd honest greedy
honest (a,a) (b,c)
greedy (c,b) (d,d)

Table 4.2: The utility functions Uhon, Umal in the base game.

switch to the greedy strategy forever. Pgrd must also have a high discount factor.
This means that she must value future payoffs more than immediate payoffs. If Pgrd’s
discount factor is too low, then she will be tempted to defect even if she knows it will
lead to punishment in the long run.

• Scenario 4A Purely Non-Cooperative Interpretation. We choose utility functions:
a = 2, b = 1, c = 3 and d = 0. This scenario is an anti-coordination game [OR94]
instance, so the game has two PNEs (honest, greedy) & (greedy, honest), and one
Mixed Nash Equilibrium (MNE) in mixed strategic profile

(
(1
2
, 1
2
), (1

2
, 1
2
)
)
.

Claim 1. The most reasonable behavior in Scenario 4 is to play (1
2
, 1
2
) for both

players.

Proof. (Informal) Both players have two equally good choices: either be honest or
be greedy. From Phon’s perspective, mixed behavior (1

2
, 1
2
) guarantees the best stable

outcome. If Pgrd expects (1
2
, 1
2
) behavior from Phon, then Pgrd’s best response is to

play the same mixed behavior that establishes MNE. The players gain (3
2
, 3
2
) in that

MNE, which is the highest expectation they can obtain.

Therefore, the most reasonable behavior for both players is to play a mixed strategy
where they are half-honest and half-greedy.

• Scenario 4B When Some Coordination is Allowed. Similarly to Scenario 3, it is
possible for players to coordinate their behavior and agree to always be honest. This
would be a good outcome for both players, as they would both get a payoff of 2. The
same principle and consequences apply as in scenario 3(B) (Grimm trigger strategy).
This will make the Pgrd player regret defecting, and it will make her more likely to
cooperate in the future. Therefore, the conclusion from Scenario 3 applies here as
well.

• Scenario 5A Purely Non-Cooperative Interpretation. In this scenario, the game is
a zero-sum game, which means that no player can gain more than 100% profit, re-
gardless of their chosen strategy. This is because the sum of all incoming transaction
fees is fixed in any set of rounds. As a result, the total profit for all players is always
constant if they all play the honest or greedy strategy. Therefore, the only rational
outcome of this scenario is for both players to play the greedy strategy.

If we consider a social norm, it may be tempting to appeal to players’ sense of
responsibility and ask them to refrain from playing the greedy strategy. However,
this is unlikely to be effective, as the honest strategy does not benefit either player.
Scenario 5 is highly similar to the classic game-theoretical model called The Tragedy
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of Commons [Mil03]. In this model, individuals are incentivized to use a shared
resource to the maximum extent possible, even if this depletes the resource and harms
the group as a whole. In anonymous environments, where individuals cannot be held
accountable for their actions, it is even more likely that they will prioritize their own
interests over the interests of the group. This is because they know that they will not
be punished for acting in their self-interest, meaning there is no harm to play greedy
strategy.

Summary

We conclude that Hypothesis 2 is not valid. The (honest, honest) profile is not a PNE
in any of our scenarios. Incentives enforcing honest-behavior are hardly feasible in the
anonymous (permissionless) environment of blockchains. A community of honest miners
can follow the DAG-PROTOCOL until the attacker appears. The attacker playing the
greedy strategy can parasite on the system and there is no defense against such a behavior
(since greedy miners can leave the system anytime and mine elsewhere, which is not
assumed in [LSZ15]). Therefore, honest is not an evolutionary stable strategy [Smi82],
and thus honest does not constitute a stable equilibrium. For more details about game
theoretical analysis, we refer the reader to the full extended version of our paper [PBH+],
which is not yet published.

4.2.3 Simulation Model

We created a simulation model to conduct various experiments investigating the behavior
of DAG-PROTOCOL under incentive attacks related to the problems identified in Sec-
tion 4.2.1 and thus Hypothesis 1. Some experiments were designed to provide empirical
evidence for the conclusions from Section 4.2.2.

Abstraction of DAG-PROTOCOL

For evaluation purposes, we simulated the DAG-PROTOCOL (with RTS) by modeling the
following aspects:

• All blocks in DAG are deterministically ordered.
• The mining rewards consist of transaction fees only.
• A fee of a particular transaction is awarded only to a miner of the block that includes

the transaction as the first one in the sequence of totally ordered blocks.
Also, in terms of PHANTOM/GHOSTDAG terminology, we generalize and do not reduce
transaction fees concerning the delay from “appearing” of the block until it is strongly
connected to the DAG. Hence, we utilize discount-function = 1. In other words, for each
block phantom-block, the discount function does not penalize a block according to its
gap parameter gap − parameter(phantom − block), i.e. discount − function(gap −
parameter(phantom − block)) = 1. Such a setting is optimistic for honest miners and
maximizes their profits from transaction fees when following the RTS strategy. This ab-
straction enables us to model the concerned problems of considered DAG-PROTOCOLS.
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(Simple) Network Topology

We created a simple network topology that is convenient for proof-of-concept simula-
tions and encompasses some important aspects of the real-world blockchain network.
In particular, we were interested in emulating the network propagation delay network-
propagation-delay to be similar to Bitcoin (i.e., ∼ 5s at most of the time in 2022), but
using a small ring topology. To create such a topology, we assumed that the Bitcoin net-
work contains 7592 nodes, according to the snapshot of reachable Bitcoin nodes found
on May 24, 2022.11 In Bitcoin core, the default value of the consensus node’s peers is set
to 8 (i.e., the node degree).12 Therefore, the maximum number of hops that a gossiped
message requires to reach all consensus nodes in the network is ∼ 4.29 (i.e., log8(7592)).
Moreover, if we were to assume 2 − 3x more independent blockchain clients (that are
not consensus nodes), then this number would be increased to 4.83–4.96. To model this
environment, we used the ring network topology with 10 consensus nodes, which sets the
maximum value of hops required to propagate a message to 5. Next, we set the inter-node
propagation delay ∂τ to 1s, which fits assumed network-propagation-delay (i.e., 5s / 5
hops = 1s).

Simulator

There are simulators [PGF21] that model blockchain protocols, mainly focusing on net-
work delays, different consensus protocols, and behaviors of specific attacks (e.g., Sim-
Block [AOK+19], Blocksim [AvM19], Bitcoin-Simulator [GG16]). However, none of
these simulators was sufficient for our purposes due to missing support for multiple chains
and incentive schemes assumed in DAG-PROTOCOLS. To verify Hypothesis 1, we built
a simulator that focuses on the mentioned problems of DAG-PROTOCOLS. In detail, we
started with the Bitcoin mining simulator [Gav15], which is a discrete event simulator
for the PoW mining on a single chain, enabling a simulation of network propagation
delay within a specified network topology. We extended this simulator to support DAG-
PROTOCOLs, enabling us to monitor transaction duplicity, throughput, and relative profits
of miners with regard to their mining power. The simulator is written in C++ (see de-
tails and its evaluation in [PHMH23]. In addition, we added more simulation complexity
to simulate each block, including the particular transactions (as opposed to simulating
only the number of transactions in a block [Gav15]). Most importantly, we implemented
two different transaction selection strategies – greedy and random. For demonstration
purposes, we implemented the exponential distribution of transaction fees in mempool,
based on several graph cuts of fee distributions in mempool of Bitcoin from [Hoe22].13

Our simulator is available at https://github.com/Tem12/DAG-simulator.

11https://bitnodes.io/nodes/
12Nevertheless, the node degree is often higher than 8 in reality [MMC+19].
13Distribution of transaction fees in mempool might change over time; however, it mostly preserves the

low number of high-fee transactions.

https://github.com/Tem12/DAG-simulator
https://bitnodes.io/nodes/
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4.2.4 Evaluation

We designed a few experiments with our simulator, which were aimed at investigating the
relative profit of greedy miners and transaction collision rate (thus throughput) to inves-
tigate Hypothesis 1. In all experiments, honest miners followed the RTS, while greedy
miners followed the greedy strategy. Unless stated otherwise, the block creation time was
set to block−creation−rate = 20s. However, we abstracted from network-propagation-
delay of transactions and ensured that the mempools of nodes were regularly filled (i.e.,
every 60s) by the same set of new transactions, while the number of transactions in the
mempool was always sufficient to fully satisfy the block capacity that was set to 100
transactions. We set the size of mempool equal to 10000 transactions, and thus the ra-
tio between these two values is similar to Bitcoin [Hoe22] in common situations. In all
experiments, we executed multiple runs and consolidated their results; however, in all
experiments with the simple topology, the spread was negligible, and therefore we do not
depict it in graphs.

Experiment I

Goal. The goal of this experiment was to compare the relative profits earned by two
miners/phenotypes in a network, corresponding to our game theoretical settings (see Sec-
tion 4.2.2). Thus, one miner was greedy and followed the greedy strategy, while the other
one was honest and followed the RTS.

Methodology and Results. The ratio of total mining power between the two miners
was varied with a granularity of 10%, and the network consisted of 10 miners, where only
the two miners had assigned the mining power. Other miners acted as relays, emulating
the maximal network delay of 5 hops between the two miners in a duel. The relative
profits of the miners were monitored as their profit factor P w.r.t. their mining power.
We conducted 10 simulation runs and averaged their results (see Figure 4.4). Results
show that the greedy miner earned a profit disproportionately higher than her mining
power, while the honest miner’s relative profit was negatively affected by the presence
of the greedy miner. We can observe that P of greedy miner was indirectly proportional
to her adversarial-mining-power, which was caused by the exponential distribution of
transaction fees that contributed more significantly to the higher P of a smaller miner.
In sum, the profit advantage of the greedy miner aligns with the conclusions from the
game theoretical model (Scenario 5, see Section 4.2.2) in particular, which represents the
case of adversarial-mining-power=50%. Nevertheless, our results indicate that the greedy
strategy is more profitable than the RTS for any non-zero adversarial-mining-power.

Experiment II

Goal. The goal of this experiment was investigation of the relative profits of a few
greedy miners following the greedy strategy in contrast to honest miners following the
RTS.
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Figure 4.4: The profit factor P of an honest vs. a greedy miner with their mining powers of 100%
- adversarial-mining-power and adversarial-mining-power, respectively. The baseline shows the
expected P of the honest miner; block − creation− rate = 20s.

Methodology and Results. We experimented with 10 miners, where the number of
greedy miners cnt − malicious − miners vs. the number of honest miners (i.e., 10
- cnt-malicious-miners) was varied, and each held 10% of the total mining power. We
monitored their profit factor P averaged per miner. We conducted 10 simulation runs and
averaged their results (see Figure 4.5a). Alike in Section 4.2.4, we can see that greedy
miners earned profit disproportionately higher than their mining power. Similarly, this
experiment showed that the profit advantage of greedy miners decreases as their number
increases. This is similar to increasing adversarial-mining-power in a duel of two miners
from Section 4.2.4; however, in contrast to it, P of greedy miners is slightly lower with
the same total adversarial-mining-power of all greedy miners, while P of honest miners
had not suffered with such a decrease. Intuitively, this happened because multiple greedy
miners increase transaction collision. In detail, since miners are only rewarded for trans-
actions that were first to be included in a new block, the profit for the second and later
miners is lost if a duplicate transaction is included. This observation might be seen as
beneficial for the protocol as it disincentivizes multiple miners to use the greedy trans-
action selection strategy, which would support the sequential equilibrium from [LSZ15].
However, the authors of [LSZ15] do not assume cooperating players, which is unrealistic
since miners can cooperate and create the pool to avoid collisions and thus maximize their
profits (resulting in a similar outcome, as in Section 4.2.4).

Experiment III

Goal. The goal of this experiment was to investigate the relative profit of the greedy
mining pool depending on its adversarial-mining-power versus the honest mining pool
with the same mining power. It is equivalent to Scenario 5 of game theoretical analysis
(see Section 4.2.2) although there is the honest rest of the network.

Methodology and Results. We experimented with 10 miners, and out of them, we
choose one greedy miner and one honest miner, both having equal mining power, while
the remaining miners in the network were honest and possessed the rest of the network’s
mining power. Thus, we emulated a duel of the greedy pool versus the honest pool.
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(a) The averaged profit factor P per honest miner
and greedy miner, each with 10% of mining power.
The number of honest miners is 10 - cnt-malicious-
miners. The baseline shows the expected P of an
honest miner with 10% of mining power.
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(b) The relative profit of the honest pool and
the greedy pool, both with equal mining power
(i.e., adversarial-mining-power), w.r.t. the total min-
ing power of the network. The baseline shows
the expected profit of the honest mining pool, and
block − creation− rate = 20s.
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(c) The transaction collision rate C w.r.t. # of greedy
miners cnt-malicious-miners (each with adversarial-
mining-power = 10%), where # of honest miners was
10−cnt−malicious−miners and block-creation-
rate ∈ {10s, 20s, 60s}. The worst case baseline
shows C when all transactions are duplicates.

Figure 4.5: Experiment II, Experiment III (i.e., duel of mining pools) and Experiment IV (i.e.,
transaction collision rate & throughput).

We conducted 10 simulation runs and averaged their results (see Figure 4.5b). The re-
sults demonstrate that the greedy pool’s relative earned profit grows proportionally to
adversarial-mining-power as compared to the honest pool with equal mining power, sup-
porting our conclusions from Section 4.2.2.

Experiment IV

Goal. The goal of this experiment was to investigate the transaction collision rate under
the occurrence of greedy miners who selected transactions using the greedy strategy.

Methodology and Results. In contrast to the previous experiments, we considered three
different values of block creation time (block-creation-rate ∈ {10s, 20s, 60s}). We exper-
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(a) The profit factor P of a honest vs. a greedy
miner with the mining power of 100% - adversarial-
mining-power and adversarial-mining-power, re-
spectively.
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(b) The averaged profit factor P of a greedy miner
with adversarial-mining-power. The rest of the net-
work consisted of 9 honest miners, each equipped
with 100%−adversarial−mining−power

9 % of mining
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Figure 4.6: Profit factors of honest and greedy miners. The baseline shows the expected P of the
honest miner; block − creation− rate = 20s.

imented with 10 miners, where the number of greedy miners cnt−malicious−miners
vs. the number of honest miners (i.e., 10 - cnt-malicious-miners) was varied, and each
held 10% of the total mining power. For all configurations, we computed the transaction
collision rate (see Figure 4.5c). We can see that the increase of cnt−malicious−miners
causes the increase in the transaction collision rate. Note that lower block-creation-rate
has a higher impact on the collision rate, and DAG protocols are designed with the inten-
tion to have small block-creation-rate (i.e., even smaller than network-propagation-delay).
Consequently, the increased collision rate affected the overall throughput of the network
(which is complementary to Figure 4.5c).

4.2.5 Experiments with Complex Topology

Additionally, we conducted more than 500 experiments in complex topology with 7592
nodes in various configurations (such as different connectivity and positions of greedy
miners in the topology). We emulated weakly and strongly connected miners by setting a
different node degree – we utilized a node degree distribution from [MMC+19] and pro-
jected it into our network by setting the weakly connected edge and a highly connected
core. The results of these experiments confirm the conclusions from the game theoretic
analysis (see Section 4.2.2) as well as they match the experiments with the simple topol-
ogy (see Section 4.2.4). The details of these experiments are presented in the extended
version of our paper [PBH+], which is not yet published.

4.2.6 Countermeasures

Experiments supported Hypothesis 1. The main problem is not sufficiently enforcing the
RTS, i.e., verifying that transaction selection was indeed random at the protocol level.
Therefore, using the RTS in the DAG-PROTOCOL that does not enforce the interpreta-
tion of randomness will never avoid the occurrence of attackers from greedy transaction
selection that increases their individual (or pooled) profits.
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Enforcing Interpretation of the Randomness. One countermeasure how to avoid ar-
bitrary interpretation of the randomness in the RTS is to enforce it by the consensus pro-
tocol. An example of a DAG-based design using this approach is Sycomore [AGLS18],
which utilizes the prefix of cryptographically-secure hashes of transactions as the criteria
for extending a particular chain in dag. The PoW mining in Sycomore is further equipped
with the unpredictability of a chain that the miner of a new block extends, avoiding the
concentration of the mining power on “rich” chains. Note that transactions are evenly
spread across all chains of the DAG, which happens because prefixes of transaction hashes
respect the uniform distribution – transactions are created by clients (different from min-
ers) who have no incentives for biasing their transactions.

Fixed Transaction Fees. Another option how to make the RTS viable is to employ
fixed fees for all transactions as a blockchain network-adjusted parameter. In the case of
the full block capacity utilization within some period, the fixed fee parameter would be
increased and vice versa in the case of not sufficiently utilized block capacity. In contrast
to the previous countermeasure, this mechanism does not enforce the interpretation of
randomness while at the same time does not make incentives for greedy miners to follow
other than the RTS strategy. Therefore, miners using other than the RTS would not earn
extra profits – we demonstrate it in Figure 4.6a and Figure 4.6b, considering one honest
vs. one greedy miner and one greedy vs. 9 honest miners, respectively. Note that small
deviations from the baseline are caused by the inherent simulation error that is present
in the original simulator that we extended. On the other hand, greedy miners may still
cause increased transaction collision rate, and thus decreased throughput. Therefore, we
consider the fixed transaction fee option weaker than the previous one.

4.3 Undercutting Attacks
In transaction fee-based regime schemes, a few problems have emerged, which we can
observe even nowadays in Bitcoin protocol [CKWN16a]. We have selected three main
problems and aim to lower their impact for protocols relying on transaction fees only. In
detail, we focus on the following problems:

1. Undercutting attack. In this attack (see Figure 4.7), a malicious miner attempts
to obtain transaction fees by re-mining a top block of the longest chain, and thus
motivates other miners to mine on top of her block [CKWN16a]. In detail, consider
a situation, where an honest miner mines a block containing transactions with sub-
stantially higher transaction fees than is usual. The malicious miner can fork this
block while he leaves some portion of the “generous” transactions un-mined. These
transactions motivate other miners to mine on top of the attacker’s chain, and thus
undercut the original block. Such a malicious behavior might result in higher orphan
rate, unreliability of the system, and even double spending.

2. The mining gap. As discussed in [CKWN16a], the problem of mining gap arises
once the mempool does not contain enough transaction fees to motivate miners in
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Figure 4.7: The undercutting attack, according to Carlsten et al. [CKWN16a].

mining. Suppose a miner succeeds at mining a new block shortly after the previous
block was created, which can happen due to well known exponential distribution of
block creation time in PoW blockchains. Therefore, the miner might not receive
enough rewards to cover his expenses because most of the transactions from the
mempool were included in the previous block, while new transactions might not have
yet arrived or have small fees. Consequently, the miners are motivated to postpone
mining until the mempool is reasonably filled with enough transactions (and their
fees). The mining gap was also analyzed by the simulation in the work of Tsabary
and Eyal [TE18a], who further demonstrated that mining gap incentivizes larger
mining coalitions (i.e., mining pools), negatively impacting decentralization.

3. Varying transaction fees over time. In the transaction-fee-based regime, any fluc-
tuation in transaction fees directly affects the miners’ revenue. High fluctuation of
transaction fees during certain time frames, e.g., in a span of a day or a week [Wik22],
can lead to an undesirable lack of predictability in miners’ rewards and indirectly af-
fect the security of the underlying protocol.

4.3.1 Overview of Proposed Approach
We propose a solution that collects a percentage of transaction fees in a native cryptocur-
rency from the mined blocks into one or multiple fee-redistribution smart contracts (i.e.,
FRSCs). Miners of the blocks who must contribute to these contracts are at the same
time rewarded from them, while the received reward approximates a moving average of
the incoming transaction fees across the fixed sliding window of the blocks. The fraction
of transaction fees (i.e., C) from the mined block is sent to the FRSC and the remaining
fraction of transaction fees (i.e., M) is directly assigned to the miner, such that C+M = 1.
The role of M is to incentivize the miners in prioritization of the transactions with the
higher fees while the role of C is to mitigate the problems of undercutting attacks and the
mining gap. Our solution can be deployed with hard-fork and imposes only negligible
performance overhead.

We depict the overview of our approach in Figure 3.1, and it consists of the following
steps:
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Figure 4.8: Overview of our solution.

1. UsingFRSC, the miner calculates the reward for the next block B (i.e., nextClaim-
(FRSC) – see Equation 4.8) that will be payed byFRSC to the miner of that block.

2. The miner mines the block B using the selected set of the highest fee transactions
from her mempool.

3. The mined block B directly awards a certain fraction of the transaction fees (i.e.,
B.fees ∗ M) to the miner and the remaining part (i.e., B.fees ∗ C) to FRSC.

4. The miner obtains nextClaim from FRSC.

Our approach is embedded into the consensus protocol, and therefore consensus nodes are
obliged to respect it in order to ensure that their blocks are valid. It can be implemented
with standard smart contracts of the blockchain platform or within the native code of the
consensus protocol.

4.3.2 Details of Fee-Redistribution Smart Contracts

We define the fee-redistribution smart contract as a tuple

FRSC = (ν, λ, ρ), (4.5)

where ν is the accumulated amount of tokens in the contract, λ denotes the size of
FRSC’s sliding window in terms of the number of preceding blocks that contributed
to ν, and ρ is the parameter defining the ratio for redistribution of incoming transaction
fees among multiple contracts (if there are multiple FRSCs), while the sum of ρ across
all FRSCs must be equal to 1:

∑

x ∈ FRSCs
x.ρ = 1. (4.6)

In contrast to a single FRSC, we envision multiple FRSCs to enable better adjustment
of compensation to miners during periods of higher transaction fee fluctuations or in an
unpredictable environment (we show this in Section 4.3.3).
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We denote the state of FRSCs at the blockchain height H as FRSC[H]. Then, we
determine the reward from FRSC[H] ∈ FRSCs[H] for the miner of the next block with
height H + 1 as follows:

∂Claim
FRSC[H]

[H+1] =
FRSC[H].ν

FRSC[H].λ
, (4.7)

while the reward obtained from all FRSCs is

nextClaim[H+1] =
∑

X[H] ∈ FRSCs[H]

∂Claim
X[H]

[H+1]. (4.8)

Then, the total reward of the miner who mined the block B[H+1] with all transaction fees
B[H+1].fees is

rewardT[H+1] = nextClaim[H+1] +M ∗B[H+1].fees. (4.9)

The new state of contracts at the height H + 1 is

FRSCs[H+1] = {X[H+1](ν, λ, ρ) | (4.10)

λ = X[H].λ, (4.11)
ρ = X[H].ρ, (4.12)
ν = X[H].ν − ∂Claim[H+1] + deposit ∗ ρ, (4.13)

deposit = B[H+1].fees ∗ C}, (4.14)

where deposit represents the fraction C of all transaction fees from the block B[H+1] that
are deposited across all FRSCs in ratios respecting Equation 4.6.

Example

We consider Bitcoin [Nak08] with the current height of the blockchain H . We utilize only
a single FRSC:

FRSC[H] = (2016, 2016, 1).

We set M = 0.4 and C = 0.6, which means a miner directly obtains 40% of the
B[H+1].fees and FRSC obtains 60%. Next, we compute the reward from FRSC ob-
tained by the miner of the block with height H + 1 as

∂Claim[H+1] =
FRSC[H].ν

FRSC[H].λ
=

2016

2016
= 1 BTC,

resulting into
nextClaim[H+1] = ∂Claim[H+1] = 1 BTC.
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Further, we assume that the total reward collected from transactions in the block with
height H + 1 is B[H+1].fees = 2 BTC. Hence, the total reward obtained by the miner of
the block B[H+1] is

rewardT[H+1] = nextClaim[H+1] +M ∗B[H+1].fees

= 1 + 0.4 ∗ 2 = 1.8 BTC,

and the contribution of transaction fees from B[H+1] to the FRSC is

deposit = B[H+1].fees ∗ C = 1.2 BTC.

Therefore, the value of ν in FRSC is updated at height H + 1 as follows:

v[H+1] = FRSC[H].ν − nextClaim[H+1] + deposit

= 2016− 1 + 1.2 BTC = 2016.2 BTC.

Traditional Way in Tx-Fee Regime

In traditional blockchains, rewardT[H+1] would be equal to the sum of all transaction fees
B[H+1].fees (i.e., 2 BTC); hence, using M = 1. In our approach, rewardT[H+1] is equal
to the sum of all transaction fees in the block B[H+1], if:

B[H+1].fees =
nextClaim[H+1]

C
. (4.15)

In our example, a miner can mine the block B[H+1] while obtaining the same total reward
as the sum of all transaction fees in the block if the transactions carry 1.66 BTC in fees:

B[H+1].fees =
1

0.6
= 1.66 BTC.

Initial Setup of FRSCs Contracts

To enable an even start, we propose to initiate FRSCs of our approach by a genesis
value. The following formula calculates the genesis values per FRSC and initializes
starting state of FRSCs[0]:

{FRSCx[0](ν, λ, ρ) | ν = fees ∗ C ∗ ρ ∗ λ}, (4.16)

where fees is the expected average of incoming fees.

4.3.3 Evaluation
We base on Bitcoin Mining Simulator [Kal15], introduced in [CKWN16a], which we
modified for our purposes. We have created a configuration file to simulate custom
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scenarios of incoming transactions instead of the accumulated fees in the original de-
sign [CKWN16a]. We added an option to switch simulation into a mode with a full mem-
pool, and thus bound the total fees (and consequently the total number of transactions) that
can be earned within a block – this mostly relates to blocks whose mining takes longer
time than the average time to mine a block.14 Next, we moved several parameters to ar-
guments of the simulator to eliminate the need for frequent recompilation of the program,
and therefore simplified the process of running various experiments with the simulator.
Finally, we integrated our FRSC-based solution into the simulator. FRSCs are initiated
from a corresponding configuration file. The source code of our modified simulator is
available at https://github.com/The-Huginn/mining_simulator.

Experiments. We evaluated our proof-of-concept implementation of FRSCs on a cus-
tom long-term scenario designed to demonstrate significant changes in the total trans-
action fees in the mempool evolving across the time. This scenario is depicted in the
resulting graphs of most of our experiments, represented by the “Fees in mempool” series
– see Section 4.3.3 and Section 4.3.3.

We experimented with different parameters and investigated how they influenced the
total rewards of miners coming from FRSCs versus the baseline without our solution.
Mainly, these included a setting of C as well as different lengths λ of FRSCs. For
demonstration purposes, we used the value of transaction fees per block equal to 50 BTC,
the same as Carlsten et al. [CKWN16a] used. Across all our experiments but the last
one (i.e., Section 4.3.3), we enabled the full mempool option to ensure more realistic
conditions.

Experiment I

Methodology. The purpose of this experiment was to investigate the amount of the re-
ward a miner earns with our approach versus the baseline (i.e., the full reward is based
on all transaction fees). We investigated how C influences the total reward of the miner
and how λ of the sliding window averaged the rewards. In detail, we created two inde-
pendent FRSCs with different λ – one was set to 2016 (i.e., FRSC1), and the second
one was set to 5600 (i.e., FRSC2). We simulated these FRSCs with three values of
C ∈ {0.5, 0.7, 0.9}.

Results. The results of this experiment are depicted in Figure 4.9. Across all runs of our
experiment, we can observe that FRSC2 adapts slower as compared to FRSC1, which
leads to a more significant averaging of the total reward paid to the miner.

14Note that the original simulator [CKWN16a] assumes that the number of transactions (and thus the
total fees) in the block is constrained only by the duration of a time required to mine the block, which was
also criticized in [GMSK22].

https://github.com/The-Huginn/mining_simulator
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(a) FRSC1 and C = 0.5. (b) FRSC2 and C = 0.5.

(c) FRSC1 and C = 0.7. (d) FRSC2 and C = 0.7.

(e) FRSC1 and C = 0.9. (f) FRSC2 and C = 0.9.

Figure 4.9: Experiment I investigating various Cs and λs of a single FRSC, where FRSC1.λ =
2016 and FRSC2.λ = 5600. Fees in mempool show the total value of fees in the mined block
(i.e., representing the baseline). Block Value is the reward a miner received in block B as a
sum of the fees he obtained directly (i.e. M ∗ B.fees) and the reward he got from FRSC (i.e.,
nextClaim[H]). Expected income from Contract represents the reward of a miner obtained from
FRSC (i.e., nextClaim[H]).

Experiment II

Methodology. In this experiment, we investigated how multiple FRSCs dealt with
the same scenario as before – i.e., varying C. In detail, we investigated how individ-
ual FRSCs contributed to the nextClaim[H+1] by their individual ∂Claim

FRSC[H]

[H+1] . This
time, we varied only the parameter C ∈ {0.5, 0.7, 0.9}, and we considered four FRSCs:

FRSCs = {
FRSC1( , 1008, 0.07),FRSC2( , 2016, 0.14),
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(a) Scenario with 4 FRSCs,
C = 0.5.

(b) ∂Claims and nextClaim,
C = 0.5.

(c) ∂Claims normalized by ρ,
C = 0.5.

(d) Scenario with 4 FRSCs,
C = 0.7.

(e) ∂Claims and nextClaim,
C = 0.7.

(f) ∂Claims normalized by ρ,
C = 0.7.

(g) Scenario with 4 FRSCs,
C = 0.9.

(h) ∂Claims and nextClaim,
C = 0.9.

(i) ∂Claims normalized by ρ,
C = 0.9.

Figure 4.10: Experiment II investigating various Cs in the setting with multiple FRSCs with
their corresponding λ = {1008, 2016, 4032, 8064} and ρ = {0.07, 0.14, 0.28, 0.51}. ∂Claims
represents contributions of individualFRSCs to the total reward of the miner (i.e., its nextClaim
component).

FRSC3( , 4032, 0.28),FRSC4( , 8064, 0.51)},
where their lengths λ were set to consecutive multiples of 2 (to see differences in more
intensive averaging across longer intervals), and their redistribution ratios ρ were set to
maximize the potential of averaging by longer FRSCs.

Results. The results of this experiment are depicted in Figure 4.10. We can observe
that the shorter FRSCs quickly adapted to new changes and the longer FRSCs kept
more steady income for the miner. In this sense, we can see that ∂Claim4 held steadily
over the scenario while for example ∂Claim1 fluctuated more significantly. Since the
scenarios of fees evolution in the mempool was the same across all our experiments (but
Section 4.3.3), we can compare the FRSC with λ = 5600 from Section 4.3.3 and the
current setup involving four FRSCs – both had some similarities. This gave us intuition
for replacing multiple FRSCs with a single one (see Section 4.3.3).
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(a) ρ correlates with λ. (b) ρ equal for every FRSC. (c) ρ negatively correlates with λ.

Figure 4.11: Experiment II – multiple FRSCs using various distributions of ρ and their impact
on ∂Claim, where C = 0.7.

(a) A custom fee scenario for Experiment III. (b) A relative difference in nextClaim between
4 FRSCs and a single FRSC.

Figure 4.12: Experiment III comparing 4 FRSCs and 1 FRSC, both configurations having the
same effective λ.

Different Fee Redistribution Ratios Across FRSCs

In Figure 4.11 we investigated different values of ρ in the same set of four contracts and
their impact on ∂Claims. The results show that the values of ρ should correlate with λ of
multiple FRSCs to maximize the potential of averaging by longer FRSCs.

Experiment III

Methodology. In this experiment, we investigated whether it is possible to use a sin-
gle FRSC setup to replace a multiple FRSCs while preserving the same effect on the
nextClaim. To quantify a difference between such cases, we introduced a new metric of
FRSCs, called effective λ, which can be calculated as follows:

effective λ(FRSCs) =
∑

x ∈ FRSCs
x.ρ ∗ x.λ. (4.17)

We were interested in comparing a single FRSC with 4 FRSCs, both configurations
having the equal effective λ. The configurations of these two cases are as follows:

(1) FRSC( , 5292, 1) and
(2) FRSCs = {
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FRSC1( , 1008, 0.07),FRSC2( , 2016, 0.19),
FRSC3( , 4032, 0.28),FRSC4( , 8064, 0.46)}.

We can easily verify that the effective λ of 4 FRSCs is the same as in a single FRSC
using Equation 4.17: 0.07 ∗ 1008 + 0.19 ∗ 2016 + 0.28 ∗ 4032 + 0.46 ∗ 8064 = 5292.

We conducted this experiment using a custom fee evolution scenario involving mainly
linearly increasing/decreasing fees in the mempool (see Figure 4.12a), and we set C to
0.7 for both configurations. The custom scenario of the fee evolution in mempool in
this experiment was chosen to contain extreme changes in fees, emphasizing possible
differences in two investigated setups.

Results. In Figure 4.12b, we show the relative difference in percentages of nextClaim
rewards between the settings of 4 FRSCs versus 1 FRSC. It is clear that the setting of
4 FRSCs in contrast to a single FRSC provided better reward compensation in times
of very low fees value in the mempool, while it provided smaller reward in the times of
higher values of fees in the mempool. Therefore, we concluded that it is not possible
to replace a setup of multiple FRSCs with a single one while retaining the same fee
redistribution behavior.

Experiment IV

We focused on reproducing the experiment from Section 5.5 of [CKWN16a], while uti-
lizing our approach. The experiment is aimed on searching for the minimal ratio of
DEFAULT-COMPLIANT miners, at which the undercutting attack is no longer profitable
strategy. DEFAULT-COMPLIANT miners are honest miners who follow the rules of the
consensus protocol such as building on top of the longest chain. We executed several
simulations, each consisting of multiple games (i.e., 300k as in [CKWN16a]) with var-
ious fractions of DEFAULT-COMPLIANT miners. From the remaining miners we evenly
created learning miners, who learn on the previous runs of games and switch with a cer-
tain probability the best strategy out of the following:

• PETTYCOMPLIANT: This miner behaves as DEFAULT-COMPLIANT except one dif-
ference. In the case of seeing two chains, he does not mine on the oldest block
but rather the most profitable block. Thus, this miner is not the (directly) attacking
miner.

• LAZYFORK: This miner checks which out of two options is more profitable: (1)
mining on the longest-chain block or (2) undercutting that block. In either way, he
leaves half of the mempool fees for the next miners, which prevents another LAZY-
FORK miner to undercut him.

• FUNCTION-FORK() The behavior of the miner can be parametrized with a function
f(.) expressing the level of his undercutting. The higher the output number the less
reward he receives and more he leaves to incentivize other miners to mine on top of
his block. This miner undercuts every time he forks the chain.

Methodology. With the missing feature for difficulty re-adjustment (in the simulator
from [CKWN16a] that we extended) the higher orphan rate occurs, which might directly
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(a) Simulations of our approach. (b) Simulations of the original
work [CKWN16a].

Figure 4.13: Experiment IV – The ratio of DEFAULT-COMPLIANT miners in our approach is
∼30% (in contrast to ∼ 66% of [CKWN16a]).

impact our FRSC-based approach. If the orphan rate is around 40%, roughly corre-
sponding to [CKWN16a], our blocks would take on average 40% longer time to be cre-
ated, increasing the block creation time (i.e., time to mine a block). This does not affect
the original simulator, as there are no FRSCs that would change the total reward for the
miner who found the block.

Nevertheless, this is not true for FRSC-based simulations as the initial setup of
FRSCs is calculated with fees = 50 BTC (as per the original simulations). However,
with longer block creation time and transaction fees being calculated from it, the amount
of fees also changes. With no adjustments, this results inFRSCs initially paying smaller
reward back to the miner before FRSCs are saturated. To mitigate this problem, we in-
creased the initial values of individual FRSCs by the orphan rate from the previous game
before each run. This results in very similar conditions, which can be verified by compar-
ing the final value in the longest chain of our simulation versus the original simulations.
We decided to use this approach to be as close as possible to the original experiment. This
is particularly important when the full mempool parameter is equal to false, which means
that the incoming transaction fees to mempool are calculated based on the block creation
time. In our simulations, we used the following parameters: 100 miners, 10 000 blocks
per game, 300 000 games (in each simulation run), exp3 learning model, and C = 0.7.
Modeling of fees utilized the same parameters as in the original paper [CKWN16a]: the
full mempool parameter disabled, a constant inflow of 5 000 000 000 Satoshi (i.e., 50
BTC) every 600s. For more details about the learning strategies and other parameters, we
refer the reader to [CKWN16a].

Setup ofFRSCs. Since we have a steady inflow of fees to the mempool, we do not need
to average the income for the miner. Therefore, we used only a single FRSC defined as
FRSC(7 056 000 000 000, 2016, 1), where the initial value of FRSC.ν was adjusted
according to Equation 4.16, assuming fees = 50 BTC. In the subsequent runs of each



game, FRSC.ν was increased by the orphan rate from the previous runs.

Results. The results of this experiment, depicted in Figure 4.13, demonstrate, that with
our approach using FRSCs, we decreased the number of DEFAULT-COMPLIANT miners
from the original 66% to 30%. This means that the profitability of undercutting miners
is avoided with at least 30% of DEFAULT-COMPLIANT miners, indicating more robust
results.

For other details, we refer the reader to our paper [BHS23].
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[SRHS19] Pawel Szalachowski, Daniël Reijsbergen, Ivan Homoliak, and Siwei Sun.
Strongchain: Transparent and collaborative proof-of-work consensus. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019., pages 819–836, 2019.
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Chapter 5

Cryptocurrency Wallets

In this chapter, we present our contributions to the area of authentication for blockchain
and decentralized applications, which belong to the application layer of our security refer-
ence architecture (see Chapter 3). In particular, this chapter is focused on cryptocurrency
wallets and their subcategory of smart contract wallets, and it is based on the papers
[HBH+20a, HBH+20b] (see also Section 5.4).

First, we review existing cryptocurrency wallet solutions (with their security issues)
and propose a classification scheme based on authentication factors validated against the
blockchain or a centralized party [HBH+20b]. We apply the proposed classification to the
existing wallet solutions and also cross-compare other security features of them. Next, we
propose SmartOTPs [HBH+20a], a 2FA authentication scheme against the blockchain,
which, on top of using a hardware wallet, introduces the authenticator App (or a device)
generating OTPs that are transferred in an air-gapped fashion to the client.

Notation

We denote the user by U, the client (e.g., the user agent/browser) by C, a wallet holding a
private key by W, the authenticator device or App as A, and an adversary by A.

5.1 Security Issues in Authentication Schemes of Wallets
According to works [ECBS18, BMC+15], there are a few categories of key management
approaches. In password-protected wallets, private keys are encrypted with selected pass-
words. Unfortunately, users often choose weak passwords that can be brute-forced if
stolen by malware [Del15]; optionally, such malware may use a keylogger for captur-
ing a passphrase [BMC+15, Pey17]. Another similar option is to use password-derived
wallets that generate keys based on the provided password. However, they also suffer
from the possibility of weak passwords [CSC16]. Hardware wallets are a category that
promises the provision of better security by introducing devices that enable only the sign-
ing of transactions, without revealing the private keys stored on the device. However,
these wallets do not provide protection from an attacker with full access to the device
[Kra20, Kra19, Don19], and more importantly, wallets that do not have a secure channel
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for informing the user about the details of a transaction being signed (e.g., [Led18a]) may
be exploited by malware targeting IPC mechanisms [BRA+18].

A popular option for storing private keys is to deposit them into server-side hosted
(i.e., custodial) wallets and currency-exchange services [Coi18a, Bin20, Pol20, Pay20,
Lun18, Pax20]. In contrast to the previous categories, server-side wallets imply trust in
a provider, which is a potential risk of this category. Due to many cases of compro-
mising server-side wallets [Wol18, Rac14, Reu16, MC13, Bin19] or fraudulent currency-
exchange operators [VM15], client-side hosted wallets have started to proliferate. In such
wallets, the main functionality, including the storage of private keys, has moved to the
user side [Myc18, Car18, Cit18, Coi18b, In18]; hence, trust in the provider is reduced
but the users still depend on the provider’s infrastructure.

To increase security of former wallet categories, multi-factor authentication (MFA)
is often used, which enables spending crypto-tokens only when a number of secrets are
used together. Wallets from a split control category [ECBS18] provide MFA against the
blockchain. This can be achieved by threshold cryptography wallets [GGK+15, Myc19],
multi-signature wallets [Arm16, Ele18, Tru19, Cop19], and state-aware smart-contract
wallets [Unc18, Tec18, Con19a]. Nevertheless, these schemes might impose additional
usability implications, performance overhead, or cost of wallet devices.

5.2 Classification of Authentication Schemes

We introduce the notion of k-factor authentication against the blockchain and k-factor
authentication against the authentication factors. Using these notions, we propose a clas-
sification of authentication schemes, and we apply it to examples of existing key manage-
ment solutions (see Section 5.2.1 and Section 5.2.2).

In the context of the blockchain, we distinguish between k-factor authentication against
the blockchain and k-factor authentication against the authentication factors themselves.
For example, an authentication method may require the user to perform 2-of-2 multi-
signature in order to execute a transfer, while U may keep each private key stored in a
dedicated device – each requiring a different password. In this case, 2FA is performed
against the blockchain, since both signatures are verified by all miners of the blockchain.
Additionally, a one-factor authentication is performed once in each device of U by enter-
ing a password in each of them. For clarity, we classify authentication schemes by the
following notation: (

Z +X1

/
. . .
/
XZ

)
,

where Z ∈ {0, 1, . . .} represents the number of authentication factors against the block-
chain and Xi ∈ {0, 1, . . .} | i ∈ [1, . . . , Z] represents the number of authentication factors
against the i-th factor of Z. With this in mind, we remark that the previous example pro-
vides (2 + 1/1)-factor authentication: twice against the blockchain (i.e., two signatures),
once for accessing the first device (i.e., the first password), and once for accessing the
second device (i.e., the second password).
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Since the previous notation is insufficient for authentication schemes that use secret
sharing [Sha79], we extend it as follows:

(
Z(W1,...,WZ) +

(
X1

1 , . . . , X
W1
1

) /
. . .
/ (

X1
Z , . . . , X

WZ
Z

)
)
,

where Z has the same meaning as in the previous case, Wi ∈ {0, 1, . . .} | i ∈ [1, . . . , Z]
denotes the minimum number of secret shares required to use the complete i-th secret Xi.
With this in mind, we remark that the aforementioned example provides

(
2(1,1) + (1)/(1)

)
-

factor authentication: twice against the blockchain (i.e., two signatures), once for access-
ing the first device (i.e., the first password), and once for accessing the second device (i.e.,
the second password). We consider an implicit value of Wi = 1; hence, the classification
(2+1/1) represents the same as the previous one (the first notation suffices). If one of the
private keys were additionally split into two shares, each encrypted by a password, then
such an approach would provide

(
2(2,1) + (1, 1)/(1)

)
-factor authentication.

5.2.1 Review of Wallet Types Using the Classification

We extend the previous work of Eskandari et al. [ECBS18] and Bonneau et al. [BMC+15],
by categorizing and reviewing a few examples of key management solutions, while as-
suming our classification.

Keys in Local Storage. In this category of wallets, the private keys are stored in plain-
text form on the local storage of a machine, thus providing (1 + 0)-factor authentication.
Examples that enable the use of unencrypted private key files are Bitcoin Core [Bit18a]
or MyEtherWallet [MyE18] wallets.

Password-Protected Wallets. These wallets require the user-specified password to en-
crypt a private key stored on the local storage, thus providing (1 + 1)-factor authentica-
tion. Examples that support this functionality are Armory Secure Wallet [Arm16], Elec-
trum Wallet [Ele18], MyEtherWallet [MyE18], Bitcoin Core [Bit18a], and Bitcoin Wallet
[Bit18b]. This category addresses physical theft, yet enables the brute force of passwords
and digital theft (e.g., keylogger).

Password-Derived Wallets. Password-derived wallets [Max11] (a.k.a., brain wallets
or hierarchical deterministic wallets) can compute a sequence of private keys from only a
single mnemonic string and/or password. This approach takes advantage of the key cre-
ation in the ECDSA signature scheme that is used by many blockchain platforms. Exam-
ples of password-derived wallets are Electrum [Ele18], Armory Secure Wallet [Arm16],
Metamask [Met19], and Daedalus Wallet [Dae18]. The wallets in this category provide
(1 + X1)-factor authentication (usually X1 = 1) and also suffer from weak passwords
[CSC16].
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Hardware Storage Wallets. In general, wallets of this category include devices that
can only sign transactions by private keys stored inside sealed storage, while the keys
never leave the device. To sign a transaction, U connects the device to a machine and
enters his passphrase. When signing a transaction, the device displays the transaction’s
data to U, who may verify the details. Thus, wallets of this category usually provide
(1 + 1)-factor authentication. Popular USB (or Bluetooth) hardware wallets containing
displays are offered by Trezor [Tre18], Ledger [Led18b], KeepKey [Kee18], and BitLox
[Bit18d]. An example of a USB wallet that is not resistant against tampering with C
(e.g., keyloggers) is Ledger Nano [Led18a] – it does not have a display, hence U cannot
verify the details of transactions being signed. An air-gapped transfer of transactions
using QR codes is provided by ELLIPAL wallet [ELL19]. In ELLIPAL, both C (e.g.,
smartphone App) and the hardware wallet must be equipped with cameras and display.
(1 + 0)-factor authentication is provided by a credit-card-shaped hardware wallet from
CoolBitX [Coo18]. A hybrid approach that relies on a server providing a relay for 2FA
is offered by BitBox [SHI18]. Although a BitBox device does not have a display, after
connecting to a machine, it communicates with C running on the machine and at the same
time, it communicates with a smartphone App through BitBox’s server; each requested
transaction is displayed and confirmed by U on the smartphone. One limitation of this
solution is the lack of self-sovereignty.

Split Control – Threshold Cryptography. In threshold cryptography [Sha79, MR01,
GJKR07, B+79], a key is split into several parties which enables the spending of crypto-
tokens only when n-of-m parties collaborate. Threshold cryptography wallet provide(
1(W1,...,Wn) + (X1, . . . , Xn)

)
-factor authentication, as only a single signature verifica-

tion is made on a blockchain, but n verifications are made by parties that compute a
signature. Therefore, all the computations for co-signing a transaction are performed off-
chain, which provides anonymity of access control policies (i.e., a transaction has a single
signature) in contrast to the multi-signature scheme that is publicly visible on the block-
chain. An example of this category is presented by Goldfeder et al. [GGK+15]. One
limitation of this solution is a computational overhead that is directly proportional to the
number of involved parties m (e.g., for m = 2 it takes 13.26s). Another example of this
category is a USB dongle called Mycelium Entropy [Myc19], which, when connected to a
printer, generates triplets of paper wallets using 2-of-3 Shamir’s secret sharing; providing
(1(2) + (0, 0))-factor authentication.

Split Control – Multi-Signature Wallets. In the case of multi-signature wallets, n-of-
m owners of the wallet must co-sign the transaction made from the multi-owned address.
Thus, the wallets of this category provide (n + X1/ . . . /Xn)-factor authentication. One
example of a multi-owned address approach is Bitcoin’s Pay to Script Hash (P2SH).1

Examples supporting multi-owned addresses are Lockboxes of Armory Secure Wallet
[Arm16] and Electrum Wallet [Ele18]. A property of multi-owned address is that each

1We refer to the term multi-owned address of P2SH for clarity, although it can be viewed as Turing-
incomplete smart contract.
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transaction with such an address requires off-chain communication. A hybrid instance
of this category and client-side hosted wallets category is Trusted Coin’s cosigning ser-
vice [Tru19], which provides a 2-of-3 multi-signature scheme – U owns a primary and
a backup key, while TrustedCoin owns the third key. Each transaction is signed first by
user’s primary key and then, based on the correctness of the OTP from Google Authen-
ticator, by TrustedCoin’s key. Another hybrid instance of this category and client-side
hosted wallets is Copay Wallet [Cop19]. With Copay, the user can create a multi-owned
Copay wallet, where U has all keys in his machines and each transaction is co-signed by
n-of-m keys. Transactions are resent across user’s machines during multi-signing through
Copay.

Split-Control – State-Aware Smart Contracts. State-aware smart contracts provide
“rules” for how crypto-tokens of a contract can be spent by owners, while they keep the
current setting of the rules on the blockchain. The most common example of state-aware
smart contracts is the 2-of-3 multi-signature scheme that provides (2 + X1/X2)-factor
authentication. An example of the 2-of-3 multi-signature approach that only supports
Trezor hardware wallets is TrezorMultisig2of3 from Unchained Capital [Unc18]. One
disadvantage of this solution is that U has to own three Trezor devices, which may be
an expensive solution that, moreover, relies only on a single vendor. Another example
of this category, but using the n-of-m multi-signature scheme, is Parity Wallet [Tec18].
However, two critical bugs [Par17b, Par17a] have caused the multi-signature scheme to
be currently disabled. The n-of-m multi-signature scheme is also used in Gnosis Wallet
from ConsenSys [Con19a].

Hosted Wallets. Common features of hosted wallets are that they provide an online
interface for interaction with the blockchain, managing crypto-tokens, and viewing trans-
action history, while they also store private keys at the server side. If a hosted wallet has
full control over private keys, it is referred to as a server-side wallet. A server-side wallet
acts like a bank – the trust is centralized. Due to several cases of compromising such
server-side wallets [Wol18], [Rac14], [Reu16], [MC13], the hosted wallets that provide
only an interface for interaction with the blockchain (or store only user-encrypted private
keys) have started to proliferate. In such wallets, the functionality, including the storage
of private keys, has moved to U’s browser (i.e., client). We refer to these kinds of wallets
as client-side wallets (a.k.a., hybrid wallets [ECBS18]).

Server-Side Wallets. Coinbase [Coi18a] is an example of a server-side hosted wallet,
which also provides exchange services. Whenever the user logs in or performs an oper-
ation, he authenticates himself against Coinbase’s server using a password and obtains a
code from Google Authenticator/Authy app/SMS. Other examples of server-side wallets
having equivalent security level to Coinbase are Circle Pay Wallet [Cir18] and Luno Wal-
let [Lun18]. The wallets in this category provide (0 + 2)-factor authentication when 2FA
is enabled.
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Client-Side Wallets. An example of a client-side hosted wallet is Blockchain Wallet
[Blo18]. Blockchain Wallet is a password-derived wallet that provides 1-factor authenti-
cation against the server based on the knowledge of a password and additionally enables
2FA against the server through one of the options consisting of Google Authenticator, Yu-
biKey, SMS, and email. When creating a transaction, U can be authenticated by entering
his secondary password. Equivalent functionality and security level as in Blockchain Wal-
let are offered by BTC Wallet [BTC18]. In contrast to Blockchain Wallet, BTC wallet uses
2FA also during the confirmation of a transaction. Other examples of this category are
password-derived wallets, like Mycelium Wallet [Myc18], CarbonWallet [Car18], Cito-
wise Wallet [Cit18], Coinomi Wallet [Coi18b], and Infinito Wallet [ In18], which, in con-
trast to the previous examples, do not store backups of encrypted keys at the server. A
2FA feature is provided additionally to password-based authentication, in the case of Car-
bonWallet. In detail, the 2-of-2 multi-signature scheme uses the machine’s browser and
the smartphone’s browser (or the app) to co-sign transactions.

5.2.2 A Comparison of Security Features of Wallets

We present a comparison of wallets and approaches from Section 5.2.1 in Table 5.1. We
apply our proposed classification on authentication schemes, while we also survey a few
selected security and usability properties of the wallets from the work of Eskandri et al.
[ECBS18]. In the following, we briefly describe each property and explain the criteria
stating how we attributed the properties to particular wallets.

Air-Gapped Property. We attribute this property (Y) to approaches that involve at least
one hardware device storing secret information, which do not need a connection to a
machine in order to operate.

Resilience to Tampering with the Client. We attribute this property (Y) to all hardware
wallets that sign transactions within a device, while they require U to confirm transaction’s
details at the device (based on displayed information). Then, we attribute this property to
wallets containing multiple clients that collaborate in several steps to co-signs transactions
(a chance that all of them are tampered with is low).

Post-Quantum Resilience. We attribute this property (Y) to approaches that utilize
hash-based cryptography that is known to be resilient against quantum computing attacks
[ADMG+16].

No Need for Off-Chain Communication. We attribute this property (Y) to approaches
that do not require an off-chain communication/transfer of transaction among parties/de-
vices to build a final (co-)signed transaction, before submitting it to a blockchain (appli-
cable only for Z ≥ 2 or Wi ≥ 2).
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Classification Details

Keys in Local Storage 1 + (0) Private key

Bitcoin Core [Bit18a] 1 + (0) For one of the options N N N Y N N Y N N/A
MyEtherWallet [MyE18] 1 + (0) For one of the options N N N Y N N Y N N/A

Password-Protected Wallets 1 + (1) Private key + encryption

Armory Secure Wallet [Arm16] 1 + (1) N N N Y N N Y Y N
Electrum Wallet [Ele18] 1 + (1) N N N Y N N Y Y N
MyEtherWallet (Offline) [MyE18] 1 + (1) N N N Y N N Y Y N
Bitcoin Core [Bit18a] 1 + (1) N N N Y N N Y Y N
Bitcoin Wallet [Bit18b] 1 + (1) N N N Y N N Y Y N

Password-Derived Wallets 1 + (X1)

Armory Secure Wallet [Arm16] 1 + (1) N N N Y N N Y Y Y
Electrum Wallet [Ele18] 1 + (1) N N N Y N N Y Y Y
Metamask [Met19] 1 + (1) N N N Y N N Y Y Y
Daedalus Wallet [Dae18] 1 + (2) 2 passwords N N N Y N N Y Y Y

Hardware Storage Wallets 1 + (X1)

Trezor [Tre18] 1 + (1) N Y N Y Y Y Y Y Y
Ledger [Led18b] 1 + (1) N Y N Y Y Y Y Y Y
KeepKey [Kee18] 1 + (1) N Y N Y Y Y Y Y Y

BitLox [Bit18d] 1 + (2) 2 passwords∗ N Y N Y Y Y Y Y Y
∗Additionally, protection
against the evil maid attack

CoolWallet S [Coo18] 1 + (0) N Y N Y Y Y Y P† N/A †Depending on the mode
Ledger Nano [Led18a] 1 + (2) Password + GRID card N N N Y N Y Y Y Y
ELLIPAL wallet [ELL19] 1 + (1) Y Y N Y Y Y Y Y Y
BitBox USB Wallet [SHI18] 1 + (2) 1 password and App N Y N Y Y Y P‡ Y Y ‡Requires a relay server

Split Control –
Threshold Cryptography 1(W1) + (X1

1 , . . . , X
W1
1 )

Goldfeder et al. [GGK+15] 1(2) + (1, 1)
Assuming 2 devices, each
protected by a password N Y N N Y N/A N/A N/A N/A

Mycelium Entropy [Myc19] 1(2) + (0, 0) N Y N N Y Y Y Y N/A

Split Control –
Multi-Signature Wallets Z + (X1/ . . . /Xz)

Lockboxes of Armory
Secure Wallet [Arm16] Z + (X1/ . . . /Xz) Z up to 7, Xi = 1 N Y N N Y N Y Y N

Electrum Wallet [Ele18] Z + (X1/ . . . /Xz) Z up to 15, Xi = 1 N Y N N Y N Y Y Y
Trusted Coin’s
cosigning service [Tru19] 2 + (1/2)

2 private keys + 2 passwords
and Google Auth. N Y N N Y N N Y Y A hybrid client-side wallet

Copay Wallet [Cop19] 2 + (1/1) N Y N N Y N P Y Y A hybrid client-side wallet

Split-Control –
State-Aware Smart Contracts Z + (X1/ . . . /Xz)

TrezorMultisig2of3 [Unc18] 2 + (1/1)
Assuming that each device
is protected by a password N Y N N Y Y Y Y Y

Parity Wallet [Tec18] Z + (X1/ . . . /Xz) Z is unlimited, Xi = 1 N Y N Y Y N Y Y Y
Gnosis Wallet [Con19a] Z + (X1/ . . . /Xz) Z up to 50, Xi = 1 N Y N Y Y N Y N/A Y

SmartOTPs [HBH+20a] 2 + (1/1)
Private key and OTPs
+ passwords Y◦ Y$ Y Y Y Y Y Y Y#

◦Fully air-gapped, if combined
with ELLIPAL wallet
$Thanks to a hardware wallet
#Also resilient to loss of all secrets

Server-Side Wallets 0 + (X1)

Coinbase [Coi18a] 0 + (2) Password, Google Auth./SMS N N N Y N N N Y Y
Circle Pay [Cir18] 0 + (2) —”— N N N Y N N N Y Y
Luno Wallet [Lun18] 0 + (2) Password and Google Auth. N N N Y N N N Y Y

Client-Side Wallets Z + (X1)

Blockchain Wallet [Blo18] 1 + (2)
Password and one of: Google
Auth., YubiKey, SMS, or email N N N Y N N N Y Y

BTC Wallet [BTC18] 1 + (2) —”— N N N Y N N N Y Y
Mycelium Wallet [Myc18] 1 + (1) N N N Y N N N Y Y

CarbonWallet [Car18] 2 + (2)
2 private keys stored in
browser and smartphone N Y N N N N N Y Y

Citowise Wallet [Cit18] 1 + (2) N Y¶ N Y N P¶ N Y Y
¶If combined with Trezor
or Ledger

Coinomi Wallet [Coi18b] 1 + (1) N N N Y N N N Y Y
Infinito Wallet [ In18] 1 + (1) N N N Y N N N Y Y

Table 5.1: Comparison of state-of-the-art cryptocurrency wallets using our classification (see Sec-
tion 5.2) and other security features.

Malware Resistance (e.g., Key-Loggers). We attribute this property (Y) to approaches
that either enable signing transactions inside of a sealed device or split signing control
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over secrets across multiple devices.

Secret(s) Kept Offline. We attribute this property (Y) to approaches that keep secrets
inside their sealed storage, while they expose only signing functionality. Next, we at-
tribute this property to paper wallets and fully air-gapped devices.

Independence of Trusted Third Party We attribute this property (Y) to approaches
that do not require trusted party for operation, while we do not attribute this property to
all client-side and server-side hosted wallets. We partially (P) attribute this property to
approaches requiring an external relay server for their operation.

Resilience to Physical Theft. We attribute this property (Y) to approaches that are pro-
tected by an encryption password or PIN. We partially (P) attribute this property to ap-
proaches that do not provide password and PIN protection but have a specific feature to
enforce uniqueness of an environment in which they are used (e.g., bluetooth pairing).

Resilience to Password Loss. We attribute this property (Y) to approaches that provide
means for recovery of secrets (e.g., a seed of hierarchical deterministic wallets).

5.3 SmartOTPs
In this section, we propose SmartOTPs, a smart-contract wallet framework that gives a
flexible, usable, and secure way of managing crypto-tokens in a self-sovereign fashion.
The proposed framework consists of four components (i.e., an authenticator, a client,
a hardware wallet, and a smart contract), and it provides 2-factor authentication (2FA)
performed in two stages of interaction with the blockchain. To the best of our knowledge,
our framework is the first one that utilizes one-time passwords (OTPs) in the setting of
the public blockchain. In SmartOTPs, the OTPs are aggregated by a Merkle tree and hash
chains whereby for each authentication only a short OTP (e.g., 16B-long) is transferred
from the authenticator to the client. Such a novel setting enables us to make a fully
air-gapped authenticator by utilizing small QR codes or a few mnemonic words, while
additionally offering resilience against quantum cryptanalysis. We have made a proof-of-
concept based on the Ethereum platform. Our cost analysis shows that the average cost
of a transfer operation is comparable to existing 2FA solutions using smart contracts with
multi-signatures.

Notation

By the term operation we refer to an action with a smart-contract wallet using Smart-
OTPs, which may involve, for instance, a transfer of crypto-tokens or a change of daily
spending limits. Then, we use the term transfer for the indication of transferring crypto-
tokens. By {msg}U we denote the message msg digitally signed by U, and by msg.σ
we refer to the signature;RO is the random oracle; h(.): stands for a cryptographic hash
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function; hi(.) substitutes i-times chained function h(.), e.g., h2(.) ≡ h(h(.)); ∥ is the
string concatenation; hi

D(.) substitutes i-times chained function h(.) with embedded do-
main separation, e.g., h2

D(.) = h(2 || h(1 || .)); Fk(.) ≡ h(k ∥ .) denotes a pseudo-random
function that is parametrized by a secret seed k; % represents modulo operation over
integers; Σ.{KeyGen, V erify, Sign} represents a signature scheme of the blockchain
platform; SKU, PKU is the private/public key-pair of U, under Σ, and a | b represents
bitwise OR of arguments a and b.

5.3.1 Problem Definition

The main goal of this research is to propose a cryptocurrency wallet framework that
provides a secure and usable way of managing crypto-tokens. In particular, we aim to
achieve:
Self-Sovereignty: ensures that the user does not depend on the 3rd party’s infrastruc-

ture, and the user does not share his secrets with anybody. Self-sovereign (i.e.,
non-custodial) wallets do not pose a single point of failure in contrast to server-side
(i.e., custodial) wallets, which when compromised, resulted in huge financial loses
[Wol18, Rac14, Reu16, MC13, Bin19].

Security: the insufficient security level of some self-sovereign wallets has caused sig-
nificant financial losses for individuals and companies [Bun16, CSC16, CHH+18,
Par17b]. We argue that wallets should be designed with security in mind and in
particular, we point out 2FA solutions, which have successfully contributed to the
security of other environments [AZEH09, Sch05]. Our motivation is to provide a
cheap security extension of the hardware wallets (i.e., the first factor) by using OTPs
as the second factor in a fashion similar to Google Authenticator.

5.3.2 Threat Model

For a generic cryptocurrency, we assume an adversary A whose goal is to conduct unau-
thorized operations on the user’s behalf or render the user’s wallet unusable. A is able
to eavesdrop on the network traffic as well as to participate in the underlying consensus
protocol. However, A is unable to take over the cryptocurrency platform nor to break the
used cryptographic primitives. We further assume that A is able to intercept and “over-
ride” the user’s transactions, e.g., by launching a man-in-the-middle (MITM) attack or
by creating a conflicting malicious transaction with a higher fee, which will incentivize
miners to include A’s transaction and discard the user’s one; this attack is also referred to
as transaction front-running. We assume three types of exclusively occurring attackers,
each targeting one of the three components of our framework: (1) A with access to the
user’s private key hardware wallet W, (2) A that tampers with the client C, and for com-
pleteness we also assume (3) A with access to the authenticator A. Next, we assume that
the legitimate user correctly executes the proposed protocols and h(.) is an instantiation
of random oracleRO.



88 CHAPTER 5. CRYPTOCURRENCY WALLETS

5.3.3 Design Space
There are many types of wallets with different properties (see Section 5.2.1). In our
context, to achieve self-sovereignty we identify smart-contract wallets as a promising
category. These wallets manage crypto-tokens by the functionality of smart contracts,
enabling users to have customized control over their wallets. The advantages of these
solutions are that spending rules can be explicitly specified and then enforced by the
cryptocurrency platform itself. Therefore, using this approach, it is possible to build a
flexible wallet with features such as daily spending limits or transfer limits.

General OTPs

With spending rules encoded in a smart contract, it is feasible to design custom security
features, such as OTP-based authentication serving as the second factor. In such a set-
ting, the authenticator produces OTPs to authenticate transactions in the smart contract.
However, in contrast to digital signatures, OTPs do not provide non-repudiation of data
present in a transaction with an OTP; moreover, they can be intercepted and misused by
the front-running or the MITM attacks. To overcome this limitation, we argue that a two-
stage protocol Π<G>

O must be employed, enabling secure utilization of general OTPs in the
context of blockchains. In the first stage of Π<G>

O , an operation O, signed by the user U,
is submitted to the blockchain, where it obtains an identifier i. Then, in the second stage,
Oi is executed on the blockchain upon the submission of OTPi that is unambiguously
associated with the operation initiated in the first stage.

Requirements of General and Air-Gapped OTPs

Based on the above, we define the necessary security requirements of general OTPs used
in the blockchain as follows:

1. Authenticity: each OTP must be associated only with a unique authenticator in-
stance.

2. Linkage: each OTPi must be linked with exactly a single operation Oi, ensuring
that OTPi cannot be misused for the authentication of Oj, i ̸= j.

3. Independence: OTPi linked with the operation Oi cannot be derived from OTPj of
an operation Oj , where i ̸= j, or an arbitrary set of other OTPs.

Nevertheless, in the air-gapped setting (important for a high usability and security), one
more requirement comes into play: the short length of OTPs. Short OTPs allow the
users to use a relatively small number of mnemonic words or a small QR code to transfer
an OTP in an air-gapped fashion. This requirement is of high importance especially in the
case when the authenticator is implemented as a resource-constrained embedded device
with a small display (e.g., credit-card-shaped wallet, such as CoolBitX [Coo18]).

Analysis of Existing Solutions

We argue that not all solutions meet the requirements of air-gapped OTPs. Asymmet-
ric cryptography primitives such as digital signatures or zero-knowledge proofs are in-
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adequate in this setting, despite meeting all general OTP requirements. State-of-the-art
signature schemes with reasonable performance overhead [BDL+12, JMV01] and short
signature size produce a 48B-64B long output. The BLS signatures [BLS01] go even
beyond the previous constructs and might produce signatures of size 32B. Nevertheless,
BLS signatures are unattractive in the setting of the smart contract platforms that put high
execution costs for BLS signature verification, which is ∼33 times more expensive than
in the case of ECDSA with the equivalent security level [BWG+19]. Hence, we assume
48B as the minimal feasible OTP size for assymetric cryptography.

However, transferring even 48B in a fully air-gapped environment by transcription of
mnemonic words [PRVB13] would lack usability for regular users – considering study
from Dhakal et al. [DFKO18], transcription of 36 English words takes 42s on average,
which is much longer than users are willing to “sacrifice.” We note that the situation is
better with QR code, but on the other hand it has two limitations: (1) when the authen-
ticator is implemented as a simple embedded device, its display might be unable to fit a
requested QR code with sufficient scanning properties (to preserve the maximal scanning
distance of QR code, the “denser” QR code must be displayed in a larger image [QRS11])
and (2) occasionally, the users might not have a camera in their devices, thus, they can
proceed only with a fallback method that uses mnemonics. Finally, most of the currently
deployed asymmetric constructions are vulnerable to quantum computing [Ber09].

The problem of long signatures also exists in hash-based signature constructs [Lam79,
DSS05, Mer89]. Lamport-Diffie one-time signatures (LD-OTS) [Lam79] produce an out-
put of length 2|h(.)|2, which, for example in the case of |h(.)| = 16B yields 4kB-long
signatures. The signature size of LD-OTS can be reduced by using one string of one-time
key for simultaneous signing of several bits in the message digest (i.e., Winternitz one-
time signatures (W-OTS) [DSS05]), but at the expense of exponentially increased num-
ber of hash computations (in the number of encoded bits) during a signature generation
and verification. The extreme case minimizing the size of W-OTS to |h(.)| (for simplic-
ity omitting checksum) would require 2|h(.)| hash computations for signature generation,
which is unfeasible.

Approaches based on symmetric cryptography primitives produce much shorter out-
puts, but it is challenging to implement them with smart-contract wallets. Widely used
one-time passwords like HOTP [MBH+05] or TOTP [MMPR11] require the user to share
a secret key k with the authentication server. Then, with each authentication request the
user proves that he possesses k by returning the output of an Fk(.) computed with a nonce
(i.e., HOTP) or the current timestamp (i.e., TOTP). This approach is insecure in the set-
ting of the blockchain, as the user would have to share the secret k with a smart-contract
wallet, making k publicly visible.

A solution that does not publicly disclose secret information and, at the same time,
provides short enough OTPs (e.g., 16B ≃ 12 mnemonic words ≃ QR code v1), can be
implemented by Lamport’s hash chains [Lam81] or other single hash-chain-based con-
structs, such as T/Key [KMB17]. A hash chain enables the production of many OTPs by
the consecutive execution of a hash function, starting from k that represents a secret key
of the authenticator. Upon the initialization, a smart contract is preloaded with the last
generated value hn(k). When the user wants to authenticate the ith operation, he sends
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the hn−i(k) to the smart contract in the second stage of Π<G>
O . The smart contract then

computes h(.) consecutively i times and checks to ascertain whether the obtained value
equals the stored value. However, the main drawback of this solution is that each OTP
can be trivially derived from any previous one, and thereby this scheme does not meet
the requirement of OTPs on independence. To detail an attack misusing this flaw, assume
the MITM attacker possessing SKU (i.e., the first factor) is able to initiate operations in
the first stage of Π<G>

O . The attacker A initiates operation Oi and waits for U to initi-
ate and confirm an arbitrary follow-up operation Oj, j > i. When U sends OTPj in the
second stage of Π<G>

O , A intercepts and “front-runs” the user’s transaction by a mali-
cious transaction with OTPi computed as hj−i(OTPj). Although one may argue that this
scheme can be hardened by a modification denying to confirm older operations than the
last initiated one, it would bring a race condition issue in which A might keep initiating
operations in the first stage of Π<G>

O each time he intercepts a confirmation transaction
from U, causing the DoS attack on the wallet.

5.3.4 Proposed Approach

For a generic cryptocurrency with Turing-complete smart contract platform, we propose
SmartOTPs, a 2FA against the blockchain, which consists of: (1) a client C, (2) a private
key hardware wallet W equipped with a display, (3) a smart-contract S, and (4) an air-
gapped authenticator A that might be implemented as an embedded device with limited
resources. First, we explain the key idea of our approach, which enables us to construct A
as a fully air-gapped device. Then, we present the base version of SmartOTPs, and finally,
we describe modifications.

Design of an Air-Gapped Authenticator

In our approach, OTPs are generated by a pseudo-random function Fk(.) and then aggre-
gated by a Merkle tree, providing a single value, the root hash (R). R is stored at S and
serves as a PK for OTPs. Assuming the two stage protocol Π<G>

O (further denoted as ΠO),
the user U might confirm the initiated operation OopID by a corresponding OTPopID (pro-
vided by A) in the second stage of ΠO, whereby S verifies the correctness of OTPopID

with use ofR. A challenge of such an approach is the size of an OTP.

From Straw-Man to the Base Version. Using the straw-man version, a 2FA requires A
to provide an OTP and its proof. However, in such a straw-man version, the user U has to
transfer (S+S×H)

8
bytes from A each time he confirms an operation, where S represents the

bit-length of an OTP as well as the output of h(.), and H represents the height of a Merkle
tree with N leaves; hence H = log2(N ). For example, if S = 256 and H = 10, then
U would have to transfer 352B each time he confirms an operation, which has very low
usability in an air-gapped setting utilizing transcription of mnemonic words [PRVB13]
(i.e., 264 words) or scanning of several QR codes (e.g., 21 QR codes v1) displayed on an
embedded device with a small display. Even further reduction of S to 128 bits would not
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Algorithm 2: Smart contract S with 2FA
1 ▷ VARIABLES AND FUNCTIONS OF ENVIRONMENT:
2 tx: a current transaction processed by S,
3 balance: the current balance of a contract,
4 transfer(r, v): transfer v crypto-tokens from a smart contract to r,

5 ▷ DECLARATION OF TYPES:
6 Operation { addr, param, pending, type ∈ {TRANSFER, . . .} }
7 ▷ DECLARATION OF FUNCTIONS:
8 function constructor(root, pk) public
9 operations← []; ▷ An append-only list

10 PKU← pk, R← root, nextOpID← 0;
11 return SID; ▷ Computed by a blockchain platform.

12 function initOp(a, p, type) public
13 assert Σ.verify(tx.σ, PKU); ▷ 1st factor of 2FA
14 opID← nextOpID++;
15 operations[opID]← new Operation(a, p, true, type);

16 function confirmOp(otp, π, opID) public
17 assert operations[opID].pending;
18 verifyOTP(otp, π, opID); ▷ 2nd factor of 2FA
19 execOp(operations[opID]);
20 operations[opID].pending← false;

21 function verifyOTP (otp, πopID , opID) private
22 assert deriveRootHash(otp, πopID , opID) =R;

23 function execOp(oper) private
24 if TRANSFER = oper.type then
25 assert oper.param ≤ balance;
26 transfer(oper.addr, oper.param);

help to resolve this issue, as the amount of user transferred data would be equal to 176B
≃ 132 mnemonic words ≃ 11 QR codes v1.

We make the observation that it is possible to decouple providing OTPs from provid-
ing their proofs. The only data that need to be kept secret are OTPs, while any node of
a Merkle tree may potentially be disclosed – no OTP can be derived from these nodes.
Therefore, we propose providing OTPs by A, while their proofs can be constructed at C
from stored hashes of OTPs. This modification enables us to fetch the nodes of the proof
from the storage of C, while U has to transfer only the OTP itself from A when confirming
an operation (i.e, S = 128 ≃ 12 mnemonic words by default).

Base Version

Secure Bootstrapping. As common in other schemes and protocols, by default, we as-
sume a secure environment for bootstrapping protocol ΠSB (see Figure 5.1). First, A gen-
erates a secret seed k, which is stored as a recovery phrase by U. W generates a key-pair
SKU, PKU ← Σ.KeyGen(). Next, U transfers k from A to C in an air-gapped man-
ner (i.e., transcribing a few mnemonic words or scanning a QR code). Then, C generates
OTPs by computing Fk(i) | i ∈ {0, 1, . . . , N−1}, where N is the number of leaves (equal
to the number of OTPs in the base version). Next, C computes and stores the leaves of the
tree – i.e., the hashes of the OTPs (i.e., hOTPs), which do not contain any confidential
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Figure 5.1: Bootstrapping of SmartOTPs in a secure environment (ΠSB).

data.2 After this step, k and the OTPs are deleted from C, and C computes R from the
stored hashes of the OTPs. Then, C creates a transaction containing constructor of S (see
Algorithm 2) with R as the argument and passes it to W for appending PKU. Finally, C
sends the transaction with the constructor to the blockchain where the deployment of S is
made.3 In the constructor,R with PKU are stored and ID of S (i.e., SID) is assigned by a
blockchain platform and returned in a response.4 Storing R and PKU binds an instance
of S with the user’s authenticator A and the user’s private key wallet W, respectively. In
detail, PKU enables S to verify whether an arbitrary transaction was signed by the user
who created S, while R enables the verification whether the given OTP was produced by
the user’s A.

Operation Execution. When the wallet framework is initialized, it is ready for execut-
ing operations by a two-stage protocol ΠO (see Figure 5.2):

1. Initialization Stage. When U decides to execute an operation with SmartOTPs, he
enters the details of the operation into C that creates a transaction calling initOp(),
which is provided with operation-specific parameters – the type of operation (e.g.,
transfer), a numerical parameter (e.g., amount or daily limit), and an address param-
eter (e.g., recipient). Then, C sends this transaction to W, which displays the details
of the transaction and prompts U to confirm signing by a hardware button. Upon
confirmation, W signs the transaction by SKU and sends it back to C. C forwards

2To improve performance during provisioning of proofs, C might additionally store non-leaf nodes,
increasing the requirement on C’s storage 2x.

3C has the template of S and the deployment process is unnoticeable for the users.
4Note that SID represents a public identification of S, which serves as a destination for sending crypto-

tokens to S by any party.
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Figure 5.2: Execution of an operation (ΠO).

the transaction to S. In the function initOp(), S verifies whether the signature was
created by U (the first factor), stores the parameters of the operation, and then as-
signs a sequential ID (i.e., opID) to the initiated operation. In the response from S,
C is provided with an opID.

2. Confirmation Stage. After the transaction (that initiated the operation) is persisted
on the blockchain, U proceeds to the second stage of ΠO. U enters opID to A,
which, in turn, computes and displays OTPopID as Fk(opID). Storing hOTPs
computed from OTPs at C enables U to transfer only the displayed OTP from A to
C, which can be accomplished in an air-gapped manner. Considering the mnemonic
implementation [PRVB13], this means an air-gapped transfer of 12 words in the case
of O = 16B. Then, C computes and appends the corresponding proof πopID to the
OTP. The proof of the OTP is computed from stored hOTPs in the C’s storage (or
directly fetched from the storage if C stores all nodes of the Merkle tree). Next, C
sends a transaction with OTPopID and its proof πopID to the blockchain, calling the
function confirmOp() of S, which handles the second factor. This function verifies
the authenticity of the OTP (i.e., the first requirement of OTPs) and its association
with the requested operation (i.e., the second requirement of OTPs), which together
implies the correctness of the provided OTP.5 In detail, upon calling the confirmOp()
function with opID, OTPopID, and πopID as the arguments, S reconstructs the root
hash from the provided arguments by the function deriveRootHash() that is presented
in Appendix of [HBH+20a]. If the reconstructed value matches the stored value R,
the operation is executed (e.g., crypto-tokens are transferred).

In the following, we present extensions of SmartOTPs, improving its efficiency and us-
ability, and introducing new features.

5Note that SmartOTPs meet the third requirement of OTPs by the design.
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Bootstrapping in an Insecure Environment

The main advantage of ΠSB described above is its high usability, requiring only an air-
gapped transfer of k and connected W. However, ΠSB is not resistant againstA tampering
with C; A might intercept k or forge R for R′. Similarly, A might forge PKU for PKA,
while staying unnoticeable for U who expects that SID obtained is correct. Therefore,
we propose an alternative bootstrapping protocol ΠIB (see Appendix of [HBH+20a]), as-
suming that A can tamper with C during bootstrapping. In this protocol, first we protect
SmartOTPs from the interception of k and then from forgingR and PKU.

To avoid the interception of k, instead of transferring k, U performs a transfer of
all leaves of the Merkle tree (i.e., hOTPs) from A to C, which can be achieved with a
microSD card. Note that the leaves are hashes of OTPs, hence they do not contain any
confidential data. Next, to protect SmartOTPs from forging of PKU and R, we require
a deterministic computation of SID by a blockchain platform using PKU and R, hence
SID can be computed and displayed together with R in W before the deployment of S.
In detail, SID is computed as h(PKU ∥ R), thus each pair consisting of a public key and
a root hash maps to the only SID. However, even with this modification, R can still be
forged by C. Therefore, when transaction with the constructor is sent to W, U has to
compare R displayed at W with the one computed and displayed by A. In the case of
equality, U records SID displayed in W.

Increasing the Number of OTPs

A small number of OTPs can have negative usability and security implications. First, users
executing many transactions6 would need to create new OTPs often, and thus change their
addresses. Second, an attacker possessing SKU can flood S with initialized operations,
rendering all the OTPs unusable. Therefore, we need to increase the number of OTPs to
make the attack unfeasible. However, increasing the number of OTPs linearly increases
the amount of data that C needs to preserve in its storage. For example, if the number of
OTPs is 220, then C has to store 33.6MB of data (considering S = 16B and C storing all
leaves), which is feasible even on storage-limited devices. However, e.g., for 232 OTPs, C
needs to store 137.4GB of data, which might be infeasible even on PCs, especially when
C handles multiple instances of SmartOTPs.

To resolve this issue, we modify the base approach by applying a time-space trade-off
[Hel80] for OTPs. Namely, we introduce hash chains of which last items are aggregated
by the Merkle tree. With such a construction, OTPs can be encoded as elements of chains
and revealed layer by layer in the reverse order of creating the chains. This allows multi-
plication of the number of OTPs by the chain length without increasing the C’s storage but
imposing a larger number of hash computations on S and A. Nonetheless, smart contract
platforms set only a low execution cost for h(.).

An illustration of this construction is presented in the bottom left part of Figure 5.3.
A hash chain of length P is built from each OTP assumed so far. Then, the last items of

6E.g., several smart contracts in Ethereum have over 220 transactions made.
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all hash chains are used as the first iteration layer, which provides N
P

OTPs.7 Similarly,
the penultimate items of all the hash chains are used as the second iteration layer, etc.,
until the last iteration layer consisting of the first items of hash chains (i.e., outputs of
Fk(.)) has been reached (see the middle part of Figure 5.3). We emphasize that introduc-
ing hash chains may cause a violation of the requirement on the independence of OTPs
if implemented incorrectly; i.e., OTPs from upper iteration layers can be derived from
lower layers. Therefore, to enforce this requirement, we invalidate all the OTPs of all the
previous iteration layers by a sliding window at S.

Furthermore, if a hash chain were to use the same hash function throughout the entire
chain, it would be vulnerable to birthday attacks [HJP05]. To harden a hash chain against
a birthday attack, a domain separation proposed by Leighton and Micali [LM95] can be
used: a different hash function is applied in each step of a hash chain. Note that without
domain separation, inverting the ith iterate of h(.) is i times easier than inverting a single
hash function (see the proof in [HN01]). Therefore, we use a different hash function for
all but the last iteration layer 1 ≤ i < P as follows:

hD[i](x) = h(P − i+ 1 || x), (5.1)

where x represents the OTP from the next iteration layer.
Although domain separation hardens a single hash chain against the birthday attack,

this attack is still possible within the current iteration layer, which is an inevitable conse-
quence of using multiple hash chains. Therefore, the number of leaves L (i.e., N/P) is the
parameter that must be considered when quantifying the security level of our scheme (see
Section 5.3.5).

With this improvement, A is updated to provide OTPs by

getOTP (i) = h
α(i)
D

(
Fk

(
β(i)

))
, (5.2)

where i is the operation ID, α(i) determines the index in a hash chain, and β(i) determines
the index in the last iteration layer of OTPs. We provide concrete expressions for α(i)
and β(i) in Equation 5.4, which involves all proposed improvements and optimizations.
A derivation of R from the OTP at S needs to be updated as well (see Appendix of
[HBH+20a]). In detail, S executes P − α(i) − 1 =

⌊
iP
N

⌋
hash computations, which is a

complementary number to the number of hash computations at A with regard to P . Also,
C has to be modified, requiring computation of a proof to use the leaf index relative to the
current iteration layer of OTPs (i.e., i % N

P
).

With this improvement, given the number of leaves equal to 220 and P = 212, C stores
only 33.6MB of data and it has 232 OTPs available. On the other hand, this modification
implies, on average, the execution of additional P/2 hash computations at S, imposing
additional costs. However, our experiments show the benefits of this approach (see Sec-
tion 5.3.6).

7For simplicity, we assume that GCD(N,P ) = P .
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Figure 5.3: An overview of our approach and its improvements.

Depletion of OTPs

Even with the previous modification, the number of OTPs remains bounded, therefore
they may be depleted. We propose handling of depleted OTPs by a special operation that
replaces the current tree with a new one. To introduce a new tree securely, we propose
updatingR value while using the last OTP of the current tree for confirmation. Neverthe-
less, for this purpose we cannot use ΠO consisting of two stages, as A possessing SKU
could be “faster” than the user and might initialize the last operation and thus block all the
user’s funds. If we were to allow repeated initialization of this operation, then we would
create a race condition issue.

Algorithm 3: Introduction of a newR in S
1 L1← []; ▷ Items have form < h(Rnew ∥ OTP ) >
2 L2← []; ▷ Items have form <Rnew>

3 function 1 newRootHash(hRootAndOTP) public
4 assert Σ.verify(tx.σ, PKU);
5 assert nextOpID % N = N − 1; ▷ The last oper. of tree
6 L1.append(hRootAndOTP);

7 function 2 newRootHash(Rnew) public
8 assert Σ.verify(tx.σ, PKU);
9 assert nextOpID %N = N − 1; ▷ The last oper. of tree

10 L2.append(Rnew);

11 function 3 newRootHash(otp, π) public
12 assert nextOpID %N = N − 1; ▷ The last oper. of tree
13 verifyOTP(otp, π, nextOpID);
14 if L1.len > LENMAX | L2.len > LENMAX then
15 L1, L2← [], [];
16 return; ▷ To avoidA DoS-ing S by gas depletion.

17 for {j ← 0; j < L1.len; j++} do
18 for {i← 0; i < L2.len; i++} do
19 if h(L2[i] ∥ otp) = L1[j] then
20 R← L2[i];
21 L1, L2← [], [];
22 nextOpID++;
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To avoid this race condition issue, we propose a protocol ΠNR that replacesR during
three stages of interaction with the blockchain, which requires two append-only lists L1

and L2 (see Algorithm 3):
1. U enters OTPN−1 to C. C sends h(OTPN−1 ∥ Rnew) to S, which appends it to L1.
2. C sendsRnew to S, which appends it to L2.
3. C passes OTPN−1 with πN−1 to S, where the first matching entries of L1 and L2 are

located to perform the introduction of Rnew. Finally, the lists are cleared for future
updates.

Locating the first entries in the lists relies on the append-only feature of lists, hence no A
can make the first valid pair of entries in the lists. Similarly as in ΠB, we propose two
variants of ΠNR intended for secure (i.e., ΠSNR) and insecure environment (i.e., ΠINR). In
ΠINR (see Appendix of [HBH+20a] for detailed description), A must compute and display
h(OTPN−1 ∥ Rnew) andRnew to enable protection againstA that tampers with C. Hence,
U can verify the equality of items displayed at W with the ones displayed at A during the
first and the second stage of ΠINR, preventing A from forging the tree. To adapt this
improvement at C, C needs to store all nodes of the new tree. Therefore, U provides C
with all nodes of the new tree, transferred from A on a microSD card. In the case of ΠSNR,
the nodes of the new tree are transferred by a transcription of k from A to C and no values
are displayed at W and A for U’s verification.

Cost & Security Optimizations

Caching in the Smart Contract. With a high Merkle tree, the reconstruction ofR from
a leaf node may be costly. Although the number of hash computations stemming from the
Merkle tree is logarithmic in the number of leaves, the cost imposed on the blockchain
platform may be significant for higher trees. We propose to reduce this cost by caching
an arbitrary tree layer of depth L at S and do proof verifications against a cached layer.
Hence, every call of deriveRootHash() will execute L fewer hash computations in contrast
to the version that reconstructsR, while C will transfer by L fewer elements in the proof.

The minimal operational cost can be achieved by directly caching leaves of the tree,
which accounts only for hash computations coming from hash chains, not a Merkle tree.
However, storing such a high amount of cached data on the blockchain is too expensive.
Therefore, this cost optimization must be viewed as a trade-off between the depth L of
the cached layer and the price required for the storage of such a cached layer on the
blockchain (see Section 5.3.6).

We depict this modification in the left part of Figure 5.3, and we show that an optimal
caching layer can be further partitioned into caching sublayers of subtrees (introduced
later). To enable this optimization, the cached layer of the Merkle tree must be stored in
the constructor of S. From that moment, the cached layer replaces the functionality ofR,
reducing the size of proofs. During the confirmation stage of ΠO, an OTP and its proof
are used for the reconstruction of a particular node in the cached layer, instead ofR. Then
the reconstructed value is compared with an expected node of the cached layer. The index
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Algorithm 4: Introduction of the next subtree at S
1 currentSubLayer[]; ▷ Adjusted in the constructor

2 function nextSubtree(nextSubLayer, otp, πotp, πsr) public
3 assert nextOpID %N ̸= N − 1; ▷ Not the last op. of parent
4 assert nextOpID %NS = NS − 1; ▷ The last op. of subtree
5 assert currentSubLayer.len = nextSubLayer.len;
6 assert deriveRootHash(otp, πotp, nextOpID) =R;
7 currentSubLayer← nextSubLayer;
8 Rs← reduceMT(currentSubLayer, currentSubLayer.len);
9 assert subtreeConsistency(Rs, πsr ,R);

10 nextOpID++; ▷ Accounts for this introduction of a subtree

of an expected node is computed as

idxInCache(i) =

⌊(
i %

N

P

)
/ 2H−L

⌋
, (5.3)

where i is the ID of an operation.

Partitioning to Subtrees. The caching of the optimal layer minimizes the operational
costs of SmartOTPs, but on the other hand, it requires prepayment for storing the cache
on the blockchain. If the cached layer were to contain a high number of nodes, then
the initial deployment cost could be prohibitively high, and moreover, the user might not
deplete all the prepaid OTPs. On top of that, after revealing the first iteration layer of
OTPs, the security of our scheme described so far is decreased by log2(N/P ) bits due to
the birthday attack (see Section 5.3.5) on OTPs. Hence, bigger trees suffer from higher
security loss than smaller trees.

To overcome the prepayment issue and to mitigate the birthday attack, we propose
partitioning an optimal cached layer to smaller groups having the same size, forming
sublayers that belong to subtrees (see the left part of Figure 5.3). The obtained security
loss is log2(NS/P ), NS ≪ N .

Starting with the deployment of S, the cached sublayer of the first subtree and the
“parent” root hash (i.e.,R) are passed to the constructor; the cached sublayer is stored on
the blockchain and its consistency againstR is verified. Then during the operational stage
of ΠO, when confirmation of operation is performed, the passed OTP is verified against
an expected node in the cached sublayer of the current subtree, saving costs for not doing
verification againstR (see Appendix of [HBH+20a]).

If the last OTP of the current subtree is reached, then no operation other than the intro-
duction of the next subtree can be initialized (see the green dashed arrow in Figure 5.3).
We propose a protocol ΠST for the introduction of the next subtree (see Appendix of
[HBH+20a] for the detailed description). Namely, C introduces the next subtree in a sin-
gle step by calling a function nextSubtree() of S with the arguments containing: (1) the
last OTP of the current subtree OTP(NS−1)+δNS

, δ ∈ {1, . . . , N/NS − 1}, (2) its proof
πotp, (3) the cached sublayer of the next subtree, and (4) the proof πsr of the next subtree’s
root; all items but OTP are computed by C. The pseudo-code of the next subtree introduc-
tion at S is shown in Algorithm 4. The current subtree’s cached sublayer is replaced by
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the new one, which is verified by the function subtreeConsistency() againstR with the
use of the passed proof πsr of the new subtree’s root hashRs. Note that introducing a new
subtree invalidates all initialized yet to be confirmed operations of the previous subtree.

At A, this improvement requires accommodating the iteration over layers of hash
chains in shorter periods. Hence, A provides OTPs by Equation 5.2 with the following
expressions:

α(i) = P −
⌊
(i % NS)P

NS

⌋
− 1,

β(i) =

⌊
i

NS

⌋
NS

P
+

(
i %

NS

P

)
,

(5.4)

where i is an operation ID and NS is the number of OTPs provided by a single subtree.
We remark, that due to this optimization, the update of a new parent rootR as well as the
constructor of S requires, additionally to Algorithm 3 and Algorithm 2, the introduction
of a cached sublayer of the first subtree (omitted here for simplicity).

5.3.5 Security Analysis

We analyze the security of SmartOTPs and its resilience to attacker models under the
assumption of random oracle modelRO.

Security of OTPs

OTPs in our scheme are related to two cryptographic constructs: a list of hash chains and
the Merkle tree aggregating their last values. In this subsection, we assume an adversary
A who is trying to invert OTPs, and we give a concrete expressions for security of our
scheme. Since we employ the hash domain separation technique [LM95] for hash chains,
each hash execution can be seen as an execution of an independent hash function. For
such a construction, Kogan et al. give the following upper bound (see Theorem 4.6 in
[KMB17]) on the advantage of A breaking a chain:

Pr[A breaks a chain] ≤ 2Q+ 2P + 1

2S
, (5.5)

where Q is the number of queries that A can make to h(.), P is the chain length, and
S is the bit-length of OTPs (and the output of h(.)). Kogan et al. [KMB17] proved that
inverting a hash chain hardened by the domain separation imposes a loss of security equal
to the factor of 2. Therefore, to make a hardened hash chain as secure as λ-bit RO, it is
enough to set S = λ+ 2. E.g., to achieve 128-bit security, S should be equal to 130.

SmartOTPs without Subtrees. This scheme (see Section 22) uses a Merkle tree that
aggregates L = N

P
hash chains, where the chains are created independently of each other;

they have the same length and the same number of OTPs. A can win by inverting any of
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the chains; hence, the probability that this scheme is secure is

Pr[Scheme is secure] =

(
1− 2Q+ 2P + 1

2S

)L
. (5.6)

We can apply the alternative form of Bernoulli’s inequality (1 − x)L ≥ 1 − xL, where
L ≥ 1 and 0 ≤ x ≤ 1 must hold. In our case, the input conditions hold since the number
of hash chains is always greater than one and the probability that A breaks a single chain
from Equation 5.5 fits the range of x (i.e., 0 ≤ 2Q+2P+1

2S
≤ 1). Hence, we lower-bound

the probability from Equation 5.6 as follows:

Pr[Scheme is secure] ≥ 1− L(2Q+ 2P + 1)

2S
. (5.7)

Corollary 2. To make SmartOTPs without partitioning into subtrees as secure as λ-bit
RO, it is enough to set S = λ+ 2 + log2(L).

For example, to achieve 128-bit security with L = 64 and P ≥ 1, S should be equal to
136, and thus an OTP can be transferred by one QR code v1 or 13 mnemonic words.

Full SmartOTPs. The full SmartOTPs scheme contains partitioning into subtrees, in
which all leaves of the next subtree “are visible” only after depleting OTPs of the current
subtree (and using OTPs from the 1st iteration layer of the next subtree). This improves
the security of our scheme under the assumption that C’s storage is not compromised by
A, which is true forA that possesses PKU or A. Therefore, we replace L in Equation 5.7
for LS = NS

P
, NS ≪ N .

Corollary 3. To make the full scheme of SmartOTPs as secure as λ-bit RO, it is enough
to set S = λ+ 2 + log2(LS).

Therefore, to achieve 128-bit security with L = N
NS
LS , LS = 64, and P ≥ 1, S should

be equal to 136, and thus an OTP can be transferred by a QR code v1 or 13 mnemonic
words. To achieve the same security with LS = 1024, we need to set S = 140, and thus
an OTP can be transferred in a QR code v2 or 13 mnemonic words.

The Attacker Possessing SKU

Theorem 1. A with access to SKU is able to initiate operations by ΠO but is unable to
confirm them.

Justification. The security of ΠO is achieved by meeting all requirements on general OTPs
(see Section 5.3.3). In detail, the requirement on the independence of two different OTPs
is satisfied by the definition of Fk(.) ≡ h(k ∥ .), where h(.) is instantiated by RO. This
is applicable when P = 1. However, if P > 1, then items in previous iteration layers
of OTPs can be computed from the next ones. Therefore, to enforce this requirement,
we employ an explicit invalidation of OTPs belonging to all previous iteration layers by
a sliding window at S (see Section 26). The requirement on the linkage of each OTPi
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with operation Oi is satisfied due to (1) RO used for instantiation of h(.) and (2) by the
definition of the Merkle tree, preserving the order of its aggregated leaves. By meeting
these requirements, A is able to initiate an operation Oj in the first stage of ΠO but is
unable to use an OTPi intercepted in the second stage of ΠO to confirm Oj , where j ̸= i.
Finally, the requirement on the authenticity of OTPs is ensured by a random generation
of k and by anchoringR associated with k at the constructor of S.

Theorem 2. Assuming δ ∈ {0, . . . , N
NS
− 2}, A with access to SKU is unable to deplete

all OTPs or misuse a stolen OTP that introduces the (δ + 1)th subtree by ΠST .

Justification. When all but one OTPs of the δth subtree are depleted, the last remaining
operation O(NS−1)+δNS

, δ ∈ {0, . . . , N
NS
− 2} is enforced by S to be the introduction

of the next subtree. This operation is executed in a single transaction calling the function
nextSubtree() of S (see Algorithm 4) requiring the corresponding OTP(NS−1)+δNS

that
is under control of U; hence A cannot execute the function to proceed with a further
depletion of OTPs in the (δ+1)th subtree. IfA were to intercept OTP(NS−1)+δNS

during
the execution of ΠST by U, he could use the intercepted OTP only for the introduction
of the next valid subtree since the function nextSubtree() also checks a valid cached
sublayer of the (δ + 1)th subtree against the parent root hashR.

Theorem 3. Assuming δ = N
NS
− 1, A with access to SKU is neither able to deplete all

OTPs nor introduce a new parent tree nor render SmartOTPs unusable.

Justification. In contrast to the adjustment of the next subtree, the situation here is more
difficult to handle, since the new parent tree cannot be verified at S against any paramount
field. If we were to use ΠO while constraining to the last initialized operation O(N−1)+ηN , η ∈
{0, 1, . . .} of the parent tree, then A could render SmartOTPs unusable by submitting an
arbitrary R in initOp(), thus blocking all the funds of the user. If we were to allow re-
peated initialization of this operation, then we would create a race condition issue. There-
fore, this operation needs to be handled outside of the protocol ΠO, using two unlimited
append-only lists L1 and L2 that are manipulated in three stages of interaction with the
blockchain (see Section 22). In the first stage, h(Rnew ∥ OTP(N−1)+ηN) is appended to
L1, henceA cannot extract the value of OTP. In the second stage,Rnew is appended to L2,
and finally, in the third stage, the user reveals the OTP for confirmation of the first match-
ing entries in both lists. Although A might use an intercepted OTP from the third stage
for appending malicious arguments into L1 and L2, when he proceeds to the third stage
and submits the intercepted OTP to S, the user’s entries will match as the first ones.

The Attacker Tampering with the Client

Theorem 4. If C is tampered with after ΠB, U can detect such a situation and prevent
any malicious operation from being initialized.

Justification. If we were to assume that W is implemented as a software wallet (or hard-
ware wallet without a display), then A tampering with C might also tamper with the W’s
software running on the same machine. This would in turn enable a malicious operation
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to be initialized and further confirmed by U, since U would be presented with a legitimate
data in C and W, while the transactions would contain malicious data. Therefore, we
require that W is implemented as a hardware wallet with a display, which exposes only
signing capabilities, while SKU never leaves the device (e.g., [Tre18, Kee18, Bit18d,
ELL19]). Due to it, U can verify the details of a transaction being signed in W and con-
firm signing only if the details match the information shown in C (for ΠO) or A (for ΠINR).
We refer the reader to the work of Arapinis et al. [AGKK19] for the security analysis of
hardware wallets with displays.

Theorem 5. If C is tampered with during an execution of ΠIB, A can neither intercept k
nor forgeR nor forge PKU.

Justification. When the protocol ΠIB is used, instead of an air-gapped transfer of k from
A to C, U transfers leaves of the Merkle tree by microSD card. The leaves represent
hashes of OTPs in the base version or the hashes of the last items of hash chains in the full
version of SmartOTPs. In both versions, the transferred data do not contain any secrets,
hence A cannot take advantage of intercepting them. The next option that A may seek
for is to forge R for R′ and PKU for PKA, which results in different SID than in the
case of R and PKU, since SID is computed as h(PKU ∥ R). While PKU is stored at
W, the authenticity of R needs to be verified by U who compares displays of A and W.
Only in the case of equality, U knows that SID displayed in W maps to legitimate PKU
andR.

The Attacker Possessing the Authenticator

It is trivial to see that A with access to A is unable to initialize any operation with Smart-
OTPs since he does not hold PKU.

Further Properties and Implications

Requirement on Block Confirmations. Most cryptocurrencies suffer from long time
to finality, potentially enabling the accidental forks, which create parallel inconsistent
blockchain views. On the other hand, this issue is not present at blockchain platforms
with fast finality, such as Algorand [GHM+17], HoneyBadgerBFT [MXC+16], or Strong-
Chain [SRHS19]. In blockchains with long time to finality, overly fast confirmation of an
operation may be dangerous, as, if an operation were initiated in an “incorrect” view, an
attacker holding SKU would hijack the OTP and reuse it for a malicious operation settled
in the “correct” view. To prevent this threat, the recommendation is to wait for several
block confirmations to ensure that an accidental fork has not happened. For example, in
Ethereum, the recommended number of block confirmations to wait is 12 (i.e., ∼3 min-
utes). Note that such waiting can be done as a background task of C, hence U does not
have to wait: (1) considering that A possesses SKU, C can detect such a fork during the
wait and resubmit the initOp() transaction, (2) in the case ofA tampering with C, no op-
eration can be initialized since U never signsA’s transaction (due to the hardware wallet),
and (3) A possessing A cannot initialize any operation as well.
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Figure 5.4: Deployment costs (H = HS).

Attacks with a Post Quantum Computer. Although a resilience to quantum comput-
ing (QC) is not the focus of our work, it is of worthy to note that our scheme inherits
a resilience to QC from the hash-based cryptography. The resilience of our scheme to
QC is dependent on the output size of h(.). A generic QC attack against h(.) is Grover’s
algorithm [Gro96], providing a quadratic speedup in searching for the input of the black
box function. As indicated by Amy et al. [ADMG+16], using this algorithm under real-
istic assumptions, the security of SHA-3 is reduced from 256 to 166 bits. Applying these
results to OTPs with 128-bit security from examples in Section 5.3.5, we obtain 98-bits
post-QC security. Further, when assuming the example with L = 64 from Section 5.3.5
and [ADMG+16], to achieve 128-bits of post-QC security, we estimate the length of OTPs
to 205-bits (i.e., 19 mnemonic words).

5.3.6 Implementation
We have selected the Ethereum platform and the Solidity language for the implementation
of S, HTML/JS for DAPP of C, Java for smartphone App of A, and Trezor T&One [Tre18]
for W. We selected S = 128 bits, which has practical advantages for an air-gapped A,
producing OTPs that are 12 mnemonic words long or a QR code v1 (with a capacity of
17B). Next, we used SHA-3 with truncated output to 128 bits as h(.). We selected the
size of k equal to 128 bits, fitting 12 mnemonic words ≃ 1 QR code v1.

So far, we have considered only the crypto-token transfer operation. However, our
proposed protocol enables us to extend the set of operations. For demonstration purposes,
we extended the operation set by supporting daily limits and last resort information (see
Appendix of [HBH+20a]). In addition, we made a hardware implementation of A using
NodeMCU [Nod18] equipped with ESP8266 with the overall cost below $5 (see Ap-
pendix of [HBH+20a]). The source code of our implementation and videos are available
at https://github.com/ivan-homoliak-sutd/SmartOTPs.

Analysis of the Costs

In this section, we analyze the costs of our approach using the same bit-length S for h(.)
as well as for OTPs. S significantly influences the gas consumption for storing the cached
layer on the blockchain. We remark that measured costs can also be influenced by EVM
internals (e.g., 32B-long words/alignment). We assumed 8M as the maximum gas limit
at the Ethereum main network, which, however, has already changed since this research
was made.

https://github.com/ivan-homoliak-sutd/SmartOTPs
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Figure 5.5: Average total cost per transfer (H = HS).
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Figure 5.6: Rolling average cost per transfer (H = HS).

Costs Related to the Merkle Tree. First, we abstracted from the concept of subtrees
and hashchains to analyze a single tree (i.e., H = HS). The deployment costs of our
scheme with respect to the depth L (≡ LS) of the cached layer are presented in Figure 5.4,
which contains also the variant with the contract factory (saving ∼ 1.3M , regardless of
LS). Although the cost of each operation supported by ΠO is similar, here we selected the
transfer of crypto-tokens Ot, and we measured the total cost of Ot as follows:

Ot cost(L, N, P ) = cost
(
Ot(L, N, P )

)
+
cost

(
Od(L)

)

N
,

cost
(
Ot(L, N, P )

)
=

1

N

N∑

i=1

cost
(
Ot

i(L, N, P )
)
,

cost
(
Ot

i(L, N, P )
)

= cost
(
Ot.init

i

)
+cost

(
Ot.confirm

i (L, N, P )
)
,

where cost() measures the cost of an operation in gas units, and Od represents the de-
ployment operation. As the purpose of the cached layer is to reduce the number of hash
computations in confirmOp(), the size of an optimal cached layer is subject to a trade-off
between the cost of storing the cached layer on the blockchain and the savings benefit of
the caching. In Figure 5.5, we can see that the total average cost per transfer decreases
with the increasing number of OTPs, as the deployment cost is spread across more OTPs.
The optimal point depicted in the figure minimizes Ot by balancing cost(Od(L))) and
cost(Ot(L, N, P )). We see that L = H − 3 for such an optimal point.

Next, we explored the number of transfer operations to be executed until a profit of
the caching has begun (see Figure 5.6). We computed a rolling average cost per Ot, while
distinguishing between the optimal caching layer and disabled caching. We measured
the cost of introducing the next subtree within a parent tree depending on LS , while we
set H = 20 and HS = 10 (see Figure 5.7). We found out that when subtrees (and their



5.3. SMARTOTPS 105

0 1 2 3 4 5 6 7 8 9 10
0E+00
1E+06
2E+06
3E+06
4E+06
5E+06
6E+06
7E+06
8E+06

Next Subtree Operation

Ethereum Limit

Depth of Cached Layer

C
os

t
[g

as
]

(LS)
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Figure 5.8: Average total cost per transfer with regards to the length P of hash chains.

cached sublayers) are introduced within a dedicated operation, it is significantly cheaper
compared to the introduction of a subtree during the deployment.

Costs Related to Hash Chains. Since each iteration layer of hash chains contributes
to an average cost of confirmOp() with around the same value, we measured this value
on a few trees with P up to 512. Next, using this value and the deployment cost, we
calculated the average total cost per transfer by adding layers of hash chains to a tree with
H = HS , thus increasing N by a factor of P until the minimum cost was found. As a
result, the optimal caching layer shifted to the leaves of the tree (see Figure 5.8a), which
would however, exceed the gas limit of Ethereum. To respect the gas limit, we adjusted
L = 7, as depicted in Figure 5.8b. In contrast to the configurations with L = 0 and P = 1
(from Figure 5.5), we achieved savings of 27.80%, 19.61%, 14.95%, and 12.51% for trees
with H equal to 7, 8, 9, and 10, respectively. For completeness, we calculated costs for
L = 0 as well (see Figure 5.8c). Note that for L = 0 and L = 7, smaller trees are “less
expensive,” as they require less operations related to the proof verification in contrast to
bigger trees; these operations consume substantially more gas than operations related to
hash chains. Although we minimized the total cost per transfer by finding an optimal P ,
we highlight that increasing P contributes to the cost only minimally but on the other
hand, it increases the variance of the cost. Hence, one may set this parameter even at
higher values, depending on the use case.
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Chapter 6

Electronic Voting

In this chapter, we present our contributions to the area of decentralized applications for
remote electronic voting using blockchain, which belongs to the application layer of our
security reference architecture (see Chapter 3). In particular, this chapter is focused on
privacy, scalability, security, and other practical aspects of blockchain-based e-voting, and
it is based on the papers [HLS23, SH23, VSH23] (see also Section 6.4).

First, we review the desired properties of e-voting and then we introduce BBB-Voting,
a blockchain-based boardroom voting that provides 1-out-of-k choices and the maximum
voter privacy in the setting that outputs the full tally of votes, while additionally offering
a mechanism for resolution of faulty participants (see Section 6.1).

Next, we aim to resolve the scalability limitation of the self-tallying approaches for
boardroom voting (such as OVN [MSH17] and BBB-Voting [HLS23]) while maintaining
security and maximum voter privacy. Therefore, we introduce SBvote [SH23], a decen-
tralized blockchain-based e-voting protocol providing scalability in the number of partic-
ipants by grouping them into voting booths instantiated as dedicated smart contracts that
are controlled and verified by the aggregation smart contract. We base our work on BBB-
Voting since it enables more than two vote choices and recovery of faulty participants in
contrast to OVN. See details of SBvote in Section 6.2.

Finally, we identify two shortcomings in present governance systems for voting: (a)
the inability of participants to change their vote between two consecutive elections (e.g.,
that might be a few years apart), and (b) a manipulation of participants via peak-end effect
[DF18, HL14, Wle15]. As a response, we propose Always-on-Voting (AoV) framework
[VSH23] that has four key features: (1) it works in repetitive epochs, (2) voters are al-
lowed to change their vote anytime before the end of each epoch, (3) ends of epochs are
randomized and unpredictable, and (4) only the supermajority of votes can change the
previous winning vote choice. AoV uses public randomness and commitments to a future
event to determine when the current epoch should end. See details of AoV in Section 6.3,
where we analyze two different adversaries.
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6.0.1 Properties of E-Voting

A voting protocol is expected to meet several properties. A list of such properties appears
in the works of Kiayias and Yung [KY02], Groth [Gro04], and Cramer et al. [CGS97].

(1) Privacy of Vote: ensures the secrecy of the ballot contents [KY02]. Hence, a par-
ticipant’s vote must not be revealed other than by the participant herself upon her
discretion (or through the collusion of all remaining participants). Usually, privacy
is ensured by trusting authorities in traditional elections or by homomorphic en-
cryption in some decentralized e-voting solutions (e.g., [KY02, HRZ10, MSH17,
SGY20, DMMM18]).

(2) Perfect Ballot Secrecy: is an extension of the privacy of the vote, stating that a par-
tial tally (i.e., prior to the end of voting) is available only if all remaining participants
are involved in its computation.

(3) Fairness: ensures that a tally may be calculated only after all participants have sub-
mitted their votes. Therefore, no partial tally can be revealed to anyone before the
end of the voting protocol [KY02].

(4a) Universal Verifiability: any involved party can verify that all cast votes are correct
and they are correctly included in the final tally [KY02].

(4b) End-to-End (E2E) Verifiability: The verifiability of voting systems is also as-
sessed by E2E verifiability [BRR+15] as follows:

• cast-as-intended: a voter can verify the encrypted vote contains her choice of
candidate,

• recorded-as-cast: a voter can verify the system recorded her vote correctly,
• tallied-as-recorded: any interested party is able to verify whether the final tally

corresponds to the recorded votes.
A voting system that satisfies all these properties is end-to-end verifiable.

(5) Dispute-Freeness: extends the notion of verifiability. A dispute-free [KY02] vot-
ing protocol contains built-in mechanisms eliminating disputes between participants;
therefore, anyone can verify whether a participant followed the protocol. Such a
scheme has a publicly-verifiable audit trail that contributes to the reliability and trust-
worthiness of the scheme.

(6) Self-Tallying: once all the votes are cast, any involved party can compute the tally
without unblinding the individual votes. Self-tallying systems need to deal with the
fairness issues (see (3) above) because the last participant is able to compute the
tally even before casting her vote. This can be rectified with an additional verifiable
dummy vote [KY02].

(7) Robustness (Fault Tolerance): the voting protocol is able to recover from faulty
(stalling) participants, where faults are publicly visible and verifiable due to dispute-
freeness [KY02]. Fault recovery is possible when all the remaining honest partici-
pants are involved in the recovery.

(8) Resistance to Serious Failures: Serious failures are defined as situations in which
voting results were changed either by a simple error or an adversarial attack. Such
a change may or may not be detected. If detected in non-resistant systems, it is
irreparable without restarting the entire voting [PSNR21].
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(9) Receipt-Freeness: A participant is unable to supply a receipt of her vote after casting
the vote. The goal of receipt-freeness is to prevent vote-selling. This property also
prevents a post election coercion [BT94, HS00], where a participant may be coerced
to reveal her vote.

(10) Dispute-Freeness. The protocol’s design prevents any disputes among involved
parties by allowing anyone to verify whether a participant followed the protocol.

6.1 BBB-Voting

6.1.1 System Model

Our system model of BBB-Voting [HLS23] has the following actor/components: (1) a
participant (P) who votes, (2) a voting authority (V A) who is responsible for validating
the eligibility of P s to vote, their registration, and (3) a smart contract (SC), which col-
lects the votes, acts as a verifier of zero-knowledge proofs, enforces the rules of voting,
and verifies the tally.

Adversary Model

The adversary A has bounded computing power, is unable to break used cryptographic
primitives, and can control at most t of n participants during the protocol, where t ≤
n− 2 ∧ n ≥ 3 (see the proof in the appendix of [VHLS20]). Any P under the control
of A can misbehave during the protocol execution. A is also a passive listener of all
communication entering the blockchain network but cannot block it or replace it with
a malicious message since all transactions sent to the blockchain are authenticated by
signatures of P s or V A. Finally, V A is only trusted in terms of identity management,
i.e., it performs identity verification of P s honestly, and neither censor any P nor register
any spoofed P . Nevertheless, no other trust in V A is required.

6.1.2 Overview of Proposed Approach

BBB-Voting scheme provides all properties mentioned in Section 6.0.1 but receipt-free-
ness. Similar to OVN [MSH17], BBB-Voting publishes the full tally at the output and
uses homomorphic encryption to achieve privacy of votes and perfect ballot secrecy. In
detail, we extend the protocol of Hao et al. [HRZ10] to support k choices utilizing the
1-out-of-k proof verification proposed by Kiayias and Yung [KY02], and we accommo-
date this approach to run on the blockchain. Additionally, we extend our protocol to
support the robustness, based on Khader et al. [KSRH12], which enables the protocol to
recover (without a restart) from faulty participants who did not submit their votes. As a
consequence, robustness increases the resistance of our protocol to serious failures.
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Figure 6.1: Basic protocol of BBB-Voting.

6.1.3 Base Variant

The base variant of BBB-Voting (see Figure 6.1) does not involve a fault recovery and
is divided into five stages: registration (identity verification, key ownership verification,
enrollment at SC), a setup (an agreement on system parameters, submission of ephemeral
public keys), pre-voting (computation of MPC keys), voting (vote packing, blinding, and
verification), and tally phases. All faulty behaviors of P s and V A are subject to deposit-
based penalties. In detail, P who submitted her ephemeral key (in the setup phase) and
then has not voted within the timeout will lose the deposit. To achieve fairness, V A acts
as the last P who submits a “dummy” vote with her ephemeral private key1 after all other
P s cast their vote (or upon the voting timeout expiration).

1Privacy for a dummy vote is not guaranteed since it is subtracted.
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Phase 1 (Registration)

V A first verifies the identity proof of each P . For decentralized identity management
(IDM), the identity proof is represented by the verifiable credentials (VC) [W3C19b]
signed by the issuer, while in a centralized IDM the identity proof is interactively provided
by a third-party identity provider (e.g., Google). First, V A verifies the issuer’s signature
on the identity proof. Next, V A challenges P to prove (using her VC) that she is indeed
the owner of the identity. Further, each P creates her blockchain wallet address (i.e., the
blockchain public key (PK)) and provides it to V A. The V A locally stores a bijective
mapping between a P ’s identity and her wallet address.2 Next, V A enrolls all verified P s
by sending their wallet addresses to SC.

Phase 2 (Setup)

P s agree on system parameters that are universal to voting – the parameters for voting
are publicly visible on SC (deployed by V A in a transaction). Therefore, any P may
verify these parameters before joining the protocol. Note the deployment transaction also
contains the specification of timeouts for all further phases of the protocol as well as
deposit-based penalties for misbehavior of V A and P s. The parameters for voting are set
as follows:

1) V A selects a common generator g ∈ F∗p. The value of p is chosen to be a safe prime,
i.e., p = 2 · q+1, where q is a prime. A safe prime is chosen to ensure the multiplicative
group of order p− 1 = 2 · q, which has no small subgroups that are trivial to detect.3 Let
n < p− 1.

2) Any participant Pi is later permitted to submit a vote {vi | i ∈ {1,2,...,k}} for one of
k choices. This is achieved by selecting k independent generators {f1,...,fk} in F∗p (one
for each choice). These generators for choices should meet a property described by Hao
et al. [HRZ10] to preclude having two different valid tallies that fit Equation 6.4:

fi =





g2
0 for choice 1,

g2
m for choice 2,

···
g2

(k−1)m for choice k,

(6.1)

where m is the smallest integer such that 2m > n (the number of participants).

Ephemeral Key Generation & Committing to Vote. Each Pi creates her ephemeral
private key as a random number xi ∈R F∗p and ephemeral public key as gxi . Each Pi sends
her ephemeral public key to SC in a transaction signed by her wallet, thereby, committing

2Note that the address of P must not be part of identity proof – avoiding V A to possess a proof of
identity to blockchain address mapping (see Section 6.1.8).

3We use modular exponentiation by repeated squaring to compute gx mod p, which has a time com-
plexity of O((log x)·(log2 p)) [Kob94].
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to submit a vote later.4 Furthermore, Pi sends a deposit in this transaction, which can be
retrieved back after the end of voting. However, if Pi does not vote within a timeout (or
does not participate in a fault recovery (see Section 6.1.4)), the deposit is lost, and it is
split to the remaining involved parties. P s who do not submit their ephemeral keys in this
stage are indicating that they do not intend to vote; the protocol continues without them
and they are not subject to penalties. Finally, each P obtains (from SC) the ephemeral
public keys of all other verified P s who have committed to voting. Ephemeral keys are
one-time keys, and thus can be used only within one run of the protocol to ensure privacy
of votes (other runs require fresh ephemeral keys).

Phase 3 (Pre-Voting)

This phase represents multiparty computation (MPC), which is run to synchronize the
keys among all P s and achieve the self-tallying property. However, no direct interaction
among P s is required since all ephemeral public keys are published at SC. The MPC
keys are computed by SC, when V A triggers the compute operation via a transaction.
The SC computes and stores the MPC key for each Pi as follows:

h = gyi =
i−1∏

j=1

gxj/
n∏

j=i+1

gxj , (6.2)

where yi =
∑

j<ixj −
∑

j>ixj and
∑

ixiyi = 0 (see Hao et al. [HRZ10] for the proof).
While anyone can compute gyi , to reveal yi, all P s \ Pi must either collude or solve
the DLP for Equation 6.2. As the corollary of Equation 6.2, the protocol preserves vote
privacy if there are at least 3 P s with at least 2 honest (see the proof in the extended
version of our paper [VHLS20]).

Phase 4 (Voting)

In this phase, each Pi blinds and submits her vote to SC. These steps must ensure the
recoverability of the tally, vote privacy, and well-formedness of the vote. Vote privacy is
achieved by multiplying the Pi’s blinding key with her vote choice. The blinded vote of
the participant Pi is

Bi =





gxiyif1 if Pi votes for choice 1,
gxiyif2 if Pi votes for choice 2,

...

gxiyifk if Pi votes for choice k.

(6.3)

The P sends her choice within a blinded vote along with a 1-out-of-k non-interactive zero-
knowledge (NIZK) proof of set membership to SC (i.e., proving that the vote choice ∈

4In contrast to OVN [MSH17] (based on the idea from [HRZ10]), we do not require Pi to submit ZKP
of knowledge of xi to SC since Pi may only lose by submitting gxi to which she does not know xi (i.e., a
chance to vote + deposit).
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Figure 6.2: ZKP of set membership for 1-out-of-k choices.

{1,...,k}). We modified the approach proposed by Kiayias et al. [KY02] to the form used
by Hao et al. [HRZ10], which is convenient for practical deployment on existing smart
contract platforms. The verification of set membership using this protocol is depicted in
Figure 6.2, where Pi is a prover and SC is the verifier. Hence, SC verifies the correctness
of the proof and then stores the blinded vote. In this stage, it is important to ensure that
no re-voting is possible, which is to avoid any inference about the final vote of P in the
case she would change her vote choice during the voting stage. Such a re-voting logic
can be enforced by SC, while user interface of the P should also not allow it. Moreover,
to ensure fairness, V A acts as the last P who submits a dummy vote and her ephemeral
private key.

Phase 5 (Tally)

When the voting finishes (i.e., voting timeout expires or all P s and V A cast their votes),
the tally of votes received for each of k choices is computed off-chain by any party and
then submitted to SC. When SC receives the tally, it verifies whether Equation 6.4 holds,
subtracts a dummy vote of V A, and notifies all P s about the result. The tally is rep-
resented by vote counts cti,∀i ∈ {1,...,k} of each choice, which are computed using an
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exhaustive search fitting

n∏

i=1

Bi =
n∏

i=1

gxiyif = g
∑

ixiyif = f1
ct1f2

ct2 ...fk
ctk . (6.4)

The maximum number of attempts is bounded by combinations with repetitions to
(
n+k−1

k

)
.

Although the exhaustive search of 1-out-of-k voting is more computationally demanding
in contrast to 1-out-of-2 voting [MSH17], [HRZ10], this process can be heavily paral-
lelized. See time measurements in Section 6.1.6.

6.1.4 Variant with Robustness

We extend the base variant of BBB-Voting by a fault recovery mechanism. If one or more
P s stall (i.e., are faulty) and do not submit their blinded vote in the voting stage despite
committing in doing so, the tally cannot be computed directly. To recover from faulty
P s, we adapt the solution proposed by Khader et al. [KSRH12], and we place the fault
recovery phase immediately after the voting phase. All remaining honest P s are expected
to repair their vote by a transaction to SC, which contains key materials shared with all
faulty P s and their NIZK proof of correctness. SC verifies all key materials with proofs
(see Figure 6.3), and then they are used to invert out the counter-party keys from a blinded
vote of an honest P who sent the vote-repairing transaction to SC. Even if some of the
honest (i.e., non-faulty) P s would be faulty during the recovery phase (i.e., do not submit
vote-repairing transaction), it is still possible to recover from such a state by repeating
the next round of the fault recovery, but this time only with key materials related to new
faulty P s. To disincentivize stalling participants, they lose their deposits, which is split
across remaining P s as a compensation for the cost of fault recovery.

6.1.5 Implementation

We selected the Ethereum-based environment for evaluation due to its widespread adop-
tion and open standardized architecture (driven by the Enterprise Ethereum Alliance
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Figure 6.4: A computation of MPC keys by the authority.
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(b) Vote repair by Pi.
Figure 6.5: Vote submission and vote repair (i.e., fault recovery) with various optimizations.

[ent17]), which is incorporated by many blockchain projects. We implemented SC com-
ponents in Solidity, while V A and P components were implemented in Javascript. In
this section, we analyze the costs imposed by our approach, perform a few optimizations,
and compare the costs with OVN [MSH17]. In the context of this work, we assume 10M
as the block gas limit. With block gas limit assumed, our implementation supports up
to 135 participants (see Figure 6.4), up to 7 vote choices (see Figure 6.5a), and up to 9
simultaneously stalling faulty participants (see Figure 6.5b).5

We made two different implementations, the first one is based on DLP for integers
modulo p (denoted as integer arithmetic (IA)), and the second one is based on the el-
liptic curve DLP (denoted as ECC). In the ECC, we used a standardized Secp256k1
curve from existing libraries [Wit19], [MSH17]. In the case of IA, we used a ded-
icated library [Zer17] for operations with big numbers since EVM natively supports
only 256-bit long words, which does not provide sufficient security level with respect
to the DLP for integers modulo p.6 We consider 1024 bits the minimal secure (library-
supported) length of numbers in IA. As we will show below, IA implementation even
with minimal 1024 bits is overly expensive, and thus in many cases does not fit the
block gas limit by a single transaction. Therefore, in our experiments, we put em-
phasis on ECC implementation. The source code of our implementation is available at
https://github.com/ivan-homoliak-sutd/BBB-Voting.

5The max. corresponds to a single recovery round but the total number of faulty participants can be
unlimited since the fault recovery round can repeat.

6Since this DLP was already computed for 795-bit long safe prime in 2019 [BGG+19], only values
higher than 795-bit are considered secure enough.

https://github.com/ivan-homoliak-sutd/BBB-Voting
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6.1.6 Evaluation & Cost Optimizations

Since ECC operations in ZKP verifications and computation of MPC keys impose a high
execution cost when running at the blockchain, we have made several cost optimizations.

(1) Caching in MPC Key Computation.

If implemented naively, the computation of all MPC keys in SC would contain a high
number of overlapped additions, and hence the price would be excessively high (see se-
ries “ECC-Affine (naive)” in Figure 6.4).7 Therefore, in the code of SC we accumulate
and reuse the value of the left side of MPC key computation during iteration through
all participants. Similarly, the sum at the right side can be computed when processing
the first participant, and then in each follow-up iteration, it can be subtracted by one item.
However, we found out that subtraction imposes non-negligible costs since it contains one
affine transformation (which we later optimize). In the result, we found pre-computation
of all intermediary right items in the expression during the processing of the first partici-
pant as the most optimal. The resulting savings are depicted as “ECC-Affine (caching)”
series in Figure 6.4. We applied the same optimization for IA; however, even after adding
a further optimization (i.e., pre-computation of modular inverses; see Section 6.1.6.4),
the costs were still prohibitively high (see “IA 1024 bits (caching+modi)” series in Fig-
ure 6.4), with the max. number of participants fitting the gas limit only 29.

(2) Affine vs. Jacobi Coordinates.

In the ECC libraries employed [Wit19] [MSH17], by default, all operations are performed
with points in Jacobi coordinates and then explicitly transformed to affine coordinates.
However, such a transformation involves one modular inversion and four modular mul-
tiplications over 256-bit long integers, which is costly. Therefore, we maximized the
utilization of internal functions from the Witnet library [Wit19], which do not perform
affine transformation after operation execution but keep the result in Jacobi coordinates.
This is possible only until the moment when two points are compared – a comparison
requires affine coordinates. Hence, a few calls of the affine transformation are inevitable.
This optimization is depicted in Figure 6.4 (series “ECC-Jacobi (caching)”) and Fig-
ure 6.5a (series “ECC-Jacobi”). In the case of computation of MPC keys, this opti-
mization brought improvement of costs by 23% in contrast to the version with affine
coordinates and caching enabled. Due to this optimization, up to 111 participants can be
processed in a single transaction not exceeding the block gas limit. In the case of vote
submission, this optimization brought improvement of costs by 33% in contrast to the
version with affine coordinates.

7The same phenomenon occurs in IA (see Equation 6.2) but with overlapped multiplications (see series
“IA 1024 bits (naive)”).
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(3) Multiplication with Scalar Decomposition.

The most expensive operation on an elliptic curve is a scalar multiplication; based on our
experiments, it is often 5x-10x more expensive than the point addition since it involves
several point additions (and/or point doubling). The literature proposes several ways of
optimizing the scalar multiplication, where one of the most significant ways is w-NAF
(Non-Adjacent Form) scalar decomposition followed by two simultaneous multiplications
with scalars of halved sizes [HMV05]. This approach was also adopted in the Witnet
library [Wit19] that we base on. The library boosts the performance (and decreases costs)
by computing the sum of two simultaneous multiplications kP + lQ, where k = (k1+
k2λ), l = (l1+ l2λ), and λ is a specific constant to the endomorphism of the elliptic curve.
To use this approach, a scalar decomposition of k and l needs to be computed beforehand.
Nevertheless, such a scalar decomposition can be computed off-chain (and verified
on-chain), while only a simultaneous multiplication is computed on-chain. However, to
leverage the full potential of the doubled simultaneous multiplication, one must have the
expression kP + lQ, which is often not the case. In our case, we modified the check at
SC to fit this form. Alike the vote submission, this optimization can be applied in vote
repair. We depict the performance improvement brought by this optimization as series
“ECC-Jacobi (smul)” in Figure 6.5.

(4) Pre-Computation of Modular Inversions.

Each affine transformation in the vote submission contains one operation of modular in-
version – assuming previous optimizations, ZKP verification of one item in 1-out-of-k
ZKP requires three affine transformations (e.g., for k = 5, it is 15). Similarly, the ZKP
verification of correctness in the repair vote requires two affine transformations per each
faulty participant submitted. The modular inversion operation runs the extended Eu-
clidean algorithm, which imposes non-negligible costs. However, all modular inversions
can be pre-computed off-chain, while only their verification can be made on-chain
(i.e., modular multiplication), which imposes much lower costs. We depict the impact
of this optimization as “ECC-Jacobi (smul+modi)” series in Figure 6.5 and “...modi...”
series in Figure 6.4. In the result, it has brought 5% savings of costs in contrast to the
version with the simultaneous multiplication.

Tally Computation

In Table 6.1, we provide time measurements of tally computation through the entire search
space on 1 core vs. all cores of the i7-10510U CPU laptop.8 We see that for n ≤ 100 and
k ≤ 6, the tally can be computed even on a commodity PC in a reasonable time. However,
for higher n and k, we recommend using a more powerful machine or distributed compu-
tation across all P s. One should realize that our measurements correspond to the upper
bound, and if some ranges of tally frequencies are more likely than other ones, they can

8In some cases we estimated the time since we knew the number of attempts.
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Voters Choices
(n) k = 2 k = 4 k = 6 k = 8

20 0.01s 0.01s 0.07s 0.07s
30 0.01s 0.01s 0.53s 13.3s
40 0.01s 0.04s 02.6s 112s
50 0.01s 0.08s 10.0s 606s
60 0.01s 0.16s 28.2s 2424s
70 0.01s 0.48s 69.6s ∼ 2.1h
80 0.01s 0.82s 160s ∼ 5.8h
90 0.01s 1.08s 320s ∼ 14.2h

100 0.01s 1.2s 722s ∼ 33h

(a) 1 core

Voters Choices
(n) k = 6 k = 8

20 0.01s 0.01s
30 0.08s 2.0s
40 0.39s 16.8s
50 1.5s 90.9s
60 4.44s 267s
70 11.85s 773s
80 19.46s 2210s
90 44.02s ∼ 2.7h

100 108.3s ∼ 4.9h

(b) 8 cores

Table 6.1: Upper time bound for tally computation.

be processed first – in this way, the computation time can be significantly reduced. More-
over, we emphasize that an exhaustive search for tally computation is not specific only
to our scheme but to homomorphic-encryption-based schemes providing perfect ballot
secrecy and privacy of votes (e.g., [KY02], [HRZ10], [MSH17]).

Cost Comparison

In Table 6.2, we made a cost comparison of BBB-Voting (using ECC) with OVN [MSH17],
where we assumed two choices and 40 participants (the same setting as in [MSH17]). We
see that the total costs are similar but BBB-Voting improves P ’s costs by 13.5% and V A’s
cost by 0.9% even though using more complex setting that allows 1-out-of-k voting. We
also emphasize that the protocol used for vote casting in BBB-Voting contains more op-
erations than OVN but regardless of it, the costs are close to those of OVN, which is
mostly caused by the proposed optimizations.9 Next, we found that OVN computes tally
on-chain, which is an expensive option. In contrast, BBB-Voting computes tally off-chain
and SC performs only verification of its correctness, which enables us to minimize the
cost of this operation. Another gas saving optimization of BBB-Voting in contrast to
OVN (and Hao et al. [HRZ10]) is that we do not require voters to submit ZKP of knowl-

9To verify 1-out-of-k ZKP in vote casting, BBB-Voting computes 5 · k multiplications and 3 · k additions
on the elliptic curve – i.e., 10 multiplications and 6 additions for k = 2. In contrast, OVN computes only 8
multiplications and 5 additions for k = 2.

Gas Paid by OVN BBB-Voting

Deployment of Voting SC V A 3.78M 4.8M
Deployment of
Cryptographic SCs

V A 2.44M
2.15M
(1.22M+0.93M)

Enroll voters V A
2.38M
(2.15M+0.23M)

1.93M

Submit Ephemeral PK P 0.76M 0.15M
Cast Vote P 2.50M 2.72M
Tally V A (or P ) 0.75M 0.39M

Total Costs for P 3.26M 2.87M
Total Costs for VA 9.35M 9.27M

Table 6.2: A normalized cost comparison of BBB-Voting with OVN for n = 40 and k = 2.
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Figure 6.6: A computation of MPC keys by the authority V A using various batch sizes and the
most optimized ECC variant.

edge of xi in gxi during the registration phase to SC since Pi may only lose by providing
incorrect ephemeral public key gxi – she might lose the chance to vote and her deposit.
Finally, we note that we consider the deployment costs of our SC equal to 4.8M units of
gas; however, our SC implementation contains a few auxiliary view-only functions for a
pre-computation of modular inverses, with which, the deployment costs would increase
to 7.67M due to code size. Nevertheless, these operations can be safely off-chained and
we utilized them on-chain only for simplicity.

6.1.7 Limitations & Extensions

In this section, we discuss the extensions addressing the scalability and performance lim-
itations of BBB-Voting.

Scalability Limitation & Extension

The limitation of BBB-Voting (like in OVN) is a lack of scalability, where the block gas
limit might be exceeded with a high number of P s. Therefore, we primarily position
our solution as boardroom voting; however, we will show in this section that it can be
extended even to larger voting. Our voting protocol (see Section 6.1.3) has a few platform-
specific bottlenecks due to the block gas limit of Ethereum, when either k or n reach
particular values. Nevertheless, transaction batching can be introduced for the elimination
of all bottlenecks. To realize a batching of pre-voting, voting, and fault-recovery phases,
the additional integrity preservation logic across batches needs to be addressed while the
verification of integrity has to be made by SC. For demonstration purposes, we addressed
the bottleneck of the pre-voting stage (see Figure 6.6) and setup stage, which further
improves the vote privacy in BBB-Voting (see Section 6.1.8) and causes only a minimal
cost increase due to the overhead of integrity preservation (i.e., 1%). With this extension,
n is limited only by the expenses paid by V A to register P s and compute their MPC keys,
and the computing power to obtain the tally.10 If a certain combination of high n and k
would make computation of a tally overly computationally expensive (or the cost of its

10E.g., for n = 1000, k = 2 (and k = 4), it takes 0.15s (and ∼ 4h) to obtain the tally on a commodity
PC with 8 cores, respectively.
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verification by SC), it is further possible to partition P s into multiple groups (i.e., voting
booths), each managed by an instance of BBB-Voting, while the total results could be
summed across instances. Scalability extension is a subject of our next work [SH23b],
which will be described in Section 6.2.

Cost and Performance Limitations

Although we thoroughly optimized the costs of our implementation (see Section 6.1.6),
the expenses imposed by a public permissionless smart contract platform might be still
high, especially during peaks of the gas price and/or in the case of a larger voting than
boardroom voting (see Section 6.1.7). Besides, the transactional throughput of such plat-
forms might be too small for such larger voting instances to occur in a specified time
window. Therefore, to further optimize the costs of BBB-Voting and its performance,
it can run on a public permissioned Proof-of-Authority platforms, e.g., using Hyper-
ledger projects (such as safety-favored Besu with Byzantine Fault Tolerant (BFT) pro-
tocol). Another option is to use smart contract platforms utilizing the trusted computing
that off-chains expensive computations (e.g., Ekiden [CZK+19b], TeeChain [LNE+19],
Aquareum [HS20]), or other partially-decentralized second layer solutions (e.g., Plasma
[Eth22], Polygon Matic [Nat22], Hydra [CCF+20]). Even though these solutions might
preserve most of the blockchain features harnessed in e-voting, availability and decentral-
ization might be decreased, which is the security/performance trade-off.

6.1.8 Security Analysis
We first analyze security of BBB-Voting with regard to the voting properties specified in
Section 6.0.1. Next, we analyze blockchain-specific security & privacy issues and discuss
their mitigations. Also, we compare voting and other features of BBB-Voting with a few
related works in Table 6.3.

Properties of Voting

(1) Privacy in BBB-Voting requires at least 3 P s, out of which at least 2 are honest (see
Section 6.1.3). Privacy in BBB-voting is achieved by blinding votes using ElGamal en-
cryption [Gam85], whose security is based on the decisional Diffie-Hellman assumption.
Unlike the conventional ElGamal algorithm, a decryption operation is not required to un-
blind the votes. Instead, we rely on the self-tallying property of the voting protocol. The
ciphertext representing a blinded vote is a tuple (c1,c2), where c1 = gxy.f and c2 = gy,
where the purpose of c2 is to assist with the decryption. Decryption involves computing
(c2)

−x · c1 to reveal f , which unambiguously identifies a vote choice. As a result, the
blinding operation for participant Pi in Equation 6.3 is equivalent to ElGamal encryption
involving the computation of c1 but not the decryption component c2. Furthermore, the
blinding keys are ephemeral and used exactly once for encryption (i.e., blinding) of the
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Approach Privacy of Votes

Perfect Ballot Secrecy

Fairness
Self-Tallying

Robustness

Uses Blockchain

Uni. Verifiability

E2E Verifiability

Open Source

Choices

Hao et al. [HRZ10] ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ 2

Khader et. [KSRH12] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ 2

Kiayias and Yung [KY02] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ 2/k

McCorry et. [MSH17] (OVN) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 2

Seifelnasr et al. [SGY20]
(sOVN)

✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 2

Li et al. [LSY+20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 2

Baudron et al. [BFP+01] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ k

Groth [Gro04] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ k

Adida [Adi08] (Helios) ✓∗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ k

Matile et al. [MRSS19] (CaIV) ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ k

Killer [KRS+20] (Provotum) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 2

Dagher et al. [DMMM18]
(BroncoVote)

✓ ✓∗ ✓∗ ✗ ✗ ✓ ✗ ✗ ✗ k

Kostal et al. [KBRK19] ✓∗ ✓∗ ✗ ✓ ✓∗ ✓ ✓ ✓ ✗ k

Zagorski et al. [ZCC+13]
(Remotegrity)

✓∗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ k

Yu et al. [YLS+18] ✓ ✓∗ ✓∗ ✓ ✓∗ ✓ ✓ ✗ ✗ k

BBB-Voting ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ k

Table 6.3: A comparison of various remote voting protocols. ∗Assuming a trusted V A.

vote within a single run of voting protocol11 – i.e., if the protocol is executed correctly,
there are no two votes fl and fm encrypted with the same ephemeral blinding key of Pi,
such that

(gxy · fl)
(gxy · fm)

=
fl
fm

, (6.5)

from which the individual votes could be deduced. For the blockchain-specific privacy
analysis, see also Section 6.1.8.

(2) Ballot Secrecy. It is achieved by blinding the vote using ElGamal homomorphic
encryption [CGS97], and it is not required to possess a private key to decrypt the tally
because of the self-tallying property (g

∑
ixiyi = 1). Therefore, given a homomorphic en-

cryption function, it is possible to record a sequence of encrypted votes without being
able to read the votes choices. However, if all Ps are involved in the recovery of a partial
tally consisting of a recorded set of votes, these votes can be unblinded (as allowed by
ballot secrecy). Even a subset of n− 2 P s12 who have already cast their votes cannot
recover a partial tally that reveals their vote choices because of the self-tallying property
(g

∑
ixiyi = 1) has not been met.

(3) Fairness. If implemented naively, the last voting P can privately reveal the full tally
by solving Equation 6.4 before she casts her vote since all remaining blinded votes are
already recorded on the blockchain (a.k.a., the last participant conundrum). This can be
resolved by V A who is required to submit the final dummy vote including the proof of
her vote choice, which is later subtracted from the final tally by SC.13

11As a consequence, BBB-Voting can be utilized in a repetitive voting [VSH23] with a limitation of a
single vote within an epoch.

12Note that at least 2 P s are required to be honest (see Section 6.1.1).
13Note that If V A were not to execute this step, the fault recovery would exclude V A’s share from MPC
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(4a) Universal Verifiability. Any involved party can check whether all recorded votes in
the blockchain are correct and are correctly included in the final tally [KY02]. Besides, the
blinded votes are verified at SC, which provides correctness of its execution and public
verifiability, relying on the honest majority of the consensus power in the blockchain.

(4b) E2E Verifiability. To satisfy E2E verifiability [PR18]: (I) each P can verify whether
her vote was cast-as-intended and recorded-as-cast, (II) anyone can verify whether all
votes are tallied-as-recorded. BBB-Voting meets (I) since each P can locally compute
her vote choice (anytime) and compare it against the one recorded in the blockchain.
BBB-Voting meets (II) since SC executes the code verifying that the submitted tally fits
Equation 6.4 that embeds all recorded votes.

(5) Dispute-Freeness. Since the blockchain acts as a tamper-resistant bulletin board (see
Section 6.1.8), and moreover it provides correctness of code execution (i.e., on-chain ex-
ecution of verification checks for votes, tally, and fault recovery shares) and verifiability,
the election remains dispute-free under the standard blockchain assumptions about the
honest majority and waiting the time to finality.

(6) Self-Tallying. BBB-Voting meet this property since in the tally phase of our protocol
(and anytime after), all cast votes are recorded in SC; therefore any party can use them to
fit Equation 6.4, obtaining the final tally.

(7) Robustness (Fault Tolerance). BBB-Voting is robust since it enables to remove (even
reoccurring) stalling P s by its fault recovery mechanism (see Section 6.1.4). Removing
of stalling P s involves SC verifiability of ZKP submitted by P s along with their counter-
party shares corresponding to stalling P s.

(8) Resistance to Serious Failures. The resistance of BBB-Voting to serious failures
relies on the integrity and append-only features of the blockchain, which (under its as-
sumptions Section 6.1.8) does not allow the change of already cast votes.

(9) Receipt-Freeness. BBB-Voting does not meet this property since any P can, using
her ephemeral private key, recreate the blinded vote with the original vote choice, which
can be compared to the recorded blinded vote. Moreover, P can reveal her ephemeral
private key to the coercer, who can then verify how P voted.

(10) Dispute-Freeness. BBB-Voting provides dispute-freeness, since the all protocol
stages of BBB-Voting are executed on the blockchain, and thus following of the protocol
is self-enforcing.

Blockchain-Specific Aspects and Issues

In the following, we focus on the most important blockchain-specific aspects and issues
related to BBB-Voting.

(1) Bulletin Board vs. Blockchains. The definition of a bulletin board [KY02] assumes
its immutability and append-only feature, which can be provided by blockchains that

keys, and the protocol would continue.
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moreover provide correct execution of code. CAP theorem [Bre00] enables a distributed
system (such as the blockchain) to select either consistency or availability during the
time of network partitions. If the system selects consistency (e.g., Algorand [GHM+17],
BFT-based blockchains such as [Hyp17]), it stalls during network partitions and does not
provide liveness (i.e., the blocks are not produced) but provides safety (i.e., all nodes agree
on the same blocks when some are produced). On the other hand, if the system selects
availability (e.g., Bitcoin [Nak09], Ethereum [Woo14b]), it does not provide safety but
provides liveness, which translates into possibility of creating accidental forks and even-
tually accepting one as valid. Many public blockchains favor availability over consistency,
and thus do not guarantee immediate immutability. Furthermore, blockchains might suf-
fer from malicious forks that are longer than accidental forks and are expensive for the
attacker. Usually, their goal is to execute double-spending or selfish mining [ES18], vi-
olating the assumptions of the consensus protocol employed – more than 51% / 66% of
honest nodes presented in PoW / BFT-based protocols. To prevent accidental forks and
mitigate malicious forks in liveness-favoring blockchains, it is recommended to wait for a
certain number of blocks (a.k.a., block confirmations). Another option to cope with forks
is to utilize safety-favoring blockchains (e.g., [GHM+17, Hyp17]).

Considering BBB-Voting, we argue that these forks are not critical for the proposed
protocol since any transaction can be resubmitted if it is not included in the blockchain
after a fork. Waiting for the time to finality (with a potential resubmission) can be done as
a background task of the client software at P s’ devices, so P s do not have to wait. Finally,
we emphasize that the time to finality is negligible in contrast to timeouts of the protocol
phases; therefore, there is enough time to make an automatic resubmission if needed.
(2) Privacy of Votes. In BBB-Voting, the privacy of vote choices can be “violated” only
in the case of unanimous voting by all P s, assuming A who can link the identities of P s
(approximated by their IP addresses) to their blockchain addresses by passive monitoring
of network traffic. However, this is the acceptable property in the class of voting protocols
that provide the full tally of votes at the output, such as BBB-Voting and other protocols
(e.g., [MSH17, KY02, HRZ10, KRS+20, YLS+18]). Moreover, A can do deductions
about the probability of selecting a particular vote choice by P s. For example, in the case
that the majority m of all participants n voted for a winning vote choice, thenA passively
monitoring the network traffic can link the blockchain addresses of Ps to their identities
(i.e., IP addresses), and thusA can infer that each P from the group of all P s cast her vote
to the winning choice with the probability equal to m

n
> 0.5. However, it does not violate

the privacy of votes and such an inferring is not possible solely from the data publicly
stored at the blockchain since it stores only blinded votes and blockchain addresses of
P s, not the identities of P s. To mitigate these issues, P s can use anonymization networks
or VPN services for sending transactions to the blockchain. Moreover, neither A nor V A
can provide the public with the indisputable proof that links P ’s identity to her blockchain
address.
(3) Privacy of Votes in Larger Voting. The privacy issue of unanimous and majority
voting (assuming A with network monitoring capability) are less likely to occur in the
larger voting than boardroom voting since the voting group of P s is larger and potentially
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more divergent. We showed that BBB-Voting can be extended to such a large voting by
integrity-preserving batching in Section 6.1.7. We experimented with batching up to 1000
P s, which is a magnitude greater voting than the boardroom voting. We depict the gas
expenses paid by V A (per P ) in Figure 6.6, where we distinguish various batch sizes. In
sum, the bigger the batch size, the lower the price per P .

6.2 SBvote

We introduce SBvote [SH23], a blockchain-based self-tallying e-voting protocol that en-
ables scalability in the number of voters and is based on BBB-Voting protocol. SBvote
introduces multiple voting smart contracts booths that are managed and aggregated by the
main smart contract. Our extended solution maintains the most properties of decentral-
ized e-voting, including public verifiability, perfect ballot secrecy, and fault tolerance (but
excluding receipt-freeness). Moreover, it improves the privacy of voters within booths.

6.2.1 System Model

We focus on a decentralized e-voting that provides desired properties of e-voting schemes
mentioned in Section 6.0.1 as well as scalability in the number of the participants. We as-
sume a centralized authority that is responsible for the enrollment of the participants and
shifting the stages of the protocol. However, the authority can neither change nor cen-
sor the votes of the participants, and it cannot compromise the privacy of the votes. We
assume that a public bulletin board required for e-voting is instantiated by a blockchain
platform that moreover supports the execution of smart contracts. We assume that all par-
ticipants of voting have their thin clients that can verify the inclusion of their transactions
in the blockchain as well as the correct execution of the smart contract code.

Adversary Model

We consider an adversary that passively listens to a communication on the blockchain
network. The adversary cannot modify or replace any honest transactions since she does
not hold the private keys of the participants. Next, we assume that the adversary cannot
block an honest transaction due to the censorship-resistance property of the blockchain.
The adversary can link a voter’s IP address to her blockchain address. However, she does
not possess the computational resources to break the cryptographic primitives used in the
blockchain platform and the voting protocol. The adversary cannot access or compromise
the voter’s device or the user interface of the voting application. We assume that in each
voting group of n participants, at most t of them can be controlled by the adversary and
disobey the voting protocol, where t ≤ n− 2 and n ≥ 3. This eliminates the possibility
of full collusion against a single voter [HRZ10].
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6.2.2 Proposed Approach

Involved Parties. Our proposed approach has the following actors and components: (1)
a participant P (a voter) who chooses a candidate (i.e., a voting choice) and casts a vote,
(2) a voting authority VA responsible for the registration of participants and initiating
actions performed by smart contracts, (3) a booth contract BC, which is replicated into
multiple instances, where each instance serves a limited number of participants. New
instances might be added on-demand to provide scalability. (4) The main contract MC,
which assigns participants to voting booths, deploys booth contracts, and aggregates the
final tally from booth contracts.

Protocol

We depict our protocol in Figure 6.7. SBvote follows similar phases as BBB-Voting but
with several alterations that enable better scalability. The registration phase requires VA
to authenticate users and generate a list of eligible voters. In BBB-Voting, the setup phase
of the protocol allows users to submit their ephemeral public keys. However, in contrast
to BBB-Voting, SBvote requires additional steps to set up the booth contracts. First,
eligible voters are assigned to voting groups and then BC is deployed for each voting
group. Once the setup is finished, voters proceed to submit their ephemeral public keys
during a sign-up phase. These keys are further used to compute multi-party computation
(MPC) keys within each voting group during a pre-voting phase. In the voting phase,
voters cast their blinded votes along with corresponding NIZK proofs. The NIZK proof
allows BC to verify that a blinded vote correctly encrypts one of the valid candidates. If
some of the voters who submitted their ephemeral public keys have failed to cast their
vote, the remaining active voters repair their votes in the subsequent fault recovery phase.
This is achieved by removing the key material of stalling voters from the encryption of
the correctly cast votes. The key material has to be provided by each active voter along
with NIZK proof of correctness. After the repair of votes, the tallies for individual voting
groups are computed during the tally phase of a booth. Then, partial tally results are
aggregated to obtain the final tally by MC.

In the following, we describe the phases of our protocol in more detail. Phases 2–6 are
executed independently (thus in parallel) within each of the voting groups/booth contracts.

Registration. In this phase, the participants interact with VA to register as eligible vot-
ers. A suitable identity management (IDM) system is required, allowing VA to verify
participants’ identities and eligibility to vote.14 Each participant creates her blockchain
wallet address and registers it with VA that stores a mapping between a participant’s
identity and her wallet address.

14The details of IDM are out-of-scope for this work.
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Figure 6.7: Overview of SBvote protocol.

Phase 1 (Setup). First, VA deploys MC to the blockchain. Then, VA enrolls the wallet
addresses of all registered participants to MC within a transaction.15 Once all the regis-
tered participants have been enrolled, VA triggers MC to pseudo-randomly distribute en-
rolled participants into groups whose size is pre-determined and ensures a certain degree
of privacy. Note that distributed randomness protocols such as RoundHound [SJK+17]
might be used for this purpose, however, in this work we assume a trusted randomness

15Note that in practice this step utilizes transaction batching to cope with the limits of the blockchain
platform (see Section 6.2.3).
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source that is agreed upon by all voters (e.g., a hash of a Bitcoin block).

In every group, the participants agree on the parameters of the voting. Let n be the
number of participants in the group and k the number of candidates. We specify the
parameters of voting as follows:

1) a common generator g ∈ F∗p, where p = 2 · q+1, q is a prime and n < p− 1.
2) k independent generators {f1,...,fk} in F∗p such that fi = g2

(i−1)m , where m is the
smallest integer such that 2m > n.

Then, VA deploys a booth contract BC for each group of participants with these pre-
viously agreed upon voting parameters. MC stores a mapping between a participant’s
wallet address and the group she was assigned to.

Phase 2 (Sign-Up). Eligible voters enrolled in the setup phase review the candidates and
the voting parameters. Each voter who intends to participate obtains the address of BC
she was assigned to by MC. From this point onward, each participant interacts only with
her BC representing the group she is part of. Every participant Pi creates her ephemeral
key pair consisting of a private key xi ∈R F∗p and public key gxi . The Pi then sends
her public key to BC. By submitting an ephemeral public key, the participant commits
to cast a vote later. Furthermore, participants are required to send a deposit within this
transaction. If the voter does not cast her vote or later does not participate in the potential
fault recovery phase, she will be penalized by losing the deposit. Voters who participate
correctly retrieve their deposit at the end of the voting.

Phase 3 (Pre-Voting). In this step, each BC computes synchronized multi-party compu-
tation (MPC) keys from the participants’ ephemeral public keys submitted in the previous
step. To achieve scalability, the MPC keys are computed independently in each BC over
the set of ephemeral public keys within the group. The MPC key for participant Pi is
computed as follows:

gyi =
i−1∏

j=1

gxj/
n∏

j=i+1

gxj , (6.6)

where yi =
∑

j<ixj −
∑

j>ixj and
∑

ixiyi = 0 (see Hao et al. [HRZ10] for the proof).
The computation of MPC keys is triggered by VA in each BC. After the computation,
each participant obtains her MPC key from BC and proceeds to compute her ephemeral
blinding key as gxiyi using her private key xi.

Phase 4 (Voting). Before participating in this phase of the protocol, each voter must
create her blinded vote and a NIZK proof of its correctness. The blinded vote of the
participant Pi is Bi = gxiyifj , where fj ∈ f1,...,fk represents her choice of a candidate.
The participant casts the blinded vote by sending it to BC in a transaction cast(Bi,πM),
where πM is a 1-out-of-k NIZK proof of set membership. This proof allows BC to verify
that the vote contains one of the candidate generators from f1,...,fk without revealing the
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voter’s choice. BC performs a check of the proof’s correctness and accepts well-formed
votes. Construction and verification of the NIZK proof are depicted in Figure 6.2 (from
BBB-Voting).

Phase 5 (Fault-Recovery). The use of synchronized MPC keys ensures that a vote cast
by each voter contains the key material shared with all voters within the group. If some
of the voters within a group stall during the voting phase, the tally cannot be computed
from the remaining data. Therefore, we include a fault-recovery phase, where remaining
voters provide BC with the key material they share with each stalling voter, enabling
BC to repair their votes. In detail, for a stalling voter Pj and an active voter Pi (i ̸= j),
the shared key material gxixj consists of the stalling voter’s ephemeral public key gxj

(previously published in BC) and the active voter’s ephemeral private key xi. The active
voters send the shared key material to BC along with a NIZK proof depicted in Figure 6.3
(from BBB-Voting). The NIZK proof allows BC to verify that the shared key material
provided by the voter corresponds to the ephemeral public keys gxi and gxj .

Suppose some of the previously active voters become inactive during the fault-recovery
phase (i.e., do not provide the shared key material needed to repair their votes). In that
case, the fault-recovery phase can be repeated to exclude these voters. Note that this phase
takes place in groups where all the voters who committed to vote during the sign-up phase
have cast their votes.

Phase 6 (Booth Tallies). At first, the tally has to be computed for each group separately.
Computation of the result is not performed by BC itself. Instead, VA (or any participant)
obtains the blinded votes from BC, computes the tally, and then sends the result back to
BC, which verifies whether a provided tally fits

n∏

i=1

Bi =
n∏

i=1

gxiyifj = g
∑

ixiyifj = f1
ct1f2

ct2 ...fk
ctk , (6.7)

where ctj ∈ ct1,...,ctk denotes the vote count for each candidate.

Phase 7 (Final Tally). Once BC obtains a correctly computed tally, it sends it to MC.
MC collects and summarizes the partial tallies from individual booths and announces the
final tally once all booths have provided their results. The participants can also review the
partial results from already processed booths without waiting for the final tally since the
booth tallies are processed independently.

6.2.3 Design Choices and Optimizations

We introduce several specific features of SBvote, which allow us to achieve the scalability
and privacy properties.
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Algorithm 5: Pre-computation of right side values from Equation 6.6.
Inputs:

• n: # of voters
• mpc batch : batch size for MPC computation
• voterPKs : array of voters’ ephemeral public keys

Outputs:
• right markers : pre-computed right side values

right tmp← 0
if n mod mpc batch ̸= 0 then

right markers.push(right tmp)

for i← 0 to n do
if n mod mpc batch = (i− 1) mod mpc batch then

right markers.push(right tmp)

right tmp← right tmp ∗ voterPKs[n− i]

Storage of Voters’ Addresses. If we were to store the voters’ wallet addresses in the
booth contracts, it would cause high storage overhead and thus high costs. However, we
proposed to store these addresses only in MC, while booth contracts can only query MC
whenever they require these addresses (i.e., when they verify whether a voter belongs to
the booth’s group). As a result, this eliminates the costs of transactions when deploying
booth contracts, and moreover saving the blockchain storage space.

Elimination of Bottlenecks. The main focus of our proposed approach is to eliminate
the bottlenecks that limit the number of voters and thus the size of the voting groups. In
particular, passing the necessary data within a single transaction could potentially exceed
the block gas limit.

The scalability of the Setup phase is straightforward to resolve since it does not involve
any transient integrity violation checks (excluding duplicity checks). In all these cases,
VA splits the data into multiple independent transactions. Similarly, each active voter can
send the key material required to repair her vote in several batches in the Fault-Recovery
phase, allowing the system to recover from an arbitrary number of stalling participants.

In contrast to the Setup and Fault-Recovery phases, batching in the Pre-Voting phase is
not trivial since it requires transient preservation of integrity between consecutive batches
of the particular voting group. Therefore, we designed a custom batching mechanism,
which eliminates this bottleneck while also optimizing the cost of the MPC computation.

MPC Batching and Optimization. If computed independently for each participant,
the computation of MPC keys leads to a high number of overlapping multiplications.
Therefore, we optimize this step by dividing the computation into two parts, respecting
both sides of the expression in Equation 6.6 and reusing accumulated values for each side.

First, we pre-compute the right part (i.e., divisor) of Equation 6.6, which consists of
a product of ephemeral public keys of voters with a higher index than the current voter’s
one (i.e., i in Equation 6.6). The product is accumulated and saved in the contract’s
storage at regular intervals during a single iteration over all ephemeral public keys. The
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Algorithm 6: Computation of a batch of MPC keys.
Inputs:

• voterPKs : array of voters’ ephemeral public keys
• mpc batch : batch size for MPC computation
• start,end : start and end index of the current batch
• right marker : pre-computed right side value for the first index in a batch
• act left : left side value from the previous batch

Outputs:
• act left : left side value at the last index of the current batch
• mpc keys : array of MPC keys for the current batch

Compute right side values for the batch:

right tab[mpc batch− 1]← right marker
for i← 0 to mpc batch do

j ← mpc batch− i
right tab[j− 1]← right tab[j] ∗ voterPKs[i− 1]

Compute the current batch of MPC keys:
for i← start to end do

act left← act left ∗ voterPKs[i− 1]

mpc keys[i]← act left÷ right tab[i] mod mpc batch

size of these intervals corresponds to the batch size chosen for the computation of the
remaining (left side) of the equation. We refer to these saved values as right markers (see
Algorithm 5). We only choose to save the right markers in the storage of BC instead of
saving all accumulated values due to the high cost of storing data in the smart contract
storage. Though the intermediate values between right markers have to be computed again
later, they are only kept in memory (not persistent between consecutive function calls).
Therefore, they do not significantly impact the cost of the computation.

The second part of the computation is processed in batches. First, the right-side values
for all voters within the current batch are obtained using the pre-computed right marker
corresponding to this batch (see lines 1–4 of Algorithm 6). Then, the left part of Equa-
tion 6.6 is computed for each voter within the batch, followed by evaluating the entire
equation to obtain the MPC key (lines 6–8 of Algorithm 6). This left-side value is not
discarded; therefore, computing the left side for the next voter’s MPC key only requires
single multiplication. The last dividend value in the current batch is saved in the contract’s
storage to allow its reuse for the next batch.

6.2.4 Evaluation

To evaluate the scalability of SBvote, we created the proof of concept implementation
that builds on BBB-Voting [HLS23]. We used the Truffle framework and Solidity pro-
gramming language to implement the smart contract part and Javascript for the client API
of all other components. We also utilized the Witnet library [Wit19] for on-chain elliptic
curve operations on the standardized Secp256k1 curve [SEC00]. Although Solidity was
primarily intended for Ethereum and its Ethereum Virtual Machine (EVM), we have not
selected Ethereum for our evaluation due to its high operational costs and low transac-
tional throughput, which is contrary to our goal of improving scalability. However, there
are many other smart contract platforms supporting Solidity and EVM, out of which we
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Figure 6.8: Per voter cost of the MPC key computation w.r.t. the batch size.

selected Gnosis16 and Harmony17 due to their low costs and high throughput.

Throughout our evaluation, we considered the following parameters of the chosen
platforms: 30M block gas limit with 5 second block creation time on Gnosis and 80M
block gas limit with 2 second block creation time on Harmony.

MPC Batch Size. The MPC keys in the Pre-Voting phase are computed in batches (see
Section 6.2.3). In detail, there is a pre-computed value available for the first voter in
each batch. Using a small batch size imposes many transactions and high execution costs
due to utilizing fewer pre-computed values. In contrast, using a large batch size requires
more expensive pre-computation and storage allocation, which results in a trade-off. This
trade-off is illustrated in Figure 6.8, depicting how the batch size affects the cost of the
computation per voter. We can see that the best value for our setup is 150 voters per batch.

The Number of Candidates. The number of candidates our voting system can accom-
modate remains limited. This is mainly caused by the block gas limit of a particular
platform. In detail, we can only run voting with a candidate set small enough so that the
vote-casting transaction does not exceed the underlying platform’s block gas limit. Such
transaction must be accompanied by a NIZK proof of set membership (i.e., proof that the
voter’s encrypted choice belongs to the set of candidates), and the size of the candidate

16https://developers.gnosischain.com
17https://www.harmony.one
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Figure 6.11: The maximum number of voters that our approach can accommodate w.r.t. the num-
ber of candidates.

set determines its execution complexity. Figure 6.9 illustrates this dependency. Our ex-
periments show that the proposed system can accommodate up to 38 and 14 candidates
on Harmony and Gnosis, respectively.

The Total Number of Participants. The time period over which the voters can cast
their ballots typically lasts only several days in realistic elections. The platform’s through-
put over a restricted time period and the high cost of the vote-casting transactions result
in a trade-off between the number of voters and the number of candidates. We evaluated
the limitations of the proposed voting protocol on both Harmony and Gnosis, as shown in
Figure 6.10 and Figure 6.11. Note that in these examples, we considered only the most
expensive phase of the protocol (i.e., voting phase) to be time-restricted.

We determined that with two candidates, the proposed system can accommodate 1.5M
voters over a 2-day voting period and up to 3.8M voters over a 5-day voting period on the
Harmony blockchain. On the other side of the trade-off, with the maximum number of 38
candidates on Harmony, maximally 216K voters can participate within a 5-day period.
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6.2.5 Security Analysis and Discussion

We discuss the properties and scenarios affecting the security and privacy of SBvote.

Privacy. Within each voting group, SBvote maintains perfect ballot secrecy. The ad-
versary, as defined in Section 6.2.1, cannot reveal a participant’s vote through a collusion
of all remaining participants since adversary can control at most n− 2 participants. The
privacy of votes can be violated only if all participants in a voting group vote for the same
candidate. However, this is a natural property of voting protocols, which output the tally
rather than only the winning candidate. SBvote mitigates this problem by implementing
transaction batching, which allows the authority to maintain a sufficiently large size of
the voting groups to lower the probability of a unanimous vote within the groups. This
probability is further decreased in SBvote by the smart-contract-based pseudo-random as-
signment of participants to the groups. We refer the reader to the work of Ullrich [Ull17]
that addresses the issue of unanimous voting and the probability of its occurrence.

Deanonymization & Linking Addresses. In common blockchains, the network-level
adversary might be able to link the participant’s address with her IP address. Such an
adversary can also intercept the participant’s blinded vote; however, she cannot extract the
vote choice due to the privacy-preserving feature of our voting protocol. Therefore, even if
the adversary were to link the IP address to the participant’s identity, the only information
she could obtain is whether the participant has voted. Nevertheless, to prevent the linking
of addresses, participants can use VPNs or anonymization services such as Tor.

Re-Voting. It is important to ensure that no re-voting is possible, which is to avoid any
inference about the final vote of a participant in the case she would reuse her ephemeral
blinding key to change her vote during the voting stage. Such a re-voting logic can be
easily enforced by the smart contract, while the user interface of the participant should
also not allow re-voting. Also, note that ephemeral keys are one-time keys and thus are
intended to use only within one instance of e-voting protocol to ensure the security and
privacy of the protocol. If a participant were to vote in a different instance of e-voting,
she would generate new ephemeral keys.

Forks in Blockchain. Blockchains do not guarantee immediate immutability due to
possible forks. This differentiates blockchains from public bulletin boards, as defined
in [KY02]. However, since our protocol does not contain any two-phase commitment
scheme with revealed secrets, its security is not impacted by accidental or malicious forks.
Temporary forks also do not impact the voting stage since the same votes can be resub-
mitted by client interfaces.

Self-Tallying Property. The self-tallying property holds within each voting group since
the correctness of obtained tallies can be verified by anybody. Consequently, this property
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holds for the whole voting protocol since the main contract aggregates the booth tallies of
the groups in a verifiable fashion.

Verifiability. SBvote achieves both individual and universal verifiability. By querying
the booth contract, each voter can verify her vote has been recorded. Each voter (and any
interested party) can verify the booth tally since it satisfies the self-tallying property, i.e.,
the Equation 6.7 would not hold should any vote be left out. Any party can verify the
final tally aggregated in the main contact by querying all the booth contracts to obtain
individual booth tallies.

Platform-Dependent Limitations. Although our system itself does not limit the num-
ber of participants, the required transactions are computationally intensive, which results
in high gas consumption. Therefore, large-scale voting using our system might be too
demanding on the underlying smart contract platform. As a potential solution, public
permissioned blockchains dedicated to e-voting might be utilized.

Adversary Controlling Multiple Participants in the Fault Recovery. One issue that
needs to be addressed in the fault recovery is the adversary controlling multiple partici-
pants and letting them stall one by one in each fault recovery round. Even though the fault
recovery mechanism will eventually finish with no new stalling participants, such behav-
ior might increase the costs paid by remaining participants who are required to submit
counter-party shares in each round of the protocol. For this reason, similar to the voting
stage, we require the fault recovery stage to penalize stalling participants by losing the de-
posit they put into the smart contract at the beginning of our protocol. On the other hand,
the adversary can cause a delay in the voting protocol within a particular booth. How-
ever, it does not impact other booths. To further disincentivize the adversary from such a
behavior, the fault-recovery might require additional deposits that could be increased in
each round, while all deposits could be redeemed at the tally stage.

Tally computation. Tallying the results in individual booths requires an exhaustive
search for a solution of Equation 6.7 with

(
n+k−1
k−1

)
possible combinations [HRZ10], where

n is the number of votes and t is the number of candidates. Therefore, the authority should
select the size of the voting groups accordingly to the budget and available computational
resources (see Table 6.1 of BBB-Voting for the evaluation).

6.3 Always on Voting

Verifiable Delay Function (VDF). Given a time delay t, a VDF must satisfy the fol-
lowing conditions: for any input x, anyone equipped with commercial hardware can find
y = VDF(x,t) in t sequential steps, but an adversary with p parallel processing units must
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not distinguish y from a random number in significantly fewer steps (see also Section 2.9).
For our purposes, the value of t is fixed once it is determined. Therefore, we use VDF(x)
instead of VDF(x,t) in the remaining text.

6.3.1 System Model

Our model has the following main actors and components: i) A participant (P ) who
partakes in governance by casting a vote for her choice or candidate. ii) Election Author-
ity (EA) is responsible for validating the eligibility of participants to vote in elections,
registering them, and shifting between the phases of the voting. iii) A smart contract
(SC) collects the votes, acts as a verifier of zero-knowledge proofs, enforces the rules of
the voting and verifies the tallies of votes. iv) Bitcoin Puzzle Oracle (BPO) provides an
off-chain data feed from the Bitcoin network and supplies the requested Bitcoin block
header (BH) when it is available on the Bitcoin network. v) A VDF prover is any benign
party in the voting ecosystem who computes the output of VDF and supplies proof of its
correctness to SC.

Adversary Model

There are two types of adversaries: the network adversary Advnet and a Bitcoin mining
adversary Advmin. Both adversaries are static and have bounded computing power, i.e.,
they are unable to break used cryptographic primitives under their standard security as-
sumptions. Advnet is a passive listener of communication entering the blockchain network
but cannot block it. Her objective is to derive statistical inferences determining the voting
patterns of participants (including the voting intervals in which they voted). Advmin can
mine on the Bitcoin blockchain. Her goal is to find a solution to the Bitcoin PoW puzzle
that also triggers the end of the current voting interval, thereby influencing the end time of
epoch. Our voting framework uses a function of the Bitcoin block header (BH) inclusive
of its PoW solution s, i.e., f(BH) to trigger the end of the current voting interval. Such a
manipulation would potentially enable Advmin to prematurely finish the current interval
and start the next one. Finally, we assume that EA verifies identities honestly and supply
addresses of only verified participants to SC.

6.3.2 Design Goals

The AoV framework has the following main design goals.

1. Repeated voting epochs: Participants are allowed to continuously vote and change
elected candidates or policies without waiting for the next election. Participants are
permitted to privately change their vote at any point in time, while the effect of their
change is considered rightful at the end of each epoch. The duration of such epochs
is shorter than the time between the two main elections.
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2. Randomized time epochs: The end of each epoch is randomized and made un-
predictable. In contrast to fixed-length time epochs, the proposed randomized time
epochs are used to thwart the peak-end-effect.

3. Plug & play voting protocols: The AoV framework is designed to “plug & play”
new or existing voting protocols. As a result, AoV inherits the properties of the
underlying protocol chosen. However, in the interest of vote confidentiality on a
blockchain, we recommend protocols providing secret ballots whose correctness
can be publicly verified by SC without leaking any information, e.g., [YLS+18,
MRSS19, KRS+20, BFP+01]. Also, due to the repetitive nature of AoV, e-voting
protocols with expensive on-chain computations and required fault recovery (due to
stalling participants) may be less appealing but still acceptable with some limitations,
e.g., [MSH17, LSY+20, SGY20, VHLS21, SH23b].

4. Privacy of participants: Revoting by a participant P may enable Advnet to link
her blockchain wallet addresses or link the IP address of P across her multiple
voting transactions. Therefore, it is important to achieve maximum voter privacy
(anonymity) in the presence of adversary Advnet (see Section 6.3.3).

5. Privacy implications of booth sharding: The AoV framework supports booth shard-
ing to distribute voting overheads, streamline operations, and respect hierarchical
structure of elections. In detail, instead of having a single booth smart contract for all
participants, they are split into a number of smaller booth contracts. For multi-booth
elections with limited participants per booth and a high candidate win probability,
there is a small chance that all participants in a booth voted for the same candidate.
Since the EA knows the identity of all the participants in the booth, it can trivially
determine whom they voted for. We discuss the effects of booth size and candidate
winning probability to prevent such incidents in Section 6.3.4.

6.3.3 Proposed Approach

Always-on-Voting (AoV) is a framework for a blockchain-based e-voting, in which voting
does not end when the votes are tallied and the winners are announced. Instead, partici-
pants can continue voting for their previous vote choice or change their vote. A possible
outcome of such repetitive voting is transitioning from a previous winning candidate to
a new winner. To achieve this, the whole time interval between two regularly scheduled
elections is unpredictably divided into several intervals, denoted as voting epochs. Partic-
ipants may change their vote anytime before the end of a voting epoch (i.e., before a tally
of the epoch is computed); however, they do not know beforehand when the end occurs.
Any vote choice that transitioned into the supermajority threshold of votes is declared as
the new winner of the election, and it remains a winning choice until another vote choice
reaches a supermajority threshold.
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Figure 6.12: The time between two regular elections is divided into the fixed number ft of intervals
(a.k.a., epochs). First, the ratios of votes for all vote choices (i.e., candidates) are initialized from
the last election. Next, repeated voting within k epochs results in a winning vote choice transition
(from C to A). The new winner A is declared when she obtains a supermajority of total votes (i.e.,
70%) at interval k; k ≤ ft (see Section 6.3.3). Note that r1,..., rk are randomized times that
determine the length of the intervals 1,...,k. The tally is computed at the end of each interval.

Underlying Voting Protocol

AoV provides the option to plug & play any suitable e-voting protocol. To provide the
baseline security and privacy of votes (with on-chain verifiability), we assume the vot-
ing protocol plugged into AoV allows participants to blind or encrypt their votes whose
correctness is verified on-chain by SC. However, AoV does not deal with other features
supported by the plugged-in voting protocol (such as end-to-end verifiability [JMP13],
coercion-resistance [YLS+18], receipt-freeness [KY02], and fairness [KY02]).

Example of Operation

Figure 6.12 illustrates a scenario with 4 candidates A-D, where C is the present winner
of the election. For example, the supermajority threshold of 70% votes is set for future
winnings, which is a tunable parameter that may be suitably tailored to the situation.
All candidates are initialized to their winning percentages of obtained votes from the
last election. Over time, the individual tally is observed to shift as the supermajority of
participants decided to change their vote in favor of another candidate by voting in the
epoch intervals. Through k intervals, the winner-ship is seen to transition from candidate
C to A. At the kth interval, A obtains the 70% threshold of votes and is declared as the
new winner. Note that the supermajority is required only in the voting epochs between
two regularly scheduled elections. The regular elections are also executed in AoV, and
they repeat every M months/years, while requiring only a majority of votes (i.e., >50%)
to declare a winner. Hence, in contrast to existing electoral systems, we only propose
changes between regularly scheduled elections and enable new candidates to be added or
removed.

Justification for Supermajority. A supermajority of 70% was chosen (see Appendix
of [VSH23] for background) to help the incumbent carry out reforms without the risk of
losing when there is still sufficient support from participants. On the other hand, the main
purpose of this threshold is to block (or repeal) policies that are unpopular or negatively
affecting a vast majority of participants. Additionally, we aim to avoid the quorum para-
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Booth X,1

Booth 1,1 Booth 1,Y

Booth X,Y

Booth Tally Total Tally

Figure 6.13: When the tally computation is triggered, each booth computes the sum of all votes
cast at the booth (referred to as booth tally). Each booth tally is further summed up to determine
the total tally. Pictorially, the booths are numbered 1 to X along the rows and 1 to Y along the
columns. There are a total of X ·Y booths.

dox (see Appendix of [VSH23]) by setting a minimum participation requirement of 70%
from the just concluded main election.

Overview of AoV Phases

Once the setup phase (that ensures participants agree upon all system parameters) is com-
pleted, electronic voting frameworks typically consist of three phases: (1) a registration
phase to verify voter credentials and add them to the voting system, (2) a voting phase, in
which participants cast their vote via a secret ballot, and (3) a tally phase, where the total
votes for each candidate are counted and revealed to participants. The voting protocol
plugged-in with the AoV framework may contain additional phases, but we omit them
here for brevity.

The architecture of AoV is shown in Figure 6.14. In AoV, participants (in step 1)
register their wallet address with the EA, who then (in step 2) verifies and updates it on the
booth smart contract18. This is followed by the voting phase (in step 3), where participants
publicly cast their secret ballots (i.e, not revealing the vote choice nor identity). The BPO
(step 4) supplies the validator contract and VDF prover with the target, recent Bitcoin
block header BH and its block height. The VDF prover19 (in step 5) computes and
submits V DF (BH) and a proof of sequential work (π) to the validator contract. The
validator contract (in step 6) verifies the VDF proof and checks whether the supplied
nonce s (included in the block header) is a valid solution to the Bitcoin PoW puzzle of
the supplied header. If both verifications pass, the validator contract finalizes the epoch

18Participants are randomly grouped and assigned to booths ∈ {1,2,...,X ·Y } (see Figure 6.13), repre-
sented by a booth smart contract.

19A VDF prover is any benign user in the voting ecosystem with commercial hardware to evaluate the
input of VDF, i.e., y = VDF(BH) and supply a proof π.
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Figure 6.14: Interaction among participants (P s), election authority (EA), smart contracts, the
Oracle, and VDF prover. (1) Registering wallet addresses of participants and (2) their identity
verification are made by the EA. (3) Participants send a blinded vote and its zero-knowledge
proof of correctness to their assigned booth contract. The booth contract verifies the validity of
the vote. (4) The Bitcoin Puzzle Oracle (BPO) provides the latest Bitcoin block header (BH) and
(5) VDF prover sends a proof of sequential work with y (the output of VDF(BH)) to the validator
contract. (6) The validator contract finishes the epoch and shifts the state of the elections to the
tally upon meeting the required conditions. (7) The aggregator contract is responsible for totaling
individual booth tallies and (8) publicly announcing the total tally. The on-chain components of
AoV are depicted in gray.

and triggers the tally computation for the epoch. Otherwise, it waits for the next block
header submission from the BPO and the proof of sequential work from the VDF prover.
When the tally computation is triggered, each booth contract {1,2,...,X ·Y }, sums up
all its local vote counts and sends them to the aggregator contract (step 7). Then, the
aggregator contract totals the votes from each booth contract and publishes the final tally
(step 8). In AoV, the EA is authorized to register/remove participants and candidates
in a future interval. Nevertheless, candidates can also be managed by other means, and
AoV does not mandate how it should be done. When there are no other changes in the
next interval, revoting repeats with step 2 and ends with step 8. From the initialization of
AoV until the next regular elections, the validator smart contract accepts all future Bitcoin
block headers. The new block headers (as part of their blocks) arriving every 10 minutes
on average are appended to the Bitcoin blockchain. The BPO is responsible for timely
supplying20 each new block header to the VDF prover and validator contract. The VDF
prover computes the VDF on each of those block headers after they are supplied.

20To respect the finality of the Bitcoin network, we assume that BPO supplies only the block headers that
contain at least 6 confirmations on top of them. As a consequence, the probability that such a confirmed
block will be reverted is negligible. Note that this does not influence the chances of ADVmin to succeed
since she is already “delayed” by VDF in finding multiple PoW solutions at the same height; therefore, she
prefers to work on top of the chain with her new attempts.
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Calculating the Epoch Tally Time

Due to concerns that Bitcoin nonces are a weak entropy source, additional steps are taken
to make it cryptographically secure (see details in Section 6.3.4). Our notion of random-
ness relies on Bitcoin Proof-of-Work to generate valid nonces.21 The validator contract
awaits future block headers yet to be mined on the Bitcoin network. When new Bit-
coin block headers arrive, they are sent to the validator contract and the VDF prover
via the BPO. The VDF ensures that a mining adversary cannot find more than one valid
nonce to the block at a given height and test if the nonce is favorable within 10 min-
utes. The VDF is computed with the block header at the input by the VDF prover, who
then submits the VDF output and the proof of sequential work to the validator contract.
The choice of VDF depends on its security properties, speed of verification, and a size
of the proof [Pie19]. Let BH be the Bitcoin block header. Once VDF prover com-
putes y = V DF (BH), a small proof (π) is used to trivially verify its correctness using
V DF V erify(y,π). Wesolowski’s construction [Wes20] is known for its fast verification
and a short proof: Let TL be the number of sequential computations. Prover claims

y = BH2TL

and computes a proof

π = BH⌊
2TL

B
⌋,

where B = Blake256(BH || y || TL) hash. Verifier checks whether

πB ·BH2TLmod B ?
= y.

Since we employ VDF, Advmin does not know the value of y before evaluating the VDF
and is forced to wait for a given amount of time to see if the output is in her favor (before
trying again). However, since Bitcoin mining is a lottery, other miners can solve the
puzzle and append a block by propagating the solution to the Bitcoin network, rendering
any withheld or attempted solution by the adversary that was not published useless.

Interactions of BPO, VDF Prover, and Validator. Let TotalT ime be the time in min-
utes between 2 regular elections. The BPO (see step 4 in Figure 6.14) feeds the block
header BH of every future Bitcoin block (when it is available) to the validator contract
and VDF prover. Further, BPO provides validator contrast also with the value of target
when it changes; i.e., every 2016 blocks.

Upon obtaining data from BPO, the VDF prover computes VDF output

y = V DF (BH) (6.8)

with the VDF proof π and sends them to the validator contract (see step 5 in Figure 6.14).
Next, the validator contract verifies the following conditions:

V DF V erify(y,π)
?
= True, (6.9)

21If the nonce overflows, a parameter called extraNonce (part of the coinbase transaction) is used to
provide miners with the extra entropy needed to solve the PoW puzzle.
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SHA256(BH) < target. (6.10)

The first verification checks whether the VDF output y and supplied proof π (i.e., Equa-
tion 6.9) correspond to the BPO-supplied block header BH . The second verification (i.e.,
Equation 6.10) checks whether the nonce received from BPO22 is a valid solution to the
Bitcoin PoW puzzle. Once both checks pass, the validator contract proceeds to compute

a = SHA(y), (6.11)

where SHA(.) is SHA-X-25623 hash. The goal of Equation 6.11 is to consolidate the
entropy by passing it through a compression function that acts as a randomness extractor
(see Section 6.3.4). Using a, the validator contract computes

b = a (mod BHsInInterval), (6.12)

where the expected number of block headers are

BHsInInterval =
IntervalT ime

BlockT ime
. (6.13)

and the time interval is found as

IntervalT ime =
TotalT ime

ft
. (6.14)

As seen in Figure 6.12, ft is the number of intervals (epochs) that the total time (Total-
Time) between 2 regular elections is divided into. BlockT ime is the average time of
block generation (i.e., 10 minutes in Bitcoin). The computation of tally for the current
interval is triggered when the output of the validator contract is True (see step 6 in Fig-
ure 6.14):

V Coutput =

{
True, if b = 0

False, otherwise.
(6.15)

Example. Let TotalT ime = 4 years = 525600 · 4 minutes and ft = 8; then IntervalT ime
= (525600 · 4)/(8) = 262800 minutes ≈ 182.5 days and BHsInInterval = 262800/10
= 26280 blocks. Therefore, the BPO will send on average 26280 block headers (BH val-
ues) to the validator contract within assumed 182.5 days long epoch (assuming 10 minutes
block creation interval), i.e., 1/8 of the total time. We expect the tally will be triggered
on average once in every 182.5 days because of the Poisson probability distribution of
this event. Therefore, ft expresses the expected number of epochs, while ft might differ
across the regular elections iterations.

22We note that the BPO may be replaced by a quorum to improve decentralization. The validator contract
will then accept the input from BPO only when 2/3 (and more) of the quorum is in agreement.

23X denotes a suitable hash function such as SHA-3, and 256 is the output length in bits.
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Anonymizing Identity

In our scheme, we employ wallet addresses to keep track of authorized participants. The
map between participant P and her wallet, recorded by the EA is to prevent sybil attack
(preventing any unauthorized person from voting) and double voting. For this reason, EA
is trusted to keep this mapping private. Only voters corresponding to white-listed wallets
by EA are allowed to vote and everyone else is blocked from voting on the smart contract.
The wallet address corresponds to a unique random string associated with the voter. Its
knowledge provides no additional information to the EA, since the EA knows voters’
identities.

The AoV framework permits participants to change their vote at any time. The ef-
fect of the change is manifested at the end of the epoch when the tally is computed.
However, Advnet can observe the vote transactions on SC even though the vote choice
remains confidential (preserving the privacy of votes). A participant might vote in one
interval and then vote again in a future interval. Advnet cannot distinguish whether the
participant voted again for the same candidate or changed her vote to a different can-
didate due to assumed confidentiality-preserving properties of plugged voting protocols
(see Section 6.3.3) However, both votes may be mapped to the same participant’s block-
chain wallet address if utilized naively, hence Advnet can determine how many times a
participant voted.

To break the map between participant P and her blockchain wallet address, we use
the idea presented in type 2 deterministic wallets24. The objective is to synchronize a
practically unlimited number of wallet public keys PKs (one per vote) between EA and P
such that this PK list can be regenerated only by these two parties, while the corresponding
private keys SKs can be computed only by P . As mentioned in Section 6.3.1, EA is
assumed to verify identities honestly, and it supplies their corresponding wallet addresses
to SC. The wallet address is generated as a function f of the elliptic curve public key.
Once the public key is available, it is straightforward to compute the corresponding wallet
address. Let BP be the base point on the elliptic curve. Further, let PK be the blockchain
wallet public key corresponding to a private key SK. Here, SK is chosen as a random
positive integer whose size is bounded to the order of BP on the chosen elliptic curve
modulo a prime number. Note that Equation 6.16 – Equation 6.20 are computed off-
chain. As an illustration, let the first PK be computed as

PK0 = SK0 ·BP, (6.16)

and the next PK be
PK1 = PK0+SK1 ·BP. (6.17)

From Equation 6.16 and Equation 6.17, we observe that

(SK0+SK1) ·BP = PK1. (6.18)

The following steps ensue:
24See https://en.bitcoin.it/wiki/BIP_0032.

https://en.bitcoin.it/wiki/BIP_0032
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Algorithm 7: VDF Add.
1 Def VdfAdd(y,π,blockheight):
2 writeState(“vdfadd” || blockheight,y || π)

Algorithm 8: BPO Add.
1 Def BpoAdd(Target,BH,blockheight):
2 writeState(“bpoadd” || blockheight,BH || Target)
3 writeState(“blockheightStored”,blockheight)
4 writeState(“blockheader” || blockheight,BH)

i) During the identity verification, P sends to EA: a) wallet public key PK0, b) a
random shared secret key hk, and c) parameters (g,p), where g is a randomly chosen
generator in F ∗p (i.e., a prime field) and p is a large prime. The wallet address is a
public function of the wallet public key. Hence, EA computes W0 = f(PK0) and
stores it.

ii) The private key of P at any future voting epoch e = {1,2,3,...,2128− 1} is generated
by P as

SKe = SK0+HMAChk(g
e), (6.19)

where ge ∈ F ∗p is the output of pseudo-random number generator (PRNG) in epoch e,
HMAC(.) is HMAC-X-256 using shared secret key hk between EA and P , which is
unknown to Advnet and serves for stopping her from mapping P ’s wallet addresses.

iii) The corresponding PK of P for epoch e is

PKe = PK0+HMAChk(g
e) ·BP. (6.20)

EA and P can compute PKe but SKe is held only by P . This effectively separates PKs
from their SKs and, at the same time, maps it to P ’s first wallet public key, i.e., PK0.
At any voting iteration e, the public key PKe, and the corresponding wallet address can
be computed by both EA and P . Since the shared secret hk used with HMAC is known
only to EA and P , no third party, including Advnet, is able to compute any future PKs.
Hence, for a sequence of wallet addresses of P given by We = f(PKe), the map between
the wallet address and P is broken for all other parties other than EA and P .

Batching the Requests. It is important to note that if a participant wishes to change
her vote within the same voting interval, she should submit the request with the new
wallet address to EA who will approve the request in batches (aggregating multiple such
requests) in order to improve the resistance against mapping of former wallet addresses
to new ones. In detail, the EA will mark all former addresses as invalid and approve the
new ones within a single transaction. In the extreme case, when a batch contains only one
participant (who wanted to change her vote), Advnet can map the two wallets. Therefore,
such a participant should value her wallet privacy and vote only once during the next
interval (or alternatively change her address again and be a part a bigger batch). Using
VPN/dVPNs may further limit the Advnet’s ability to map participant IP addresses.
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Algorithm 9: Trigger mechanism.
1 Def VerifyTrigger(y,π,T,BH,params struct):
2 b = -1
3 tt = readState(params struct.totaltime)
4 ft = readState(params struct.ft)
5 seed = readState(params struct.key)
6 IntervalT ime = tt/ft
7 BHsInInterval = IntervalT ime/10
8 if SHA256(BH) < T then
9 if V erify V DF (y,π) == True then

10 a = SHA(y)
11 b = a(mod BHsInInterval)

12 if b==0 then
13 return True

14 else
15 return False

Functionality

The high-level functionality of the AoV framework and its smart contracts is shown in
Algorithm 10, and the trigger mechanism is presented in Algorithm 9. Algorithm 10
comprises of 5 main functions — setup, registration, voting, tally and revote. The system
parameters agreed upon are added by EA using the setup function of the smart contract.
The EA is also responsible for adding the list of valid participants’ wallet addresses to
the contract through the registration function. The voting function is supplied by a par-
ticipant’s wallet address, blinded vote, and its proof of correctness. This information is
signed with Pi’s private key and sent to the contract. The voting function carries out the
necessary verifications and adds her vote. The participant wallet address is set to “voted”
to disallow its reuse. Before invoking the tally function, the VDF prover and BPO store
their respective data to the contract (see Algorithm 7 and Algorithm 8). Next, the tally
function is called by EA or any authorized participant. The tally function carries out two
main tasks. First, it checks whether the condition to trigger the interval tally is satisfied
(see Algorithm 9). The second task (when triggered) is to tally the votes and return the
results. When a participant wishes to vote again, she sends her next wallet address (syn-
chronized with EA) to the revote function. The EA will verify the new wallet address
offline and call the registration function to set the new address to valid (preferably in
batches as mentioned in Section 6.3.3). Next, a participant may call the function Voting
and vote using her new wallet address.

6.3.4 Security Analysis

Mining Adversary

The goal of Advmin is to find a valid nonce s that solves the Bitcoin puzzle such that b
in Equation 6.12 is 0. When these two conditions are met, and the new epoch is about to
start, the validator contract triggers the tally computation of votes. We set the difficulty
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Algorithm 10: Always on Voting Framework.
Input: Set1: ∀ participants Pi, wallet addresses (WAij), blinded vote BVij (by Pi for her jth voting occurence,

j = 0,1,2,3,...) & zero knowledge proof of vote correctness (ZKPij ), boothno. Set2: system parameters
init params, BTC blockheader BH , V DF (BH), proof π, BTC target T , BTC blockheight.

Output: Total tally of votes in the interval.

1 Function Setup(init params):
2 writeState(params struct,init params) // add system parameters as key-value pairs into

params struct.

3 Function Registration(msg1 = WAij ,msg2 = valid flag,EA signed msg):
4 msg = msg1 ||msg2 // concatenate message parts.
5 EA pubkey= readState(params struct.EA public key) // get EA public key.
6 if VerifySig(msg,EA signed msg,EA pubkey) = True then
7 if valid flag == True then
8 writeState(WAij ,“valid”) // set wallet address to valid.

9 else
10 writeState(WAij ,“invalid”) // set wallet address to invalid.

11 Function Voting(msg1 = WAij ,msg2 = BVij ,msg3 = ZKPij ,Pi signed msg):
12 msg = msg1 ||msg2 ||msg3
13 wallet status= readState(WAij )
14 Pi pubkey= readState(params struct.Pi public key)
15 sig flag = VerifySig(msg,Pi signed msg,Pi pubkey)
16 zkp flag = VerifyZKP(BVij ,ZKPij )
17 if (sig flag and zkp flag) == True and wallet status == “valid” then
18 writeState(“vote” ||WAij ,BVij ) // The latest wallet address of Pi is mapped to

her private vote. The key in (key,value) is prefixed with ‘vote’ tag
to identify valid votes w.r.t. wallet addresses.

19 writeState(WAij ,“voted”) // set WA to voted & prevent voting from that address
again.

20 Function Tally(blockheight):
21 total tally = −1
22 stored blockheight = readState(“blockheightStored”)// blockheightStored is from

Algorithm 8.
23 BH =readState(“blockheader” || blockheight)// blockheight is the argument passed to

the function Tally.
24 y,π = readState(“vdfadd” || blockheight)// vdfadd is read from Algorithm 7.
25 BH,Target = readState(“bpoadd” || blockheight)
26 trigger flag=VerifyTrigger(y,π,Target,BH,params struct)// Call Algorithm Algorithm 9.
27 if (stored blockheight == blockheight) and trigger flag == True then

28 total tally =
X·Y∑
no=1

local tally(boothno)

29 return total tally

30 Function Revote(msg = WAij ,Pi signed msg):
31 Pi pubkey= readState(params struct.Pi public key) // get Pi public key
32 if VerifySig(msg,Pi signed msg,Pi pubkey) = True then
33 writeState(WAij ,“pending”) // set wallet address to pending verification by

EA.

// Next, EA calls Registration(), where it sets a new wallet address of Pi to
valid.

// Further, Pi calls V oting() to re-vote using the new wallet address.
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VDF
Prover

Time (minutes) VDF
Prover

Time (minutes)

1 0-100 1 100-199
2 10-110 2 110-209
3 20-120 3 120-219
4 30-130 4 130-229
5 40-140 5 140-239
6 50-150 6 150-249
7 60-160 7 160-259
8 70-170 8 170-269
9 80-180 9 180-279
10 90-190 10 190-289

Table 6.4: Scheduling 10 VDF provers without queuing. Note the VDF computations on a VDF
prover machine are not parallelized. It is the scheduling alone that is in parallel. The start time is
based on the job arrival time at the VDF prover, where it will run for 100 minutes. Once completed,
it is ready to take on the next job. In column 2, the start times are 10 minutes apart and correspond
to the average BTC interblock (job) arrival time. The largest idle time in column 1 is for VDF
Prover 10 at 90 minutes, waiting for the job to start. Beyond this, all VDF prover machines are
continuously occupied since a new job is available to start immediately after the current job ends.

for the benign VDF prover (with commercial hardware) to take 100 minutes25 to solve
VDF(BH). Based on Amax limit, we assume Advmin to take at least 10 minutes to solve
the VDF. As a result, Advmin is restricted to a maximum of 1 try (considering 10 minutes
as an average Bitcoin block creation time), excluding the Proof-of-Work required to solve
the Bitcoin mining puzzle. However, since a Bitcoin block header is generated on average
once every 10 minutes and the benign VDF prover is occupied for 100 minutes, the ques-
tion is – how many VDF provers are required to prevent the block headers from queuing
up? We can see in Table 6.4 that VDF prover 1 runs a task for time 0-100 minutes, and
she picks up the next task to run for time 100-199 minutes. Similarly, all other provers
pick up the next task after completing the present one. Hence, 10 VDF provers are suffi-
cient to prevent block headers from queuing up because Amax = 10. On the other hand,
a benign VDF prover might reduce Amax of VDF computation by using specialized hard-
ware instead of commercial hardware (depending on the cost-to-benefit ratio). However,
we emphasize that the VDF can be computed only after solving the PoW mining puzzle,
which is prohibitively expensive. Moreover, the puzzle difficulty increases proportionally
to the mining power of the Bitcoin network. Hence, the proposed serial combination of
solving the Bitcoin mining puzzle followed by the computation of VDF output improves
the aggregate security against Advmin from choosing a favorable nonce. The estimated
requirement of Amax = 10 might be further increased as more studies to efficiently solve
VDFs on ASICs are carried out. However, if Amax will increase in the future, our solution
can cope with it by employing more VDF provers.

25We consider Amax = 10, i.e., what is solved by a benign VDF prover in 10 units of time, while in the
case of Advmin it is in 1 unit.
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(a) Booth with 30 participants, winning p = 0.9. (b) Booth with 100 participants, winning p = 0.9.

Figure 6.15: Binomial probability distribution function of X booth participants voting for their
favorite candidate whose winning probability is p.

Implications of VDF Prover Synchronization and Optimizing Frequency of Supplied
Block Headers

Several VDF provers are synchronised to supply the VDF proofs to the validator contract
in sequence. However, there are no adverse effects when the proofs are generated and
supplied out of sequence. The validator smart contract stores the latest block height for
which the VDF proof was last accepted. It only allows proof verification for stored block
height+1 on the contract and any out-of-order proofs have to be resent. Once the order is
corrected, a handful of VDF proofs may appear in quick succession at the validator con-
tract. However, the tally for the interval is only triggered when V Coutput in Equation 6.15
is True.

In terms of gas consumption, it can be costly to process every single Bitcoin block
header (supplied to the VDF prover and the validator contract by the BPO). We suggest
optimizing this by choosing a coarser time granularity of the block header supply, inde-
pendent of the Bitcoin block interval (e.g., every x-th block). We modify the example
from Section 6.3.3 by considering the processing of every 100th Bitcoin block header.26

TotalT ime = 4 years = 525600 · 4 minutes and the total number of intervals ft = 8. Then,
IntervalT ime = (525600 · 4)/(8) = 262800 minutes and BHsInInterval = 262800/
(10 · 100) = 262.8. On average, the oracle will send 262.8 block headers (BH values) to
the validator contract within 182.5 days instead of the 26280 block headers required in the
original example. In this case, we only need 1 VDF prover instead of 10, and it provides
similar security guarantees as before.

Privacy Implications of Booth Sharding

In this section, we look at the implications of booth sharding. Further, we recommend
booth sizes to protect participant votes from being revealed to the EA (in the case when
all participants in a booth voted for the same candidate). The map between a participant’s

26Note that this would need another condition to be met, i.e., the block height in BH (mod 100) should
be equal to 0.
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wallet and her vote transaction is broken for all parties (including Advnet) but the EA
(see Section 6.3.3). The EA is aware of the participants’ current wallet address used for
voting, and hence it has an advantage over Advnet in statistical inference attacks. Certain
scenarios revealing vote choice are possible under some circumstances. In particular, if
all participants in a booth voted for the same candidate or the winning probability of one
candidate is much higher than the others.

To demonstrate it, in Figure 6.15 we provide the probability that X participants in
a booth voted for the same candidate, depending on the candidate winning probability
p. Figure 6.15(a) represents a booth with 30 participants and candidate winning prob-
ability p = 0.9. The probability that all participants voted for the same candidate is
P (30,X = 30,p = 0.9)

∼
= 0.0423. Figure 6.15(b) represents a booth with 100 participants

and candidate winning probability p = 0.9. The probability that all participants voted
for the same candidate is P (100,X = 100,p = 0.9)

∼
= 0.00003, which demonstrates that

number of participants in a booth, influences p in indirect proportion, favoring the booths
with higher sizes.

Even though the probabilities in the booth with 100 participants are very low, this may
not be sufficient depending on the total number of participants. For example, consider the
elections with 1 million participants. First, let number of participants in a booth be 30 and
the number of booths M = ⌈(1 000 000/30)⌉ = 33334. The number of booths where all
participants likely voted for the same candidate is 0.0423 · 33334 ∼= 1410. For booths with
100 participants each and M = ⌈(1 000 000/100)⌉ = 10000, the number of booths where
all participants likely voted for the same candidate is reduced to 0.00003 · 10000 ∼= 0.3.
Therefore, a suitable number of participants per booth should be determined based on the
extreme estimations of the tally results and the total number of voters.

Randomness of Bitcoin Nonces & AoV Entropy

We decided to utilize a single public source of randomness instead of a distributed ran-
domness due to the low computation cost and synchronization complexity. Bonneau et
al. [BCG15] showed that if the underlying hash function used to solve the Bitcoin PoW
puzzle is secure, then each block in the canonical chain has a computational min-entropy
of at least d bits, representing the mining difficulty. I.e., d consecutive 0 bits must ap-
pear in the hash of the block header.27 Hence, ⌊d

2
⌋ near-uniform bits can be securely

extracted. Nevertheless, empirical evaluation has shown that Bitcoin nonces have visi-
ble white spaces (non-uniformity) in its scatter-plot [Bit19]. A possible explanation is
that some miners are presetting some of the bits in the 32-bit nonce field and using the
extraNonce to solve the PoW puzzle. We use the entire block header as the initial source
of entropy instead of the 32-bit nonce alone to avoid such biases. To reduce the probability
of Advmin biasing the solution in her favor, the block header is passed through a verifiable
delay function (see Equation 6.8). The output of VDF is hashed (see Equation 6.11) to
consolidate the entropy.

27At the time of writing, d ≈ 76.



6.4 Contributing Papers

The papers that contributed to this research direction are enumerated in the following,
while highlighted papers are attached to this thesis in their original form.

[HLS23] Ivan Homoliak, Zengpeng Li, and Pawel Szalachowski. BBB-Voting: 1-
out-of-k blockchain-based boardroom voting. In IEEE International Confer-
ence on Blockchain, Blockchain 2023, Hainan, China, December 17-21, 2023.
IEEE, 2023.
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Chapter 7

Secure Logging

In this chapter, we present our contributions to the area of secure logging using block-
chain, which belongs to the application layer of our security reference architecture (see
Chapter 3) and its category of data provenance. In particular, this chapter is focused on
the security, privacy, and scalability, of blockchain-based secure logging, which we fur-
ther extend to the use case of a global Central Bank Digital Currency (CBDC). Note that
we base this chapter on not yet published papers [HS20] [HPH+23] (see also Section 7.3),
and therefore we consider this chapter as additional to the thesis.

First, we present Aquareum [HS20], a novel framework for centralized ledgers re-
moving their main limitations. By combining a trusted execution environment with a
public blockchain platform, Aquareum provides publicly verifiable, non-equivocating,
censorship-evident, private, and high-performance ledgers. Aquareum ledgers are inte-
grated with a Turing-complete virtual machine, allowing arbitrary transaction processing
logics, including tokens or client-specified smart contracts (see details in Section 7.1).

Next, we aim at interoperability for the environment of Central Bank Digital Cur-
rency (CBDC) containing multiple instances of centralized ledgers (based on Aquareum)
that either represent central banks of more countries or retail banks (with a single central
bank) of a single country. In detail, we present CBDC-AquaSphere [HPH+23] a practi-
cal blockchain interoperability protocol that integrates important features of Digital Euro
Association manifesto [Dig22], such as strong value proposition for the end users, the
highest degree of privacy, and interoperability. On top of the above-mentioned features,
our work also provides proof-of-censorship and atomicity (see details in Section 7.2).

7.1 Aquareum

We depict overview of components that Aquareum consists of in Figure 7.1. In the follow-
ing, we elaborate on the system model and principles of our approach. For background
related to integrity preserving data structures and trusted computing, we refer the reader
to Section 2.8 and Section 2.11.
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Figure 7.1: Aquareum components. Trusted components are depicted in green.

Notation

By {msg}U, we denote the message msg digitally signed by U, and by msg.σ we refer
to a signature; h(.) stands for a cryptographic hash function; ∥ is the string concatenation;
% represents modulo operation over integers; Σp.{KeyGen,V erify,Sign} represents
a signature (and encryption) scheme of the platform p, where p ∈ {pb,tee} (i.e., public
blockchain platform and trusted execution environment platform); and SKp

U, PKp
U is the

private/public key-pair of U, under Σp. Then, we use πs for denoting proofs of various
data structures s ∈ {mk,mem,inc}: πmk denotes the inclusion proof in the Merkle tree,
πmem and πinc denote the membership proof and the incremental proof in the history tree,
respectively.

7.1.1 System Model

In Aquareum, an operator is an entity that maintains and manages a ledger containing
chronologically sorted transactions. Clients interact with the ledger by sending requests,
such as queries and transactions to be handled. We assume that all involved parties can
interact with a blockchain platform supporting smart contracts (e.g., Ethereum). Next,
we assume that the operator has access to a TEE platform (e.g., Intel SGX). Finally, we
assume that the operator can be malicious and her goals are as follows:

• Violation of the ledger’s integrity by creating its internal inconsistent state – e.g.,
via inserting two conflicting transactions or by removing/modifying existing trans-
actions.

• Equivocation of the ledger by presenting at least two inconsistent views of the
ledger to (at least) two distinct clients who would accept such views as valid.

• Censorship of client queries without leaving any audit trails evincing the censorship
occurrence.
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Next, we assume that the adversary cannot undermine the cryptographic primitives used,
the underlying blockchain platform, and the TEE platform deployed.

Desired Properties

We target the following security properties for Aquareum ledgers:

Verifiability: clients should be able to obtain easily verifiable evidence that the ledger
they interact with is internally correct and consistent. In particular, it means that
none of the previously inserted transaction was neither modified nor deleted, and
there are no conflicting transactions. Traditionally, the verifiability is achieved by
replicating the ledger (like in blockchains) or by trusted auditors who download the
full copy of the ledger and sequentially validate it. However, this property should
be provided even if the operator does not wish to share the full database with third
parties. Besides, the system should be self-auditable, such that any client can easily
verify (and prove to others) that some transaction is included in the ledger, and she
can prove the state of the ledger at the given point in time.

Non-Equivocation: the system should protect from forking attacks and thus guarantee
that no concurrent (equivocating) versions of the ledger exist at any point in time.
The consequence of this property is that whenever a client interacts with the ledger
or relies on the ledger’s logged artifacts, the client is ensured that other clients have
ledger views consistent with her view.

Censorship Evidence: preventing censorship in a centralized system is particularly chal-
lenging, as its operator can simply pretend unavailability in order to censor undesired
queries or transactions. Therefore, this property requires that whenever the operator
censors client’s requests, the client can do a resolution of an arbitrary (i.e., censored)
request publicly. We emphasize that proving censorship is a non-trivial task since
it is difficult to distinguish “pretended” unavailability from “genuine” one. Censor-
ship evidence enables clients to enforce potential service-level agreements with the
operator, either by a legal dispute or by automated rules encoded in smart contracts.

Besides those properties, we intend the system to provide privacy (keeping the clients’
communication confidential), efficiency and high performance, not introducing any sig-
nificant overhead, deployability with today’s technologies and infrastructures, as well as
flexibility enabling various applications and scenarios.

7.1.2 High-Level Overview

Aquareum ledger is initialized by an operator (O) who creates an internal ledger (L) that
will store all transactions processed and the state that they render. Initially, L contains an
empty transaction set and a null state. During the initialization, O creates a TEE enclave
(E) whose role is to execute updates of L and verify consistency of L before each update.
Initialization of E involves the generation of two public private key pairs – one for the
signature scheme of TEE (i.e., PKtee

E ,SKtee
E ) and one for the signature scheme of the
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Figure 7.2: Operation procedure of Aquareum ledger.

public blockchain (i.e., PKpb
E ,SKpb

E ).1 The code of E is public (see Algorithm 12 and
Algorithm 13), and it can be remotely attested with the TEE infrastructure by any client.

Next, O generates her public-private key pair (i.e., PKO,SKO) and deploys a special
smart contract S (see Algorithm 11) initialized with the empty L represented by its hash
LHash, the operator’s public key PKO, and both enclave public keys PKtee

E and PKpb
E .

After the deployment of S, an instance of L is uniquely identified by the address of S.
A client (C) wishing to interact with L obtains the address of S and performs the remote
attestation of E using the PKtee

E .

Whenever C sends a transaction to O (see Figure 7.2), E validates whether it is au-
thentic and non-conflicting; and if so, E updates L with the transaction, yielding the new
version of L. The C is responded with a receipt and “a version transition of L”, both
signed by E, which prove that the transaction was processed successfully and is included
in the new version of L. For efficiency reasons, transactions are processed in batches that
are referred to as blocks. In detail, O starts the update procedure of L (see Figure 7.2) as
follows:

a) O sends all received transactions since the previous update to E, together with the
current partial state of L and a small subset of L’s data ∂Li, such that h(∂Li) = h(Li),
which is required to validate L’s consistency and perform its incremental extension.

b) E validates and executes the transactions in its virtual machine, updates the current par-
tial state and partial data of L, and finally creates a blockchain transaction2 {h(∂Li),
h(∂Li+1)}E signed by SKpb

E , which represents a version transition of the ledger from
version i to its new version i+1, also referred to as the version transition pair.

c) The blockchain transaction with version transition pair is returned to O, who sends
this transaction to S.

d) S accepts the second item of the version transition pair iff it is signed by SKpb
E and the

1Note that neither of the private keys ever leaves E.
2Note that {h(∂Li),h(∂Li+1)}E = {h(Li),h(Li+1)}E
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Algorithm 11: The program progS of the smart contract S
1 ▷ DECLARATION OF TYPES AND CONSTANTS:
2 CensInfo { etx,equery,status,edata },
3 msg: a current transaction that called S,

4 ▷ DECLARATION OF FUNCTIONS:
5 function Init(PKpb

E ,PKtee
E ,PKO) public

6 PKtee
E [].add(PKtee

E ); ▷ PK of enclave E under Σtee.

7 PKpb
E [].add(PKpb

E ); ▷ PK of enclave E under Σpb.
8 PKpb

O ← PKO; ▷ PK of operator O under Σpb.
9 LRootpb ←⊥; ▷ The most recent root hash of L synchronized with S.

10 censReqs← []; ▷ Request that Cs wants to resolve publicly.

11 function PostLRoot(rootA,rootB ,σ) public
12 ▷ Verify whether a state transition was made within E.
13 assert Σpb.verify((σ,PKpb

E [-1]),(rootA,rootB));
14 ▷ Verify whether a version transition extends the last one.
15 if LRootpb = rootA then
16 LRootpb ← rootB ; ▷ Do a version transition of L.

17 function ReplaceEnc(PKNpb
E ,PKNtee

E ,rA,rB ,σ,σmsg) public
18 ▷ Called by O in the case of enclave failure.
19 assert Σpb.verify((σmsg ,PKpb

O ),msg); ▷ Avoiding MiTM attack.
20 PostLRoot(rA,rB ,σ) ; ▷ Do a version transition.
21 PKtee

E .add(PKNtee
E ); ▷ Upon change, Cs make remote attestation.

22 PKpb
E .add(PKNpb

E );

23 function SubmitCensTx(etx,σmsg) public
24 ▷ Called by C in the case her TX is censored.
25 accessControl(σmsg ,msg.PKpb

C );
26 censReqs.add(CensInfo(etx,⊥,⊥,⊥));

27 function ResolveCensTx(idxreq ,status,σ) public
28 ▷ Called by O to prove that C’s TX was processed.
29 assert idxreq < |censReqs|;
30 r ← censReqs[idxreq ];
31 assert Σpb.verify((σ,PKpb

E [-1]), (h(r.etx),status));
32 r.status← status;

33 function SubmitCensQry(equery,σmsg) public
34 ▷ Called by C in the case its read query is censored.
35 accessControl(σmsg ,msg.PKpb

C );
36 censReqs.add(CensInfo(⊥,equery,⊥,⊥));

37 function ResolveCensQry(idxreq ,status,edata,σ) public
38 ▷ Called by O as a response to the C’s censored read query.
39 assert idxreq < |censReqs|;
40 r ← censReqs[idxreq ];
41 assert Σpb.verify((σ,PKpb

E [-1]),(h(r.equery),status,h(edata)));
42 r.{edata← edata,status← status};

current hash stored by S (i.e., LHash) is equal to the first item of the pair.

After the update of L is finished, clients with receipts can verify that their transactions
were processed by E (see details in [HS20]). The update procedure ensures that the
new version of L is: (1) internally correct since it was executed by trusted code of E,
(2) a consistent extension of the previous version – relying on trusted code of E and a
witnessed version transition by S, and (3) non-equivocating since S stores only hash of a
single version of L (i.e., LHash) at any point in time.
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Algorithm 12: The program progE of enclave E
1 ▷ DECLARATION OF TYPES AND FUNCTIONS:
2 Header { ID, txsRoot, rcpRoot, stRoot};
3 #(r)→ v: denotes the version v of L having LRoot = r,
4 ▷ VARIABLES OF TEE:
5 SKtee

E ,PKtee
E : keypair of E under Σtee,

6 SKpb
E ,PKpb

E : keypair of E under Σpb,
7 hdrlast ←⊥: the last header created by E,
8 LRootpb ←⊥: the last root of L flushed to PB,
9 LRootcur ←⊥: the root of L∪ blksp (not flushed to PB),

10 IDcur ← 1: the current version of L (not flushed to PB),

11 ▷ DECLARATION OF FUNCTIONS:
12 function Init() public
13 (SKpb

E , PKpb
E )← Σpb.Keygen();

14 (SKtee
E , PKtee

E )← Σtee.Keygen();
15 Output(PKtee

E ,PKpb
E );

16 function Exec(txs[],∂stold, πinc
next,LRoottmp) public

17 assert ∂stold.root = hdrlast.stRoot;
18 ∂stnew,rcps,txser ← processTxs(txs, ∂stold, πinc

next, LRoottmp);
19 σ ← Σpb.sign(SK

pb
E ,(LRootpb,LRootcur));

20 Output(LRootpb,LRootcur,∂stnew,hdrlast,rcps, txser , σ);

21 function Flush() public
22 LRootpb ← LRootcur ; ▷ Shift the version of L synchronized with PB.

23 function processTxs(txs[],∂stold, πinc
next, LRoottmp) private

24 ∂stnew,rcps[],txser ← runVM(txs, ∂stold); ▷ Run txs in VM.
25 txs← txs \ txser ; ▷ Filter out parsing errors/wrong signatures.
26 hdr ← Header(IDcur,MkRoot(txs),MkRoot(rcps),∂stnew.root));
27 hdrlast ← hdr;
28 IDcur ← IDcur +1;
29 LRootcur ← newLRoot(hdr, πinc

next, LRoottmp);
30 return ∂stnew , rcps, txser ;

31 function newLRoot(hdr, πinc
next, LRoottmp) private

32 ▷ A modification of the incr. proof. template to contain hdr
33 assert #(LRootcur)+ 1 = #(LRoottmp); ▷ 1 block ∆.
34 assert πinc

next.V erify(LRootcur, LRoottmp);
35 πinc

next[-1]← h(hdr);
36 return deriveNewRoot(πinc

next);

Whenever C suspects that her transactions or read queries are censored, C might report
censorship via S. To do so, C encrypts her request with PKpb

E and publishes it on the
blockchain. O noticing a new request is obligated to pass the request to E, which will
process the request and reply with an encrypted response (by PKpb

C ) that is processed by
S. If a pending request at S is not handled by O, it is public evidence that O censors
the request. We do not specify how can C use such a proof; it could be shown in a legal
dispute or S itself could have an automated deposit-based punishments rules.

Design Consideration

We might design L as an append-only chain (as in blockchains), but such a design would
bring a high overhead on clients who want to verify that a particular block belongs to L.
During the verification, clients would have to download the headers of all blocks between
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Algorithm 13: Censorship resolution in E (part of progE).
1 function Decrypt(edata) public
2 data← Σpb.Decrypt(SKpb

E ,edata);
3 Output(data);

4 function SignTx(etx,πmk
tx ,hdr,πmem

hdr ) public
5 ▷ Resolution of a censored write tx.
6 tx← Σpb.Decrypt(SKpb

E ,etx);
7 if ERROR = parse(tx) then
8 status = PARSING ERROR;

9 else if ERROR = Σpb.V erify((tx.σ,tx.PKpb
C ),tx) then

10 status = SIGNATURE ERROR;

11 else
12 ▷ Verify proofs binding TX to header and header to L.
13 assert πmk

tx .Verify(tx,hdr.txsRoot);
14 assert πmem

hdr .Verify(hdr.ID,hdr,LRootpb);
15 status← INCLUDED;

16 ▷ TX was processed, so E can issue a proof.
17 σ ← Σpb.sign(SK

pb
E , (h(etx),status));

18 Output(σ, status);

19 function SignQryTx(equery,blk,πmem
hdr ) public

20 ▷ Resolution of a censored read tx query.
21 ...,idtx,idblk,PKpb

C ← parse(Decrypt(equery));
22 if idblk > #(LRootpb) then
23 status← BLK NOT FOUND, edata←⊥;

24 else
25 assert πmem

hdr .Verify(blk.hdr.ID,blk.hdr,LRootpb);
26 assert VerifyBlock(blk); ▷ Full check of block consistency.
27 tx← findTx(idtx,blk.txs);
28 if ⊥ = tx then
29 status← TX NOT FOUND, edata←⊥;

30 else
31 status← OK, edata← Σpb.Encrypt(PKpb

C ,tx);

32 σ ← Σpb.sign(SK
pb
E , (h(equery),status,edata));

33 Output(σ, status, edata);

34 function SignQryAS(equery,as,πmpt
as ) public

35 ▷ Resolution of a censored read account state query.
36 ...,idas,PKpb

C ← parse(Decrypt(equery));
37 if ⊥ = as then
38 assert πmpt

as .V erifyNeg(idas,LRootcur);
39 status← NOT FOUND, edata←⊥;

40 else
41 assert πmpt

as .V erify(idas,LRootcur);
42 status← OK, edata← Σpb.Encrypt(PKpb

C ,as);

43 σ ← Σpb.sign(SK
pb
E , (h(equery),status,h(edata)));

44 Output(σ, status, edata);

the head of L and the block in the query, resulting into linear space & time complexity. In
contrast, when a history tree (see Section 2.8.2) is utilized for integrity preservation of L,
the presence of any block in L can be verified with logarithmic space and time complexity.
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Terminated and Failed Enclave

During the execution of progE, E stores its secrets and state objects in a sealed file, which
is updated and stored on the hard drive of O with each new block created. Hence, if E
terminates due a temporary reason, such as a power outage or intentional command by
O, it can be initialized again by O who provides E with the sealed file; this file is used to
recover its protected state objects.

However, if E experiences a permanent hardware failure of TEE, the sealed file can-
not be decrypted on other TEE platforms. Therefore, we propose a simple mechanism
that deals with this situation under the assumption that O is the only allowed entity that
can replace the platform of E. In detail, O first snapshots the header hdrsync of the last
block that was synchronized with S as well as all blocks blksunsync of L that were not
synchronized with S. Then, O restores L and her internal state objects into the version
#(LRootpb). After the restoration of L, O calls the function ReInit() of E (see Algo-
rithm 14) with hdrsync, blksunsync, and LRootpb as the arguments. In this function, E
first generates its public/private key-pair SKpb

E ,PKpb
E , and then stores the passed header

as hdrlast and copies the passed root hash into LRootcur and LRootpb. Then, E iterates
over all passed unprocessed blocks and their transactions txs, which are executed within
VM of E. Before the processing of txs of each passed block, E calls the unprotected code
of O to obtain the current partial state ∂stold of L and incremental proof template (see
details in [HS20]) that serves for extending L within E. However, these unprotected calls
are always verified within E and malicious O cannot misuse them. In detail, E verifies
∂stold obtained from O against the root hash of the state stored in the last header hdrlast of
E, while the incremental proof template is also verified against LRootcur in the function
newLRoot() of E.

Next, E processes txs of a block, extends L, and then it calls the unprotected code of
O again, but this time to process txs of the current block by O, and thus getting the same
version and state of L in both E and O. Note that any adversarial effect of this unprotected
call is eliminated by the checks made after the former two unprotected calls. When all
passed blocks are processed, E signs the version transition pair ⟨LRootpb,LRootcur⟩ and

Algorithm 14: Reinitialization of a failed E (part of progE).
1 function ReInit(LRootold, prevBlks[],hdrlast) public
2 (SKpb

E , PKpb
E )← Σpb.Keygen();

3 hdrlast ← hdrlast;
4 LRootcur ← LRootold,LRootpb ← LRootold;

5 for {b : prevBlks} do
6 πinc

next, LRoottmp ← progO.nextIncProof();
7 ∂stold ← progO.getPartialState(b.txs);
8 assert ∂stold.root = hdrlast.stRoot;
9 ...← processTxs(b.txs,∂stold,πinc

next, LRoottmp);
10 LRootret ← progO.runVM(b.txs); ▷ Run VM at O.
11 assert LRootcur = LRootret; ▷ E and O are at the same point.

12 σ ← Σpb.sign(SK
pb
E ,(LRootpb,LRootcur));

13 Output(LRootpb,LRootcur,σ,PKE
pb,PKE

tee);
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returns it to O, together with the new public keys of E. O creates a blockchain transaction
that calls the function ReplaceEnc() of S with data from E passed in the arguments. In
ReplaceEnc(), S first verifies whether the signature of the transaction was made by O to
avoid MiTM attacks on this functionality. Then, S calls its function PostLRoot() with
the signed version transition pair in the arguments. Upon the success, the current root
hash of L is updated and S replaces the stored E’s PKs by PKs passed in parameters.
Finally, E informs Cs by an event containing new PKs of E, and Cs perform the remote
attestation of progE using the new key PKE

tee and the attestation service. We refer the
reader to Appendix of [HS20] for the relevant pseudo-code of O.

7.1.3 Implementation

We have made a proof-of-concept implementation of Aquareum, where we utilized Intel
SGX and C++ for instantiation of E, while S was built on top of Ethereum and Solidity.
Although Aquareum can be integrated with various VMs running within E, we selected
EVM since it provides a Turing-complete execution environment and it is widely adopted
in the community of decentralized applications. In detail, we utilized OpenEnclave SDK
[Ope20] and a minimalistic EVM, called eEVM [Mic20]. However, eEVM is designed
with the standard C++ map for storing the full state of L, which lacks efficient integrity-
oriented operations. Moreover, eEVM assumes the unlimited size of E for storing the
full state, while the size of E in SGX is constrained to ∼100 MB. This might work with
enabled swapping but the performance of E would be significantly deteriorated with a
large full state. Due to these limitations, we replaced eEVM’s full state handling by
Merkle-Patricia Trie from Aleth [Eth19], which we customized to support operations with
the partial state. O and C were also implemented in C++.

Our implementation enables the creation and interaction of simple accounts as well
as the deployment and execution of smart contracts written in Solidity. We verified the
code of S by static/dynamic analysis tools Mythril [Con19b], Slither [cry18], and Con-
tractGuard [Gua19]; none of them detected any vulnerabilities. The source code of our
implementation will be made available upon publication.

7.1.4 Performance Evaluation

All our experiments were performed on commodity laptop with Intel i7-10510U CPU
supporting SGX v1, and they were aimed at reproducing realistic conditions – i.e., they
included all operations and verifications described in [HS20], such as verification of re-
coverable ECDSA signatures, aggregation of transactions by Merkle tree, integrity verifi-
cation of partial state, etc. We evaluated the performance of Aquareum in terms of trans-
action throughput per second, where we distinguished transactions with native payments
(see Figure 7.3) and transactions with ERC20 smart contract calls (see Figure 7.4). All
measurements were repeated 100 times, and we depict the mean and standard deviation
in the graphs.
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Figure 7.3: Performance of Aquareum for native payments.
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Figure 7.4: Performance of Aquareum for ERC20 smart contract calls.

A Size of the Full State. The performance of Aquareum is dependent on a size of
data that is copied from O to E upon call of Exec(). The most significant portion of the
copied data is a partial state, which depends on the height of the MPT storing the full state.
Therefore, we repeated our measurements with two different full states, one containing
1k accounts and another one containing 10k accounts. In the case of native payments,
the full state with 10k accounts caused a decrease of throughput by 7.8%-12.1% (with
enabled TB) in contrast to the full state with 1k accounts. In the case of smart contract
calls, the performance deterioration was in the range 2.8%-8.4% (with enabled TB).

Block Size & Turbo Boost. In each experiment, we varied the block size in terms of the
number of transactions in the block. Initially, we performed measurements with enabled
Turbo Boost (see Figure 7.3a and Figure 7.4a), where we witnessed a high throughput and
its high variability. For smart contract calls (see Figure 7.4a), the throughput increased
with the size of the block modified from 1 to 1000 by 45.7% and 38.7% for a full state with
1k and 10k accounts, respectively. However, in the case of native payments the improve-
ment was only 4.3% and 2.8%, while the throughput was not increased monotonically
with the block size. Therefore, we experimentally disabled Turbo Boost (see Figure 7.3b)
and observed the monotonic increase of throughput with increased block size, where the
improvement achieved was 11.41% and 12.26% for a full state with 1k and 10k accounts,
respectively. For completeness, we also disabled Trubo Boost in the case of smart con-
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Figure 7.5: Costs for resolution of censored transactions and queries.

tract calls (see Figure 7.4b), where the performance improvement was 20.9% and 26.7%
for both full states under consideration.

Analysis of Costs

Besides the operational cost resulting from running the centralized infrastructure, Aquareum
imposes costs for interaction with the public blockchain with S deployed. The deployment
cost of S is 1.51M of gas and the cost of most frequent operation – syncing L with S (i.e.,
PostLRoot()) – is 33k of gas, which is only 33% higher than the cost of a standard
Ethereum transaction.3 For example, if L is synced with S every 5 minutes, O’s monthly
expenses for this operation would be 285M of gas, while in the case of syncing every
minute, monthly expenses would be 1,425M of gas.

Censorship Resolution. Our mechanism for censorship resolution imposes costs on Cs
submitting requests as well as for O resolving these requests. The cost of submitting a
censored request is mainly dependent on the size of the request/response and whether S
keeps data of a request/response in the storage (i.e., an expensive option) or whether it
just emits an asynchronous event with the data (i.e., a cheap option). We measured the

3This cost is low since we leverage the native signature scheme of the blockchain Σpb.
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costs of both options and the results are depicted in Figure 7.5. Nevertheless, for practical
usage, only the option with event emitting is feasible (see solid lines in Figure 7.5).

Figure 7.5a and Figure 7.5b depict the resolution of a censored transaction, which is
more expensive for C than for O, who resolves each censored transaction with constant
cost 49k of gas (see Figure 7.5b). On the other hand, the resolution of censored queries is
more expensive for O since she has to deliver a response with data to S (see Figure 7.5d),
while C submits only a short query, e.g., get a transaction (see Figure 7.5c).

7.1.5 Security Analysis and Discussion

In this section, we demonstrate resilience of Aquareum against adversarial actions that
the malicious operatorA can perform to violate the desired properties (see Section 7.1.1).

Theorem 6. (Correctness)A is unable to modify the full state of L in a way that does not
respect the semantics of VM deployed in E.

Justification. The update of the L’s state is performed exclusively in E. Since E contains
trusted code that is publicly known and remotely attested by Cs, A cannot tamper with
this code.

Theorem 7. (Consistency) A is unable to extend L and modify the past records of L.

Justification. All extensions of L are performed within trusted code of E, while utilizing
the history tree [CW09] as a tamper evident data structure, which enables us to make only
such incremental extensions of L that are consistent with L’s past.

Theorem 8. (Verifiability) A is unable to unnoticeably modify or delete a transaction tx
that was previously inserted to L using ΠN , if sync with S was executed anytime afterward.

Justification. Since tx was correctly executed (Theorem 6) as a part of the block bi in
a trusted code of E, E produced a signed version transition pair {h(Li−1),h(Li)}E of L
from the version i− 1 to the new version i that corresponds to L with bi included. A could
either sync L with S immediately after bi was appended or she could do it n versions later.
In the first case,A published {h(Li−1),h(Li)}E to S, which updated its current version of
L to i by storing h(Li) into LRootpb. In the second case, n blocks were appended to L,
obtaining its (i+n)th version. E executed all transactions from versions (i+1),...,(i+
n) of L, while preserving correctness (Theorem 6) and consistency (Theorem 7). Then E
generated a version transition pair {h(Li−1),h(Li+n)}E and A posted it to S, where the
current version of L was updated to i+n by storing h(Li+n) into LRootpb. When any
C requests tx and its proofs from A with regard to publicly visible LRootpb, she might
obtain a modified tx′ with a valid membership proof πmem

hdri
of the block bi but an invalid

Merkle proof πmk
tx′ , which cannot be forged. 2

In the case of tx deletion, A provides C with the tampered full block b′i (maliciously
excluding tx) whose membership proof πmem

hdr′i
is invalid – it cannot be forged.
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Theorem 9. (Non-Equivocation) Assuming L synced with S: A is unable to provide two
distinct Cs with two distinct valid views on L.

Justification. Since L is regularly synced with publicly visible S, and S stores only a
single current version of L (i.e., LRootpb), all Cs share the same view on L.

Theorem 10. (Censorship Evidence) A is unable to censor any request (transaction or
query) from C while staying unnoticeable.

Justification. If C’s request is censored, C asks for a resolution of the request through
public S. A observing the request might either ignore it and leave the proof of censoring
at S or she might submit the request to E and obtain an enclave signed proof witnessing
that a request was processed – this proof is submitted to S, whereby publicly resolving
the request.

Other Properties and Implications

Privacy VS Performance. Aquareum provides privacy of data submitted to S dur-
ing the censorship resolution since the requests and responses are encrypted. However,
Aquareum does not provide privacy against O who has the read access to L. Although
Aquareum could be designed with the support of full privacy, a disadvantage of such an
approach would be the performance drop caused by the decryption of requested data from
L upon every C’s read query, requiring a call of E. In contrast, with partial-privacy, O is
able to respond queries of Cs without touching E.

Access Control at S. Cs interact with S only through functions for submission of cen-
sored requests. Nevertheless, access to these functions must be regulated through an
access control mechanism in order to avoid exhaustion (i.e., DoS) of this functionality
by external entities. This can be performed with a simple access control requiring Cs to
provide access tickets when calling the functions of S. An access ticket could be provi-
sioned by C upon registration at O, and it could contain PKpb

C with a time expiration of
the subscription, signed by E. Whenever C initiates a censored request, verification of an
access ticket would be made by S, due to which DoS of this functionality would not be
possible.

Security of TEE. Aquareum assumes that its TEE platform is secure. However, previ-
ous research showed that this might not be the case in practical implementations of TEE,
such as SGX that was vulnerable to memory corruption attacks [BCD+18] as well as side
channel attacks [BCD+17, VBMW+18, LKO+21, MOG+20]. A number of software-
based defense and mitigation techniques have been proposed [SLKP17, GLS+17, CZRZ17,
BCD+17, SLK+17] and some vulnerabilities were patched by Intel at the hardware level
[Int18]. Nevertheless, we note that Aquareum is TEE-agnostic thus can be integrated with
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other TEEs such as ARM TrustZone or RISC-V architectures (using Keystone-enclave
[Enc19] or Sanctum [CLD16]).

Another class of SGX vulnerabilities was presented by Cloosters et al. [CRD20] and
involved incorrect application designs enabling arbitrary reads and writes of protected
memory or work done by Borrello et al. which involves more serious microarchitec-
tural flaws in chip design [BKS+22]. Since the authors did not provide public with their
tool (and moreover it does not support Open-enclave SDK), we did manual inspection of
Aquareum code and did not find any of the concerned vulnerabilities.

Security vs. Performance. In SGX, performance is always traded for security, and
our intention was to optimize the performance of Aquareum while making custom secu-
rity checks whenever possible instead of using expensive buffer allocation and copying
to/from E by trusted runtime of SDK (trts).

• Output Parameters: In detail, in the case of ECALL Exec() function where E is
provided with [user check] output buffers pointing to host memory, the strict
location-checking is always made in E while assuming maximal size of the output
buffer passed from the host (i.e., oe is outside enclave(buf, max)). Moreover,
the maximal size is always checked before any write to such output buffers. The
concerned parameters of Exec() are buffers for newly created and modified account
state objects.

• Input Parameters: On the other hand, in the case of input parameters of Exec(),
we utilize embedded buffering provided by trts of SDK since E has to check the
integrity of input parameters before using them, otherwise Time-of-Check != Time-
of-Use vulnerability [CRD20] might be possible. The concerned input parameters
of Exec() are transactions to process and their corresponding codes.

Time to Finality. Many blockchain platforms suffer from accidental forks, which tem-
porarily create parallel inconsistent blockchain views. To mitigate this phenomenon, it
is recommended to wait a certain number of block confirmations after a given block is
created before considering it irreversible with overwhelming probability. This waiting
time (a.k.a., time to finality) influences the non-equivocation property of Aquareum, and
Aquareum inherits it from the underlying blockchain platform. Most blockchains have a
long time to finality, e.g., ∼10mins in Bitcoin [Nak08], ∼3mins in Ethereum [Woo14a],
∼2mins in Cardano [KRDO17]. However, some blockchains have a short time to finality,
e.g., HoneyBadgerBFT [MXC+16], Algorand [GHM+17], and StrongChain [SRHS19].
The selection of the underlying blockchain platform is dependent on the requirements of
the particular use case that Aquareum is applied for.
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7.2 CBDC-AquaSphere

For background related to blockchains, integrity-preserving data structures, atomic swap,
and CBDC, we refer the reader to Chapter 2.

7.2.1 Problem Definition

Our goal is to propose a CBDC approach that respects the features proposed in DEA
manifesto [Dig22] released in 2022, while on top of it, we assume other features that
might bring more benefits and guarantees. First, we start with a specification of the desired
features related to a single instance of CBDC that we assume is operated by a single entity
(further a bank or its operator) that maintains its ledger. Later, we describe desired features
related to multiple instances of CBDC that co-exist in the ecosystem of wholesale and/or
retail CBDC.4 In both cases, we assume that a central bank might not be a trusted entity.
All features that respect this assumption are marked with asterisk ∗ and are considered as
requirements for such an attacker model.

Single Instance of CBDC

When assuming a basic building block of CBDC – a single bank’s CBDC working in an
isolated environment from the other banks – we specify the desired features of CBDC as
follows:

Correctness of Operation Execution∗: The clients who are involved in a monetary op-
eration (such as a transfer) should be guaranteed with a correct execution of their
operation.

Integrity∗: The effect of all executed operations made over the client accounts should
be irreversible, and no “quiet” tampering of the data by a bank should be possible.
Also, no conflicting transactions can be (executed and) stored by the CBDC instance
in its ledger.

Verifiability∗: This feature extends integrity and enables the clients of CBDC to obtain
easily verifiable evidence that the ledger they interact with is internally correct and
consistent. In particular, it means that none of the previously inserted transactions
was neither modified nor deleted.

Non-Equivocation∗: From the perspective of the client’s security, the bank should not be
able to present at least two inconsistent views on its ledger to (at least) two distinct
clients who would accept such views as valid.

Censorship Evidence∗: The bank should not be able to censor a client’s request without
leaving any public audit trails proving the censorship occurrence.

Transparent Token Issuance∗: Every CBDC-issued token should be publicly visible
(and thus audit-able) to ensure that a bank is not secretly creating token value “out-

4Note that we will propose two deployment scenarios, one for the wholesale environment and the second
one for the retail environment of multiple retail banks interacting with a single central bank.
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of-nothing,” and thus causing uncontrolled inflation. The transparency also holds for
burning of existing tokens.

High Performance: A CBDC instance should be capable of processing a huge number
of transactions per second since it is intended for daily usage by thousands to millions
of people.

Privacy: All transfers between clients as well as information about the clients of CBDC
should remain private for the public and all other clients that are not involved in par-
ticular transfers. However, a bank can access this kind of information and potentially
provide it to legal bodies, if requested.

Multiple Instances of CBDC

In the case of multiple CBDC instances that can co-exist in a common environment, we
extend the features described in the previous listing by features that are all requirements:

Interoperability∗: As a necessary prerequisite for co-existence of multiple CBDC in-
stances, we require them to be mutually interoperable, which means that tokens is-
sued by one bank can be transferred to any other bank. For simplicity, we assume
that all the CBDC instances are using the unit token of the same value within its
ecosystem.5 At the hearth of interoperability lies atomicity of supported operations.
Atomic interoperability, however, requires means for accountable coping with cen-
sorship and recovery from stalling. We specify these features in the following.
Atomicity∗: Any operation (e.g., transfer) between two interoperable CBDC in-

stances must be either executed completely or not executed at all. As a con-
sequence, no new tokens can be created out-of-nothing and no tokens can be
lost in an inter-bank operation. Note that even if this would be possible, the
state of both involved instances of CBDC would remain internally consistent;
therefore, consistency of particular instances (Section 7.2.1) is not a sufficient
feature to ensure atomicity within multiple interoperable CBDC instances. This
requirement is especially important due to trustless assumption about particular
banks, who might act in their benefits even for the cost of imposing the extreme
inflation to the whole system.6

Inter-CBDC Censorship Evidence∗: Having multiple instances of CBDC enables
a different way of censorship, where one CBDC (and its clients) might be cen-
sored within some inter-CBDC operation with another CBDC instance, pre-
cluding them to finish the operation. Therefore, there should exist a means how
to accountably detect this kind of censorship as well.

Inter-CBDC Censorship Recovery∗: If the permanent censorship happens and is
indisputably proven, it must not impact other instances of CBDC, including the
ones that the inter-CBDC operations are undergoing. Therefore, the interoper-

5On the other hand, conversions of disparate CBDC-backed tokens would be possible by following
trusted oracles or oracle networks.

6For example, if atomicity is not enforced, one bank might send the tokens to another bank, while not
decreasing its supply due to pretended operation abortion.
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able CBDC environment should provide a means to recover from inter-CBDC
censorship of unfinished operations.

Identity Management of CBDC Instances∗: Since we assume that CBDC instances are
trustless, in theory, there might emerge a fake CBDC instance, pretentding to act
as a valid one. To avoid this kind of situation, it is important for the ecosystem of
wholesale CBDC to manage identities of particular valid CBDC instances in a secure
manner.

Adversary Model

The attacker can be represented by the operator of a bank or the client of a bank, and
her intention is to break functionalities that are provided by the features described above.
Next, we assume that the adversary cannot undermine the cryptographic primitives used,
the blockchain platform, and the TEE platform deployed.

7.2.2 Proposed Approach

We propose a holistic approach for the ecosystem of wholesale and/or retail CBDC, which
aims at meeting the features described in Section 7.2.1. To accomplish these features, we
leverage interesting properties stemming from a combination of a public blockchain (with
smart contract platform) and TEE. Such a combination was proposed for various purposes
in related work, out of which the use case of generic centralized ledger Aquareum [HS20]
is most convenient to build on. Therefore, we utilize Aquareum as a building block for
a single instance of CBDC, and we make a few CBDC-specific modifications to it, en-
hancing its transparency and functionality. Our modifications are outlined in Figure 7.6
by red color, while the details of them (especially changes in programs of smart contract
and enclave) will be described in this section. First, we start by a description of a single
CBDC instance and then we extend it to a fully interoperable environment consisting of
multiple CBDC instances.
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Figure 7.6: Architecture of Aquareum with our modifications in red.
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Note that we focus solely on the transfer of tokens operation within the context of
CBDC interoperability. However, our approach could be extended to different operations,
involving inter-CBDC smart contract invocations. Also, note that to distinguish between
smart contracts on a public blockchains and smart contracts running in TEE, we will
denote latter as micro contracts (or µ-contracts). Similarly, we denote transactions sent
to TEE as micro transactions (or µ-transactions) and blocks created in the ledger of
CBDC instance as micro blocks (or µ-blocks).

A CBDC Instance

Alike in Aquareum, the primary entity of each CBDC instance is its operator O (i.e., a
bank), who is responsible for (1) maintaining the ledger L, (2) running the TEE enclave
E, (3) synchronization of the L’s snapshot to a public blockchain with smart contract
IPSC (Integrity Preserving Smart Contract), (4) resolving censorship requests, and (5) a
communication with clients Cs.

Token Issuance. On top of Aquareum’s S, our IPSC contains snapshotting of the total
issued tokens ti by the current CBDC instance and the total supply ts available at the in-
stance for the purpose of transparency in token issuance (and potentially even burning).
Therefore, we extend the E-signed version transition pair periodically submitted to IPSC
by these two fields that are relayed to IPSC upon snapshotting L (see red text in Fig-
ure 7.6). Notice that ti = ts in the case of a single instance since the environment of the
instance is isolated.

• An Inflation Bound. Although snapshotting the total tokens in circulation is use-
ful for the transparency of token issuance, O might still hyper-inflate the CBDC
instance. Therefore, we require O to guarantee a maximal inflation rate ir per year,
which can be enforced by IPSC as well as E since the code of both is publicly visible
and attestable. The ir should be adjusted to a constant value by O at the initializa-
tion of IPSC and verified every time the new version of L is posted to IPSC; in the
case of not meeting the constrain, the new version would not be accepted at IPSC.
However, another possible option is that the majority vote of Cs can change ir even
after initialization. Besides, E also enforces ir on ti and does not allow O to issue
yearly more tokens than defined by ir. Nevertheless, we put the inflation rate logic
also into IPSC for the purpose of transparency.

Initialization. First, E with program progE (see Algorithm 12 of Appendix) generates
and stores two key pairs, one under Σpb (i.e., SKpb

E , PKpb
E ) and one under Σtee (i.e.,

SKtee
E , PKtee

E ). Then, O generates one key pair under Σpb (i.e., SKpb
O , PKpb

O ), which
is then used as the sender of a transaction deploying IPSC with program progIPSC (see
Algorithm 15 of Appendix) at public blockchain with parameters PKpb

E , PKtee
E , PKpb

O , ti,
and ir. Then, IPSC stores the keys in parameters, sets the initial version of L by putting
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LRootpb ← ⊥, and sets the initial total issued tokens and the total supply, both to ti.7

• Client Registration. A client C registers with O, who performs know your customer
(KYC) checks and submits her public key PKC

pb to E. Then, E outputs an execution
receipt about the successful registration of C as well as her access ticket tC that will
serve for potential communication with IPSC and its purpose is to avoid spamming
IPSC by invalid requests. In detail, tC is the E-signed tuple that contains PKC

pb and
optionally other fields such as the account expiration timestamp. Next, C verifies
whether her registration (proved by the receipt) was already snapshotted by O at
IPSC.

Normal Operation. Cs send µ-transactions (writing to L) and queries (reading from
L) to O, who validates them and relays them to E, which processes them within its vir-
tual machine (Aquareum uses eEVM [Mic20]). Therefore, L and its state are modified in
a trusted code of E, creating a new version of L, which is represented by the root hash
LRoot of the history tree. Note that program progE is public and can be remotely attested
by Cs (or anybody). O is responsible for a periodic synchronization of the most recent
root hash LRootcur (i.e., snapshotting the current version of L ) to IPSC, running on a
public blockchain PB. Besides, Cs use this smart contract to resolve censored transac-
tions and queries, while preserving the privacy of data.

Censorship Resolution. O might potentially censor some write transactions or read
queries of Cs. However, these can be resolved by Aquareum’s mechanism as follows. If
C’s µ-transaction µ-tx is censored by O, C first creates PKtee

E -encrypted µ-etx (to ensure
privacy in PB), and then she creates and signs a transaction containing C′s access ticket
tC and µ-etx. C sends this transaction to IPSC, which verifies tC and stores µ-etx, which
is now visible to O and the public. Therefore, O might relay µ-etx to E for processing
and then provide E-signed execution receipt to IPSC that publicly resolves this censorship
request. On the other hand, if O were not to do it, IPSC would contain an indisputable
proof of censorship by O on a client C.

Multiple CBDC Instances

The conceptual model of our interoperable CBDC architecture is depicted in Figure 7.7.
It consists of multiple CBDC instances (i.e., at least two), whose Cs communicate in
three different ways: (1) directly with each other, (2) in the instance-to-instance fashion
through the infrastructure of their O as well as counterpart’s O, (3) through PB with
IPSC of both Os and a global registry IMSC managing identities of instances.

For simplified description, in the following we assume the transfer operation where a
local CBDC instance in Figure 7.7 is A (i.e., the sender of tokens) and the external one

7Among these parameters, a constructor of IPSC also accepts the indication whether an instance is
allowed to issue tokens. This is, however, implicit for the single instance, while restrictions are reasonable
in the case of multiple instances.
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Algorithm 15: The program progIPSC of IPSC with our modifications in red (as
opposed to Aquareum).
1 ▷ DECLARATION OF TYPES AND CONSTANTS:
2 CensInfo { µ-etx,µ-equery,status,edata },
3 msg: a current transaction that called IPSC,

4 ▷ DECLARATION OF FUNCTIONS:
5 function Init(PKpb

E ,PKtee
E ,PKO, ir, [ia← T]) public

6 PKtee
E [].add(PKtee

E ); ▷ PK of enclave E under Σtee.
7 PKpb

E [].add(PKpb
E ); ▷ PK of enclave E under Σpb.

8 PKpb
O ← PKO; ▷ PK of operator O under Σpb.

9 LRootpb ←⊥; ▷ The most recent root hash of L synchronized with IPSC.
10 censReqs← []; ▷ Request that Cs wants to resolve publicly.
11 ts ← 0; ▷ The total supply of the instance.
12 ti ← 0; ▷ The total issued tokens by the instance.
13 const issueAuthority ← ia; ▷ Token issuance capability of the instance.
14 const ir ← ir ; ▷ Max. yearly inflation of the instance.
15 const createdAt← timestamp(); ▷ The timestamp of creation a CBDC instance.

16 function snapshotLedger(rootA,rootB , ti, ts, σ) public
17 ▷ Verify whether msg was signed by E.
18 assert Σpb.verify((σ,PKpb

E [-1]),(rootA,rootB , ti, ts));
19 ▷ Snapshot issued tokens and total supply.
20 if issueAuthority then
21 assert meetsInflationRate( ti); ▷ The code is trivial, and we omit it.
22 ti ← ti;

23 else
24 assert ti = ti;

25 ▷ Verify whether a version transition extends the last one.
26 if LRootpb = rootA then
27 LRootpb ← rootB ; ▷ Do a version transition of L.

28 function SubmitCensTx(µ-etx,σmsg) public
29 ▷ Called by C in the case her µ-tx is censored. C encrypts it by PKtee

E .
30 accessControl(σmsg ,msg.PKpb

C );
31 censReqs.add(CensInfo(µ-etx,⊥,⊥,⊥));

32 function ResolveCensTx(idxreq ,status,σ) public
33 ▷ Called by O to prove that C’s µ-tx was processed.
34 assert idxreq < |censReqs|;
35 r ← censReqs[idxreq ];
36 assert Σpb.verify((σ,PKpb

E [-1]), (h(r.µ-etx),status));
37 r.status← status;

38 function SubmitCensQry(µ-equery,σmsg) public
39 ▷ Called by C in the case its read query is censored. C encrypts it by PKtee

E .
40 accessControl(msg, σmsg ,msg.PKpb

C );
41 censReqs.add(CensInfo(⊥,µ-equery,⊥,⊥));

42 function ResolveCensQry(idxreq ,status,edata,σ) public
43 ▷ Called by O as a response to the C’s censored read query.
44 assert idxreq < |censReqs|;
45 r ← censReqs[idxreq ];
46 assert Σpb.verify((σ,PKpb

E [-1]),(h(r.µ-equery),status,h(edata)));
47 r.{edata← edata,status← status};

48 function ReplaceEnc(PKNpb
E ,PKNtee

E ,rA,rB , ti, ts, σ,σmsg) public
49 ▷ Called by O in the case of enclave failure.

50 assert Σpb.verify((σmsg ,PKpb
O ),msg); ▷ Avoiding MiTM attack.

51 snapshotLedger(rA,rB , ti, ts, σ) ; ▷ Do a version transition.
52 PKtee

E .add(PKNtee
E ); ▷ Upon change, Cs make remote attestation.

53 PKpb
E .add(PKNpb

E );
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Figure 7.7: Overview of our CBDC architecture supporting interoperability among multiple
CBDC instances (i.e., banks). The schema depicts two instances, where each of them has its
own centralized ledger L modified in a secure way through TEE of E, while its integrity is en-
sured by periodic integrity snapshots to the integrity preserving smart contract (IPSC) in a public
blockchain PB. Each CBDC instance is registered in the identity management smart contract
IMSC of a public blockchain, serving as a global registry of bank instances. A client who makes
an inter-bank transfer communicates with her bank and the counter-party bank utilizing interoper-
ability micro contracts (IOMC), running in the TEE. Any censored request of a client is resolved
by IPSC of a particular bank and can be initiated by its client or a counter-party client.

is B (i.e., the receiver of tokens). To ensure interoperability, we require a communication
channel of local clients CsA to external clients CsB (the green arrow), the local operator
OA (the black arrow), and the external operator OB (the black dashed arrow). In our inter-
operability protocol ΠT (described later in Section 28), external CsB use the channel with
the local operator OA only for obtaining incremental proofs of LA’s history tree to verify
inclusion of some µ-transactions in LA. However, there might arise a situation in which
OA might censor such queries, therefore, we need to address it by another communication
channel – i.e., the public blockchain PB.

• Censorship of External Clients. We allow external clients CsB to use the same
means of censorship resolution as internal clients of a single CBDC instance (see
Section 53). To request a resolution of a censored query, the external CB uses the
access ticket tCB at IPSCA, which is issued by EA in the first phase of ΠT .

• Identification of Client Accounts To uniquely identify C’s account at a particular
CBDC instance, first it is necessary to specify the globally unique identifier of the
CBDC instance. The best candidate is the blockchain address of the IPSC in PB
since it is publicly visible and unique in PB (and we denote it by IPSC). Then,
the identification of C’s relevant account is a pair CID = {PKC

pb|| IPSC}. Note
that C might use the same PKC

pb for the registration at multiple CBDC instances
(i.e., equivalent of having accounts in multiple banks); however, to preserve better
privacy, making linkage of C’s instances more difficult, we recommend Cs to have
dedicated key pair for each instance.
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Identity Management of CBDC Instances. To manage identities of all CBDC in-
stances in the system, we need a global registry of their identifiers (IPSC addresses).
For this purpose, we use the Identity Management Smart Contract (IMSC) deployed in
PB (see program progIMSC in Algorithm 16). We propose IMSC to be managed in either
decentralized or centralized fashion, depending on the deployment scenario:

• Decentralized Scheme In the decentralized scheme, the enrollment of a new CBDC
instance must be approved by a majority vote of the already existing instances. This
might be convenient for interconnecting central banks from various countries/re-
gions. The enrollment requires creating a request entry at IMSC (i.e., newJoin-
Request()) by a new instance specifying the address of its IPSCnew and PKOnew

PB .
Then, the request has to be approved by voting of existing instances. Prior to vot-
ing (i.e., approveJoinRequest()), the existing instances should first verify a new
instance by certain legal processes as well as by technical means: do the remote at-
testation of progEnew, verify the inflation rate ir and the initial value of total issued
tokens ti in IPSC, etc. Removing of the existing instance also requires the majority
of all instances, who should verify legal conditions prior to voting.

• Centralized Scheme So far, we were assuming that CBDC instances are equal,
which might be convenient for interconnection of central banks from different coun-
tries. However, from the single-country point-of-view, there usually exist only one
central bank, which might not be interested in decentralization of its competences
(e.g., issuing tokens, setting inflation rate) among multiple commercial banks. We
respect this and enable our approach to be utilized for such a use case, while the
necessary changes are made to IMSCc (see Algorithm 17), allowing to have only
one CBDC authority that can add or delete instances of (commercial) banks, upon
their verification (as outlined above). The new instances can be adjusted even with
token issuance capability and constraints on inflation, which is enforced within the
code of E as well as IPSC.

Token Issuance. With multiple CBDC instances, Cs and the public can obtain the total
value of issued tokens in the ecosystem of CBDC and compare it to the total value of token
supply of all instances. Nevertheless, assuming only two instances A and B, the value of
ts snapshotted by IPSCA might not reflect the recently executed transfers to instance B
that might have already made the snapshot of its actual LB version to IPSCB, accounting
for the transfers. As a consequence, given a set of instances, the value of the aggregated
ts should always be greater or equal than the corresponding sum of ti:

tAi + tBi ≤ tAs + tBs . (7.1)

We can generalize it for N instances known by IMSC as follows:
∑

∀X ∈ IMSC

tXi ≤
∑

∀X ∈ IMSC

tXs . (7.2)

Inflation Rate. In contrast to a single CBDC instance, multiple independent instances
must provide certain guarantees about inflation not only to their clients, but also to each
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Algorithm 16: progIMSC
d of decentralized IMSC

1 ▷ DECLARATION OF TYPES AND VARIABLES:
2 msg: a current transaction that called IMSC,
3 struct InstanceInfo {
4 operator : PKPB

O of the instance’s O,
5 isApproved: admission status of the instance,
6 approvals← [] : Os who have approved the instance creation (or deletion),
7 }
8 instances[]: a mapping of IPSC to InstanceInfo,

9 ▷ DECLARATION OF FUNCTIONS:
10 function Init(IPSCs[],Os[]) public ▷ Initial instances are implicitly approved.
11 assert |IPSCs| = |Os| ;
12 for i← 0; i ≤ |Os|; i← i+1 do
13 instances[IPSCs[i]]← InstanceInfo(Os[i],T rue,[]);

14 function newJoinRequest(IPSC) public
15 assert instances[IPSC] = ⊥; ▷ The instance must not exist yet.
16 instances[IPSC]← InstanceInfo(msg.sender,False,[]);

17 function approveJoinRequest(IPSCmy ,IPSCnew) public
18 assert instances[IPSCmy ].operator = msg.sender; ▷ Sender’s check.
19 assert instances[IPSCmy ].isApproved; ▷ The sending O has valid instance.
20 assert !instances[IPSCnew].isApproved; ▷ The new instance is not approved.
21 r ← instances[IPSCnew];
22 r.approvals[msg.sender]← True; ▷ The sender acknowledges the request.
23 if |r.approvals| > ⌊|instances|/2⌋ then
24 r.isApproved← True; ▷ Majority vote applies.
25 r.approvals← []; ▷ Switch this field for a potential deletion.

26 function approveDelete(IPSCmy ,IPSCdel) public
27 assert instances[IPSCmy ].operator = msg.sender; ▷ Sender’s check.
28 assert instances[IPSCmy ].isApproved; ▷ The sending O has valid instance.
29 assert instances[IPSCdel].isApproved; ▷ An instance to delete must be approved.
30 r ← instances[IPSCdel];
31 r.approvals[msg.sender]← True; ▷ The sender acknowledges the request.
32 if |r.approvals| > ⌊|instances|/2⌋ then
33 delete r;

other. For this purpose, the parameter inflation rate ir is adjusted to a constant value in
the initialization of IPSC and checked before the instance is approved at IMSC.

If one would like to enable the update of ir at CBDC instances, a majority vote at
IMSC on a new value could be utilized (or just the vote of authority in the case of central-
ized scenario). Nevertheless, to support even fairer properties, Cs of a particular instance
might vote on the value of ir upon its acceptance by IOMC and before it is propagated to
IPSC of an instance. Then, based on the new value of IPSC.ir, E.ir can be adjusted as
well (i.e., upon the validation by the light client of E). However, the application of such
a mechanism might depend on the use case, and we state it only as a possible option that
can be enabled in our approach.

Interoperability. The interoperability logic itself is provided by our protocol ΠT that
utilizes InterOperability Micro Contracts IOMCS and IOMCR, which serve for sending
and receiving tokens, respectively. Therefore, in the context of E-isolated environment
these µ-contracts allow to mint and burn tokens, reflecting the changes in ts after sending



7.2. CBDC-AQUASPHERE 173

Algorithm 17: progIMSC
c of centralized IMSC

1 ▷ DECLARATION OF TYPES AND VARIABLES:
2 msg: a current transaction that called IMSC,
3 authority: IPSC of the authority bank,
4 authorityO: PKO

pb of O at authority bank,
5 instances[]: a mapping of IPSC to PKPB

O ,

6 ▷ DECLARATION OF FUNCTIONS:
7 function Init(IPSC) public ▷ Initial instances are implicitly approved.
8 authorityO ← msg.sender;
9 authority ← IPSC;

10 function addInstance(IPSCnew, Onew) public
11 assert msg.sender = authorityO ; ▷ Only the authority can add instances.
12 assert instances[IPSCnew] = ⊥; ▷ The instance must not exist yet.
13 instances[IPSCnew]← Onew;

14 function delInstance(IPSCdel) public
15 assert msg.sender = authorityO ; ▷ Only the authority can delete instances.
16 delete instances[IPSCdel];

or receiving tokens between CBDC instances. Both µ-contracts are deployed in E by each
O as soon as the instance is created, while E records their addresses that can be obtained
and attested by Cs. We briefly review these contracts in the following, while they detailed
usage will be demonstrated in Section 28.

• The Sending IOMCS The sending IOMCS (see Algorithm 18) is based on Hash
Time LoCks (HTLC), thus upon initialization of transfer by hashlock provided
by CA (i.e., hashlock ← h(secret)) and calling sendInit(hashlock,...), IOMCS

locks transferred tokens for the timeout required to complete the transfer by send-
Commit(secret,...). If tokens are not successfully transferred to the recipient of
the external instance during the timeout, they can be recovered by the sender (i.e.,
sendRevert()).8 If tokens were sent successfully from CA to CB, then instance
A burns them within sendCommit() of IOMCS and deducts them from ts. Note
that deducting ts is a special operation that cannot be executed within standard µ-
contracts, but IOMC contracts are exceptions and can access some variables of E.

• The Receiving IOMCR The receiving IOMCR (see Algorithm 19) is based on
Hashlocks (referred to as HLC) and works pairwise with sending IOMCS to facili-
tate four phases of our interoperable transfer protocol ΠT (described below). After
calling IOMCS.sendInit(), incoming initiated transfer is recorded at IOMCR by
receiveInit(hashlock,...). Similarly, after executing token deduction at instance A
(i.e., IOMCS.sendCommit(secret,...)), incoming transfer is executed at IOMCR

by receiveCommit(secret,...) that mints tokens to CB and increases ts. Similar to
IOMCS , minting tokens and increasing ts are special operations requiring access to
E, which is exceptional for IOMC. The overview of ΠT is depicted in Figure 7.8.

8Note that setting a short timeout might prevent the completion of the protocol.
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Algorithm 18: progIOMCS
of sending IOMCS

1 ▷ DECLARATION OF TYPES AND VARIABLES:
2 E, ▷ The reference to EA of sending party.
3 msg, ▷ The current µ-transaction that called IOMCS .
4 struct LockedTransfer {
5 sender, ▷ Sending client CA.
6 receiver, ▷ Receiving client CB .
7 receiverIPSC, ▷ The IPSC contract address of the receiver’s instance.
8 amount, ▷ Amount of tokens sent.
9 hashlock, ▷ Hash of the secret of the sending CA.

10 timelock, ▷ A timestamp defining the end of validity of the transfer.
11 isCompleted, ▷ Indicates whether the transfer has been completed.
12 isReverted, ▷ Indicates whether the transfer has been canceled.
13 },
14 transfers← [], ▷ Initiated outgoing transfers (i.e., LockedTransfer).
15 const timeoutHTLC ← 24h, ▷ Set the time lock for e.g., 24 hours.

16 ▷ DECLARATION OF FUNCTIONS:
17 function sendInit(receiver,receiverIPSC,hashlock) public payable
18 assert msg.value > 0; ▷ Checks the amount of tokens.
19 timelock ← timestamp.now()+ timeoutHTLC ;
20 t← LockedTransfer(msg.sender,receiver,receiverIPSC,
21 msg.value, hashlock,timelock,False,False); ▷ A new receiving transfer.
22 transfers.append(t);
23 Output (”sendInitialized”,transferID ← |transfers| − 1));

24 function sendCommit(transferID,secret,extTransferID) public
25 assert transfers[transferID] ̸=⊥; ▷ Check the existence of locked transfer.
26 t← transfers[transferID];
27 assert t.hashlock = h(secret); ▷ Check the secret.
28 assert !t.isCompleted ∧ !t.isReverted; ▷ Test if the transfer is still pending.
29 t.isCompleted← True;
30 burn t.amount; ▷ Burn tokens.
31 E.ts ← E.ts− t.amount; ▷ Decrease the total supply of the instance.
32 Output (”sendCommitted”,transferID, extTransferID, t.receiver, t.receiverIPSC, t.amount);

33 function sendRevert(transferID) public
34 assert transfers[transferID] ̸=⊥; ▷ Check the existence of locked transfer.
35 t← transfers[transferID];
36 assert !t.isCompleted ∧ !t.isReverted; ▷ Test the transfer is still pending.
37 assert t.timelock ≤ timestamp.now(); ▷ Check the HTLC expiration.
38 transfer(t.amount,t.sender); ▷ Returning tokens back to the sender.
39 t.isReverted← True;
40 Output(”sendReverted”,transferID);

Interoperable Transfer Protocol ΠT

In this section we outline our instance-to-instance interoperable transfer protocol ΠT for
inter-CBDC transfer operation, which is inspired by the atomic swap protocol (see Sec-
tion 2.10), but in contrast to the exchange-oriented approach of atomic swap, ΠT fo-
cuses only on one-way atomic transfer between instances of the custodial environment of
CBDC, where four parties are involved in each transfer – a sending CA and OA versus a
receiving CB and OB. The goal of ΠT is to eliminate any dishonest behavior by Cs or Os
that would incur token duplication or the loss of tokens.
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Algorithm 19: progIOMCR
of receiving IOMCR

1 ▷ DECLARATION OF TYPES AND VARIABLES:
2 E, ▷ The reference to EB of receiving party.
3 struct LockedTransfer {
4 sender, ▷ Sending client CA.
5 senderIPSC, ▷ The IPSC contract address of the sender’s instance.
6 receiver, ▷ Receiving client CB .
7 amount, ▷ Amount of transferred tokens.
8 hashlock, ▷ Hash of the secret of the sending CA.
9 isCompleted, ▷ Indicates whether the transfer has been completed.

10 },
11 transfers← [], ▷ Initiated incoming transfers (i.e., LockedTransfer).

12 ▷ DECLARATION OF FUNCTIONS:

13 function receiveInit(sender,senderIPSC,hashlock,amount) public
14 assert amount > 0;
15 t← LockedTransfer(sender,senderIPSC,msg.sender,amount,
16 hashlock,False); ▷ Make a new receiving transfer entry.
17 transfers.append(t);
18 Output(”receiveInitialized”,transferID ← |transfers| − 1);

19 function receiveCommit(transferID,secret) public
20 assert transfers[transferID] ̸= ⊥; ▷ Check the existence of transfer entry.
21 t← transfers[transferID];
22 assert t.hashlock = h(secret); ▷ Check the secret.
23 assert !t.isCompleted; ▷ Check whether the transfer is pending.
24 E.mint(this,t.amount); ▷ Call E to mint tokens on IOMCR.
25 E.ts ← E.ts + t.amount ; ▷ Increase the total supply of the instance.
26 transfer(t.amount,t.receiver); ▷ Credit tokens to the recipient.
27 t.isCompleted← True;
28 Output(”receiveCommited”,transferID);
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Figure 7.8: Overview of the protocol ΠT , consisting of 4 phases.
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To execute ΠT it is necessary to inter-connect Es of two instances involved in a trans-
fer. However, E does not allow direct communication with the outside world, and there-
fore it is necessary to use an intermediary. One solution is to involve Os but they might be
overwhelmed with other activities, updating the ledger by executing µ-transactions, and
moreover, they might not have direct incentives to execute inter-CBDC transfers. There-
fore, we argue that in contrast to the above option, involving Cs as intermediaries has two
advantages: (1) elimination of the synchronous communication overhead on Os and (2)
enabling Cs to have a transparent view about the status of the transfer and take action if
required. The details of the protocol are depicted in Figure 7.9.

Phase 1 – Client CA Initiates the Protocol. The client CA creates a µ-tx1 with the
amount being sent, which invokes the sendInit() of IOMCA with arguments con-
taining the address of the external client CB, the address of IPSCB (denoted as SB in
Figure 7.9 for brevity), and the hash of the secret that is created by CA. CA sends signed
µ-tx1 to OA who forwards it to the EA. Before executing the µ-tx1, EA ensures that the
external recipient (i.e., CB) has the access ticket already issued and valid, enabling her
to post censorship resolution requests to IPSCA (if needed). The access ticket should be
valid for at least the entire period defined by the HTLC of IOMCA. In the next step,
a µ-tx1 is executed by EA, creating a new transfer record with transferId in IOMCA.
During the execution, CA’s tokens are transferred (and thus locked) to the IOMCA’s ad-
dress. CA waits until the new version of LA is snapshotted to IPSCA, and then obtains
LRootA from it. Then CA asks OA for the execution receipt rcp1 of µ-tx1 that also con-
tains a set of proofs (πmem

hdr , πmk
rcp1

) and the header of the µ-block that includes µ-tx1. In
detail, πmem

hdr is the inclusion proof of the µ-block b in the current version of LA; πmk
rcp1

is
the Merkle proof proving that rcp1 is included in b (while rcp1 proves that µ-tx1 was ex-
ecuted correctly). The mentioned proofs and the receipt are provided to CB, who verifies
that µ-tx1 was executed and included in the LA’s version that is already snapshotted to
IPSCA, thus irreversible (see below).

Phase 2 – CB Initiates Receive. First, CB validates an access ticket to IPSCA using
the enclave EA’s public key accessible in that smart contract. Next, CB obtains the root
hash LRootApb of LA to ensure that CB’s received state has been already published in
IPSCA, and thus contains µ-tx1. After obtaining LRootApb, CB forwards it along with
the root LRootA obtained from CA to OA, who creates an incremental proof πinc of
⟨LRootA,LRootApb⟩. Once the proof πinc has been obtained and validated, the protocol
can proceed to validate the remaining proofs sent by the client CA along with verifying
that the receiving address belongs to CB. Next, CB creates µ-tx2, invoking the method
receiveInit() with the arguments: the address of CA obtained from µ-tx1,9 the
address IPSCA.addr of CA’s instance, the hash value of the secret, and the amount of
crypto-tokens being sent. CB sends µ-tx2 to OB, who forwards it to EB for processing.
During processing of µ-tx2, EB determines whether the external client (from its point of

9Note that we assume that the address is extractable from the signature.
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view – i.e., CA) has an access ticket issued with a sufficiently long validity period; if not,
one is created. Subsequently, EB creates a new record in IOMCB with extTransferId.
Afterward, CB retrieves the LRootB from LB and requests the execution receipt rcp2
from OB, acknowledging that the µ-tx2 has been executed. Finally, CB sends a message
CA with µ-tx2 and cryptographic proofs πmem

hdr , πmk
rcp2

, the execution receipt of µ-tx2, the
block header b in which the µ-tx2 was included, LRootB (i.e., the root value of LB after
µ-tx2 was executed), and the valid client access ticket for CA.

Phase 3 – Confirmation of Transfer by CA. First, CA validates the received access
ticket to IPSCB. Next, CA obtains the snapshotted root hash LRootBpb of LB from IPSCB.
As in the previous phases, it is necessary to verify that the version of LB that includes µ-
tx2 is represented by LRootBpb (thus is irreversible). Next, both root hashes (LRootB

and LRootBpb) are sent to the external operator OB, which produces the incremental proof
πinc from them. Next, CA creates µ-tx3 that consists of invoking the sendCommit()
method at EA with the arguments containing the published secret (i.e., preimage) and the
record identifier of the transfer at local instance (i.e., transferId) as well as the external
one (i.e., extTransferId). Along with the invocation of sendCommit(), µ-tx3 also
wraps πinc with its versions (LRootBpb and LRootB), µ-tx2, its execution receipt rcp2
with its Merkle proof πmk

rcp2
, b.hdr – the header of the block that included µ-tx2, and its

membership proof πmem
hdr of LB. Next, CA sends µ-tx3 to EA through OA. During the

execution of µ-tx3, EA validates the provided proofs and the equality of transfer IDs from
both sides of the protocol. Note that to verify πmem

hdr , EA uses its light client to LB. EA

then validates whether CA’s provided secret corresponds to the hashlock recorded in the
1st phase of the protocol, and if so, it burns the sent balance of the transfer.

Next, CA waits until the new version of LA is snapshotted to IPSCA, and then obtains
LRootA from it. Then CA asks OA for the execution receipt rcp3 of µ-tx3 that also con-
tains a set of proofs (πmem

hdr , πmk
rcp3

) and the header of the µ-block that includes µ-tx3. The
proofs have the same interpretation as in the end of the 1st phase. The mentioned proofs
and the receipt are provided to CB, who verifies that µ-tx1 was executed and included in
the LA’s version that is already snapshotted to IPSCA, thus irreversible.

Phase 4 – Acceptance of Tokens by CB. After receiving a message from client CA,
the client CB obtains LRootApb from IPSCA and then requests the incremental proof
between versions ⟨LRootA,LRootApb⟩ from OA. Then, CB creates µ-tx4 invoking the
receiveClaim() function at EB with transferId and the disclosed secret by CA as
the arguments. Moreover, µ-tx4 contains remaining items received from CA. Then, µ-tx4

is sent to OB, who forwards it to EB. During the execution of µ-tx4, EB verifies the
provided proofs, the equality of transfer IDs from both sides of the protocol, the amount
being sent, and the receiver of the transfer (i.e., CB —— IPSCB). Note that to verify
πmem
hdr , EB uses its light client to LA. EA then validates whether CA’s provided secret

corresponds to the hashlock recorded in the 2nd phase of the protocol, and if so, it mints
the sent balance of the transfer on the receiver’s account CB. Finally, CB verifies that
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Deployment 901 509 160 698 64 629 60 923
Execution 653 689 134 498 42 717 39 523

Table 7.1: The cost of deployment and invocation of functions in the sending IOMCS µ-contract
in gas units (CBDC private ledger).

Function co
ns

tru
cto

r

rec
eiv

eIn
it

rec
eiv

eC
lai

m

fun
d

Deployment 716 330 139 218 61 245 23 168

Execution 509 366 112 762 39 653 1 896

Table 7.2: The cost of deployment and invocation of functions in the receiving IOMCR µ-contract
in units of gas (CBDC private ledger).

µ-tx4 was snapshotted at IPSCB, thus is irreversible. In detail, first CB obtains LRootBpb
from IPSCB and then asks OB to provide her with the execution receipt rcp4 of µ-tx4

in the version of LB that is equal or newer than LRootBpb. Then, CB verifies rcp4, which
completes the protocol.

7.2.3 Evaluation

We used Ganache10 and Truffle,11 to develop IOMC, IPSC, and IMSC contracts. In
addition, using the Pexpect12 tool, we tested the intercommunication of the implemented
components and validated the correctness of the implemented interoperability protocol.
The tool enabled the parallel execution and control of numerous programs (in this case,
multiple Aquareum instances and client programs) to check the correctness of the ex-
pected output.

The computational cost of executing the operations defined in IOMC and IMSCX

contracts is presented in Table 7.1, Table 7.2, and Table 7.3.13 We optimized our imple-
mentation to minimize the storage requirements of smart contract platform. On the other
hand, it is important to highlight that IOMCX µ-contracts are executed on a private ledger
corresponding to the instance of CBDC, where the cost of gas is minimal or negligible as
compared to a public blockchain. Other experiments are the subject of our future work.

10https://github.com/trufflesuite/ganache-cli
11https://github.com/trufflesuite/truffle
12https://github.com/pexpect/pexpect
13Note that we do not provide the gas measurements for IPSC since these are almost the same as in

Aquareum [HS20].

https://github.com/trufflesuite/ganache-cli
https://github.com/trufflesuite/truffle
https://github.com/pexpect/pexpect
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Deployment 830 074 48 629 69 642 0
Execution 567 838 25 949 45 554 0

Table 7.3: The invocation cost of functions in IMSC smart contract in units of gas (Ethereum
public blockchain).

7.2.4 Security Analysis

In this section, we analyze our approach in terms of security-oriented features and re-
quirements specified in Section 7.2.1. In particular, we focus on resilience analysis of our
approach against adversarial actions that the malicious CBDC instance (i.e., its operator
O) or malicious client (i.e., C) can perform to violate the security requirements.

Single Instance of CBDC

For properties common with Aquareum (i.e., correctness of operation execution, integrity,
verifiability, non-equivocation, censorship evidence, and privacy) as well as for security
analysis of TEE and time to finality, we refer the reader to Section 7.1.5.

Theorem 11. (Transparent Token Issuance)O is unable to issue or burn any tokens with-
out leaving a publicly visible evidence.

Justification. All issued tokens of CBDC are publicly visible at IPSC since each trans-
action posting a new version transition pair also contains E-signed information about the
current total issued tokens ti and total supply of the instance ts,14 while ti was updated
within the trusted code of E. The information about ti is updated at IPSC along with the
new version of L. Note that the history of changes in total issued tokens ti can be parsed
from all transactions updating version of L published by O to PB.

Multiple Instances of CBDC

In the following, we assume two CBDC instances A and B.

Theorem 12. (Atomic Interoperability I) Neither OA (operating A) nor OB (operating
B) is unable to steal any tokens during the inter-bank CBDC transfer.

Justification. Atomic interoperability is ensured in our approach by adaptation of atomic
swap protocol for all inter-bank transfers, which enables us to preserve the wholesale
environment of CBDC in a consistent state (respecting Equation 7.2). In detail, the trans-
ferred tokens from CBDC instance A to instance B are not credited to B until A does

14Note that in the case of single CBDC instance ti = ts
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not provide the indisputable proof that tokens were deducted from a relevant A’s account.
This proof confirms irreversible inclusion of tx3 (i.e., EA.sendCommit() that deducts
account of A’s client) in A’s ledger and it is verified in 4th stage of our protocol by the
trusted code of EB.

In the case thatOA would like to present B with integrity snapshot of LA that was not
synced to IPSCA yet, B will not accept it since the 4th phase of our protocol requires OB

to fetch the recent IPSCA.LRootpb and verify its consistency with A-provided LRoot as
well as inclusion proof in PB; all executed/verified within trusted code of EB.

Theorem 13. (Atomic Interoperability II) Colluding clients CA and CB of two CBDC
instances cannot steal any tokens form the system during the transfer operation of our
protocol.

Justification. If the first two phases of our protocol have been executed, CA might po-
tentially reveal the preimage to CB without running the 3rd phase with the intention to
credit the tokens at B while deduction at A had not been executed yet. However, this
is prevented since the trusted code of EB verifies that the deduction was performed at A
before crediting the tokens to CB – as described in Theorem 12.

Theorem 14. (Inter-CBDC Censorship Evidence) OA is unable to unnoticeably censor
any request (transaction or query) from CB.

Justification. If CB’s request is censored by OA, CB can ask for a resolution of the re-
quest through public IPSCA since CB already has the access ticket to instance A. The
access ticket is signed by EA and thus can be verified at IPSCA. Hence, the censorship
resolution/evidence is the same as in Theorem 10 of a single CBDC instance.

Theorem 15. (Inter-CBDC Censorship Recovery) A permanent inter-CBDC censorship
by OA does not cause an inconsistent state or permanently frozen funds of undergoing
transfer operations at any other CBDC instance – all initiated and not finished transfer
operations can be recovered from.

Justification. If OA were to censor CB in the 2nd phase of our protocol, no changes at
ledger LB would be made. If OA were to censor CB in the 4th phase of our protocol, LB

would contain an initiated transfer entry, which has not any impact on the consistency of
the ledger since it does not contain any locked tokens. 2

If OB were to censor CA in the 3rd phase of our protocol, A would contain some frozen
funds of the initiated transfer. However, these funds can be recovered back to CA upon a
recovery call of EA after a recovery timeout has passed. Note that after tokens of CA have
been recovered and synced to IPSCA in PB, it is not possible to finish the 4th stage of
our protocol since it requires providing the proof that tokens were deducted at A and such
a proof cannot be constructed anymore. The same holds in the situation where the sync
to IPSCA at PB has not been made yet – after recovery of tokens, EA does not allow to
deduct the same tokens due to its correct execution (see Theorem 6).



Theorem 16. (Identity Management of CBDC Instances I) A new (potentially fake) CBDC
instance cannot enter the ecosystem of wholesale CBDC upon its decision.

Justification. To extend the list of valid CBDC instances (stored in IMSC contract), the
majority vote of all existing CBDC instances must be achieved through public voting on
IMSC.

Theorem 17. (Identity Management of CBDC Instances II) Any CBDC instance (that
e.g., does not respect certain rules for issuance of tokens) might be removed from the
ecosystem of CBDC by majority vote.

Justification. A publicly visible voting about removal of a CBDC instance from the ecosys-
tem is realized by IMSC contract that resides in PB, while each existing instance has a
single vote.

7.3 Contributing Papers

The papers that contributed to this research direction are enumerated in the following,
while highlighted papers are attached to this thesis in their original form. Note that these
papers were not yet published nor accepted as of writing.

[HS20] Ivan Homoliak and Pawel Szalachowski. Aquareum: A centralized
ledger enhanced with blockchain and trusted computing. arXiv preprint
arXiv:2005.13339, 2020.

[HPH+23] Ivan Homoliak, Martin Perešı́ni, Patrik Holop, Jakub Handzuš, and
Fran Casino. CBDC-Aquasphere: Interoperable central bank digital currency
built on trusted computing and blockchain. arXiv preprint arXiv:2305.16893,
2023.
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Chapter 8

Conclusion

In this work, we presented the summary of our research and its contributions to the stan-
dardization of vulnerability/threat analysis and modeling in blockchains as well as partic-
ular areas in blockchains’ consensus protocols, cryptocurrency wallets, electronic voting,
and secure logging with the focus on security and/or privacy aspects.

In detail, first, we introduced the security reference architecture for blockchains that
adopts a stacked model, describing the nature and hierarchy of various security and pri-
vacy aspects. Then, we proposed a blockchain-specific version of the threat-risk assess-
ment standard ISO/IEC 15408 by embedding the stacked model into this standard. Next,
we investigated a few attacks on Proof-of-Work consensus protocols such as selfish min-
ing attacks, greedy transaction selection attacks, and undercutting attacks – for all of them
we proposed mitigation techniques. Then, we dealt with cryptocurrency wallets, where
we described our proposed classification of authentication schemes and proposed Smart-
OTPs, two-factor authentication for smart contract wallets based on One-Time Passwords.
Next, we focused on electronic voting using blockchains as an instance of a public bulletin
board, and we described our proposals BBB-Voting and SBvote as well as the Always-on-
Voting framework for repetitive voting. Finally, we dealt with secure logging, where we
presented Aquareum, a centralized ledger based on blockchain and trusted computing. At
a follow-up stage in secure logging direction, we built on top of Aquareum and proposed
CBDC-AquaSphere, an interoperability protocol for central bank digital currencies.

In our future work, we plan to focus on several directions, such as secure and efficient
Proof-of-Stake protocols based on Direct Acyclic Graphs, simulations of selfish mining
and similar incentive attacks (with various numbers of attackers) on consensus protocols
designed to mitigate selfish mining, optimized on-chain verification in e-voting proto-
cols (including relatively new concepts of partial-tally-hiding), interoperable execution
of smart contracts across CBDC instances, optimization of Merkle-Patricia tries to enable
secure and consistent parallel processing and thus improvement in processing throughput.
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[SRHS19a] Pawel Szalachowski, Daniël Reijsbergen, Ivan Homoliak, and Siwei Sun.
Strongchain: Transparent and collaborative proof-of-work consensus. In
28th USENIX Security Symposium, USENIX Security 2019, Santa Clara,
CA, USA, August 14-16, 2019., pages 819–836, 2019.
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The Security Reference Architecture for
Blockchains: Toward a Standardized Model for
Studying Vulnerabilities, Threats, and Defenses

Ivan Homoliak , Member, IEEE, Sarad Venugopalan, Daniël Reijsbergen, Qingze Hum,

Richard Schumi, and Pawel Szalachowski

Abstract—Blockchains are distributed systems, in which secu-
rity is a critical factor for their success. However, despite their
increasing popularity and adoption, there is a lack of standard-
ized models that study blockchain-related security threats. To
fill this gap, the main focus of our work is to systematize and
extend the knowledge about the security and privacy aspects
of blockchains and contribute to the standardization of this
domain.We propose the security reference architecture (SRA)
for blockchains, which adopts a stacked model (similar to the
ISO/OSI) describing the nature and hierarchy of various secu-
rity and privacy aspects. The SRA contains four layers: (1) the
network layer, (2) the consensus layer, (3) the replicated state
machine layer, and (4) the application layer. At each of these
layers, we identify known security threats, their origin, and
countermeasures, while we also analyze several cross-layer depen-
dencies. Next, to enable better reasoning about security aspects of
blockchains by the practitioners, we propose a blockchain-specific
version of the threat-risk assessment standard ISO/IEC 15408 by
embedding the stacked model into this standard. Finally, we pro-
vide designers of blockchain platforms and applications with a
design methodology following the model of SRA and its hierarchy.

Index Terms—Reference architecture, blockchains, distributed
ledgers, security, privacy, vulnerabilities, threats, ISO/IEC 15408.

I. INTRODUCTION

THE POPULARITY of blockchain systems has rapidly
increased in recent years, mainly due to the decentralization

of control that they aim to provide. Blockchains are full-stack
distributed systems in which multiple layers, (sub)systems, and
dynamics interact together. Hence, they should leverage a secure
and resilient networking architecture, a robust consensus proto-
col,andasafeenvironment forbuildinghigher-levelapplications.
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Although most of the deployed blockchains need better scala-
bility and well-aligned incentives to unleash their full potential,
their security is undoubtedly a critical factor for their success.
As these systems are actively being developed and deployed, it
is often challenging to understand how secure they are, or what
security implications are introduced by some specific compo-
nents they consist of. Moreover, due to their complexity and
novelty (e.g., built-in protocol incentives), their security assess-
ment and analysis requires a more holistic view than in the case
of traditional distributed systems.

Although some standardization efforts have already been
undertaken, they are either specific to a particular platform [1]
or still under development [2], [3]. Hence, there is a lack of
platform-agnosticstandardsinblockchainimplementation, inter-
operability, services, and applications, as well as the analysis of
its security threats [4], [5]. All of these areas are challenging, and
it might take years until they are standardized and agreed upon
across a diverse spectrum of stakeholders. In this work, we aim
to contribute to the standardization of security threat analysis.
We believe that it is critical to provide blockchain stakehold-
ers (developers, users, standardization bodies, regulators, etc.)
with a comprehensive systematization of knowledge about the
security and privacy aspects of today’s blockchain systems.

In this work, we aim to achieve this goal, with a partic-
ular focus on system design and architectural aspects. We
do not limit our work to an enumeration of security issues,
but additionally, discuss the origins of those issues while
listing possible countermeasures and mitigation techniques
together with their potential implications. As our main contri-
bution, we propose the security reference architecture (SRA)
for blockchains, which is based on models that demonstrate the
stacked hierarchy of different threat categories (similar to the
ISO/OSI hierarchy [6]) and is inspired by security modeling
performed in the cloud computing [7], [8]. As our next contri-
bution, we enrich the threat-risk assessment standard ISO/IEC
15408 [9] to fit the blockchain infrastructure. We achieve this
by embedding the stacked model into this standard.

This article is based on our previous work outlining the
security reference architecture [10]. We substantially modify
and extend it by the following:

• We provide a theoretical background related to the
security reference architecture and the environment of
blockchains, their types, failure models, consensus pro-
tocols, design goals, and means to achieve these goals.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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• For each layer, we model particular attacks or their cate-
gories through vulnerability/threat/defense graphs, while
we provide reasoning about several important relations
and causalities in these graphs.

• We modify and significantly extend the application layer,
where we propose a novel functionality-oriented catego-
rization, as opposed to the application-domain-oriented
categorizations presented in related work [11], [12].

• We extend and revise the consensus layer by mining-pool-
specific attacks, time-spoofing attacks, and we provide a
more fine-grained categorization.

• For each layer, we present an incident table that lists and
briefly describes examples of attacks that have occurred
worldwide: either caused by malicious parties or by
researchers who demonstrated their practical feasibility.

• In the lessons learned, we describe the hierarchy of
security dependencies among particular categories, based
on which, we propose a methodology for designers of
blockchain platforms and applications.

The rest of the paper is organized as follows: We describe the
scope and methodology of our research as well as quantitative
analysis of the included literature in Section II. In Section III,
we summarize the background on blockchain systems. Next,
in Section IV we introduce the security reference architec-
ture whose layers are discussed in the follow-up sections. In
detail, Section V deals with the security and privacy of the
network layer, Section VI focuses on the consensus layer,
Section VII overviews the replicated state machine layer, and
Section VIII with Section IX describe applications built on top
of the blockchain. In Section X, we elaborate on lessons learned
and propose a methodology for designers of blockchain-based
solutions. We discuss the limitations of our work in Section XI
and we compare our research to related work in Section XII.
Finally, we conclude the paper in Section XIII.

II. METHODOLOGY & SCOPE

In contrast to conventional survey approaches, such as
grounded theory for rigorous literature review [13], we do
not sample included research from existing databases queried
with specific terms. Instead, we study and analyze security-
oriented literature for vulnerabilities and threats related to
the blockchain infrastructure. The literature that we select as
the input mainly covers existing blockchain-oriented surveys
as well as various conferences and journals in security and
distributed computing. Moreover, we include other materials
published in preprints, whitepapers, products’ documentation,
and forums, which are also related.

We aim to consolidate the literature, categorize found vul-
nerabilities and threats according to their origin, and as a
result, we create four main categories (also referred to as
layers). At the level of particular main categories, we apply
sub-categorization that is based on the existing knowledge and
operation principles specific to such subcategories, especially
concerning the security implications. If some subcategories
impose equivalent security implications, we merge them into
a single subcategory. See the road-map of all the categories
in Figure 4. Our next aim is to indicate and explain the

Fig. 1. Blockchain-specific references per category.

Fig. 2. Blockchain-specific academic references over time.

co-occurrences or relations of multiple threats, either at the
same main category or across more categories.

The scope of our work mainly covers aspects related to the
blockchain core elements, while we mention common opera-
tional security issues (e.g., key management in the blockchain
ecosystem) and countermeasures only tangentially if required.
Similarly, we do not pursue threats that emerge outside of
the blockchain infrastructure and outside of the extra infras-
tructure required for certain blockchain-based applications.
Out-of-scope examples are remote exploitation of arbitrary
devices (e.g., covert mining/crypto-jacking [14]) and issues
related to using blockchain explorers (e.g., spoofing attacks,
availability issues). Examples of vulnerabilities that we assume
only tangentially are semantic bugs and programming errors
in the infrastructure of the blockchains – we assume that core
blockchain infrastructure is implemented correctly, uses secure
cryptographic primitives, and provides expected functionality.

A. Quantitative Analysis

For a quantitative summary of the literature, we considered
only the references from the main sections that correspond to
particular layers of the proposed stacked model (i.e., Section V
to Section IX) and related work (Section XII). We excluded
references from other sections and the references on the exam-
ples of incidents (Appendix C). Each assumed reference was
labeled with three flags to indicate:

• The category to which it belongs. Note that some papers
belong to multiple categories.

• Whether it is specifically related to blockchains.
• Whether it was written by academics (i.e., such that their

affiliation was listed in the document). Note that the
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positive value of this flag covers also the papers that have
not been peer-reviewed but which appeared on public
repositories (e.g., arXiv and Cryptology ePrint Archive).

In sum, we collected 276 references, of which 247 were
blockchain-specific, 211 were written by academics, and 180
met both criteria. In Figure 1, we show the number of refer-
ences in each of the main categories for (a) all papers and (b)
the academic papers. A total of 11 papers were found to belong
to two categories. We observe that most of the references are
presented at the application layer, which we conjecture that
occurred because each application running on the blockchain
might introduce new attack vectors.

The evolution of the number of references over time is
depicted in Figure 2, where we observe that the number of
academic papers about blockchains and security has increased
steadily, although 2018 was the year with the highest number
of references selected for the current work.1 Of the four layers
discussed in this article, the network layer has the lowest
number of blockchain-focused papers. A possible reason for
it could be that among the remaining layers, the consensus
and replicated state machine (RSM) layers are more specific
to blockchains, while the application layer is popular among
practitioners building on top of other layers. Finally, we observe
the number of surveys is steadily growing (culminating in 2019),
which indicates increasing interest in this domain.

III. BLOCKCHAINS AT A GLANCE

The blockchain is a data structure representing an append-
only distributed ledger that consists of entries (a.k.a., trans-
actions) aggregated within ordered blocks. The order of the
blocks is agreed upon by mutually untrusting participants run-
ning a consensus protocol – these participants are also referred
to as nodes. The blockchain is resistant against modifications
by design since blocks are linked using a cryptographic hash
function, and each new block has to be agreed upon by nodes
running a consensus protocol.

A transaction is an elementary data entry that may contain
arbitrary data, e.g., an order to transfer native cryptocurrency
(i.e., crypto-tokens), a piece of application code (i.e., smart
contract), the execution orders of such application code, etc.
Transactions sent to a blockchain are validated by all nodes
that maintain a replicated state of the blockchain.

Blockchains were initially introduced as a means of coping
with the centralization of monetary assets management, resulting
in their most popular application – a decentralized cryptocur-
rency with a native crypto-token. Nevertheless, other blockchain
applications have emerged, benefiting from features other than
decentralization, e.g., privacy, energy efficiency, throughput, etc.
For the review of the inherent and non-inherent features of the
blockchains, we refer the reader to Appendix A.

A. Involved Parties

Blockchains usually involve three native types of parties that
can be organized into a hierarchy, according to the actions that
they perform (see Figure 3):

1Note that we started to work on this survey in early 2019.

Fig. 3. Involved parties with their interactions and hierarchy.

(1) Consensus nodes (a.k.a., miners in Proof-of-Resource
protocols) actively participate in the underlying consensus
protocol. These nodes can read the blockchain and write
to it by appending new transactions. Additionally, they
can validate the blockchain and thus check whether writes
of other consensus nodes are correct. Consensus nodes
can prevent malicious behaviors (e.g., by not appending
invalid transactions, or ignoring an incorrect chain).

(2) Validating nodes read the entire blockchain, validate it,
and disseminate transactions. Unlike consensus nodes,
validating nodes cannot write to the blockchain, and
thus they cannot prevent malicious behaviors. On the
other hand, they can detect malicious behavior since they
possess copies of the entire blockchain.

(3) Lightweight nodes (a.k.a., clients or Simplified Payment
Verification (SPV) clients) benefit from most of the
blockchain functionalities, but they are equipped only
with limited information about the blockchain. These
nodes can read only fragments of the blockchain (usually
block headers) and validate only a small number of trans-
actions that concern them, while they rely on consensus
and validating nodes. Therefore, they can detect only a
limited set of attacks, pertaining to their own transactions.
Additional Involved Parties: Note that besides native types

of involved parties, many applications using or running on the
blockchain introduce their own (centralized) components.

B. Types of Blockchains

Based on how a new node enters a consensus protocol, we
distinguish the following blockchain types:
Permissionless blockchains allow anyone to join the con-

sensus protocol without permission. To prevent Sybil
attacks, this type of blockchains usually requires con-
sensus nodes to establish their identities by running a
Proof-of-Resource protocol, where the consensus power
of a node is proportional to its resources allocated.

Permissioned blockchains require a consensus node to obtain
permission to join the consensus protocol from a central-
ized or federated authority(ies), while nodes usually have
equal consensus power (i.e., one vote per node).

Semi-Permissionless blockchains require a consensus node to
obtain some form of permission (i.e., stake) before joining
the protocol; however, such permission can be given by
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any consensus node. The consensus power of a node is
proportional to the stake that it has.

C. Design Goals of Consensus Protocols

1) Standard Design Goals–Liveness and Safety: Liveness
ensures that all valid transactions are eventually processed –
i.e., if a transaction is received by a single honest node, it will
eventually be delivered to all honest nodes. Safety ensures
that if an honest node accepts (or rejects) a transaction, then
all other honest nodes make the same decision. Usually, con-
sensus protocols satisfy safety and liveness only under certain
assumptions: the minimal fraction of honest consensus power
or the maximal fraction of adversarial consensus power. With
regard to safety, literature often uses the term finality and time
to finality. Finality represents the sequence of the blocks from
the genesis block up to the block B, where it can be assumed
that this sequence of blocks is infeasible to overturn. To reach
finality up to the block B, several successive blocks need to
be appended after B – the number of such blocks is referred
to as the number of confirmations.

2) Specific Design Goals: As a result of this study, we
learned that standard design goals of the consensus protocol
should be amended by specific design goals related to the type
of the blockchain. In permissionless type, elimination of Sybil
entities, a fresh and fair leader/committee election, and non-
interactiveverificationof theconsensusresult is required tomeet.
In contrast, the (semi)-permissionless types do not require the
elimination of Sybil entities (see details in Section X-C).

3) Means to Achieve Design Goals:
a) Simulation of the verifiable random function (VRF):

To ensure a fresh and fair leader/committee election, all con-
sensus nodes should contribute to the pseudo-randomness
generation that determines the fresh result of the election.
This can be captured by the concept of the VRF [15], which
ensures the unpredictability and fairness of the election pro-
cess. Therefore, the leader/committee election process can be
viewed as a simulation of VRF [16]. Due to the properties
of VRF, the correctness of the election result can be verified
non-interactively after the election took place.

b) Incentive and rewarding schemes: An important
aspect for protocol designers is to include a reward-
ing/incentive scheme that motivates consensus nodes to par-
ticipate honestly in the protocol. In the context of public
(permissionless) blockchains that introduce their native crypto-
tokens, this is achieved by block creation rewards as well
as transaction fees, and optionally penalties for misbehavior.
Transaction fees and block creation rewards are attributed to
the consensus node(s) that create a valid block (e.g., [17]),
although alternative incentive schemes rewarding more con-
sensus nodes at the same time are also possible (e.g., [18]).
While transaction fees are included in a particular transaction,
the block reward is usually part of the first transaction in the
block (a.k.a., coinbase transaction).

D. Basis of Consensus Protocols

Lottery and voting are two marginal techniques that deal
with the establishment of a consensus [19]. However, in
addition to them, their combinations have become popular.

Lottery-Based Protocols: These protocols provide con-
sensus by running a lottery that elects a leader/committee,
who produces the block. The advantages of lottery-based
approaches are a small network traffic overheads and
high scalability since the process is usually non-interactive
(e.g., [17], [20], [21]). However, a disadvantage of this
approach is the possibility of multiple “winners” being elected,
who propose conflicting blocks, which naturally leads to
inconsistencies called forks. Forks are resolved by fork-choice
rules, which compute the difficulty of each branch and select
the one. For the longest chain rule, the chain with the largest
number of blocks is selected in the case of a conflict, while
for the strongest chain rule, the selection criteria involve the
quality of each block in the chain (e.g., [18], [22], [23], [24],
[25]). Note that the possibility of forks in this category of pro-
tocols causes an increase of the time to finality, which in turn
might enable some attacks such as double-spending.

Voting-Based Protocols: In this group of protocols, the
agreement on transactions is reached through the votes of all
participants. Examples include Byzantine Fault Tolerant (BFT)
protocols – which require the consensus of a majority quorum
(usually (2/3) of all consensus nodes (e.g., [26], [27], [28],
[29], [30]). The advantage of this category is a low-latency
finality due to a negligible likelihood of forks. The proto-
cols from this group suffer from low scalability, and thus their
throughput forms a trade-off with scalability (i.e., the higher
the number of nodes, the lower the throughput).

Combinations: To improve the scalability of voting-based
protocols, it is desirable to shrink the number of consensus
nodes participating in the voting by a lottery, so that only
nodes of such a committee vote for a block (e.g., [29], [31],
[32], [33], [34]). Another option to reduce active voting nodes
is to split them into several groups (a.k.a., shards) that run a
consensus protocol in parallel (e.g., [35], [36]). Such a setting
further increases the throughput in contrast to the single-group
option, but on the other hand, it requires a mechanism that
accomplishes inter-shard transactions.

E. Failure Models in Distributed Consensus Protocols

The relevant literature mentions two main failure models
for consensus protocols [37]:
Fail-Stop Failures: A node either stops its operation or

continues to operate, while obviously exposing its
faulty behavior to other nodes. Hence, all other
nodes are aware of the faulty state of that node
(e.g., tolerated in Paxos [38], Raft [39], Viewstamped
Replication [40]).

Byzantine Failures: In this model, the failed nodes (a.k.a.,
Byzantine nodes) may perform arbitrary actions, includ-
ing malicious behavior targeting the consensus proto-
col and collusions with other Byzantine nodes. Hence,
the Byzantine failure model is of particular interest
to security-critical applications, such as blockchains
(e.g., Nakamoto’s consensus [17], pure BFT proto-
cols [26], [27], [28], [41], and hybrid protocols [31], [35],
[36]).
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IV. THE SECURITY REFERENCE ARCHITECTURE

We present two models of the security reference archi-
tecture, which facilitate systematic studying of vulnerabili-
ties and threats related to the blockchains and applications
running on top of them. First, we introduce the stacked
model, which we then project into the threat-risk assessment
model.

A. Stacked Model

To classify the security aspects of blockchains, we utilize a
stacked model consisting of four layers (see Figure 4). A sim-
ilar stacked model was already proposed in the literature [16],
but in contrast to it, we preserve only such a granularity level
that enables us to isolate security threats and their nature,
which is the key focus of our work. In the following, we
briefly describe each layer.
(1) The network layer consists of the data representation

and network services planes. The data representation
plane deals with the storage, encoding, and protection of
data, while the network service plane contains the discov-
ery and communication with protocol peers, addressing,
routing, and naming services.

(2) The consensus layer deals with the ordering of trans-
actions, and we divide it into three main cate-
gories according to the protocol type: Byzantine Fault
Tolerant, Proof-of-Resource, and Proof-of-Stake proto-
cols.

(3) The replicated state machine (RSM) layer deals with
the interpretation of transactions, according to which
the state of the blockchain is updated. In this layer,
transactions are categorized into two parts, where the
first part deals with the privacy of data in transactions
as well as the privacy of the users who created them,
and the second part – smart contracts – deals with
the security and safety aspects of decentralized code
execution in this environment.

(4) The application layer contains the most common end-
user functionalities and services. We divide this layer
into two groups. The first group represents the appli-
cations that provide common functionalities for most of
the higher-level blockchain applications, and it contains
the following categories: wallets, exchanges, oracles,
filesystems, identity management, and secure timestamp-
ing. We refer to this group as applications of the
blockchain ecosystem. The next group of application
types resides at a higher level and focuses on provid-
ing certain end-user functionality. This group contains
categories such as e-voting, notaries, identity manage-
ment, auctions, escrows, etc. We found out that these
higher-level applications inherit security aspects from par-
ticular categories in the underlying ecosystem group (see
Figure 15).

Throughout the paper, we summarize components and cat-
egories of particular layers of the reference architecture with
their respective security threats, their origin, and corresponding
countermeasures and/or mitigation techniques.

Fig. 4. Stacked model of the security reference architecture.

B. Threat-Risk Assessment Model

To better capture the security-related aspects of blockchain
systems, we introduce a threat-risk model (see Figure 5) that
is based on the template of ISO/IEC 15408 [9] and projection
of our stacked model (see Figure 4). This model includes the
following components and actors:
Owners are blockchain users who run any type of node

and they exist at the application layer and the con-
sensus layer. Owners possess crypto-tokens, and they
might use or provide blockchain-based applications and
services. Additionally, owners involve consensus nodes
that earn crypto-tokens from running the consensus pro-
tocol.

Assets are present at the application layer, and they con-
sist of monetary value (i.e., crypto-tokens or other
tokens) as well as the availability of application-layer
services and functionalities built on top of blockchains
(e.g., notaries, escrows, data provenance, auctions).
The authenticity of users, the privacy of users, and
the privacy of data might also be considered as
application-specific assets. Furthermore, we include here
the reputation of service providers using the blockchain
services.

Threat agents are spread across all the layers of the stacked
model, and they mostly involve malicious users whose
intention is to steal assets, break functionalities, or
disrupt services. However, threat agents might also
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be inadvertent entities, such as developers of smart
contracts who unintentionally create bugs and designers
of blockchain applications who make mistakes in the
design or ignore some issues.

Threats facilitate various attacks on assets, and they exist
at all layers of the stacked model. Threats arise from
vulnerabilities in the network, smart contracts, applica-
tions, from consensus protocol deviations, violations of
consensus protocol assumptions.

Countermeasures protect owners from threats by min-
imizing the risk of compromising/losing the assets.
Alike the threats and threat agents, countermeasures
can be applied at each of the layers of our stacked
model, and they involve various security/privacy/safety
solutions, incentive schemes, reputation techniques, best
practices, etc. Nevertheless, we emphasize that their
utilization usually imposes some limitations such as
higher complexity and additional performance overheads
(e.g., resulting in decreased throughput).

Risks are related to the application layer, and they are
caused by threats and their agents. Risks may lead
to a loss of monetary assets, a loss of privacy, a
loss of reputation, service malfunctions, and disrup-
tions of services and applications (i.e., availability
issues).

The owners wish to minimize the risk caused by threats
that arise from threat agents. Within our stacked model, dif-
ferent threat agents appear at each layer. At the network
layer, there are service providers including parties managing
IP addresses and DNS names. The threats at this layer arise
from man-in-the-middle (MITM) attacks, network partitioning,
de-anonymization, and availability attacks. Countermeasures
contain protection of availability, naming, routing, anonymity,
and data. At the consensus layer, consensus nodes may be
malicious and wish to alter the outcome of the consensus
protocol by deviating from it. Moreover, if they are pow-
erful enough, malicious nodes might violate assumptions of
consensus protocols to take over the execution of the pro-
tocol or cause its disruption. The countermeasures include
well-designed economic incentives, strong consistency, decen-
tralization, and fast finality solutions. At the RSM layer, the
threat agents may stand for developers who (un)intentionally
introduce semantic bugs in smart contracts (intentional bugs
represent backdoors) as well as users and external adver-
saries running lightweight nodes who pose threats due to the
exploitation of such bugs. Countermeasures include safe lan-
guages, static/dynamic analysis, formal verification, audits,
best practices, and design patterns. Other threats of the
RSM layer are related to compromising the privacy of data
and user identities with mitigation techniques involving mix-
ers, privacy-preserving cryptography constructs (e.g., non-
interactive zero-knowledge proofs (NIZKs), ring signatures,
blinding signatures, homomorphic encryption) as well as usage
of trusted hardware (respecting its assumptions and attacker
models declared). At the application layer, threat agents
are broad and involve arbitrary internal or external adver-
saries such as users, service providers, malware, designers of
applications and services, manufactures of trusted execution

Fig. 5. Threat-risk assessment model of the security reference architecture.

environments (TEE) for concerned applications (e.g., oracles,
auctions), authorities in the case of applications that require
them for arbitration (e.g., escrows, auctions) or filtering of
users (e.g., e-voting, auctions), token issuers. The threats
on this layer might arise from false data feeds, censorship
by application-specific authorities (e.g., auctions, e-voting),
front running attacks, disruption of the availability of cen-
tralized components, compromising application-level privacy,
misbehaving of the token issuer, misbehaving of manufac-
turer of TEE or permanent hardware (HW) faults in TEE.
Examples of mitigation techniques are multi-factor authen-
tication, HW wallets with displays for signing transactions,
redundancy/distributions of some centralized components, rep-
utation systems, and privacy preserving-constructs as part of
the applications themselves. We elaborate closer on vulnerabil-
ities, threats, and countermeasures (or mitigation techniques)
related to each layer of the stacked model in the following
sections.

Involved Parties & Blockchain’s Life-Cycle:
In Section III, we presented several types of involved
parties in the blockchain infrastructure (see Figure 3). We
emphasize that these parties are involved in the opera-
tional stage of the blockchain’s life-cycle. However, in
the design and development stages of the blockchain’s
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Fig. 6. Overlaying of blockchains over a private/public network.

life-cycle, programmers and designers should also be con-
sidered as potential threat agents who influence the security
aspects of the whole blockchain infrastructure (regardless
of whether their intention is malicious or not). This is
of great concern especially for applications built on top
of blockchains (i.e., at the application layer) since these
applications are usually not thoroughly reviewed by the
community or public, as it is typical for other (lower)
layers.

V. NETWORK LAYER

Blockchains usually introduce peer-to-peer overlay
networks built on top of other networks (see Figure 6).
Hence, blockchains inherit security and privacy issues from
their underlying networks. In our model (see Figure 4),
we divide the network layer into data representation and
network services sub-planes. The data representation plane
is protected by cryptographic primitives that ensure data
integrity, user authentication, and optionally confidentiality,
privacy, anonymity, non-repudiation, and accountability.
The main services provided by the network layer are peer
management and discovery, which rely on the internals of the
underlying network, such as domain name resolution (i.e.,
DNS) or network routing protocols. Based on permission to
join the blockchain system, the networks are either private
or public. In the following, we discuss the pros and cons of
private and public networks as well as their security threats
and mitigation techniques.

A. Private Networks

A private network ensures low latency, a centralized admin-
istration, privacy, and meeting regulatory obligations (e.g.,

Fig. 7. Vulnerabilities, threats, and defenses in private networks (network
layer).

HIPAA2 for healthcare data). The organization owning the
network provides access to local participants as well as to
external ones when required; hence, systems deploying pri-
vate networks belong to the group of permissioned private
blockchains. Private networks inherently provide authentica-
tion and access control.

1) Pros: Access control is achieved by centralized authen-
tication of users. A private network has full control over
routing paths and physical resources used, which enables suit-
able regulation of the network topology with regard to the
given requirements. Data privacy is ensured by permissioned
settings. User identities might only be revealed within a pri-
vate group of nodes. Fine-grained authorization controls are
applied by the operators of the network resources to imple-
ment the security principle of minimal exposure and thus
mitigate insider threat attacks on a local network. Resource
availability is easier to manage and foresee, as all network
participants and the deployment scenario are known ahead of
time.

2) Cons: Virtual Private Network (VPN) connectivity is
required to communicate between private networks spread
over different geographical locations. While VPNs are in
general secure, they inherit the disadvantages of running a
service over the Internet. Private networks are suitable only
for permissioned blockchains.

3) Security Threats and Countermeasures: We present a
taxonomy of vulnerabilities, threats, and defenses against them
in Figure 7. We identified insiders and external targeted
attacks as the specific security threats for the (permissioned)
blockchains running over the private networks. These threats
are possible due to a centralization of access control that might
occur in private networks, and thus permissioned blockchains.
An external attacker might exploit a network or system vul-
nerability and obtain access to an element responsible for
access control to the blockchain. In the case of the insider
threat, she may already have the necessary privileges or
obtain them by exploiting the system, network, or orga-
nization vulnerabilities. As a result, the insider might add
malicious consensus nodes into the network or remove legit-
imate ones, and thereby increase the adversarial consensus
power that is manifested at the consensus layer. In turn, this
may lead to plenty of attacks occurring at the consensus layer

2Health insurance portability and accountability act, https://hipaa.com/.
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(see Section VI) such as attacks on violation of protocol
assumptions.

Countermeasures include regular software updates, monitor-
ing of users, network, and systems (e.g., by SIEM, anti-virus
software, intrusion detection systems), prevention techniques
that minimize trust and maximize trustworthiness such as two-
factor authentication for access control decisions (effective
for the external attacker), as well as respecting best prac-
tices for mitigation of insider threat [42]. Another option of
coping with the centralization of access control is to embed
decentralized access control into the consensus layer and thus
mandating a requirement on reaching a consensus of a quo-
rum of nodes for each access control decision. In contrast to
the other mentioned countermeasures, the embedding of access
control into the consensus layer is more effective since it elim-
inates a single-point-of-failure of centralized access control
service, and thus it makes an increase of adversarial con-
sensus power more difficult for the attacker – the attacker
has to compromise a high number of independent consensus
nodes.

4) Side Effects of Countermeasures: Most of the mentioned
countermeasures do not cause negative effects on the fea-
tures of the blockchains under normal circumstances. The
exception might be embedding of access control into the
consensus layer under the assumption that the set of con-
sensus nodes in the network is extremely dynamic, and thus
nodes are entering and leaving the blockchain very often.
In such a case, the throughput of the blockchain might be
decreased.

B. Public Networks/The Internet

Public networks provide high decentralization, openness,
and low entry barrier, while network latency, privacy, and
network control are put aside. These networks are nat-
urally required by all public (permissionless) blockchain
systems.

1) Pros: High availability is attractive to multi-homed
nodes since they have alternate routes to send and receive
messages. Multi-homed nodes may benefit from disseminating
blocks across multiple channels, thereby increasing the chance
of blocks being appended to the blockchain. High decentral-
ization is achieved through geographical dispersion of nodes.
Public peer-to-peer (p2p) networks are harder to shut down.
Openness and low entry barriers on the Internet are achieved
through wide adoption, technology interoperability (e.g., using
TCP/IP), economic (e.g., low cost of broadband connection),
and societal (e.g., resistance to regulations) factors.

2) Cons: Single-point-of-failure – DNS with its hierarchy,
IP addresses, and autonomous systems (ASes) are managed by
centralized parties – Internet Corporation for Assigned Names
and Numbers (ICANN); in particular, Internet Assigned
Numbers Authority (IANA). External adversaries pose a threat
to public networks. These adversaries can be classified based
on their capabilities to which the blockchain network may be
exposed to [43]: (1) resources under attacker control (e.g.,
botnets, DNS and BGP servers), (2) stolen or masqueraded
identities (e.g., IP addresses participating in an eclipse attack

Fig. 8. Vulnerabilities, threats, and defenses in public networks (network
layer).

or route manipulation), (3) MITM attacker (i.e., eavesdropping
and spoofing), (4) the exploitation of common network vul-
nerabilities, (5) revealing secrets (e.g., de-anonymizing peers).
Efficiency – although an average Internet bandwidth has been
improved in recent years, distribution of powerful infrastruc-
ture is not uniform, which results in a different latency among
peers, and thus the overall latency of the network is increased;
this might result in the loss of created blocks and thus wasting
consensus power.

3) Security Threats and Countermeasures: We present a
taxonomy of vulnerabilities, threats, and defenses related to
public networks in Figure 8, while in Table VI of Appendix,
we list several incidents that occurred in practice. In the fol-
lowing, we describe these threats as well as possible defense
techniques.
DNS attacks arise from cache poisoning that mainly affects

blockchains employing centralized DNS bootstrapping
to retrieve online peers from a hard-coded list of DNS
seeders. One countermeasure is a security extension
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of DNS, called DNSSEC, which provides authentica-
tion and data integrity. In addition to standard DNS,
name resolution can also be made using alternate DNS
servers [44].

Routing attacks are traffic route diversions, hijacking, or
DoS attacks. Besides simple data eavesdropping or mod-
ification, these attacks may lead to network partitioning,
which in turn raises the risks of 51% attacks or selfish
mining attacks presented at the consensus layer (see
Section VI). Apostolaki et al. [45] demonstrated that the
Bitcoin protocol is vulnerable to BGP routing attacks
where the attacker controlling a transit autonomous
system (AS) can modify inter-domain routes for a few
Bitcoin nodes and cause network partitioning. However,
perpetration of this attack reveals the identity of the
malicious AS, which might have immediate reputation
consequences.
Countermeasures are multi-homed nodes (or using VPN)
for route diversity, choosing extra peers whose connec-
tions do not pass through the same ASes, preference of
peers hosted on the same AS within the same /24 prefix
(to reduce risk of partitions), and fetching the same
block from multiple peers [45]. Another mitigation is
SABRE [46], a secure relay network that runs alongside
with the Bitcoin network. Further, BGPsec is a security
extension for BGP used between neighboring ASes, and
it assures route origin and propagation by cryptographic
verification.

Eclipse attacks aim to hijack all connections of a node to
its peers in a blockchain network. Consequently, all
traffic received and sent by the node is under the full
control of the attacker. Eclipse attacks arise from threats
on DNS and routing in the network, and they may be
a result of vulnerabilities in p2p protocols [47], [48],
[49]. Eclipse attacks increase chances of selfish mining
and double-spending attacks (see Section VI) – the
eclipsed victims may unknowingly vote for an attacker’s
chain, and thus cause a network partitioning. Erebus [50]
is a stealthier attack causing network partitioning as
compared to Apostolaki et al. [45]. However, Erebus is
not a routing attack since it does not involve BGP prefix
hijacking (which is easy to detect) and has a very small
network traffic footprint. In Erebus, the attacker controls
a large number of shadow IP addresses and influences
the victim’s peer selection mechanism to pick all
outgoing connections with shadow IP addresses. This is
achieved through slowly flooding the victim’s peer tables
by incoming connections from the attacker-controlled
shadow IP addresses.
Countermeasures: Improving randomness in choosing
peers was proposed in the work of Heilman et al. [47]
by several rules that manage the peer table. Another
mitigation strategy against eclipse attacks is to use
redundant network links or out-of-band connections
to verify transactions (e.g., by a blockchain explorer).
Eclipse attacks can also be detected by employing
out-of-band gossip networks (e.g., Web-servers) [51] that
communicate with lightweight clients to exchange their

views on the blockchain (i.e., block headers) along with
native Web traffic. Erebus attacks can be made much
harder by decreasing the size of the peer tables, increas-
ing the number of peers, preferring the peers that provide
fresh data, and incorporation the topology of ASes into
the peer selection process. Also, note that countermea-
sures for DNS and routing attacks are applicable here
as well.

DoS attacks on connectivity of consensus nodes may
result in a loss of consensus power, thus preventing
consensus nodes from being rewarded [52]. For vali-
dating nodes, this attack leads to a disruption of some
blockchain-dependent services [53]. Countermeasures:
One mitigation is to peer only with white-listed nodes.
Methods to prevent volumetric DDoS include on-premise
filtering (i.e., with an extra network device), cloud fil-
tering (i.e., redirection of traffic through a cloud when
DDoS is detected or through a cloud DDoS mitigation
service), or hybrid filtering [54].

DoS attacks on resources such as memory and storage,
may reduce the peering and consensus capabilities [55]
of nodes. An example attack is flooding the network
with low fee transactions (a.k.a., penny-flooding), which
may cause memory pool depletion, resulting in a system
crash. A possible mitigation is raising the minimum
transaction fee and the rate-limit to the number of
transactions. Several mitigating techniques were applied
to Bitcoin [56] nodes including scoring DoS attacks and
banning misbehaving peers. DoS attacks on connectivity
may also target (additional) centralized elements of
blockchain infrastructure, such as servers communicating
with hosted wallets (see Section VIII-A), which in turn
might lead to application layer attacks targeting clients
of the wallets.

Identity revealing attacks are conducted by linking the
IP address of a node with an identity propagated in
transactions [57], [58]. Traffic analysis using Sybil
listeners can reveal the linkage of node IP addresses
and their transactions [59]. Countermeasures include
using VPNs or anonymization services, such as Tor. See
Section VII-A1 for further identity and privacy-protecting
mechanisms at the RSM layer.

4) Side Effects of Countermeasures: The anonymization
services cause deterioration of connectivity for consensus
nodes, and these nodes might not distribute the created block
on time and thus lose their reward. On the other hand, the
slow connectivity of anonymization services can be accept-
able for validating nodes and clients transmitting messages
related to the creation and validation of their transactions. The
trade-off for connectivity and anonymity can be provided by
VPN services, which are fast but they are usually operated by
a centralized party, and thus the risk of de-anonymization is
higher than in the case of anonymization services. Increasing
the number of outgoing peer connections as protection against
eclipse attacks [50] can increase the volume of data that needs
to be transferred, which might negatively impact the through-
put of blockchains. Furthermore, fetching the same blocks
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from multiple peers [45] may contribute to the network con-
gestion under certain configurations of blockchains focusing
on a high throughput – this might lead to a slow down in keep-
ing touch with the tip of the blockchain and thereby impact
a response time of an application running on top of it. The
response time of the application might be also impacted by
cloud and hybrid filtering that relay some incoming traffic
through 3rd party services.

VI. CONSENSUS LAYER

The consensus layer of the stacked model deals with the
ordering of transactions, while the interpretation of them is
left for the RSM layer (see Section VII). The consensus layer
includes three main categories of consensus protocols con-
cerning different principles of operation and thus their security
aspects. First, we focus on the security aspects that are generic
to all categories, and then we detail each category.

A. Generic Attacks

We present a taxonomy of the generic threats to all types of
consensus protocols, their origins, and defenses against them
in Figure 9. These threats originate mainly from violation of
protocol assumptions but also due to a long time to the finality
of some consensus protocols. In the following, we describe
these threats as well as possible defense techniques.

1) Security Threats and Mitigations:
Adversarial Centralization of Consensus Power: In these

attacks, a design assumption about the decentralized
distribution of consensus power is violated. Examples of
this category are 51% attacks for PoR and PoS protocols
as well as 1

3 of Byzantine nodes for BFT protocols (and
their combinations). In a 51% attack, the majority of the
consensus power is held by the adversary, thus also the
result of the protocol is under her control. In Byzantine
attacks, a quorum of 1

3 adversarial consensus nodes
might cause the protocol to be disrupted or even halted.
As a design-oriented countermeasure, it is important
to promote decentralization by incentive schemes that
reward honest participation and discourage [60] or
punish [32], [61] protocol violations. Another mitigation
that makes these attacks more expensive is a statistical
analysis of sudden anomalies in the history of the
consensus power distribution among nodes, which can
be embedded in the fork-choice rule of the consensus
protocol [62].

Breaking Network Assumptions: Protocols assuming syn-
chronous or partially synchronous network delivery
would inevitably fail when this assumption does not
hold. For instance, this assumption can be violated in
BFT protocols by an unpredictable network scheduler,
as demonstrated on PBFT protocol [63]. This fact
motivates asynchronous BFT protocols that can be based
on threshold-based cryptography, which enables reliable
and consistent broadcast [41], [63].

Time De-Synchronization Attacks: Usually, besides system
time, nodes in PoW and PoS maintain network time that
is computed as the median value of the time obtained

Fig. 9. Generic threats and defenses of the consensus layer.

from the peers. Such a time is often put into the block
header, while nodes, upon receiving a block, validate
whether it fits freshness constraints. An attacker can
exploit this approach by connecting a significant num-
ber of nodes and propagate inaccurate timestamps, which
can slow down or speed up the victim node’s network
time [64]. When such a desynchronized node creates
a block, this block can be discarded by a network
due to freshness constraints. To avoid de-synchronization
attacks, a node can build a reputation list of trusted
peers or employ a timestamping authority [65]. Another
option to improve the accuracy of block timestamps is to
compute them collaboratively by consensus nodes [18].

Double-Spending Attack: This attack is possible due to the
creation of two or more conflicting blocks with the same
height, resulting in inconsistencies called forks. Thus,
some crypto-tokens might be temporarily spent in both
conflicting blocks, while only a single block is later
included in the honest chain. A double-spending attack
mainly affects consensus protocols with slow finality.
This attack usually occurs as a consequence of 51%
attacks.3 To prevent this attack, it is recommended to wait
a certain amount of time (i.e., time to the finality) until
a block “is settled” or utilize consensus protocols with
fast time to the finality, such as BFT protocols and their
combinations.

Attacks on Shards: Sharding means that consensus nodes are
distributed among subgroups (i.e., shards) such that each
node only validates the transactions in its group. Shards
operate in parallel and can achieve higher scalability and
throughput since each shard has a throughput similar to
an entire non-sharded blockchain. On the other hand,

3Note that in the case of PoR protocols, this attack may also occur as a
consequence of the selfish mining attack.
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sharding has the potential to harm security because each
shard has a lower number of participating nodes than
the entire blockchain, which means that it may be easier
for the attacker to compromise a single shard than the
entire blockchain [66], [67]. The main mitigation tech-
nique is to achieve a truly random distribution of nodes
among the shards, and thus minimize the potential for
adversaries to bias the randomness used for shard distri-
bution. For example, Elastico [68] uses PoW to distribute
nodes among shards, whereas Omniledger [35] uses
a bias-resistant distributed randomness protocol (e.g.,
RandHound [69]). Poor design of sharding protocols may
also lead to vulnerabilities such as replay attacks [70].

2) Side Effects of Countermeasures: Some generic coun-
termeasures presented in the above text might impact the
features of the blockchains. For example, the application
layer countermeasure that uses the timestamping authority
brings centralization issues, which might impact the availabil-
ity of the service and enable misbehaving of the authority
that might provide imprecise time. To cope with this issue,
instead of using the application layer countermeasure, the
computation of block timestamps can be embedded into the
consensus protocol, e.g., by ensuring that multiple consensus
nodes simultaneously contribute to global time using partial
solutions [18].

Enriching a fork-choice rule by statistical analysis of the
history [62] might protect against sudden changes in the dis-
tribution of the overall consensus power (e.g., rent-and-attack
in PoW protocols), but not against a slow gradual increase
of the consensus power by a coalition. Furthermore, this mit-
igation technique incentivizes consensus nodes to use stable
identifications (i.e., the same key pairs) to increase the strength
of the honest chain and thus the chances that it becomes the
main chain after a temporary fork. This might impact the pri-
vacy and security of consensus nodes, who are disincentivized
to rotate keys. Note that some privacy issues can be resolved
at the RSM layer (see Section VII).

Using a BFT consensus protocol helps to significantly
decrease the likelihood of double-spending attacks, but on the
other hand, it worsens the scalability of the blockchain and
thus throughput, especially in the case of a high number of
consensus nodes. These issues can be resolved by combining
a BFT voting protocol with lottery-based protocols that reduce
the size of the actively communicating nodes to a small com-
mittee (e.g., [31], [32], [33], [34], [29]). The scalability of BFT
protocols can be also improved by using threshold-based sig-
nature aggregation with a gossip-based communication pattern
(e.g., [71], [72]).

Distributed randomness protocols and PoW for distribu-
tion of shards bring additional overheads, which may reduce
the throughput of the blockchain; however, this reduction is
negligible in contrast to the throughput improvement due to
sharding.

B. Proof-of-Resource Protocols (PoR)

Protocols from this category require nodes to prove the
spending of a scarce resource in a lottery-based fashion [19].

Scarce resources may stand for: (1) Computation that is rep-
resented by Proof-of-Work (PoW) protocols (e.g., Bitcoin,
Ethereum). (2) Storage used in the setting of Proof-of-
Space protocols [73] (e.g., Spacecoin [74], SpaceMint [75]).
(3) Crypto-tokens spent for Proof-of-Burn protocols [76]
(e.g., Slimcoin [77]). (4) Combinations and modification of
the previous types, such as storage and computation, called
Proof-of-Retrievability (e.g., Permacoin [78]) and storage
over time, which is represented by Proof-of-Space protocols
(e.g., Filecoin [79]). Another hybrid example of this cate-
gory is a combination of PoR with elapsed time, such as in
PeerCoin [80]. However, it is a philosophical question whether
to consider elapsed time as a resource that is spent or as a
stake that is invested – note that literature often categorizes
PeerCoin as the first instance of a (hybrid) PoS protocol, hence
we incline towards the second option.

PoR protocols belong to the first generation of consen-
sus protocols, and they are mostly based on Nakamoto
Consensus [17] that utilizes PoW, inheriting its pros (e.g., high
scalability) and cons (e.g., low throughput). For the detailed
analysis of several PoW designs, we refer the reader to [81].

1) Pros: In PoR protocols, malicious overriding of the his-
tory of the blockchain (or part of it) requires spending at least
the same amount of resources as was spent for its creation.
This is in contrast to the principles of PoS protocols, where
a big enough coalition may override the history at almost no
cost.

2) Cons: PoR protocols imply high operational costs.
Moreover, these protocols provide only probabilistic finality,
which enables attacks forking the last few blocks of the chain.

3) Security Threats and Mitigations: We present a taxon-
omy of the attacks related to PoR protocols, their origins, and
defenses against them in Figure 10, while we list several real-
world incidents in Table V of Appendix. In the following, we
describe these attacks as well as possible defense techniques.
Selfish Mining: In selfish mining [82],4 an adversary attempts

to privately build a secret chain and reveal it to the
public only when an honest chain is “catching up”
with the secret one. The longest-chain rule causes hon-
est miners to adopt the attacker’s chain and invalidate
the honest chain, thus wasting their consensus power.
This attack is more efficient when the consensus power
of a selfish miner reaches some threshold (e.g., 30%).
The selfish mining strategy was later generalized [84]
and extended to other variants that increase the profit
of the attacker [85]. Countermeasures: For the case of
the longest-chain rule, the first introduced mitigation is
uniform tie-breaking [82], which tells consensus nodes
to choose the chain to extend uniformly at random,
regardless of which one they received first. However,
this technique is less effective when assuming network
delays [84]. As the longest-chain rule enables this attack,
it is recommended to use other fork-choice rules that also

4Note that selfish mining is theoretically possible even in PoS protocols [83]
but requiring them to have predictable randomness for the leader election,
which is usually a design-oriented vulnerability (see Section III-C). However,
in PoR, selfish mining is possible even with unpredictable randomness for the
leader election.
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Fig. 10. Vulnerabilities, threats, and defenses of PoR protocols (consensus layer).

account for the quality of solutions and make the deci-
sion deterministic, as opposed to a uniform tie-breaking.
An example of such a rule is to select the block based
on the smallest hash value of the header. Another exam-
ple is to include partial solutions [18], [25], [86] or
solutions representing full (orphaned) blocks [23], [87]
in the computation of a chain quality. These partial or
orphaned solutions can be incentivized by rewards to
further improve decentralization. Another option for a
deterministic fork-choice rule is using a pseudo-random
function [88], which moreover provides unpredictability,5

hence an attacker cannot determine his chances to win a
tie. Finally, PoW protocols can be combined with BFT
protocols, where PoW is used only for joining the pro-
tocol and BFT for consensus itself (e.g., [34], [35], [36],
[68], [88]).

Feather Forking: In this attack [89], the adversary creates
incentives for rational miners to collectively censor cer-
tain transactions. Before a mining round begins, an
adversary announces that he will not extend the block
containing blacklisted transactions, and thus will attempt
to extend a forked chain. Although this strategy is not

5As opposed to uniform-tie breaking that provides only unpredictability,
this solution additionally brings determinism.

profitable for the adversary and the success rate is
dependent on his consensus power, rational nodes pre-
fer to join the censorship to avoid the potential loss.
Countermeasures: design-oriented protection is to min-
imize the chance of the attacker being successful, which
can be done by including (and rewarding) partial solu-
tions [18], [25], [86], [90] or full orphaned blocks [23],
[87] into branch difficulty computation.

Bribery Attacks: Whereas feather forking involves adversaries
who try to influence the behavior of miners by threatening
to hurt their profits, bribery attacks involve the offering of
direct rewards to miners. For example, consensus nodes
could be bribed to enable double-spending attacks [91]
or to reorder transactions within a block, and thus enable
the transaction front-running by other means than natural
priority gas auctions (PGAs) [92].6

Countermeasures: assuming that the miners who accept
bribes constitute a minority, a possible mitigation tech-
nique is to utilize partial solutions [18], [25], [86],
[90], which reduce the likelihood that the double-
spending attacks succeed. Regarding “bribed” transaction
front-running, the misbehavior happens entirely off-chain

6In PGAs, users (arbitrage bots) compete with each other to be the first to
interact with a smart contract (e.g., due to profit from intra-chain exchanges
– see Section VIII-B)



HOMOLIAK et al.: SRA FOR BLOCKCHAINS: TOWARD STANDARDIZED MODEL 353

since miners have complete control over the transaction
ordering process, so on-chain mitigation is challenging.
Moreover, the likelihood of this attack is directly propor-
tional to the consensus power of the bribed miner; hence,
this attack is more feasible for mining pools. However,
since no evidence confirming collusion between mining
pools and bots has been found yet, mining pools are likely
to be discouraged from accepting bribes due to the fear of
consequences (e.g., a decrease in the market value of the
crypto-tokens after these attacks are publicly disclosed).

Time-Spoofing Attacks: Time-spoofing attacks target a time-
based difficulty computation algorithm in a PoR protocol
with the intention to decrease the difficulty of the puz-
zle and thus minimize the effort for obtaining the same
reward. In particular, the attacker is a consensus node
that mines blocks with delayed timestamps, which indi-
cates that a puzzle is too hard to meet block creation
rate, and therefore difficulty needs to be decreased.
Countermeasures: A solution that improves the accu-
racy of the timestamps may utilize partial solutions
found by all nodes into an averaged timestamp compu-
tation [18]. Note that the impact of time spoofing attack
might be significant also at the application layer, espe-
cially in use cases that rely on timestamp accuracy (see
Section VIII-F).

Pool Specific Attacks: Since PoR protocols are usually based
on a lottery having a single winner [17], rewards for
participation impose a high payout variance for solo
miners (i.e., once in a few years). As a consequence,
mining pools emerged and caused centralization of the
mining power, which may result in selfish mining,
double-spending, or 51% attacks. Countermeasures: Non-
outsourceable scratch-off puzzles [60] avoid the creation
of pools but require each consensus node to meet high
demands on connectivity and storage, as opposed to
centralized pools, where only a pool operator needs
to meet these demands. If pools are acceptable, their
size can be controlled by protocols that reward partial
solutions [18], [25], [86], [90] and thus minimize payout
variance. For a detailed analysis of rewarding schemes in
pools, we refer the reader to [93]. In the following, we
describe several types of pool-specific attacks.
a) Pool hopping: The individual contribution of min-
ers in a pool is proved by broadcasting partial solu-
tions, called shares. If pay-per-share (PPS) rewarding
is employed (i.e., pool operator instantly rewards min-
ers showing shares), an attacker may jump into another
pool after his mining time in a victim pool reaches a cer-
tain threshold [94] since mining at the early stages of a
round is statistically more profitable than mining at the
end of the round. As a countermeasure pay-per-last-N-
shares (PPLNS) scheme and its variants [95] can be used.
PPLNS removes the concept of rounds and instead of
immediate payments, it employs deterred payments after
N shares are submitted by a miner.
b) Block withholding: An attacker may try to sabotage
a victim pool – after mining a block in a victim pool,
the attacker discards this block and continues mining at

another pool [93]. Such withholding does not mean a
direct gain for the attacker, but she may do a secret agree-
ment with concurrent pool(s) that may reward the attacker
for showing a withheld block [96] (a.k.a., sponsored block
withholding). Mitigation for this kind of attack is using
the PPLNS scheme, giving an extra reward to the miner
of the block [97], precluding miners from distinguishing
between a share and a full solution (i.e., oblivious tasks).
c) Lie-in-wait: If the miner finds a block in a victim pool,
she does not immediately submit it to the pool operator,
but instead focuses all her available mining power on
the victim pool to increase her relative shares within a
pool; after some time attacker releases the formerly found
block. A countermeasure for this attack is an oblivious
task [96].
d) Selfish mining on a subchain: Decentralized mining
pools, such as p2pool [98], achieve decentralization by
updating an intermediary coinbase transaction with mined
shares. To preserve consistency with the previous versions
of the coinbase transaction within a mining round, its
history is kept in a subchain. However, a chaining data
structure enables selfish mining on a subchain, besides
the fact that it implies a high stale rate of shares in a
subchain.7 A possible countermeasure is to use flat data
structures for aggregation of shares, such as the Merkle
tree or hash of a set [18].

4) Side Effects of Countermeasures: Partial solutions for
difficulty computation might cause additional network over-
heads and thus decrease the throughput of the protocol.
However, this is not the case for sufficiently long rounds of
PoW protocols, such as in StrongChain [18]. On the other
hand, rewarding partial solutions, apart from mitigating some
threats, helps to promote decentralization – payout variance
is decreased and thus mining pools are not needed in some
cases, and in other cases, they can be much smaller.

C. Byzantine Fault Tolerant (BFT) Protocols

BFT protocols represent voting-based [19] consensus
protocols that utilize Byzantine agreement and a state
machine replication [37]. These protocols assume a fully
connected topology, broadcasting messages, and a master-
replicas hierarchy. Synchronous examples of this category are
PBFT [26], RBFT [27], eventually synchronous examples are
BFT-SMaRt [99], Tendermint [28], Byzantine Paxos [100],
BChain [30], and asynchronous examples are SINTRA [41]
and HoneyBadgerBFT [63]. For more details, we refer
the reader to a review of BFT protocols and their prac-
tical applications in both permissioned and permissionless
blockchains [101].

1) Pros: BFT protocols provide high throughput and fast
finality. Another advantage of BFT protocols is that they can
be combined with PoS or PoR protocols to achieve reasonable
scalability and retain their other properties. This is in line with
a lottery approach [19] for selecting a portion of all nodes,

7Note that the same applies for Flux [25] and Subchains [90] that maintain
a subchain but at the level of the whole network (as opposed to p2pool).
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Fig. 11. Vulnerabilities, threats, and defenses of BFT protocols (consensus
layer).

referred to as a committee, which further runs BFT consensus
or its part (e.g., Algorand [31], Zilliqa [34], DFINITY [33]).

2) Cons: The main con of traditional BFT protocols
[26], [100] is low scalability caused by a high communica-
tion complexity (i.e., Θ(n2)). Since these protocols can work
efficiently only with a limited number of consensus nodes,
they can be used in their pure form only in permissioned
blockchains.

3) Improvements: The issues with scalability vs. through-
put of BFT protocols can be partially addressed by applying
threshold signatures (e.g., HotStuff [102], ByzCoin [88], Theta
Blockchain [71]) as well as by optimizing communication
patterns from original broadcast to gossiping [71] or com-
munication trees [88]. On top of that, consensus nodes might
be partitioned into shards that process transactions in parallel
(e.g., Omniledger [35], RapidChain [36]).

4) Security Threats and Mitigations: We present a taxon-
omy of the attacks related to BFT protocols, their origins,
and defenses against them in Figure 11. In the following, we
describe these attacks as well as possible defense techniques.
Denial of Service on a Leader: Since BFT protocols are

mostly intended for (private) permissioned blockchains
that are run by trusted participants, they do not assume
the existence of malicious nodes whose goal is to sabo-
tage the protocol. However, assuming such an adversary,
a leader of the round might be DoS-ed since her leader-
ship is known before the round starts, which might result
in a restart of the round. Countermeasures: To prevent
this attack, a node can privately determine whether it is
a potential leader by using Verifiable Random Function
(VRF) [31], and immediately release a block candidate;
hence, after publishing this data, it is too late for a
DoS attack on the node. Another option for coping with
this attack can be implemented by aggregating threshold
signatures in a leaderless setting [71].

Posterior Corruption: Posterior corruption is a specific
instance of a violation of protocol assumptions (see
Section VI-A) in which the adversarial consensus power
reaches 2

3 . In posterior corruption, the adversary has
to steal private keys of 2

3 possibly “retired” consensus
nodes and then rerun the consensus protocol, rewrit-
ing the history of the blockchain. Although this attack
is mainly discussed in the context of PoS protocols
(see Section VI-D), we note that in PoS the attacker’s
motivation is typically financial and exploits an incen-
tive scheme of (semi-)permissionless blockchains. On the
other hand, the attacker’s motivation might be different

in BFT protocols in permissioned settings (e.g., gover-
nance or sabotage) since many such BFT protocols do not
contain an incentive scheme. To mitigate posterior corrup-
tion, key-evolving cryptography [103] and forward-secure
digital signatures (e.g., d-ary certificate trees [104]) can
be employed, requiring users to evolve their private keys
and erase already used keys. Another option is to employ
irreversible checkpoints after a fixed number of blocks
or context-sensitive transactions, which put the hash of a
recent valid block into a transaction itself [105].

5) Side Effects of Countermeasures and Improvements: A
problem of some threshold signatures (e.g., BLS signatures)
is a lack of forward secrecy, which might enable posterior
corruption attacks. Forward secrecy might be provided by
schemes such as d-ary certificate trees [104]. On the other
hand, a disadvantage of some forward-secure digital signa-
tures (e.g., [104]) is an extra overhead required for their
verification and updating, which negatively influences the
throughput of the blockchains. This problem was addressed in
Pixel signatures [106], in which the authors proposed aggre-
gated signatures supporting forward secrecy and demonstrated
bandwidth and storage savings in contrast to d-ary certificate
trees [104].

Pruning the number of nodes that run BFT into commit-
tees [31] reduces the security level of BFT and provides only
probabilistic security guarantees depending on the committee
size. This phenomenon might be also seen as a deterioration
of decentralization.

D. Proof-of-Stake Protocols (PoS)

Similar to the PoR category, PoS protocols are based on
the lottery approach [19]. However, in contrast to PoR, no
scarce resource is spent; instead, the nodes are required “to
prove investment” of crypto-tokens to participate in a proto-
col, and thus eventually earn interest from the invested amount.
The concept of PoS was for the first time proposed in the
Bitcointalk forum [107]. The first technical realization of PoS
is Peercoin [80], which is a combination with PoW – each
node has its particular difficulty for PoW, which is based on
the age of the coins a node owns. Although there exist a
couple of pure PoS protocols (e.g., Chains of Activity [108],
Ouroboros [21]), the trend is to combine them in a hybrid
setting with PoR (e.g., Proof-of-Activity [109], Peercoin [80],
Snow White [110]) or BFT protocols (e.g., Algorand [31],
Theta Blockchain [71]). In particular, a combination of PoS
with BFT represents a promising approach, which takes
advantage of both lottery and voting (i.e., scalability and
throughput), where no resources are wasted.

1) Pros: The main feature of PoS protocols, as compared to
PoR, is their energy efficiency. Although some PoS protocols
are often combined with a PoR technique (e.g., [80], [110]),
the overall energy spent is much smaller than in the case of
pure PoR protocols.

2) Cons: The introduction of PoS protocols has brought
PoS specific issues and attacks, while these protocols are, at
the time of writing, still not formally proven to be secure.
Next, PoS protocols are semi-permissionless – a node needs
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Fig. 12. Vulnerabilities, threats, and defenses of PoS protocols (consensus
layer).

to first obtain a stake from any of the existing nodes to join
the protocol.

3) Security Threats and Mitigations: We present a taxon-
omy of the attacks related to PoS protocols, their origins, and
defenses in Figure 12. In the following, we describe these
attacks as well as possible defense techniques.
Nothing-at-Stake: Since generating a block in PoS does not

cost any energy, a node can extend two or more conflict-
ing blocks without risking its stake, and hence increase its
chance to be rewarded. Such behavior increases the num-
ber of forks and thus time to finality. Countermeasures:
Deposit-based solutions (e.g., [61]) require nodes to make
a deposit during some fixed period/round and checkpoint-
based solutions (e.g., [32], [61], [80], [111]) employ
“state freezing” at periodic snapshots of the blockchain,
while the blockchain can be reversed maximally up to the
recent checkpoint. Another option is to punish a node that
signs two conflicting blocks by embedding cryptographic
solutions [112] that enable anybody to reveal the identity
and a private key of such a node. Another countermeasure
is to use backward penalization of nodes that produced
two or more conflicting chains [32], [61]. Finally, PoS
protocols can be combined with BFT approaches, and
thus the probability of forks is negligible (e.g., [31]).

Grinding Attack: If the leader or committee producing a block
is determined before the round starts, then the attacker
can bias this process to increase her chances of being
selected in the future. For example, if a PoS protocol
takes only a hash of the previous block for the elec-
tion process, the leader of a block may bias a hash value

by suitably adjusting the content of the block in a few
attempts. Countermeasures: The grinding attack can be
prevented by performing a fresh leader election by an
interaction of consensus nodes within some committee
(e.g., the secure multiparty coin-flipping protocol [21]) or
by privately checking whether the VRF output is below
a certain stake-specific threshold (e.g., [31]). The input
of the VRF is the user’s private key and the random-
ness unambiguously bound to the previous block; hence
each consensus node might compute the only VRF output
during each round.

Denial of Service on a Leader/Committee: Alike in BFT pro-
tocols (see Section VI-C), if a leader or a committee is
publicly determined before the round starts [21], then
the adversary may conduct a DoS attack against them
and thus cause a restart of the round – this might be
repeated until the adversary’s desired nodes are elected.
Countermeasures: A prevention technique was proposed
in Algorand [31] – a node privately determines whether it
is a potential leader (or committee member), and immedi-
ately releases a block candidate (or a vote) – hence, after
publishing this data, it is too late for a DoS attack. The
concept of the VRF was also utilized in other protocols
(e.g., [33], [113]).

Long-Range Attack: In this attack [114] (a.k.a., posterior cor-
ruption [32]), an adversary can “bribe” previously influ-
ential consensus nodes to sell their private keys or steal
the private keys by other means. Since consensus nodes
may exchange their crypto-tokens for fiat money any-
time, selling their keys imposes no expenses and risk. If
the attacker accumulates keys with enough stake in the
past, he may rerun the consensus protocol and rewrite
the history of the blockchain. A variant of long-range
attack that considers only transaction-fee-based reward-
ing and infrequent or no check-points is denoted as a
stake-bleeding attack [105]. Countermeasures: One mit-
igation is to lock the deposit for a longer time than
the period of participation in the consensus [115]. The
next mitigation technique is frequent periodic checkpoint-
ing, which causes the irreversibility of the blockchain
with respect to the last checkpoint. Another option is
to apply key-evolving cryptography [103] and forward-
secure digital signatures [104], which require users to
evolve their private keys, while already used keys are
erased [113]. Hence, signatures cannot be forged in the
case of compromise. The third mitigation technique is
enforcing a chain density in a time-domain [105] for
the protocols where the expected number of participants
in each round is known (e.g., [21]). The last mitiga-
tion technique is context-sensitive transactions, which
put the hash of a recent valid block into a transaction
itself [105].

4) Side Effects of Countermeasures: Some countermea-
sures for threats in PoS protocols might impact the features of
the blockchains. We note that secure multiparty coin-flipping
protocol brings requirements on additional interactions among
the consensus nodes, and thus it deteriorates the throughput
of the protocol. On the other hand, the throughput does not
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deteriorate when the leader and the committee are elected
non-interactively by VRF.

VII. REPLICATED STATE MACHINE LAYER

The Replicated State Machine (RSM) layer is responsible
for the interpretation and execution of transactions that are
already ordered by the consensus layer. Concerning security
threats for this layer are related to the privacy of users, privacy
and confidentiality of data, and smart contract-specific bugs.
We split the security threats of the RSM layer into two parts:
standard transactions and smart contracts.

A. Transaction Protection

Transactions containing plain-text data are digitally signed
by private keys of users, enabling anybody to verify the
validity of transactions with the corresponding public keys.
However, such an approach provides only pseudonymous iden-
tities that can be traced to real IP addresses (and sometimes to
identities) by a network-eavesdropping adversary, and more-
over, it does not ensure the confidentiality of data [116].
Therefore, several blockchain-embedded mechanisms for the
privacy of data and user identities were proposed in the
literature, which we further elaborate on. Note that some
privacy-preserving techniques can be applied also on the
application layer of our stacked model but imposing higher
programming overheads and costs (e.g., see Section IX-A,
Section IX-F, and Section IX-G). This is common in the case
of blockchain platforms that do not support them natively.

1) Security Threats and Countermeasures: We present a
taxonomy of vulnerabilities, threats, and defenses related to
the privacy of transaction data and user identities in Figure 13.
Privacy Threats to User Identity: In many blockchains,

user identities can be linked with their transactions by
various deanonymization techniques, such as network
flow analysis, address clustering, or transaction fin-
gerprinting [116], [117], [118]. Moreover, blockchains
designed with anonymity and privacy features (e.g.,
Zcash, Monero) are also vulnerable to a few attack
strategies [119], [120]. Countermeasures: Various means
are used for obfuscating user identities, including central-
ized [121], [122] and decentralized [123], [124], [125]
mixing services, ring signatures [126], and non-
interactive zero-knowledge proofs (NIZKs) [127], [128].
Some mixers enable internal linkability by involved
parties [123] or linkability by the mixers [121], which
are also potential threats. Unlinkability for all parties can
be achieved by multiparty computation (MPC) [125],
blinding signatures [122], or layered encryption [124].
Ring signatures provide unlinkability to users in a
signing group [126], enabling only the verification of
correctness of a signature, without revealing an identity
of a signer.

Privacy of data: Blind signatures [129] and NIZKs such as
zk-SNARKs [128] or (shorter) Bulletproofs [130] can be
used for the preservation of data privacy. Another method
is homomorphic encryption, which enables the com-
putation of certain operations over encrypted messages

Fig. 13. Vulnerabilities, threats, and defenses of privacy threats (RSM layer).

(e.g., ElGamal encryption provides additive homomor-
phism). Privacy and confidentiality for smart contract
platforms can be achieved through trusted transaction
managers [131] utilizing zk-SNARKs, trusted hard-
ware [132], and secure multiparty computations [133]
embedded into these platforms. Privacy of data can be
achieved even on blockchain platforms without embedded
support of privacy-preserving constructs. For example,
Zether [134] is built on top of the public smart contract
platform Ethereum, and it provides a confidential pay-
ment mechanism that embeds the balance of users into
(secret) exponents of ElGamal encryption. Other simi-
lar examples that deal with the privacy of data at the
application layer of our stacked model are presented in
Section IX-A, Section IX-G, Section IX-F.

2) Side Effects of Countermeasures: Since protocols of
mixing services usually contain a few rounds (that may involve
the creation of several transactions), all mixing services slow
down the transaction throughput. The next blockchain fea-
ture that is influenced by some mixers is decentralization.
As a consequence, centralized mixing services may misbe-
have and reveal linkable information of transactions, they
can be DoS-ed, or they can steal the funds. Accountability
for the misbehavior of centralized mixing service is pro-
vided in MixCoin [121] and Blindcoin [122] while the latter
additionally provides internal unlinkability by a mixing ser-
vice. In contrast to centralized mixers, decentralized mixers
remove a trusted third party (i.e., no theft is possible) and pro-
vide stronger guarantees for unlinkability of transactions, e.g.,
CoinShuffle [124] and CoinParty [125] require at least two and
2
3m honest participants, respectively, to provide full unlinka-
bility. Decentralization and availability are also impacted in
solutions that utilize trusted hardware [131], [132].

The throughput of blockchains is also impacted in crypto-
graphic countermeasures such as NIZKs, ring signatures, and
blinding signatures. Ring signatures cause the large transac-
tion size, which is linear with the number of participants in
the anonymity set. The size of the ring signatures was opti-
mized by cryptographic accumulators in [135], which in turn
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enabled the improvement of the throughput. NIZKs utilized in
ZeroCoin [127] produce large proofs as well. The proof size
(and thus throughput) was further optimized by zk-SNARKs in
ZeroCash [128]. However, the disadvantage of zk-SNARKs is
the requirement for a trusted setup. This requirement is elim-
inated in Bulletproofs [130], which further decrease the size
of proofs in transactions and thus improves on throughput.

B. Smart Contracts

Smart contracts introduced to automate legal contracts, now
serve as a method for building decentralized applications on
blockchains. They are usually written in a blockchain-specific
programming language that may be Turing-complete (i.e., con-
tain arbitrary programming logic) or only serve for limited
purposes. In the following, we describe these two contrasting
types of smart contract languages and their security aspects.

1) Security Threats and Countermeasures: We present a
taxonomy of vulnerabilities, threats, and defenses inherent to
smart contract platforms in Figure 14.
Turing-Complete Languages: An important aspect of this

smart contract language category is a large attack sur-
face due to the possibility of arbitrary programming logic.
Examples of this category are Serpent, Vyper, Yul, Flint,
LLL, and Solidity, while as of now Solidity is the most
popular and widely-used one. Serpent8 is a high-level
language that was designed to be simple and similar to
the Python language. However, Serpent was designed in
an untyped fashion, lacking out-of-bound access checks
of arrays and accepting invalid code by compilers [136],
which opened the door for plenty of vulnerabilities.
Hence, Serpent showed to be an unsuccessful attempt
to simplify the coding phase. Vyper9 is an experimen-
tal language designed to ease the audit of smart contracts
and increase security – it contains strong typing, bounds
checks, and overflows. Yul10 is a typed intermediate lan-
guage for Ethereum, which can be compiled to bytecode
for the EVM 1.0, EVM 1.5 and eWASM platforms.
Snippets of Yul code can be inserted as an inline assem-
bly within Solidity code to perform optimizations that
are applicable for these three platforms. Flint [137] is
a type-safe language for Ethereum smart contracts. The
major focus of this language is its robustness, and it
also provides some special features such as caller pro-
tection, which can help to produce robust contracts. Lisp
Like Language (LLL)11 is a low-level language that is
similar to Assembler. It aims to be simple and to sup-
port the creation of clean code; for example, it removes
the need to code the stack and jump management.
Moreover, it enables a focus on the resource-constrained
nature of Ethereum and allows optimized use of the
resources. Solidity12 is an object-oriented statically-typed
language that is primarily used by the Ethereum platform.

8https://github.com/ethereum/wiki/wiki/Serpent-%5BDEPRECATED%5D
9https://vyper.readthedocs.io/en/v0.1.0-beta.9/
10https://solidity.readthedocs.io/en/v0.5.10/yul.html
11https://lll-docs.readthedocs.io/
12https://solidity.readthedocs.io/

Fig. 14. Vulnerabilities, threats, and defenses of smart contract platforms
(RSM layer).

Contracts written in Solidity can contain various types
of vulnerabilities [138], [139], [140], which resulted in
many incidents in the past. Table IV of Appendix out-
lines the most prominent incidents and the associated
vulnerabilities. In addition, the table classifies vulnera-
bilities according to an existing smart contract weakness
classification (SWC) registry [141].13

Countermeasures: Mitigation techniques for such vulner-
abilities are static or dynamic analysis (testing) tools,
formal verification tools, security audits, as well as
respecting best practices and using known design pat-
terns [141], [142]. The literature contains various smart
contract analysis tools for the detection of vulnerabili-
ties [143], [144]. In the following, we give an overview
of them:
• Static analysis tools such as linters, try to find vul-

nerabilities by inspecting the source code. For exam-
ple, SmartCheck [145], Solhint,14 Solium [146], and
Slither15 belong to this category. Another example,
sCompile [147], works statically, but it also includes a
dynamic component.

• Dynamic analysis tools seek vulnerabilities while exe-
cuting the code of smart contracts. For example, simple
forms of dynamic analysis are unit testing with hand-
crafted tests or replay testing [148], where existing
executions (or manually captured ones) are used to
check if the same results can be reproduced. A more
automated form of testing is fuzzing [149], which gen-
erates unexpected, undefined, random, or invalid inputs
to trigger a crash or reveal defects and vulnerabil-
ities. Fuzzers, like ContractFuzzer [150], Echidna,16

and Harvey [151] can be used for automated smart
contract testing as well. Another technique of dynamic
analysis is symbolic execution [152], where a program
is executed with symbolic values (i.e., logical expres-
sions) that make it possible to explore all reachable
paths of a program. For this technique, there are tools

13Note that for some vulnerabilities there are no publicly available refer-
ences on incidents supporting the existence of vulnerabilities.

14https://github.com/protofire/solhint
15https://github.com/crytic/slither
16https://github.com/crytic/echidna/
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like Securify [153], Manticore [154], Oyente [155], and
Osiris [156].

• Formal verification tools usually apply an abstract
model or a semantic definition to check for the secu-
rity and/or correctness properties of smart contracts.
One type of this category is represented by semantic-
based approaches that work with a semantic language
specification defining the expected behavior of smart
contracts. Examples of this type are FSolidM [157],
and Kevm [158]. Other types of formal verification
tools are semantic-based approaches that work with
a behavioral model [159]. Several formal verification
methods [160], [161], [162] apply abstract models
(e.g., finite state machines) that define the expected
states and outputs of smart contracts for a given input.
The underlying models are used for checking the func-
tional correctness or the presence of vulnerabilities
(e.g., Zeus [163]). Additionally, such models can be
applied to proving certain security properties [164].

• Decompiling tools. The source code of contracts is
often not public in contrast to their bytecode. For
this reason, bytecode decompilers, like Erays [165],
Eveem,17 or Porosity [166] can be used to (partially)
reconstruct the source code of a contract. Additionally,
there exist various static bytecode analyzers, like
Maian [167], MadMax [168], Vandal [169], and auto-
mated exploit generators, like Teether [170] that can
be utilized to find vulnerabilities in the bytecode.

Turing-Incomplete Languages: The main pro of this cate-
gory is its design-oriented goal of a small attack surface
and the emphasis on safety, which is achieved at the
cost of limited expressiveness. Examples of this cate-
gory are Pact, Scilla, Bitcoin Script, Ivy, and Simplicity.
Pact [171] is a declarative language intended for the
Kadena blockchain and provides type inference and
module-guarded tables to prevent direct access to the
module. Pact is equipped with the ability to express and
check properties of its programs, also leveraging satis-
fiability modulo theories (SMT) solvers. Scilla [172] is
designed to achieve expressiveness and tractability while
enabling formal reasoning about contract behavior. Every
computation utilizes an automata-based model, and com-
putations are realized as standalone atomic transitions that
strictly terminate. Scilla enables external calls only in the
last instruction of a contract, which simplifies proving
safety and thus mitigates a few vulnerabilities. Bitcoin
Script [173] is a stack-based language for the Bitcoin plat-
form. It has limited complexity and processing require-
ments, and its main purpose is transaction processing.
Ivy is a high-level declarative predicate language for the
Bitcoin platform. It can be compiled to a Bitcoin script
and its main advantage is its comprehensibility, which
enables fast writing and an easy understanding of the
code. Simplicity [174] is a typed functional language that
works with combinators. It is equipped with (formal)

17https://eveem.org/

Fig. 15. Hierarchy in inheritance of security aspects across categories of the
application layer. Dotted arrows represent application-specific and optional
dependencies.

denotational and operational semantics, which facilitate
the estimation of the required computing resources.

2) Side Effects of Countermeasures: Since all of the smart
contract related countermeasures are performed before the
deployment of smart contracts as part of the development stage
of the blockchain-based applications, they do not negatively
impact any blockchain features. Note that only countermea-
sures related to the operational stage of blockchain-based
applications might influence blockchain features.

VIII. APPLICATION LAYER: ECOSYSTEM APPLICATIONS

We present a functionality-oriented categorization of the
applications running on or utilizing the blockchain in
Figure 15, where we depict hierarchy in the inheritance of
security aspects among particular categories. In this catego-
rization, we divide the applications into categories according
to the main functionality/goal that is to be achieved by using
the blockchain. Security threats of this layer are mostly spe-
cific to particular types of applications. Nevertheless, there are
a few application-level categories that are often utilized by
other higher-level applications. In the current Section, we iso-
late such categories into a dedicated application-level group
denoted as an ecosystem, while we describe the rest of the
applications in Section IX. The group of ecosystem applica-
tions contains five categories: (1) crypto-tokens and wallets,
(2) exchanges, (3) oracles, (4) filesystems, (5) identity
management, and (6) secure-timestamping. We accompany
the application layer with several incidents in Table III of
Appendix.

A. Crypto-Tokens & Wallets

Besides blockchains that provide cryptocurrencies with
native crypto-tokens, there are blockchain applications that
use crypto-tokens to provide owners with rights against a
third party (i.e., counter-party tokens) or with the possibil-
ity of transferring asset ownership (i.e., ownership/colored
tokens) [175]. All types of tokens require the protection
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Fig. 16. Vulnerabilities, threats, and defenses of the crypto-token & wallets category (application layer).

of private keys and secrets linked with user accounts. For
this purpose, two main categories of wallets have emerged:
self-sovereign wallets (a.k.a., non-custodial) and hosted wal-
lets [176], [177]. All crypto-tokens are exposed to technical
and regulatory risks, while non-native tokens are also exposed
to legal risks [175].

Self-Sovereign Wallets: Users of self-sovereign wallets
locally store their private keys and directly interact with the
blockchain platform using these keys, while they verify the
inclusion of their transactions by SPV client software. The
instances of these wallets differ in several points. One of
them is the manner in which the keys are isolated – there
are software wallets that store the keys within the user PC
(e.g., Bitcoin Core,18 MyEtherWallet19) as well as hardware
wallets that store keys in sealed storage, while they expose
only signing functionality (e.g., Trezor,20 Ledger21). The next
type of wallets enables functionality and security customiza-
tion through a smart contract (e.g., TrezorMultisig2of3,22

Ethereum MultiSigWallet,23 SmartOTPs [178]).
Hosted Wallets: Hosted wallets require a centralized

party, which provides an interface for interaction with the
wallet and the blockchain. If a hosted wallet has full con-
trol over private keys, it is referred to as a server-side wallet
(e.g., Coinbase24) while in the case when keys are stored
in the user’s browser, a wallet is referred to as a client-
side wallet (e.g., Blockchain Wallet25). We refer the reader to
works [176], [178] for a security overview of miscellaneous
wallet solutions.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
crypto-token wallets category in Figure 16. Server-side wallets

18https://bitcoin.org/en/download
19https://www.myetherwallet.com/
20https://trezor.io/
21https://www.ledger.com/products/ledger-nano-s
22https://github.com/unchained-capital/ethereum-multisig
23https://github.com/ConsenSys/MultiSigWallet
24https://www.coinbase.com/
25https://blockchain.info/wallet/

pose a single-point-of-failure, which can be exploited by exter-
nal or internal adversaries, and moreover, it can be subjected to
availability attacks such as DoS. Since server-side wallets have
been the target in several security incidents [179], [180], [181],
their popularity has declined in favor of client-side wallets.
Client-side wallets do not expose private keys to a centralized
party but store it locally. Nevertheless, they still trust in the
online interface provided by such a party, and thus their avail-
ability is dependent on this party. Other threats with client-side
wallets are client tampering and malware/keyloggers, which
focus on deceiving the user while signing a transaction or
stealing the key. Possible mitigations of these attacks include
hardware wallets that display details of transactions to the
user, while the user confirms signing by a button (e.g., Trezor,
Ledger).

In contrast, self-sovereign wallets do not trust in a third
party nor rely on its availability. However, these wallets
are susceptible to key theft (i.e., malware [182], keylog-
gers [177], [183]). One protection is to use a hardware wallet
with a display as described above. Another option is to protect
self-sovereign wallets by multi-factor/(-step) authentication
using multi-signatures (e.g., TrezorMultisig2of3, Ethereum
MultiSigWallet), threshold-based cryptography [184], or air-
gapped OTPs [178]. In the case of counter-party and ownership
tokens presented at the application layer of existing public
blockchains, we emphasize the additional vulnerability caused
by trusting in the centralized party that issues such tokens –
the provided counter-party and ownership rights are only vir-
tual, which imposes a significant risk. While this risk cannot
be eliminated in this application scenario, a possible mitigation
technique for preventing fraudulent issuers is to use decentral-
ized reputation-based systems (see Section IX-B) and notaries
(see Section IX-D) that might be built on top of them.

2) Side Effects and Implications of Countermeasures:
A disadvantage of some multi-factor authentication solutions
is that they require the execution of smart contracts, which
increases the costs and might slow down the throughput of the
system. In contrast, threshold-based cryptography constructs
save these costs since they produce only a single signature,
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which appears as it was made by a single party. However,
threshold-based cryptography requires off-chain computation,
in which the duration of execution is dependent on the number
of co-signing parties.

Although self-sovereign wallets provide higher security in
contrast to client-side and server-side hosted wallets, they
impose overheads for storing the non-negligible part of the
blockchain (i.e., headers) to validate the inclusion of signed
transactions within their SPV client software – this is espe-
cially a concern when users have multiple SPV clients for
multiple blockchains. BTC Relay is an early optimization
attempt that reduces storage requirement by outsourcing the
validation of transactions from the source blockchain to the
target blockchain in exchange for a small fee paid to the relay
nodes that submit headers to the target blockchain. However,
the costs of BTC Relay were too high and its users tend
to rather store headers of source blockchain on their own.
Zk-relay [185] optimizes these costs by using zk-SNARKs
with batched block validation, achieving an improvement by
a factor of 187.

B. Exchanges

If the user wishes to exchange crypto-tokens, she might
either directly find a counter-party wishing to exchange the
opposite pair or approach an exchange that might be cen-
tralized or decentralized (DEX). In the case of centralized
exchanges, the security threats and implications are due to cen-
tralization, and the only countermeasure is to use decentralized
exchange solutions that we further focus on.

Direct Cross-Chain Exchange With Atomic Swap:
Atomic swaps26 assume two parties owning crypto-tokens in
two different blockchains, and these parties wish to execute
exchange atomically, i.e., either both of the parties receive
the agreed amount or neither of them. The atomic swap pro-
tocol enables conditional redemption of the funds in the first
blockchain upon revealing the hash pre-image (i.e., secret) that
redeems the funds on the second blockchain. This protocol is
based on two Hashed Time-Lock Contracts (HTLC) that are
deployed by both parties in both blockchains, and it requires
4 transactions (see details in Appendix B).

Cross-chain DEX: Although atomic swaps are, in the-
ory, sufficient means for the execution of fair cross-chain
exchange, the situation is more complicated in practice. In
particular, there might not exist a contra-party exchanging the
opposite pair or the user might not be aware of it. This moti-
vates DEXes, which facilitate the process of maintaining and
matching the existing orders, act as a contra-party or inter-
mediary, while guaranteeing fairness (e.g., Komodo27). The
users match the orders, reward DEX, and afterward perform an
atomic swap on their own. If users wish to trade more obscure
crypto-tokens, for which there is no matching counter-order,
DEX may serve as a counter-party and do the atomic swap
with the user. Moreover, if the users wish to trade colored
tokens for native crypto-tokens of different blockchains (e.g.,
A sells an asset for BTC and B buys it for ETH), DEX might

26https://en.bitcoinwiki.org/wiki/Atomic_Swap
27https://komodoplatform.com/atomic-swap-technology/

serve as an intermediary who executes the three-way atomic
swap [186] (see details in Appendix B).

Intra-Chain DEX: Some intra-chain DEX designs (e.g.,
Maker Market, EtherOpt, and Intrinsically Tradeable Tokens)
require parties to post buy&sell offers on the blockchain,
while smart contracts perform matches and execute trades.
However, each placing of an order or its modification requires
a payment for the inclusion of a transaction. Therefore,
designs with off-chain order matching became more popu-
lar; in these designs, only trades are executed on-chain, while
orders and their matching is performed off-chain. An exam-
ple is 0x [187] protocol handling DEX of ERC20 tokens (e.g.,
applied in EtherDelta28). The next intra-chain exchange design
is known as the automated market maker (AAM) [188]. AAM
is applicable within a smart contract-based DEX that con-
tains deposited reserves of traded ERC20 tokens; examples
are Euler [189], Bancor [190], and Uniswap.29 AAM pro-
vides high liquidity since users are not required to match their
orders, and they can directly do the exchange with the smart
contract.

Cross-Chain Communication: The concept of cross-chain
exchange can be further generalized into cross-chain com-
munication (CCC), which deals with the interoperability of
applications running on different blockchains. The security
aspects of CCC are very similar to the exchanges, and we refer
the interested reader to the work of Zamyatin et al. [191].

1) Security Threats and Mitigations: We present an
overview of vulnerabilities, threats, and defenses related to
the exchanges category in Figure 17.

In centralized exchanges, threats are caused by external
and internal adversaries, and they are identical to those of
server-side hosted wallets (see Section VIII-A) since server-
side wallets always provide exchange services. So far central-
ized exchanges posed the most attractive target for adversaries
that have caused huge financial losses [192]. There are many
operation security (OPSEC) countermeasures such as multi-
factor authentication, split of the funds to hot and cold wallets,
however, none of them eliminates the single-point-of-failure
coming from the centralization. Therefore, effective mitigation
from the user point of view is to use decentralized exchange
solutions such as DEXes and atomic swaps; however, they also
contain some vulnerabilities.

Different blockchains of cross-chain decentralized (direct
and DEX-based) exchanges might have a different time to
finality, and thus the likelihood that one blockchain will
be overturned is higher than in the case of the other one.
Therefore, the number of required confirmations might be
agreed upon by involved parties beforehand. However, this
results in longer delays for the execution of the protocol and
the need for both parties to be online. In some cases, such long
delays might cause fluctuation in the exchange rate, making
the exchange not attractive at a later time. As a mitigation tech-
nique, off-chain exchanges (within side-chains) might be used,
where each blockchain is updated only with the final transac-
tion. Off-chain real-time exchanges might also be achieved

28https://etherdelta.com/
29https://uniswap.io/
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Fig. 17. Vulnerabilities, threats, and defenses of the exchanges category (application layer).

with the use of TEE [193] (see below). Another mitigation
for intentional delaying of the exchange by any party is to
use deposit-based bonds, which will be restored only when a
particular party acts timely.

Since intra-chain exchanges are executed in the single
blockchain, they give rise to the transaction front-running,
in which the adversary (a.k.a, arbitrage bots) front-run user
trades by transactions containing higher fees and by optimiz-
ing network latency [92]. Moreover, such adversaries might
compete with each other by “bidding” a higher transaction
fee [92], which in turn targets the ordering mechanism of the
consensus layer, where miners might tend to overturn or fork
the blockchain while including only transactions with the high-
est fees. A mitigation technique to these threats is represented
by context-sensitive transactions [105], which do not allow
overturning of the blockchain, only its extension. The same
effect can be achieved by partial solutions included in branch
difficulty computation [18], [25], [86], [90]. Note that context-
sensitive transactions and partial solutions are a means of the
consensus layer.

2) Side Effects and Implications of Countermeasures: We
assume centralized exchanges as the baseline that requires only
two transactions for settlement of cross-chain exchange or one
transaction for intra-chain exchange. Note that such settlement
is done only sporadically since centralized exchanges inher-
ently work off-chain in real-time. In contrast, direct atomic
swaps require 4 transactions while three-way atomic swaps
require 6 transactions. Therefore, using these constructs neg-
atively affects the throughput of blockchains. Nevertheless,
the performance can be improved by off-chain execution of
atomic swaps, which provides almost immediate response,
e.g., off-chain swaps are possible in two-parties payment chan-
nels as well as their extension to multiple parties known as
the lightning network [194]. Such off-chain solutions greatly
improve the scalability, since parties can transact directly and
involve blockchain consensus only when they wish to settle
their balances (e.g., once per day or week). However, to avoid
misbehavior in which a “stale” balance is settled on-chain,
these systems require that the parties constantly monitor the
blockchain state. Such an always-online assumption can be
relaxed by employing watching services [195], [196], [197]
(a.k.a., watchtowers), which, however, incur extra costs.

TEE can be also utilized as an off-chain means that
improves the throughput of exchange service. For example,

Tesseract [193] is a real-time exchange that leverages TEE
for communication with users and a target blockchain. To
enter the system, users submit time-locked refill transac-
tions paying to Tesseract’s controlled address in the target
blockchain, and then Tesseract uses its SPV client to ver-
ify their inclusion. Existing users submit bid&sell requests
to Tesseract, which performs matching and executes trades
within TEE. When users want to sync with the on-chain state,
they ask Tesseract to generate settlement transactions. Since
decentralization would be impacted by using a single service
of Tesseract, which might censor user requests, the authors
incorporate the Paxos consensus protocol among multiple
mutually untrusted Tesseract nodes; this also increases the
fault-tolerance and avoid funds of users becoming stuck in
contrast to one instance of Tesseract. We note that censor-
ship evidence (not resistance) could be alternatively ensured in
Tesseract by smart contract-based censorship resolution [198],
which, however, implies some extra costs for smart contract
execution. Finally, TEE-based solutions might be vulnerable
to attacks on trusted hardware. As a mitigation technique
to reliance on a trusted manufacturer of TEE, it is pos-
sible to use a quorum of several redundant TEEs from
multiple manufacturers. Furthermore, it is important to note
that the assumption about the code executed in TEE is its
bug-freeness, and thus one might not use return-oriented pro-
gramming or other techniques to ex-filtrate sealed secrets or
private parameters; this is an out-of-the-scope attacker model
for TEE.

C. Oracles

Oracles (a.k.a., data feeds) are trusted entities that pro-
vide plausible data that reflects the state of the world beyond
the blockchain. The authors of [199] and [200] define a few
security properties of oracles in smart contract platforms:
Authenticity: Data are authentic if they are produced by

content providers agreed by the consumers of the data.
Integrity: Provided data should not be modified nor deleted

after creation. Therefore, content providers should guar-
antee the correctness of the newly created data and
publicly prove their consistency with the past.

Confidentiality: Sometimes, input parameters may contain
confidential or private data. Therefore, an oracle should
support such parameters and their handling.
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Fig. 18. Vulnerabilities, threats, and defenses of the oracles category (application layer).

Availability: Since the execution of dependent smart contracts
relies on data feeds delivered by oracles, they need to
provide high availability.

We categorize existing oracles according to security
implications into three categories. Prediction markets (e.g.,
Augur [201], Gnosis30) were created for the purpose of trad-
ing the outcome of events – individuals are incentivized to
accurately wager on outcomes serving as data feeds, while
outcomes are provided by either a centralized reporter or a
quorum of reporters. Centralized data feeds provide arbitrary
data from a single centralized source, and they build on exist-
ing blockchain platforms (e.g., Oraclize,31 Town Crier [202],
PDFS [199]). Finally, oracle networks internally run a con-
sensus protocol for decentralized agreement on data (e.g.,
ChainLink [200], Witnet [203]).

Prediction Markets: Augur [201] is a solution designed
as the Ethereum smart contract, and it uses its own reputa-
tion token. The user creating the market specifies a designated
reporter, who delivers the result of the event after it happens.
However, the reporter might not report the result or report
incorrect results. When the reporter does not report within the
specified time frame, Augur shifts the role of a designated
reporter on a first-come-first-serve basis. After reporting the
outcome, the Augur users have a specific time frame to run
a decentralized dispute resolution, and thus obtain a different
outcome of the event in the case of misreporting. Augur incen-
tivizes its users to report correct outcomes and file disputes
only in justified cases by rewards and deposit-based bonds.
Another example of prediction markets is Apollo from Gnosis,
which had originally a centralized data source facilitated by
Gnosis but was replaced by a decentralized one in version 2.0.

Centralized Data Feeds: Oraclize enriches the data pro-
vided to smart contracts by authenticity proofs that are built
upon various technologies such as auditable virtual machines
and trusted computing. Since authenticity proofs can be large,
Oraclize can store these proofs in the distributed file system
IPFS32 instead of directly providing them to the smart con-
tracts. Town Crier [202] is an approach that provides authen-
ticated data feeds to smart contracts by bridging them with

30https://gnosis-pm-contracts.readthedocs.io/en/latest/
31https://www.oraclize.it/
32https://ipfs.io/

public webs through a TEE component. A linkage of TEE
with a smart contract is made by storing a public key (PK) of
TEE at the smart contract of Town Crier. It relies on the X.509
public key infrastructure (PKI), due to which, the provided
data are provably authenticated. PDFS [199] allows content
providers to link their Web resources with corresponding
smart contracts in the blockchain. In PDFS, the data of con-
tent providers are managed in an auditable manner, enabling
publicly-verifiable data transparency and consistency of data
with the past. Besides content providers, PDFS introduces two
entities that arrange a smart-contract-based agreement by spec-
ifying a particular content provider required for the execution
of the code in the agreement. To ensure that updates are con-
sistent with the past, the authors apply a history tree data
structure [204]. The authors additionally support the means
to publicly prove censorship by a content provider.

Oracle Networks: ChainLink [200] builds on top of
existing blockchains with support for smart contracts, and it
distributes the provisioning of data feeds to multiple oracle
providers. In detail, ChainLink maintains oracle providers and
their reputation, who are selected by a smart contract based on
their reputation to form an aggregated final result. When build-
ing the final result, ChainLink discards outliers and utilizes the
BFT protocol to reach a consensus on a final aggregated value.
Witnet [203] is an approach similar to ChainLink but in con-
trast to ChainLink, Witnet runs its own oracle network with
a native token. Witnesses (i.e., content providers) earn repu-
tation points when the content that they deliver matches with
the majority’s content, and they lose reputation points other-
wise. The reputation points serve as a stake in the consensus
protocol of the oracle network, hence the higher a node’s rep-
utation, the higher the chance that it produces a block. Since
more witnesses might become block producers, Witnet allows
multiple chains in parallel, forming a DAG.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
oracle category in Figure 18. In the following, we describe
these threats as well as possible defense techniques.

Prediction Markets: May suffer from conflict-of-interest
since the creator of the market specifies a data reporter, who
might also participate in the market and later report false
data for her convenience. Since a prediction market might
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yield significant financial value for the users with a “correct”
guess, the malicious reporter might bribe other reporters of
dispute resolution round and still be profitable. Therefore, the
incentive protocols of prediction markets must count on this
situation and incorporate feasible rewards for honest reporters.
Another mitigation for similar attacks is to keep reporters
accountable and maintain their reputation in a decentralized
fashion (Section IX-B), which involves identity management
and verification (see Section VIII-E).

Centralized Data Feeds: Rely on a trusted party [199],
[205] that may misbehave or accidentally produce wrong data.
For both cases, decentralized identity management can bring
accountability while reputation systems further build on it,
which disincentivizes malicious behaviors. Another option to
cope with possible misbehavior of a trusted party of oracle
service is to embed the logic of oracle service into a TEE
component [202], whose code is publicly attested. TEE com-
ponent can interact with the external world using X.509 public
key infrastructure (PKI), due to which obtained data are prov-
ably authenticated. Since some requests of data feeds might
contain private parameters,33 they can be encrypted by a PK of
the TEE and further processed within TEE that communicates
with its remote data provider through an encrypted channel,
while communication is facilitated by oracle’s service oper-
ator, as demonstrated in Town Crier [202]. Centralized data
feeds might be subject to attacks on availability, leading to
interrupted service. A mitigation technique is to use solutions
with a higher redundancy, such as oracle networks.

Oracle Networks: Eliminate trust in a single party by run-
ning a consensus protocol either natively [203] or utilizing an
existing smart contract platform to facilitate the service and
its consensus [200]. Running the native consensus protocol of
an oracle network imposes the security threats related to the
consensus layer (see Section VI). Specific threats to oracle
networks are freeloading attacks, in which an oracle provider
might copy a publicly visible value provided by other oracles
without any effort. The authors of ChainLink [200] propose
the usage of a commitment scheme to cope with this attack.

2) Side Effects and Implications of Countermeasures: The
data provision time of prediction markets may be too long
for many applications, and they are convenient to use only
for specific use cases that are limited to provided data events.
The data provision time is prolonged even more in the case of
disputes, whose resolution may require several days or weeks.
In contrast to limited data of prediction markets, centralized
data feeds enrich the data domain and significantly shorten the
provisioning time.

In the case of oracle providers that offer authenticated data
feeds using trusted hardware [202], [205], a vulnerability in
trusted hardware (caused by a manufacturer) may result in the
entire data feed being compromised. As a mitigation technique
to reliance on a trusted manufacturer of TEE, it is possible
to use a quorum of several redundant TEEs from multiple
manufacturers.

Since ChainLink [200] is an oracle network running over the
public smart contract platform, it imposes significant execution

33All transactions of permissionless blockchains are visible to public.

costs. To reduce the on-chain cost of BFT execution, the
authors discuss the use of threshold-based signatures for col-
lective off-chain signing of the final value; however, freeload-
ing attacks remain unresolved. When freeloading attacks are
resolved by a commitment scheme, it negatively impacts the
provisioning delay and costs for data providers, who have to
submit another transaction with a commitment.

D. Filesystems

Filesystems (FS) serve as a distributed data storage infras-
tructure that borrows ideas from peer-to-peer storage systems,
while additionally incentivizing data preservation by tokens.

1) Fully Replicated FS With Ledger: A naive approach is
to store the full content of data at the blockchain, and thus
achieve full data replication, extremely high data durabil-
ity (i.e., availability of data) as well as network expansion
factor (i.e., storage overhead). An example is storing data
using the instruction OP_RETURN in Bitcoin or storing data
as key:value pairs within Namecoin.34 However, such an
approach results in high storage overheads required for full
replication of the data among the consensus nodes.

2) Partially Replicated FS With Ledger: To decrease the
costs while preserving reasonable durability, partial replica-
tion of the data with erasure encoding is often used (e.g.,
Permacoin [78], Storj [206], and KopperCoin [207]). In era-
sure encoding, the data block is encoded using two numbers (k,
n), where n represents the number of total erasure shares and
k represents the minimum number of shares required for data
recovery. Permacoin incorporates Proof-of-Retrievability in the
consensus layer, where consensus nodes store large segments
of data provided by an authoritative file dealer. KopperCoin
follows a similar approach, but it does not need the trusted
dealer for the initial distribution of data files since files are
uploaded by the users. Storj uses a 3rd party distributed ledger
for storage of metadata, such as file hash, network locations of
copies, and Merkle roots of data. Permacoin, KopperCoin, and
Storj enable probabilistic audits using Proof-of-Retrievability,
which proves that a node stores certain data at the time of
the challenge. Filecoin is an incentive mechanism of any dis-
tributed FS (e.g., IPFS), and in contrast to previous works,
it can guarantee the data possession over a certain time
range in a setting of Proof-of-Spacetime. Moreover, Filecoin
uses Proof-of-Replication [208], which guarantees physically
unique copies of data for each node.

3) Partially Replicated FS Without Ledger: IPFS and
Swarm35 utilize the concept of distributed hash tables (DHT).
DHT provides a decentralized data lookup service with
key:data mappings, in which the set of nodes storing the data
is unambiguously determined by the key associated with the
data (i.e., its hash). Since the lookup service and data storage
are (partially) distributed, a change in the set of participants
causes only a negligible disruption of availability. IPFS does
not contain any incentive mechanism and the availability of
the data is dependent on its popularity. Although IPFS does

34https://bit.namecoin.org/
35https://swarm-guide.readthedocs.io/en/latest/
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Fig. 19. Vulnerabilities, threats, and defenses of the filesystems category (application layer).

not involve a blockchain, it may achieve its properties. In par-
ticular, nodes may optionally store a BitSwap ledger that logs
data transfers with other nodes.

4) Centralized Storage of Off-Chain Data: Alternatively
to decentralized filesystems, decoupling of the data from the
blockchain itself through the storage of on-chain integrity
proofs (see Section VIII-F) and off-chain data is also
an option; however, it introduces a single-point-of-failure
and thus may not provide sufficient availability. Besides
centralized storage of data, cloud services are promising
approaches for decentralized yet manageable data storage, for
which integrity and consistency proofs are stored on some
blockchain.

a) Security threats and mitigations: We present a tax-
onomy of vulnerabilities, threats, and defenses related to the
filesystems category in Figure 19. While fully replicated and
partially replicated decentralized filesystems handle availabil-
ity using decentralized infrastructure, centralized storage with
integrity proofs and cloud services relies on a centralized
provider. In a Sybil attack on a replicated FS, a malicious
node claims the storage of multiple copies of the same data.
Similarly, in a de-duplication attack, more consensus nodes
may collude to claim that each of them is storing an indepen-
dent copy of the data, while only one of the nodes stores the
data. These attacks can be prevented by a unique encoding of
each data copy proposed in Proof-of-Replication [208]. In an
outsourcing attack, a malicious consensus node claims the
storage of more data than it can physically store while relying
on data retrieval from outsourced data providers. In a gener-
ation attack, a malicious node can re-generate the previously
uploaded data upon request using some algorithm, which may
increase its chances to be rewarded: a node might commit to
storing of a huge volume of generated data.

On top of the unique encoding of each data copy, a mitiga-
tion technique for outsourcing and generation attacks is to put
time constraints on the delivery of the response by a prover, as
proposed in Proof-of-Replication [208]. In detail, the function
used for the encoding of data replicas must not be paralleliz-
able (e.g., symmetric encryption in CBC mode) to mitigate
generation attacks. In the case of outsourcing attacks, the time

constraints must distinguish whether cloud access was made
or not. Similar mitigation for outsourcing attacks is the use
of non-outsourceable scratch-off puzzles [60], [78], in which
the computation of the puzzle requires access to the storage
in random order; hence, many round-trips are incurred during
one attempt of solving a puzzle. Another attack might target
the reputation of a network by dropping data and its redundant
copies. A simple mitigation technique is to use multiple con-
sensus nodes for a file upload, which diminishes the chance of
the attack being successful. Another mitigation is to increase
the durability by erasure encoding.

b) Side effects and implications of countermeasures:
Although unique encoding of each data copy thwarts sev-
eral attacks, on the other hand, it imposes higher overheads
for file distribution on clients, which might negatively influ-
ence the throughput of data. Similarly, additional overheads
on the client during the file upload is imposed by the use
of multiple consensus nodes for file upload. Although era-
sure encoding aims to decrease costs, it must be viewed in a
trade-off with the availability of data that is negatively affected
by it.

E. Identity Management

Identity management refers to binding identities of entities
to their public keys. This concept is also referred to as Public
Key Infrastructure (PKI), and it has a few security goals [209]:
Accurate Registration: The user must be unable to register an

identity that she does not own.
Identity Retention: The user must be unable to impersonate

an identity already registered.
Censorship Resistance: The user must be able to register any

identity that she owns.
In computer science, some have conjectured that it is highly
unlikely to design an identity management system in which
identifiers would be selected in a distributed fashion while
remaining secure and human-readable. These three properties
are often referred to as Zooko’s triangle [210]. However, this
situation has been changed with the invention of blockchains;
in particular, their immutability feature (Appendix A1).
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Namecoin36 is a native blockchain that facilitates iden-
tity management since it allows for the unique registration
of key:value mappings. However, searching for a value asso-
ciated with a key requires full storage and traversal of the
blockchain, which is costly. Blockstack [211] is a similar
approach as Namecoin, providing decentralized DNS, but
in contrast to Namecoin, it off-chains the data storage of
domain name mappings and keeps only references to hashes
of zone-files in its blockchain. Zone-files (and their referred
DNS entries) are stored off-chain. Certcoin [209] is built
on top of the Namecoin blockchain, where entities publish
their public keys (PK) by posting an identity-PK pair to the
Namecoin blockchain. Certcoin utilizes cryptographic accu-
mulators, which represent a space-efficient data structure that
supports the verification of set membership within the {ID,
PK} domain, imposing only a logarithmic time complex-
ity in the number of registered users (in contrast to linear
time complexity of Namecoin). Furthermore, to speed up the
PK lookup queries, Certcoin leverages the concept of DHT
(see Section VIII-D), which enables it to achieve a constant
lookup time complexity. Ethereum Name Service37 (ENS)
maps human-readable domain names to Ethereum addresses
in a similar fashion as in DNS. The root domain of ENS is
maintained by a multi-signature smart contract owned by trust-
worthy individuals from the Ethereum community. Similarly,
uPort [212] utilizes smart contracts to keep a registry that
maintains a mapping of the user addresses to hashes of
claims38 that are stored off-chain. In contrast to ENS, uPort
does not provide human-readable user identifiers and discusses
the possibility of using ENS as a naming layer. Smart con-
tracts for managing identities of humans, groups, objects, and
machines are also used in the ERC 725 standard,39 in which,
identity is associated with several keys serving various pur-
poses. ShoCard [213] is another example that builds on top
of existing public blockchains, but in contrast to the previous
examples, it builds a sidechain containing encrypted identity-
specific data such as biometric data, scans of IDs, etc. The user
may then decide to whom she will reveal the encrypted data.
The Sovrin [214] is an example providing a public permis-
sioned blockchain that consists of consensus nodes approved
by Sovrin. It focuses on high throughput and low operational
costs. Decentralized Identifiers (DIDs) [215] represent a new
type of universally unique identifiers whose control is decen-
tralized since all roots of trust are contained in the blockchain
and each entity might create its own root of trust. DID employs
the same hierarchical scheme for globally unique strings as
URI, and it maps strings to DID documents containing data
such as PKs, endpoints of the entity, or links to off-chain data.
Only the owner can create, manage, and prove ownership of
her DID entries.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
identity management category in Figure 20. As mentioned

36https://www.namecoin.org/
37https://ens.domains/
38Claims as such belong to the notaries category (see Section IX-D).
39https://erc725alliance.org/

Fig. 20. Vulnerabilities, threats, and defenses of the identity management
category (application layer).

by Kalodner et al. [216], most of the solutions address the
problem of mapping names to values but for identity manage-
ment, it is essential to build a mapping of entities (i.e., persons,
companies) to values. However, to establish such a mapping
in a trustworthy way, a human arbitration or a trusted party is
needed. For this purpose, oracles (see Section VIII-C) might
deliver verified data about the identity of users.

Since the space of human-readable IDs is scarce, they hold
some market value in contrast to an almost infinite number of
non-human-readable IDs, such as hashes. This opens a door
to cyber-squatting attacks, in which anybody might seize an
ID that does not belong to her and then sell the ID in the
secondary market at an inflated price. Kalodner et al. [216]
found in 2015 that from around 120,000 registered names
in Namecoin, only 28 were not squatted and had human-
readable content. They discussed two strategies to prevent
such attacks within the primary market, in which names are
issued for the first time. These two strategies stand for auc-
tions and algorithmic fees, both having their respective cons.
Auctions are problematic since they may be initiated at any
time, and some potentially interested bidders might not be
available. An improvement is to specify a fixed time when auc-
tions start. Another approach for coping with cyber-squatting
is an algorithmic fee solution, which assigns the price based
on the deterministic observables, such as length of the name, a
rank of the domain, occurrence of human-readable words, etc.
Nevertheless, this approach may require a data feed provider
(see Section VIII-C). In contrast to human-readable identifiers,
non-human readable identifiers, such as DIDs, do not suffer
from the cyber-squatting threat.

Another challenge is a front-running attack (i.e., a MITM
attack), in which an adversary may intercept and override the
user’s transaction with a malicious transaction containing the
same domain name but a higher fee. A prevention technique
is a variant of the commitment scheme where the user first
publishes a sealed (domain) name and public bid, while in the
second step she submits the plain text of the name.

Further, identity-related user data that are published on the
blockchain are subject to certain privacy issues. Mitigation
is to keep only integrity information (such as hashes) on
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the blockchain, while data should be stored off-chain [211],
[212], [213] or encrypted by the user’s private key [213].
Moreover, all the approaches that rely on off-chain stor-
age and service provisioning are vulnerable to availability
issues (e.g., [212], [215]) and censorship attacks (e.g., [214]).
Mitigation that provides censorship evidence is an on-chain
censorship resolution [198].

2) Side Effects and Implications of Countermeasures: Side
effects of oracles depend on their category, and we mention
them in Section VIII-C. If a beginning time of the auctions on
the primary market is fixed, bidders can be DoS-ed and pre-
vented from bidding. Anonymization networks and VPNs used
by bidders might mitigate this problem. While off-chaining
of identity-related data helps to cope with privacy issues and
decreases operational costs, on the other hand, it means depen-
dency on centralized storage, which negatively impacts the
availability of data. Possible mitigations are partially replicated
decentralized filesystems (see Section VIII-D).

F. Secure Timestamping

The role of secure timestamping is to prove that some data
existed prior to some point in time – also referred to as proof-
of-existence. In the decentralized setting of blockchains, the
blockchain serves as a trusted notary that enables such proofs
since it provides immutability of the history. Nevertheless, the
blockchain “does not understand” the semantics of data that
are timestamped, and thus it cannot vet or certify them.

The simple examples of secure timestamping are
CommitCoin [217], STAMPD,40 Bitcoin.com Notary,41

and OriginStamp [218], all enabling to post a document’s
hash into a single blockchain transaction. OpenTimestamps42

and POEX.IO43 are examples that define a set of operations
for creating timestamps and their verification as part of a
Merkle tree that aggregates hashes of timestamped objects.
The root of the Merkle tree is then stored in the blockchain
and later used for verification of timestamped data.

1) Security Threats and Mitigations: Figure 21 depicts a
taxonomy of vulnerabilities, threats, and defenses related to
the secure timestamping systems. Since these systems have
a narrow principle of operation and provided functionality,
their attack surface is very limited, too. The main security
threats stem from inaccuracy and imprecision of timestamps
provided by blockchain network as well as aggregation delays
of certain secure timestamping services. As a consequence,
the result of certain disputes might be influenced. A possible
mitigation technique to improve the accuracy of timestamps
is to use timestamping authorities [65] or partial solutions
for block timestamp computation [18].44 A mitigation tech-
nique for long aggregation delays is to employ timestamping
authorities or use one transaction per hash of the timestamped
record. Another class of attacks concerns the availability of
timestamped data, for which decentralized filesystems might

40https://stampd.io/
41https://notary.bitcoin.com/
42https://opentimestamps.org/
43https://poex.io/
44Note that this is a countermeasure specific to the consensus layer.

Fig. 21. Vulnerabilities, threats, and defenses of the secure timestamping
category (application layer).

be utilized as a mitigation technique while storing data in
encrypted or plaintext form (depending on the use case).

2) Side Effects and Implications of Countermeasures:
Although one transaction per hash of a timestamped record
mitigates the impact of aggregation delays in solutions such as
OpenTimestamps and POEX.IO, on the other hand, it requires
a higher amount of data posted to blockchains, and thus it dete-
riorates the throughput and imposes higher costs. Therefore,
the choice of either an aggregated solution or a single hash
per record depends on a particular use case.

IX. APPLICATION LAYER: HIGHER-LEVEL APPLICATIONS

In this Section, we elaborate on more specific higher-
level applications as opposed to ecosystem applications. In
detail, we deal with the following categories: (1) e-voting,
(2) reputation systems, (3) data provenance, (4) notaries,
(5) direct trading, (6) escrows, (7) auctions, and (8) gen-
eral application of blockchains. We describe each of the
categories, present a few examples, and then summarize the
potential security vulnerabilities, threats, and defenses. For
other detailed reviews of blockchain applications, we refer the
reader to Casino et al. [11] and Zheng et al. [12], which in
contrast to our work follow domain-oriented classification.

A. E-Voting

Kiayias and Yung et al. [219] and Groth [220] state several
properties that are desirable in e-voting applications:
Perfect Ballot Secrecy: Implies that finding partial results

(i.e., partial tally) before the voting finishes is possible
only if all voters are involved in its computation.

Fairness: The final tally can be computed only when all
participants already had a chance to cast their vote.

Public Verifiability: Any public observer can verify the valid-
ity of all votes and final tally. This is achieved by using a
public bulletin board (e.g., blockchain). A consequence of
the public verifiability is dispute-freeness, i.e., the result
of the voting is indisputable.

Self-Tallying: Once the voting stage has finished, anyone can
compute the final tally. This property together with fair-
ness ensures that the last voter is unable to compute the
tally before casting her vote.

Fault Tolerance/Robustness: A voting protocol is able to
recover from a fixed number of faulty voters who do not
vote or whose vote is invalid.

Receipt-Freeness: A participant is unable to supply a receipt
of her vote after casting the vote. The goal is to prevent
vote-selling and post-election coercion.



HOMOLIAK et al.: SRA FOR BLOCKCHAINS: TOWARD STANDARDIZED MODEL 367

Fig. 22. Vulnerabilities, threats, and defenses of the e-voting category
(application layer).

E-voting [221], [222] has tried to mimic many of the secu-
rity properties provided by paper voting. In decentralized
e-voting, the protocol is carried out in phases and requires
a multiparty computation (MPC) [219], [220] executed by
the voters. Decentralized voting involves an interaction among
participants and is less robust concerning fault tolerance – i.e.,
if voters drop out midway, a recovery round has to be initiated.
The main advantages of using the blockchain for e-voting are
its immutability, public verifiability, enforcing protocol rules
by the smart contract, and higher availability [223].

An example of a decentralized e-voting is the Open Voting
Network (OVN) [224], which for the first time utilizes
blockchain as an instantiation of the public bulletin board.
OVN is implemented using Ethereum smart contracts, and
it enables boardroom voting of up to ∼50 voters with sup-
port for two choices. OVN requires the authority to initialize
e-voting, compute multiparty keys from data submitted by
voters, and reveal the result of the final tally. However, the
authority is unable to influence the outcome of voting or com-
promise the privacy of voters (i.e., cast votes). Although OVN
preserves the privacy of voters and provides self-tallying, it
does not provide receipt-freeness. OVN uses deposit-based
penalties to incentivize the authority and voters to actively
participate. Zhang et al. [225] present a distributed e-voting
scheme that uses the blockchain, but the proposed protocol
(like OVN) does not provide a fault tolerance – a restart of
voting is required if any voter does not cast her vote. This
enables sabotaging of the voting process by a single mali-
cious voter. Venugopalan et al. [226] propose a boardroom
voting over Ethereum, which supports n voting choices and
provides a fault tolerance mechanism. Li et al. [227] pro-
pose an approach that assumes an interactive honest verifier
for the zero-knowledge proof presented; however, the verifier
can select a biased challenge, which enables collusion of the
verifier and the authority.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
decentralized e-voting category in Figure 22. The first e-
voting-specific group of threats represents vote-selling and
post-voting coercion. In vote-selling, the voter can prove to a

briber that she voted as agreed, while in post-election coer-
cion the voter is coerced to show her vote by decryption
of the blinded vote. Mitigation is to use receipt-free voting
protocols that thwart both attacks [228], [229]. Existing solu-
tions for achieving receipt-freeness assume a secret channel
(bi-directional [228] or uni-directional [230]), use deniable
encryption [231], [232], or employ randomizers [229].

The next threat is double-voting (with Sybil accounts)
in the case of unmanaged public voting in permissionless
blockchains. To prevent double-voting and ensure that only
eligible voters can vote, it is usually required that a voting
authority permits voters to vote.45 Another issue is a possi-
bility of voters not voting despite enrollment, resulting in the
sabotage of the voting round (possible in [220], [224], [225])
or privacy issue related to more fine-grained inference of the
actual votes of the remaining voters who voted. Deposit-based
bonds might be employed as penalties for saboteurs and dis-
incentivize such behaviors [224]. Another countermeasure for
saboteurs is a fault-tolerant voting protocol (e.g., [226], [233]),
in which the remaining honest voters can recover the final tally
even without votes of saboteurs. Since e-voting might assume
verified identities of all participants, the next group of threats
that is worth noting is inherited from identity management
(see Section VIII-E).

The last threat relates to the self-tallying property, which
might not hold if no countermeasure is applied, as the last
participant can compute the tally and only after that decide on
her vote. Simple mitigation is to use an additional “dummy”
participant that is handled by the voting authority. Another
solution is to enforce participants to first commit to their votes
and then cast the committed votes in the later stage [224].

2) Side Effects and Implications of Countermeasures:
Receipt-free voting protocols can protect against vote-selling
or coercion but on the other hand, they imply additional
computational overhead for voters, which increases the cost
of running a decentralized protocol. Although authority can
prevent double voting, it is trusted with managing voters hon-
estly and completing all actions required for progressing the
protocol from one stage to the next stage (e.g., [224], [226]).
However, the authority represents a single-point-of-failure,
since it might disrupt the execution of the protocol. Deposit-
based bonds can be employed as a mitigation technique, or
the authority can be replaced by an arbitrary voter for the pur-
pose of execution of the voting protocol (but not for managing
voters). Regarding the management of voters, an important
threat is the possibility that the authority might censor some
eligible voters. A solution for eliminating the authority (or a
delegation of this problem to a different application type) is
permitting voters to vote upon successful registration of their
identities within a certain identity management application
(see Section VIII-E). Fault-tolerant voting protocols impose
additional overheads, where all remaining voters must actively
participate in the recovery round – this implies additional costs
on such voters, and it slows down the protocol. Similarly, a
commitment scheme for coping with violation of self-tallying

45This is represented by know your client (KYC) compliance, and it is
related to the principles of permissioned blockchains.
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in the case of the last voter implies additional overheads and
costs for a dedicated commitment stage.

B. Reputation Systems

Reputation systems commonly serve as a means to (1) mea-
sure the level of trust in particular entities that provide a certain
service, (2) verify claims of user achievement or authentic-
ity of issued counter-party/ownership tokens. The reputation
is usually quantified based on the voting of parties/users
that independently analyze the history of interactions/records
produced by entities in a reputation query.

In reputation assessment, there are two options to determine
the eligibility to rate. In the first option, an arbitrary legitimate
participant can rate a product that she has bought or a service
that she has consumed. In the second option, only a limited
number of selected participants can vote on the authenticity
of individual records (e.g., accreditation). In reputation-based
systems, identity management is two-fold since the identity of
both voters and the record owners/merchants/service providers
needs to be verified.

1) Rating by Arbitrary Participants: A privacy-preserving
reputation system for e-commerce was proposed in [234]. The
authors utilize blinding signatures and merchant-issued tokens
to achieve the privacy of reviews and avoid bad-mouthing and
ballot-stuffing attacks. A feedback-based reputation approach
that utilizes the incentive-based scheme of the Bitcoin network
is proposed in [235]. In this approach, any consumer might
rate the service of the producer, while obtaining a voucher for
the feedback. Zhao et al. [236] propose a reputation manage-
ment scheme that utilizes additive secret sharing to achieve
the privacy of participants in reputation assessments.

2) Rating by Several Selected Participants: An example of
such a reputation-based application is related to accreditation
of educational institutions by other higher-level institutions
and organizations [237].

3) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
reputation systems category in Figure 23. Specific security
threats to reputation systems with an arbitrary number of
legitimate participants are bad-mouthing, ballot-stuffing, and
whitewashing attacks [234]. In bad-mouthing attacks, the
customer (e.g., competitor) lies about the product or ser-
vice, while in the ballot-stuffing attacks, the service provider
might increase her reputation by herself. Bad-mouthing can be
mitigated by filtering only authorized participants to submit
reputation assessments (e.g., by review tokens [234], [235]).
Although bad-mouthing cannot be completely prevented, it
requires participants to spend resources (e.g., buying a product
or paying transaction fees) to be eligible for rating a ser-
vice provider. Similarly to bad-mouthing, the ballot-stuffing
attack cannot be eliminated but only mitigated by requiring to
spend resources (i.e., tokens) for each rating entry. If a service
provider accumulates a significant negative reputation, it has
an incentive for a whitewashing attack – the service provider
creates a new service with a neutral reputation, which is un-
linkable to her previous service. To mitigate this attack, oracles

Fig. 23. Vulnerabilities, threats, and defenses of the reputation systems
category (application layer).

for obtaining verified data about identities of entities can be
employed, possibly as part of the identity management system.

Since reputation systems resemble e-voting in general,
concerning security threats are inherited from there (see
Section IX-A) and its dependency on identity management
(Section VIII-E). In particular, only authorized participants are
allowed to participate in the voting process and no duplicate
votes are allowed (ensured by identity management), while
the votes/ratings should remain blinded (ensured by e-voting)
unless the particular use case requires otherwise.

4) Side Effects of Countermeasures: Since some counter-
measures in reputation systems are inherited from the e-voting
and oracles categories, the side effects are also inherited from
these categories.

C. Data Provenance

Data provenance represents the ownership history of an
arbitrary object. However, in the cyber-world, objects are rep-
resented by data that can be changed, and thus the history must
account also for the modifications [238]. Data provenance with
the use of blockchains has the potential to resolve various dis-
putes and issues related to intellectual property, authorship,
the validity of certificates or other issued documents, etc. Data
provenance assumes known verified identities of the involved
parties.

An application of data provenance is supply-chain man-
agement [239], [240], where the goal is to resolve potential
issues in the traceability of goods and provenance of associated
data [241]. Blockcloud is an approach that utilizes blockchains
for data provenance in cloud computing [242]. The authors aim
at the accountability of data creation and manipulation with
the intention to detect malicious insiders and intrusions. The
idea of using the blockchain for tracking packages and mails
as part of supply chain management was proposed in [243].
ChainAnchor [244] is a framework for the commissioning and
decommissioning of IoT devices in a cloud-based ecosystem.
In a commissioning procedure, devices prove their manufac-
turing provenance to a verifier in a privacy-preserving fashion
without a need for interaction with the manufacturer. An addi-
tional goal of ChainAnchor is to reward owners of IoT devices
for sharing data in a privacy-preserving manner. A data prove-
nance approach that focuses on the integrity of IoT-generated
data is proposed in [245]. A framework to achieve data prove-
nance of multimedia objects such as artworks and books was
proposed in [246]. The authors use watermarking techniques
to embed transaction metadata of objects into the objects
themselves to prove data tampering.
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Fig. 24. Vulnerabilities, threats, and defenses of the data provenance category
(application layer).

Catena [247] guarantees a non-equivocation of its append-
only log and relatively low storage overheads (i.e., storing
all the blockchain headers). The hash of each off-chain data
block is added to the append-only log of Catena as a single
transaction, which is bound to the previous Catena transac-
tion. The same method of binding consecutive transactions in
an append-only log was utilized in Contour [248]. In con-
trast to general Catena, Contour focuses on non-equivocation
during the distribution of open-source software packages by a
specified authority. Grech and Camilleri [237] elaborate on the
usage of blockchain for the issuance of educational certificates
by academic institutions. Such certificates might be issued by
institutions whose identities are verified (see Section VIII-E).

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
data provenance category in Figure 24. Since data prove-
nance infrastructure might involve simple IoT devices and
sensors that are often not updated nor physically protected,
it is important to ensure that these devices are tamper-proof
and no secret can be stolen from them. As a countermeasure,
Trusted Platform Modules (TPMs) may be used if they are
available. We note that the current trend is to involve TPMs in
the hardware of contemporary IoT devices. However, TPMs
are often not available in numerous legacy IoT devices. In
such cases, it is possible to leverage kernel-space and user-
space memory isolation as part of the intrusion prevention
system (e.g., [249]). Another vulnerability originates from
a possible centralized logger component of data provenance
solutions (e.g., [199], [247], [248], [250]). Hence, availabil-
ity issues for data storage must be considered and possibly
resolved by a convenient decentralized filesystem approach
(see Section VIII-D). Another threat concerning the centralized
infrastructure of loggers is the possibility of data tamper-
ing and censorship. Data tampering can be detected by data
producers or auditors that do periodic audits [251]. To cope
with censorship, an on-chain smart contract-based censorship
resolution can be utilized [198], [250].

2) Side Effects and Implications of Countermeasures:
Although auditors might detect tampering with data by a log-
ger entity, their periodic activity implies high operational costs.

A possible option to save such costs is an auditor-free update
of the log using a smart contract [199], alternatively com-
bined with TEE [250] to enforce even stronger properties (i.e.,
the correctness of the execution by logger). However, TEE
has also its cons, which we discussed above. Moreover, since
countermeasures of the data provenance category depend on
the identity management and filesystems category, the side
effects are inherited from them as well.

D. Notaries

In contrast to secure timestamping, the role of the notary
system is not only to prove the existence of documents at cer-
tain points in time but also to vet and certify documents [252];
hence, notary systems assume known verified identities of
involved parties who do the vetting. In addition to the above
two functionalities, the definition of the notary system involves
document preservation, which, however, in the context of the
public blockchain is optional. The involved parties may decide
whether to store vetted documents in a database of a notary
service provider (e.g., PADVA [198]) or whether to keep it
privately at the client-side (e.g., Blockusign46).

A blockchain-based notarization platform on Ethereum was
proposed in the post [253], where an arbitrary number of
users/entities with verified identities may sign/approve the doc-
uments and their new versions, respectively. The proposal
assumes a certification authority that verifies the identities of
involved entities, and as an example, the authors suggest the
use of the ERC 725 standard [254]. ADVOCATE [255] is
an approach for notarization of agreements about personal
data processing in IoT between owners of IoT devices and
data processing services – both must co-sign an agreement.
Mizrahi [256] proposes a system for property ownership,
where, all ownership transfers can be executed without any
trusted party, but the trusted party is required for introducing
the initial ownership record to the blockchain. The ownership
register for vehicles was proposed by Notheisen et al. [257],
where trusted third parties, such as police departments
and transport authorities provide and verify vehicle-specific
information. SilentNotary47 is a smart contract-based system
for self-certifying of files produced by registered users.
PADVA [198] is a Transport Layer Security (TLS) notary ser-
vice realized as a smart contract-based two-party agreement
(i.e., Service Level Agreement). PADVA introduces notary
entities that are obligated to periodically check the validity
of PKs in a specified set of certificates.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
notaries category in Figure 25. Notaries inherit security threats
related to timestamp accuracy from the secure timestamp-
ing category (see Section VIII-F). In addition, since they
assume verified identities of involved parties, they inherit
security issues from the identity management category (see
Section VIII-E). In particular, many notary services assume a
centralized identity management system, which might be sub-
ject to tampering or censorship issues. Next, a very specific

46https://blockusign.co/
47https://silentnotary.com/
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Fig. 25. Vulnerabilities, threats, and defenses of the notaries category
(application layer).

Fig. 26. Vulnerabilities, threats, and defenses of the direct trading category
(application layer).

threat to PADVA is a cheating notary, who quietly does not
run the service periodically or runs it only sporadically. Such
cheating can be revealed by clients on an ad-hoc basis, who
punish notaries by the smart contract logic that causes notaries
to lose their deposit.

2) Side Effects of Countermeasures: Since security aspects
in notaries are inherited from the secure timestamping and
identity management categories, the side effects are also
inherited from these categories.

E. Direct Trading

While blockchain-based cryptocurrencies enable native
secure transfers of crypto-tokens among their owners, a chal-
lenge arises when owners want to exchange crypto-tokens
they hold for goods outside of the cryptocurrency blockchain.
This challenge is also referred to as the buyer/seller dilemma:
“Should the buyer trust the seller and pay her before receiv-
ing goods or should the seller trust the buyer and ship the
goods before receiving the payment?” In the direct trading
category, this problem is resolved directly between the buyer
and seller, without the need for a mediator, under the assump-
tion of a trusted seller with a verified identity. For example
in BIP-70 [258], the buyer first verifies the authenticity of the
seller using its X.509 certificate and then issues a payment
transaction.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
direct trading category in Figure 26. The first vulnerability
represents the assumption of trust in the seller. For example in
BIP-70, the buyer might ask the seller to interrupt the request
and get a refund but the seller may misbehave, and thus risk
a reputation loss. On the other hand, this might be tolerated
if the seller spoofed her identity. A mitigation technique is to
use a strong means for identity verification, including assess-
ments from reputation systems. Another attack on BIP-70 that
is worth mentioning is the Silkroad trader attack [259], in
which a malicious buyer might replace her refund address and
then ask the seller for a refund. After a refund, the buyer might
plausibly deny receipt of a refund (and ask for a refund again)
due to missing authentication on the refund address. Another

potential attack related to direct trading is double-spending
performed as part of the selfish mining or 51% attacks – there-
fore, it is important to wait for enough confirmations by the
seller before releasing the goods or use consensus protocols
having a fast finality (see Section VI-A).

2) Side Effects and Implications of Countermeasures:
Enough confirmations by the seller imply a long waiting time
for the buyer before the seller releases the goods and issues
a receipt for it. In particular, this might be problematic in
the case of on-premise purchases. The waiting time is depen-
dent on the time to the finality of the underlying consensus
protocol, and thus a consensus protocol with a low time to
finality represents a solution. However, it is the means of the
consensus layer (see Section VI).

F. Escrows

Escrows address the same problem as direct trading but in
contrast to direct trading, escrows do not assume a trusted
seller; instead, escrows outsource the trust into the third party,
referred to as a mediator. The mediator might actively par-
ticipate in the escrow protocol or she might be involved only
in the case of a dispute. According to the decentralization of
the mediator, escrow protocols can be split into single medi-
ator protocols and protocols with a group-based mediator.
Goldfeder et al. [260] propose a few escrow protocols from
both categories, which we briefly review.

1) Single Mediator: Several proposed protocols contain a
single mediator and involve 2-of-3 multi-signatures for split-
ting the control, threshold-based signatures for improving
privacy, and protocols leveraging homomorphic properties of
elliptic cryptography to achieve privacy (i.e., by blinding the
mediator’s next address) and non-interactiveness. Another pro-
tocol combines multi-signatures with bonds deposited by a
mediator to avoid DoS by the mediator. Note that blinding of
the mediator’s next address hides the execution of the protocol
to the mediator only in the case when no dispute has arisen.

2) Group-Based Mediator: In these protocols, disputes are
resolved by a majority vote. DoS attack is thwarted as long as
the majority of mediators is willing to finish the execution of
the protocol. The privacy of some protocols is preserved by
blinding, similarly as in the case of single mediator protocols.

An example of a distributed marketplace was proposed
in [261], where a marketplace contract lists the products and
an escrow agent contract serves for resolution of disputes by
a mediator (viz. single or group-based mediator). The authors
discuss the integration of logistic parties with verified identities
and reputation systems to assess these parties and mediators.
OpenBazaar48 is a distributed marketplace that uses smart
contract-based escrows with 2-of-3 multi-signatures, where the
mediator is agreed by the buyer and seller. A similar exam-
ple is Escaroo49 but in contrast to Openbazaar, it has its own
trusted mediator. Natmin50 is an escrow example that utilizes
a public group of mediators for dispute resolution, while the

48https://openbazaar.org/
49https://escaroo.com/
50https://www.natmin.io/
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Fig. 27. Vulnerabilities, threats, and defenses of the escrows category
(application layer).

reputation of the mediators is adjusted according to their votes
and a result of the dispute.

3) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
escrow category in Figure 27. The first group of threats refers
to a trusted mediator who represents a single-point-of-failure.
The mediator might disrupt the execution of the escrow pro-
tocol or decide unfairly in the case of a dispute. The existence
of these threats depends on the design of an escrow protocol.
For example, in the Silk Road marketplace [262], a mediator
requests the sending of crypto-tokens to her address, while she
is trusted to send the crypto-tokens to the seller upon delivery
confirmation from the buyer.51 However, the mediator might
refuse to do so and keep the value for herself. The mitigation
techniques are group-based mediators, requiring a consensus
of the majority to decide on a case or requiring the mediator
to put a bond into the escrow protocol. Another mitigation
technique is to use reputation systems for the assessment of a
single mediator.

To avoid stealing of the escrowed value by the mediator, the
protocol should by design allow releasing value only to the
buyer or seller (using rules of a smart contract), while assum-
ing a timeout. For example, an early version of OpenBazaar
utilized smart contracts for trading but without any timeout.
As a result, many buyers did not release the funds to the seller
upon successful delivery. However, when a timeout is adopted,
upon its expiration, a seller can unilaterally release and acquire
the funds from the escrow.

The next class of threats is related to revealing the pri-
vate information about running the protocol to the public
or mediator (e.g., involved parties, occurrences of disputes).
The countermeasures are blinding the mediator’s address,
threshold-based cryptography, including its special variant
encrypt-and-swap [260], which uses a 3-of-3 threshold sig-
nature protocol that assigns one private share to the buyer and
one to the seller, while the third share is known to both parties.
Both parties reveal their private share to the mediator, who,

51Instead of a single mediator, the Silk Road marketplace utilized several
intermediaries to increase the anonymity of the buyer and seller.

upon dispute, provides the winning party with the missing
share.

Another possible threat is the double-spending of an uncon-
firmed escrowed payment transaction by the buyer. For exam-
ple, if a (naive) escrow protocol requires a mediator to
escrow a signed transaction by the buyer and release it to
the blockchain only upon delivery confirmation, the buyer
might not confirm delivery and perform a double-spending
attack (see Section VI). As a prevention technique, uncon-
firmed transactions should not be accepted by the sellers at all.
Moreover, we highlight that some escrow protocols (similarly
as atomic swaps) are sensitive to double-spending performed
by the selfish mining or 51% attacks – therefore, in these pro-
tocols, it is important to wait for enough confirmations or use
consensus protocols having a fast finality (see Section VI-A).

4) Side Effects and Implications of Countermeasures:
Although group-based mediators are more robust to attacks
misusing a trust in a single mediator, they are more expen-
sive to run, requiring the interaction of enough mediators
with the blockchain. This in turn slows down the through-
put of the escrow protocol. The extra operational overheads
are also imposed by the reputation systems for single media-
tors. Although encoding the escrow logic into a smart contract
is supported in some implementations (e.g., OpenBazaar,
Escaroo), they require the deployment of a new smart con-
tract per each trade, which is a costly option. Such logic can
be implemented even within a single smart contract. Similar to
direct trading, not accepting unconfirmed transactions implies
a long waiting time for the buyer; this is not the case for
the consensus protocols with a fast finality. Finally, using
reputation systems brings their security aspects.

G. Auctions

In auctions, sellers promote the sale of their goods through
blockchain while buyers place bids for them. Galal and
Youssef [263] specify several desired properties of auctions:
Privacy of bids ensures that values of particular bids are not

revealed to anybody before committing to them.
Posterior privacy ensures that all bids remain private after

the auction ends.
Publicly verifiable correctness enables anybody to verify

the results of the auction through the blockchain.
Resistance against DoS ensures that no bidder or auctioneer

can prematurely abort a protocol without being penalized.
The authors of [263] instantiate the auction as a smart con-

tract, to which, bidders submit homomorphic commitments
of their sealed bids and then reveal their commitments to
the auctioneer via a PK encryption. Afterward, the auction-
eer deciphers the bids, determines the winner, and announces
it to the public while providing zero-knowledge proofs of
the correctness. As part of their other contribution [264], the
same authors improved on high costs intrinsic to their former
work [263] by using zk-SNARKs and its off-chain computa-
tion, which requires only a single on-chain proof verification of
the whole auction process. However, in both approaches [263],
[264], the auctioneer might compromise the privacy of all
bids, which led the same authors to propose Trustee [265],
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Fig. 28. Vulnerabilities, threats, and defenses of the auctions category
(application layer).

an approach based on TEE. In Trustee, the bidders submit
encrypted bids to the auctioneer’s TEE, which confidentially
evaluates a winner and generates a blockchain transaction
proving it.

Strain [266] is an auction protocol that guarantees the
privacy of bids against malicious bidders and, in contrast
to [263], [264] also against the auctioneer. Strain is executed in
four rounds (i.e., four blocks), and it assumes a semi-honest
(i.e., passive) auctioneer who acts as a judge verifying the
correctness of zero-knowledge proofs. Neither the auctioneer
nor a malicious bidder learns anything about bids of honest
bidders; however, the order of the bids is leaked to the pub-
lic. Strain requires each bidder to commit publicly to her bid,
while the proposed scheme enables a majority of honest bid-
ders to open other bidders’ commitments in the case that they
abort the protocol. For the sake of efficiency (i.e., a constant
number of rounds), the authors provide weaker security prop-
erties in contrast to MPC protocols, where no semi-honest
judge is required. Finally, the authors propose an extension
of their scheme to support the anonymity of all bidders by
blinding RSA signatures and the Dining Cryptographers (DC)
network.

Another approach that preserves the privacy of the bid val-
ues (but not the privacy of their order) is proposed in [267].
The protocol requires off-chain interaction for two-party com-
putation protocol that performs a pairwise comparison of
blinded bids among bidders and the auctioneer.

1) Security Threats and Mitigations: We present a taxon-
omy of vulnerabilities, threats, and defenses related to the
auctions category in Figure 28. There are several possible
issues related to privacy leakage in the auction protocols. The
first privacy issue stands for revealing addresses of bidders
and/or order of their bids to the public. For example, the
authors of [263] do not provide anonymity of bidders, since
bidders use their existing Ethereum addresses to interact with
the protocol. A mitigation technique using blinding RSA sig-
natures and the DC network was proposed in [266]; however,
network-level attacks on revealing locations/IP addresses of
parties remain possible (see Section V).

Since the auctioneer of some protocols (e.g., [263], [264])
sees the bidders and their bids in plain-text, she might either

intentionally or accidentally (e.g., an external compromise)
leak these data (and their corresponding proofs) that are
attributable to particular bidders. The protection technique is to
avoid the auctioneer from seeing the plain-text of the bids, and
instead use privacy-preserving integer comparison (e.g., [266])
or trusted computing-based solutions (e.g., [265]).

Another threat originates from a centralized auctioneer who
might censor some bidders (e.g., due to collusion with another
bidder) by claiming that their bids are invalid, i.e., claim-
ing that a commitment does not open to the sealed bid. To
cope with this threat, the auction can utilize a smart contract-
based resolution mechanism in which the bidder might prove
the opposite by revealing her value of the bid, causing a
penalization of the auctioneer [263]. Deposit-based bonds and
penalization of the involved parties can be used as a protec-
tion against abortion of the protocol (i.e., DoS) by any party.
For example, the protocol of [263] splits penalties to honest
participants in the case of abortion by some party. Another
option to cope with the abortion of the auction protocol is
to use multiparty computation (MPC) for the commitment of
sealed bids [266], which enables the opening of the commit-
ment of the aborting party and thus to continue in the auction
protocol.

2) Side Effects and Implications of Countermeasures:
Although censoring of bids can be prevented by a smart
contract-based resolution mechanism [263], it has privacy
consequences since it leaks the value of the bid and its corre-
sponding bidder. Deposit-based bonds can disincentivize the
abortion of the auction protocol but they require a restart of the
round. In contrast to it, MPC protocols for commitments can
recover the current auction round but with additional overheads
and costs imposed on a smart contract platform. In the case
of using a TEE-based solution, the malicious auctioneer might
perform censorship of some bidders due to collusion with other
bidders. To avoid this threat, the authors of [265] propose a
smart contract-based mechanism that verifies whether the set
of sealed bids submitted to the smart contract corresponds to
the list of bids in the proof generated by TEE. Authors also
discuss another option to cope with this attack by embedding
an SPV client within the TEE that would evaluate the state of
the blockchain; however, this solution would impose a high
memory consumption of already constrained TEE and would
expose TEE to vulnerabilities presented in SPV client. Another
implication of using TEE-based auction is the possibility of
a local replay attack discussed in [265], where the auction-
eer might provide different instances of TEE with a different
subset of the bids, and hence obtain the values of particu-
lar bids. As described in [265], such a privacy threat can be
prevented by a TEE specific construct called hardware mono-
tonic counter, which cannot be reverted once incremented.
Finally, one has to consider that a vulnerability in trusted hard-
ware may result in the unfairness of the auction process and
compromise of its privacy.

H. General Applications of Blockchains

There are many use cases of applying blockchain to a par-
ticular domain that contains mutually untrusted participants:
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these participants are represented by consensus nodes exe-
cuting a consensus protocol. Applications from this category
focus on leveraging inherent blockchain features and some-
times even on non-inherent features (see Appendix A).

An example that uses permissioned blockchain for the man-
agement of healthcare data is proposed in [268], in which
new data are included in the blockchain upon majority agree-
ment. The consensus nodes of this approach are represented
by a patient, her family, and healthcare providers. The authors
discuss an issue regarding the right to delete personal data,
which is contrary to the inherent features of the blockchain. A
data protection framework for energy grids and power systems
was proposed in [269]. The authors suggest that smart meters
act as consensus nodes and store the data of the blockchain
in their memory.52 DistBlockNet [270] is the approach for
ensuring state consistency among multiple SDN controllers
with the utilization of dedicated blockchain. In detail, flow rule
tables of SDN controllers are managed by these controllers,
while other entities in the system use blockchain as a reference
point for downloading these tables. A federated permissioned
blockchain used as a cloud-based data storage requiring the
consensus of all nodes53 is proposed in work [271]. The
authors propose to use two tiers of blockchain. The blockchain
at the first tier is private and serves for consensus of partici-
pants, while the blockchain of the second tier is public PoW
(e.g., Bitcoin) and serves for periodic publishing of integrity
proofs of the first tier blockchain. Two-tier blockchain was
also applied in the domain of IoT [272]. The authors of [272]
deem the first tier blockchain as local to a group of IoT devices
owned by a single party, while the second tier blockchain
serves for sharing the data among multiple untrusted par-
ties. The authors demonstrate the applicability in a case study
involving several smart homes.

1) Security Threats and Mitigations: Security threats of
this general category vary case by case and usually con-
cern the privacy of data shared among involved parties [268],
[269], [272]. Another common issue is an application of the
blockchain with unrealistic assumptions about the target envi-
ronment, e.g., low processing or storage performance of smart
meters/IoT devices, no HW support for asymmetric cryptogra-
phy, no tamper-proof means in devices producing transactions,
etc. Some applications try to optimize throughput or finality
of the blockchain by introducing their own consensus mecha-
nisms (e.g., [271], [272]); however, this might not be the best
option since new attack vectors might be created. A general
recommendation is to study and understand security issues
and countermeasures of the state-of-the-art approaches of the
consensus layer (see Section VI) as well as privacy concerns
presented at the RSM layer (see Section VII).

X. LESSONS LEARNED

In this Section, we summarize lessons learned concern-
ing the security reference architecture (SRA) and its prac-
tical utilization. First, we describe the hierarchy of security
dependencies among particular layers of the SRA. Second,

52These are unrealistic assumptions.
53Note that such a proposal has very low fault tolerance.

assuming such a hierarchy, we describe a security-oriented
methodology for designers of blockchain platforms and appli-
cations. Next, we summarize the design goals of particular
blockchain types and discuss the security-specific features of
the blockchains. Finally, we analyze observations from the
incidents that occurred in practice, limitations in the literature,
and we propose future research directions.

A. Hierarchy of Dependencies in the SRA

In the proposed model of the SRA, we observe that con-
sequences of vulnerabilities presented at lower layers of the
SRA are manifested in the same layers and/or at higher lay-
ers, especially at the application layer. Therefore, we refer to
security dependencies of these layers on lower layers or the
same layers, i.e., reflexive and bottom-up dependencies. We
describe these two types of dependencies in the following.

1) Reflexive Dependencies: If a layer of the SRA contains
some assets, it also contains a reflexive security dependency
on the countermeasures presented in the same layer. It means
that a countermeasure at a particular layer protects the assets
presented in the same layer. For example, in the case of
the consensus layer whose protocols reward consensus nodes
for participation, the countermeasures against selfish min-
ing attacks protect rewards (i.e., crypto-tokens) of consensus
nodes. In the case of the RSM layer, the privacy of user
identities and data is protected by various countermeasures
of this layer (e.g., blinding signatures, secure multiparty com-
putations). Another group of reflexive security dependencies
is presented at the application layer. Although the applica-
tion layer contains some bottom-up security dependencies (see
Figure 15), we argue that with regard to the overall stacked
model of the SRA they can be viewed as reflexive security
dependencies of the application layer.

2) Bottom-Up Dependencies: If a layer of the SRA con-
tains some assets, besides reflexive security dependencies, it
also contains bottom-up security dependencies on the coun-
termeasures of all lower layers. Hence, the consequences of
vulnerabilities presented at lower layers of SRA might be
manifested at the same layers (i.e., reflexive dependencies)
but more importantly, they are manifested at higher layers,
especially at the application layer. For example, context-
sensitive transactions and partial solutions as countermeasures
of the consensus layer can protect against front-running attacks
of intra-chain DEXes, which occur at the application layer.
Another example represents programming bugs in the RSM
layer, which influence the correct functionality at the appli-
cation layer. The eclipse attack is an example that impacts
the consensus layer from the network layer – a victim con-
sensus node operates over the attacker-controlled chain, and
thus causes a loss of crypto-tokens by a consensus node and
at the same time it decreases honest consensus power of the
network. In turn, this might simplify selfish-mining attacks at
the consensus layer, which in turn might impact the correct
functionality of a blockchain-based application at the applica-
tion layer. Bottom-up security dependencies are also presented
in the context of the application layer, as we have already
mentioned in Section VIII.
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TABLE I
PROS AND CONS OF VARIOUS CATEGORIES WITHIN THE FIRST THREE LAYERS OF THE STACKED MODEL

B. Methodology for Designers

A hierarchy of security dependencies in the SRA can be
utilized during the design of new blockchain-based solu-
tions. When designing a new blockchain platform or a new
blockchain application, we recommend designers to specify
requirements on the blockchain features (see Appendix A) and

afterward analyze design options and their attack surfaces at
the first three layers of the stacked model of SRA. We briefly
summarize the pros and cons of particular categories within
the first three layers of SRA in Table I, while security threats
and mitigations are covered in Section V, Section VI, and
Section VII.
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TABLE II
PROS AND CONS OF SOME CATEGORIES FROM THE APPLICATION LAYER

On top of that, we recommend the designers of a new
blockchain application to analyze particular options and their
security implications at the application layer of SRA. We list
the pros and cons of a few categories from the application layer
in Table II,54 while security threats and mitigation techniques
of this layer are elaborated in Section VIII and Section IX.
During this process, we recommend the designers to follow
security dependencies of the target category on other under-
lying categories (see Figure 15) if their decentralized variants

54Note that the table contains only categories with specified sub-
categorizations that represent the subject to a comparison.

are used (which is a preferable option from the security point-
of-view). For example, if one intends to design a decentralized
reputation system, she is advised to study the security threats
from the reputation system category and its recursive depen-
dencies on e-voting, identity management, crypto-tokens &
wallets, and (optionally) filesystems.

1) Divide and Conquer: If a designer of the blockchain
application is also designing a blockchain platform, we rec-
ommend her to split the functionality of the solution with the
divide-and-conquer approach respecting particular layers of
our stacked model. In detail, if some functionality is specific
to the application layer, then it should be implemented at that
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Fig. 29. Standard and specific design goals of consensus protocols.

layer. Such an approach minimizes the attack surface of a solu-
tion and enables isolating the threats to specific layers, where
they are easier to protect from and reviewed by the community.
A contra-example is to incorporate a part of application layer
functionality/validation into the consensus layer. The consen-
sus layer should deal only with the ordering of transactions,
and it should be agnostic to the application.

Nevertheless, it is worth noting that the divide-and-conquer
approach might not be suitable for some very specific
cases. For example, some decentralized filesystems (see
Section VIII-D) might combine data storage as an application-
layer service with the proof-of-storage consensus algorithm,
presented at the consensus layer. Therefore, the consensus
layer also embeds a part of functionality from the application
layer. However, when filesystems are in security dependencies
of the target application other than filesystems, one should
realize that they are usually running on a different blockchain
or infrastructure than the target application, and this exception
is not a concern.

C. Blockchain Types & Design Goals

We learned that the type of a blockchain (see Section III-B)
implies the specific design goals of its consensus protocol (see
Figure 29), which must be considered on top of the stan-
dard design goals (i.e., liveness and safety) and the inherent
features (see Appendix A1) during the design of a partic-
ular blockchain platform and its consensus protocol. In the
following, we elaborate on such specific design goals.

1) Permissionless Type: The first design goal is to elimi-
nate Sybil entities – such elimination can be done by requiring
that some amount of scarce resources is spent for extension of
the blockchain, and hence no Sybil entity can participate. This
implies that no pure PoS protocol can be permissionless since
it never spends resources on running a consensus protocol.
The next design goal is a fresh and fair leader/committee elec-
tion, which ensures that each consensus node influences the
result of a consensus commensurately to the number of scarce
resources spent. Moreover, freshness avoids the prediction of
the selected nodes, and therefore elected nodes cannot become
the subject of targeted DoS attacks. The last design goal is
the non-interactive verification of the consensus result by any
node – i.e., any node can verify the result of the consensus
based on the data presented in the blockchain.

2) Permissioned and Semi-Permissionless Types: These
types of blockchains require fresh and fair leader/committee
election as well as non-interactive verification of the result
of the consensus. However, in contrast to the permissionless
blockchains, they do not require a means for the elimination
of Sybil entities, as permission to enter the system is given by

a centralized entity (i.e., permissioned type) or any existing
consensus node (i.e., semi-permissionless type).

3) Blockchain Types and Incentives: We observed that no
application running on a public (permissioned) blockchain has
been able to work without introducing crypto-tokens (i.e., an
incentive scheme), even if the use case is not financial in
nature, e.g., e-voting, notaries, secure timestamping, or repu-
tation systems. In these blockchains, incentive schemes serve
as a means for the elimination of Sybil entities, besides other
purposes. The situation is different in the context of private
(permissioned) blockchains, which are usually provisioned by
a single organization or a consortium and do not necessar-
ily need crypto-tokens to operate. Misaligned incentives can
cause consensus-level vulnerabilities, e.g., when it becomes
profitable to drop blocks of other nodes to earn higher mining
rewards [82] or transaction fees [273]. The design of incen-
tive mechanisms is a research field by itself and we refer the
reader to the work of Leonardos et al. [274].

D. Security-Specific Features of Blockchains

We realized that consensus protocols are the target of most
financially-oriented attacks on the decentralized infrastructure
of blockchains, even if such attacks might originate from the
network layer (e.g., routing and eclipse attacks). The goal
of these attacks is to overturn and re-order already ordered
blocks while doing double-spending. Hence, the finality is
the most security-critical feature of the consensus layer. The
finality differs per various categories of the consensus layer.
The best finality is achieved in the pure BFT protocols, and
the worse finality is achieved in the single-leader-based PoR
and PoS protocols. On the other hand, combinations of the
BFT with PoS protocols (i.e., introducing committees) slightly
deteriorate the finality of BFT in a probabilistic ratio that is
commensurate to the committee size. In the case of PoR pro-
tocols with partial solutions, finality is improved as opposed to
pure PoR protocols; however, it is also probabilistic, depending
on the number of partial solutions.

E. Incidents in Practice

We list several incidents at each layer of the SRA in
Table VI, Table V, Table IV, and Table III of Appendix. The
observations about the number of different incident types vary
layer by layer. In the case of the network layer, many of the
attacks described in the SRA occurred or were demonstrated
with a proof-of-concept. However, incidents that occurred at
the consensus layer mostly contained 51% attacks with double-
spending, while incidents that occurred on the application layer
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were mostly caused by the exploitation of centralized compo-
nents. In the case of the RSM layer, most of the incidents
occurred due to bugs in smart contracts. Finally, we observed
that most of the incidents that occurred at the application layer
were caused due to a single-point-of-failure, e.g., centralized
components or the insider threat.

Although the number of occurred incident types is low as
compared to described vulnerabilities and threats, we argue
that the adoption of blockchains for practical applications is
still in its infancy, and thus we may expect that the number
of different incident types observed in practice will grow.

F. Limitations in the Literature and Practice

1) Applications of Blockchains: Although the litera-
ture contains surveys and overviews [11], [12], [275] of
blockchain-based applications, these works introduce only
domain-oriented categorizations (i.e., categories such finan-
cial, governance, security, education, supply chain, etc.) and
they do not investigate the security aspects and functionalities
that these applications leverage on and whether some of the
applications do not belong to the same category from the secu-
rity and functionality point-of-view. To address this limitation,
we provide a security-driven functionality-oriented categoriza-
tion of blockchain-based applications (see Section VIII), which
is agnostic to an application domain and thus can general-
ize different application scenarios. Furthermore, our proposed
categorization enables us to model security and functionality-
based dependencies among particular categories, which is not
possible with state-of-the-art categorizations.

2) Centralization: Even though blockchains are meant to
be fully decentralized, we have seen that this does not hold at
some layers of the SRA – the network and application layers,
in particular. In the network layer, some attacks are possible
due to centralized DNS bootstrapping, while in the applica-
tion layer a few categories utilize centralized components to
ensure some functionality that cannot run on-chain or its pro-
visioning would be too expensive and slow, which, however,
forms the trade-off with the security. Some applications might
depend on components from other application categories (e.g.,
identity management) but implementing these components in
a centralized fashion, even though there exist some decentral-
ized variants that are gaining popularity (e.g., DIDs [215] for
identity management).

G. Future Research Directions

1) Fast Finality: Although finality is the most security-
critical feature of the consensus layer (see Section X-D), it
forms the trade-off with scalability. Therefore, we believe that
the future focus of the consensus research should be in a
thorough evaluation of this trade-off across various consensus
protocols.

2) Network-Layer Security: We learned that a substantial
body of security research in blockchains is focusing on the
consensus and RSM layers since these layers are mostly iden-
tified with the blockchains. As opposed to them (see Figure 1),
the network layer is not so popular even though the serious

threats originating from this layer might hurt the higher lay-
ers and their assets. Therefore, a potential direction for future
research lies in studying the security aspects of network pro-
tocols, their suitability for a decentralized environment, and
potential improvements.

3) Privacy Preservation & Performance: All cryptographic
privacy preservation techniques (see Section VII-A1) bring
additional computation overhead, and thus they negatively
impact the throughput of the blockchains. On the other hand,
privacy-preserving solutions that are based on the trusted
hardware might provide higher performance, but they rely
on the manufacturer of trusted hardware and the assumption
that it will not be compromised. Therefore, we believe that
optimizing the trade-off between performance and privacy-
preservation is an important future research direction concern-
ing the RSM layer.

4) Security Analysis of the Application Layer: Although
many references included in this study are presented in the
application layer, only a very few of them analyze thoroughly
security aspects of a particular application layer category or
its instance. Therefore, as a future research direction, we rec-
ommend the authors of the blockchain-based applications to
analyze the resistance of their applications to all known threats
of a particular application category (e.g., with help of our
work), while broadly think of new vulnerabilities and threats
that might be specific to their application type.

5) Decentralization: Since some blockchain applications
utilize centralized components while their decentralized vari-
ants already exist Section X-F, we suggest that a potential
future direction for researchers and practitioners might be the
concept of a fully decentralized blockchain ecosystem. Such
an ecosystem might consist of only decentralized (or partially
decentralized) application types, for example, the ones that we
reviewed in the application layer of the SRA.

XI. DISCUSSION

In this Section, we first discuss the versatility and modular-
ity of the stacked model that is the proposed security reference
architecture (SRA) based on. Then, we outline a few addi-
tional security aspects related to blockchains, which, for clarity
and simplicity, we have not pursued throughout this article or
mentioned them only tangentially. Finally, we discuss a few
types of blockchain-oriented applications that directly inherit
security aspects from already existing categories; therefore, we
omitted such application types in our work.

A. Stacked Model

1) Versatility: The hierarchical stacked model that is the
SRA based on was already utilized in other domains before. A
well-known example is the ISO/OSI model with seven layers
or later derived TCP/IP model with four layers in the field of
communication networks. The stacked model was also applied
in cloud computing, referred to as cloud stack [276], in which,
each layer represents one service model in the model’s hierar-
chy. Nevertheless, the stacked model was also applied in the
field of blockchains [16].
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The versatility of the stack model allows not only for
modeling the hierarchy in a particular domain but also for
partitioning the corresponding security issues and their coun-
termeasures based on the layers of the model. This was done
for the ISO/OSI model [277], TCP/IP model [278], and cloud
computing [8], while in this work we focus on the security
threats related to blockchains and propose the SRA.

2) Modularity: The stack model of SRA enables exten-
sions of particular categories within each layer by adding new
vulnerabilities, threats, and their respective countermeasures.
Likewise, the new categories can be modularly added to each
of the SRA layers. Afterward, the security implications of a
new category, threat, or a countermeasure within some layer
should be studied with regard to particular categories in higher
layers – a new category might be beneficial or detrimental to
them from a security point-of-view. When introducing a new
defense or mitigation technique, it is also important to eval-
uate its side effects and implications on the features of the
blockchain that are manifested at the same and higher layers.

A general guideline for extending the SRA is to introduce
only such categories that have unique features from the secu-
rity point-of-view, while in the case of the application layer,
functionality point-of-view should be considered as well.

B. Additional Security Aspects

1) Secure Cryptography Primitives: We emphasize that for
each layer of our stacked model, we assume the use of secure
cryptographic primitives with recommended key lengths55 that
are based on existing standards (e.g., [279], [280]). Examples
include secure communication (i.e., network layer), the use
of private keys for transaction signing (i.e., consensus layer),
and password management for blockchain-based services (i.e.,
application layer). Since the area of cryptographic primitives
is standardized and extensively covered in existing research,
we treat security incidents that break these primitives as out-
of-scope in the current article.

2) Semantic Bugs: We deal with semantic bugs only at
the level of the RSM layer as part of the smart contracts
(see Section VII-B). However, we emphasize that semantic
bugs in the blockchain infrastructure may occur at each of
the proposed layers, whereas in the case of the RSM layer,
besides smart contracts, they may occur in compilers, inter-
preters, etc. In this work, we assume that the software of
the blockchain-related infrastructure does not contain any pro-
gramming semantic bugs at each of the layers, and it provides
the expected functionality. On the other hand, we emphasize
that these semantic bugs had already accounted for several
incidents in the past, e.g., [281], [282], [283], [284]. To achieve
safe and correct software at each of the layers, similar to the
case of the RSM layer, developers and designers should utilize
verification tools, testing, code reviews, audits, known design
patterns, best practices, etc.

C. Other Blockchain-Oriented Applications

There are several other applications of blockchain that we
do not mention in our work because their security aspects

55https://www.keylength.com

are inherited from one or more categories presented in
Section VIII and Section IX. For example, insurance appli-
cations running on smart contract platforms inherit security
aspects from the oracles category, as they require data to
be delivered into the blockchain from the outside world.
The next example is the trading of crypto-tokens within the
same blockchain platform – it inherits security aspects from
the crypto-tokens and wallets category (see Section VIII-A).
Another example is cross-chain communication, which is a
generalization of the exchanges category, and it also inherits
most of the security aspects from it.

XII. RELATED WORK

The security reference architecture that has been presented
in our work offers a comprehensive overview of blockchain-
related security vulnerabilities, threats, and mitigation tech-
niques. We adapted a custom version of the four-layer stacked
model, initially presented in the work of Wang et al. [16]. In
the following, we present an overview of the state-of-the-art
survey papers related to blockchain research while we high-
light the differences in contrast to our work. We consider three
groups of blockchain-oriented research: (1) papers that use a
flat categorization of threats and vulnerabilities, (2) papers that
use a stacked or other multi-layered models, and (3) papers
that focus on incidents that belong to a single layer.

A. Research With Flat Categorization

Bonneau et al. [177] present the first major survey
of blockchain-specific security aspects, with a particular
focus on Bitcoin and cryptocurrencies. The authors aim at
the consensus-layer properties, although some network-layer
aspects (e.g., DoS attacks) are discussed as well. Since smart
contract functionality was in its early stages of development at
that time, not much is said about RSM-layer properties, and
little is said about applications beyond cryptocurrencies and
data storage. Similarly, Tschorsch and Scheuermann [285] and
Yli-Huumo et al. [286] present early survey papers that focus
mostly on consensus- and network-layer attacks, but they also
deal with user privacy. The latter [286] has a particular focus
on the publication details of blockchain research until 2016,
e.g., the venues and the countries of the authors’ institutions.
Li et al. [287] present a high-level overview of blockchain
security threats and incidents, but the categorization is lack-
ing. The authors deal with selfish mining, the DAO hack, BGP
hijacking, and eclipse attacks, while all of them are mentioned
as individual incidents. Conti et al. [288] present an overview
of consensus- and network-layer attacks inherent to the Bitcoin
blockchain. One interesting contribution is its overview of
client-side attacks and attacks on exchange systems. Many
attacks presented in this work are supported by evidence of
incidents. On the other hand, the authors spent only a lit-
tle effort on the issues related to the RSM and application
layers.

B. Research With Layered or Stacked Categorization

Wang et al. [16] are the first to propose a 4-layer
model denoted as “a network implementation stack.” Despite
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proposing the stacked model, the authors do not focus on
attacks and countermeasures concerning each of the layers.
The main focus of their work is on the consensus layer, where
the authors dedicate most of their attention to PoR, PoS, and
BFT protocols as well as improving blockchain performance
by sharding, side-chains, and non-linear data organization. In
the application layer, the authors discuss a few types of emerg-
ing blockchain-based applications, such as general-purpose
data storage and access control. Saad et al. [289] identify
three categories of attacks: blockchain structure attacks, peer-
to-peer system attacks, and application-oriented attacks. As
compared to our work, it mostly holds that their peer-to-peer
system attacks encompass our network and consensus layer
attacks, whereas their application-oriented attacks include the
RSM and application-layer attacks from our work. In contrast
to our work, Saad et al. [289] put double-spending attacks
into application-oriented attacks, whereas in our case, they
are part of the consensus layer since the means for their real-
ization resides in this layer. Moreover, the authors of this
article deal with crypto-jacking attacks, which are out-of-the-
scope for our reference architecture, as they are not related
to the infrastructure of the involved parties we consider (see
Section III-A). Chen et al. [290] propose a 4-layer model sim-
ilar to ours, which is used to study vulnerabilities in Ethereum.
The authors identify 44 vulnerabilities, 26 attacks, and 47
defenses in total. In contrast to our model, the authors use
the “data” layer in place of our RSM layer. This leads to
a difference in interpretation between their framework and
ours: e.g., they consider reentrancy bugs as an application
layer vulnerability, whereas we treat them as an RSM-layer
vulnerability. Since the authors focus on Ethereum, most vul-
nerabilities belong to the RSM layer; however, some of the
other vulnerabilities (e.g., the BGP hijacking attack against
MyEtherWallet [291], [292]) do not seem to be specific for
Ethereum. In contrast, our work takes a broader view, and
we do not constrain it to a single blockchain. Another stack-
based model was proposed by Zhang et al. [293] and consists
of six layers, where the layers stand for the application, con-
tract, incentive, consensus, network, and a data layer. The
works of Alkhalifah et al. [294] and Zhu et al. [295] fea-
ture groupings consisting of five (network, consensus, mining
pool, smart contract, and client vulnerabilities) and four (data
privacy, data availability, data integrity, and data control-
lability attacks) categories, respectively. Natoli et al. [296]
focus mainly on the consensus layer but include some
network-layer attacks as well (e.g., eclipse attacks and BGP
hijacking).

C. Research Focusing on a Particular Layer

Finally, there is a number of survey papers that explicitly
focus on specific layers: the network layer [297], the RSM
layer (in particular smart contracts) [138], [298], [299], proto-
cols of the consensus layer [101], [115], [274], [300], [301],
[302], incentives at the consensus layer [303], [304], and appli-
cation layer from the general standpoint [11], or with a focus
on the IoT domain [305], [306], [307], [308].

XIII. CONCLUSION

In this article, we focused on the systematization of the
knowledge about security aspects of blockchain systems, while
we aimed to create a standardized model for studying vulner-
abilities and security threats. We proposed a stack-modeled
security reference architecture (SRA) consisting of four lay-
ers, and at each of the layers, we surveyed categories and
options for their instantiation with their respective security
implications and properties. We modeled particular categories
as vulnerability/threat/defense graphs, which we provided as
a means for reasoning about imposed security aspects. Next,
we collected a sample of blockchain-related incidents that
occurred in practice, which we further categorized using our
proposed model. We observed that the number of incident
types occurred in practice is substantially smaller than the
number of described threats, especially in the consensus and
application layer. In the case of the application layer, most of
the incidents occurred due to exploiting a centralized compo-
nent by external or internal attackers, while in the case of the
consensus layer, most of the incidents occurred due to tempo-
rary violation of protocol assumptions by 51% attacks. Finally,
we presented a security-oriented methodology for design-
ers of blockchains platforms and applications, respecting the
proposed SRA.

APPENDIX

A. Features of Blockchains

Blockchains were initially introduced as a means of cop-
ing with the centralization of monetary assets management,
resulting in their most popular application – a decentral-
ized cryptocurrency with native crypto-tokens. However, other
blockchain applications have meanwhile started to proliferate
as well, benefiting from features other than decentraliza-
tion. We summarize the inherent and non-inherent features of
blockchains in the following.

1) Inherent Features:
Decentralization: is achieved by a distributed consensus pro-

tocol – the protocol ensures that each modification of the
ledger is a result of interaction among participants. In the
consensus protocol, participants are equal, i.e., no single
entity is designed as an authority. An important result of
decentralization is resilience to node failures.

Censorship Resistance: is achieved due to decentralization,
and it ensures that each valid transaction is processed and
included in the blockchain.

Immutability: means that the history of the ledger cannot
be easily modified – it requires a significant quorum of
colluding nodes. The immutability of history is achieved
by a cryptographic one-way function (i.e., a hash func-
tion) that creates integrity-preserving links between the
previous record (i.e., block) and the current one. In this
way, integrity-preserving chains (e.g., blockchains) or
graphs (e.g., direct acyclic graphs [22], [309], [310] or
trees [23]) are built in an append-only fashion. However,
the immutability of new blocks is not immediate and
depends on the time to the finality of a particular
consensus protocol (see Section III-C).
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TABLE III
INCIDENTS THAT OCCURRED AT THE APPLICATION LAYER

Availability: although distributed ledgers are highly redun-
dant in terms of data storage (i.e., full nodes store
replicated data), the main advantage of such redun-
dancy is paid off by the extremely high availability of
the system. This feature may be of special interest to
applications that cannot tolerate outages.

Auditability: correctness of each transaction and block
recorded in the blockchain can be validated by any partic-
ipating node, which is possible due to the publicly-known
rules of a consensus protocol.

Transparency: the transactions stored in the blockchain as
well as the actions of protocol participants are visible to
other participants and in most cases even to the public.

2) Non-Inherent Features: Additionally to the inherent fea-
tures, blockchains may be equipped with other features that
aim to achieve extra goals. Below we list a few examples of
such non-inherent features.
Energy Efficiency: running an open distributed ledger often

means that scarce resources are wasted (e.g., Proof-of-
Work). However, there are available consensus protocols
that do not waste scarce resources, but instead emulate
the consumption of scarce resources (i.e., Proof-of-Burn),
or the interest rate on an investment (i.e., Proof-of-Stake).
See examples of these protocols in Section VI.

Scalability: describes how the consensus protocol scales when
the number of participants increases. Protocols whose
behavior is not negatively affected by an increasing
number of participants have high scalability.

Throughput: represents the number of transactions that can
be processed per unit of time. Some consensus proto-
cols have only a small throughput (e.g., Proof-of-Work),
while others are designed with the intention to maximize
throughput (e.g., Byzantine Fault Tolerant (BFT) proto-
cols with a small number of participants). See examples
of BFT protocols in Section VI-C.

Privacy & Anonymity: by design, data recorded on a pub-
lic blockchain is visible to all nodes or public, which
may lead to privacy and anonymity issues. Therefore,
multiple solutions increasing anonymity (e.g., ring
signatures [311] in Monero) and privacy (e.g., zk-
SNARKs [312] in Zcash) were proposed in the context of
cryptocurrencies, while other efforts have been made in
privacy-preserving smart contract platforms [131], [132].

Accountability and Non-Repudiation: if blockchains or appli-
cations running on top of them are designed in such a
way that identities of nodes (or application users) are
known and verified, accountability and non-repudiation
of actions performed can be provided too.

B. Atomic Swap Protocols

1) Atomic Swap for Two Parties: Atomic swaps assume
two parties A and B owning crypto-tokens in two different
blockchains. A and B wish to execute cross-chain exchange
atomically and thus achieve a fairness property, i.e., either both
of the parties receive the agreed amount of crypto-tokens or
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TABLE IV
INCIDENTS AND POSSIBLE VULNERABILITIES AT THE RSM LAYER

neither of them. First, this process involves an agreement on
the amount and exchange rate, and second, the execution of
the exchange itself.

In a centralized scenario [313], the approach is to utilize
a trusted third party for the execution of the exchange. In

contrast to the centralized scenario, blockchains allow us to
execute such an exchange without a requirement of the trusted
party. The atomic swap protocol [314] enables conditional
redemption of the funds in the first blockchain to B upon
revealing of the hash pre-image (i.e., secret) that redeems the
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TABLE V
INCIDENTS THAT OCCURRED AT THE CONSENSUS LAYER

funds on the second blockchain to A. The atomic swap pro-
tocol is based on two Hashed Time-Lock Contracts (HTLC)
that are deployed by both parties in both blockchains.

Although HTLCs can be realized by Turing-incomplete
smart contracts with support for hash-locks and time-locks,
for clarity, we provide a description assuming Turing-complete
smart contracts, requiring four transactions:

1) A chooses a random string x (i.e., a secret) and com-
putes its hash h(x). Using h(x), A deploys HTLCA on
the first blockchain and sends the agreed amount to it,
which later enables anybody to do a conditional transfer
of that amount to B upon calling a particular method of
HTLCA with x = h(x) as an argument (i.e., hash-lock).
Moreover, A defines a time-lock, which, when expired,
allows A to recover funds into her address by calling
a dedicated method: this is to prevent aborting of the
protocol by another party.

2) When B notices that HTLCA has been already deployed,
she deploys HTLCB on the second blockchain and sends
the agreed amount there, enabling a conditional transfer
of that amount to A upon revealing the correct pre-image
of h(x) (h(x) is visible from already deployed HTLCA).
B also defines a time-lock in HTLCB to handle abortion
by A.

3) Once A notices deployed HTLCB, she calls a method
of HTLCB with revealed x, and in turn, she obtains the
funds on the second blockchain.

4) Once B notices that x was revealed by A on the second
blockchain, she calls a method of HTLCA with x as an
argument, and in turn, she obtains the funds on the first
blockchain.

If any of the parties aborts, the counter-party waits until the
time-lock expires and redeems the funds.

2) Atomic Swap for Three Parties: In the following, we
outline a three-way atomic swap protocol, where party A
wishes to sell an asset a for BTC, the party B wishes to
buy a for ETH, and DEX E is inter-mediating the asset
transfer:

1) B chooses a random string x (i.e., a secret) and com-
putes its hash h(x). Using h(x), B deploys HTLCB on the
Ethereum blockchain and sends the agreed ETH amount
there, which later enables anybody to do a conditional
transfer of that amount to E upon calling a particu-
lar method of HTLCB with x = h(x) as an argument.
Moreover, B defines a time-lock to handle abortion by
any party.

2) Once E notices that HTLCB has been already deployed
on the Ethereum blockchain, she deploys HTLCE on the
Bitcoin blockchain and sends the agreed BTC amount
there, enabling a conditional transfer of that amount to
A upon revealing the correct pre-image of h(x) (which
is visible in already deployed HTLCB). E also defines a
time-lock in HTLCE.

3) Once A notices that HTLCA has been already deployed
on the Bitcoin blockchain, she deploys HTLCA on the
asset blockchain and lock the asset a there, enabling a
conditional transfer of a to B upon revealing the correct
pre-image of h(x) (which is visible in already deployed
HTLCB and HTLCE). A also defines a time-lock in
HTLCA.

4) When B notices that both HTLCE and HTLCA have
been already correctly deployed, she reveals the secret x
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TABLE VI
INCIDENTS THAT OCCURRED AT THE NETWORK LAYER (PUBLIC NETWORKS)

as a part of the transaction sent to HTLCA. This triggers
a transfer of asset a to B.

5) Once A notices that x was revealed, she sends a transac-
tion with x to HTLCE, obtaining BTC from E.

6) Once E notices that x was revealed, she sends a transac-
tion with x to HTLCB, obtaining ETH from B.

C. Examples of Incidents

In the current section, we list several incidents at each layer
of the security reference architecture. In detail, Table VI con-
tains incidents of public networks at the network layer, Table V
lists incidents of the consensus layer, Table IV focuses on the
RSM layer, and Table III shows a few examples of incidents
at the application layer.
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Pawel Szalachowski1 Daniël Reijsbergen1 Ivan Homoliak1 Siwei Sun2,∗
1Singapore University of Technology and Design (SUTD)

2Institute of Information Engineering and DCS Center, Chinese Academy of Sciences

Abstract

Bitcoin is the most successful cryptocurrency so far. This
is mainly due to its novel consensus algorithm, which is
based on proof-of-work combined with a cryptographically-
protected data structure and a rewarding scheme that incen-
tivizes nodes to participate. However, despite its unprece-
dented success Bitcoin suffers from many inefficiencies. For
instance, Bitcoin’s consensus mechanism has been proved to
be incentive-incompatible, its high reward variance causes
centralization, and its hardcoded deflation raises questions
about its long-term sustainability.

In this work, we revise the Bitcoin consensus mechanism
by proposing StrongChain, a scheme that introduces trans-
parency and incentivizes participants to collaborate rather
than to compete. The core design of our protocol is to
reflect and utilize the computing power aggregated on the
blockchain which is invisible and “wasted” in Bitcoin today.
Introducing relatively easy, although important changes to
Bitcoin’s design enables us to improve many crucial aspects
of Bitcoin-like cryptocurrencies making it more secure, ef-
ficient, and profitable for participants. We thoroughly an-
alyze our approach and we present an implementation of
StrongChain. The obtained results confirm its efficiency, se-
curity, and deployability.

1 Introduction

One of the main novelties of Bitcoin [28] is Nakamoto con-
sensus. This mechanism enabled the development of a per-
missionless, anonymous, and Internet-scale consensus pro-
tocol, and combined with incentive mechanisms allowed
Bitcoin to emerge as the first decentralized cryptocurrency.
Bitcoin is successful beyond all expectations, has inspired
many other projects, and has started new research directions.
Nakamoto consensus is based on proof-of-work (PoW) [8] in
order to mitigate Sybil attacks [6]. To prevent modifications,

∗This work was done while the author was at SUTD.

a cryptographically-protected append-only list [2] is intro-
duced. This list consists of transactions grouped into blocks
and is usually referred to as a blockchain. Every active pro-
tocol participant (called a miner) collects transactions sent
by users and tries to solve a computationally-hard puzzle in
order to be able to write to the blockchain (the process of
solving the puzzle is called mining). When a valid solution
is found, it is disseminated along with the transactions that
the miner wishes to append. Other miners verify this data
and, if valid, append it to their replicated blockchains. The
miner that has found a solution is awarded by a) the system,
via a rewarding scheme programmed into the protocol, and
b) fees paid by transaction senders. All monetary transfers
in Bitcoin are expressed in its native currency (called bitcoin,
abbreviated as BTC) whose supply is limited by the protocol.

Bitcoin has started an advent of decentralized cryptocur-
rency systems and as the first proposed and deployed sys-
tem in this class is surprisingly robust. However, there
are multiple drawbacks of Bitcoin that undermine its secu-
rity promises and raise questions about its future. Bitcoin
has been proved to be incentive-incompatible [9, 11, 39, 47].
Namely, in some circumstances, the miners’ best strategy is
to not announce their found solutions immediately, but in-
stead withhold them for some time period. Another issue is
that the increasing popularity of the system tends towards its
centralization. Strong competition between miners resulted
in a high reward variance, thus to stabilize their revenue
miners started grouping their computing power by forming
mining pools. Over time, mining pools have come to domi-
nate the computing power of the system, and although they
are beneficial for miners, large mining pools are risky for
the system as they have multiple ways of abusing the pro-
tocol [9, 11, 18, 39]. Recently, researchers rigorously ana-
lyzed one of the impacts of Bitcoin’s deflation [4, 27, 47].
Their results indicate that Bitcoin may be unsustainable in
the long term, mainly due to decreasing miners’ rewards that
will eventually stop completely. Besides that, unusually for
a transaction system, Bitcoin is designed to favor availability
over consistency. This choice was motivated by its open and
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permissionless spirit, but in the case of inconsistencies (i.e.,
forks in the blockchain) the system can be slow to converge.

Motivated by these drawbacks, we propose StrongChain, a
simple yet powerful revision of the Bitcoin consensus mech-
anism. Our main intuition is to design a system such that the
mining process is more transparent and collaborative, i.e.,
miners get better knowledge about the mining power of the
system and they are incentivized to solve puzzles together
rather than compete. In order to achieve it, in the heart of the
StrongChain’s design we employ weak solutions, i.e., puzzle
solutions with a PoW that is significant yet insufficient for a
standard solution. We design our system, such that a) weak
solutions are part of the consensus protocol, b) their find-
ers are rewarded independently, and c) miners have incen-
tives to announce own solutions and append solutions of oth-
ers immediately. We thoroughly analyze our approach and
show that with these changes, the mining process is becom-
ing more transparent, collaborative, secure, efficient, and de-
centralized. Surprisingly, we also show how our approach
can improve the freshness properties offered by Bitcoin. We
present an implementation and evaluation of our scheme.

2 Background and Problem Definition

2.1 Nakamoto Consensus and Bitcoin
The Nakamoto consensus protocol allows decentralized and
distributed network comprised of mutually distrusting par-
ticipants to reach an agreement on the state of the global dis-
tributed ledger [28]. The distributed ledger can be regarded
as a linked list of blocks, referred to as the blockchain, which
serializes and confirms “transactions”. To resolve any forks
of the blockchain the protocol specifies to always accept the
longest chain as the current one. Bitcoin is a peer-to-peer
cryptocurrency that deploys Nakamoto consensus as its core
mechanism to avoid double-spending. Transactions spend-
ing bitcoins are announced to the Bitcoin network, where
miners validate, serialize all non-included transactions, and
try to create (mine) a block of transactions with a PoW em-
bedded into the block header. A valid block must fulfill the
condition that for a cryptographic hash function H, the hash
value of the block header is less than the target T .

Brute-forcing the nonce (together with some other change-
able data fields) is virtually the only way to produce the PoW,
which costs computational resources of the miners. To in-
centivize miners, the Bitcoin protocol allows the miner who
finds a block to insert a special transaction (see below) mint-
ing a specified amount of new bitcoins and collecting trans-
action fees offered by the included transactions, which are
transferred to an account chosen by the miner. Currently,
every block mints 12.5 new bitcoins. This amount is halved
every four years, upper-bounding the number of bitcoins that
will be created to a fixed total of 21 million coins. It implies
that after around the year 2140, no new coins will be created,

and the transaction fees will be the only source of reward for
miners. Because of its design, Bitcoin is a deflationary cur-
rency.

The overall hash rate of the Bitcoin network and the dif-
ficulty of the PoW determine how long it takes to generate
a new block for the whole network (the block interval). To
stabilize the block interval at about 10 minutes for the con-
stantly changing total mining power, the Bitcoin network ad-
justs the target T every 2016 blocks (about two weeks, i.e., a
difficulty window) according to the following formula

Tnew = Told ·
Time of the last 2016 blocks

2016 ·10 minutes
. (1)

In simple terms, the difficulty increases if the network is find-
ing blocks faster than every 10 minutes, and decrease oth-
erwise. With dynamic difficulty, Nakamoto’s longest chain
rule was considered as a bug,1 as it is trivial to produce long
chains that have low difficulty. The rule was replaced by the
strongest-PoW chain rule where competing chains are mea-
sured in terms of PoW they aggregated. As long as there is
one chain with the highest PoW, this chain is chosen as the
current one.

Bitcoin introduced and uses the unspent transaction out-
put model. The validity of a Bitcoin transaction is verified
by executing a script proving that the transaction sender is
authorized to redeem unspent coins. The only exception is
the first transaction in the transaction list of a block, which
implements how the newly minted bitcoins and transaction
fees are distributed. It is called a coinbase transaction and
it contains the amount of bitcoins (the sum of newly minted
coins and the fees derived from all the transactions) and the
beneficiary (typically the creator of the block). Also, the
Bitcoin scripting language offers a mechanism (OP RETURN)
for recording data on the blockchain, which facilitates third-
party applications built-on Bitcoin.

Bitcoin proposes the simplified payment verification
(SPV) protocol, that allows resource-limited clients to ver-
ify that a transaction is indeed included in a block provided
only with the block header and a short transaction’s inclusion
proof. The key advantage of the protocol is that SPV clients
can verify the existence of a transaction without download-
ing or storing the whole block. SPV clients are provided only
with block headers and on-demand request from the network
inclusion proofs of the transactions they are interested in.

In the original white paper, Nakamoto heuristically argues
that the consensus protocol remains secure as long as a ma-
jority (> 50%) of the participants’ computing power hon-
estly follow the rule specified by the protocol, which is com-
patible with their own economic incentives.

1https://goo.gl/thhusi
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2.2 Bitcoin Mining Issues

Despite its popularity, Nakamoto consensus and Bitcoin suf-
fer from multiple issues. Bitcoin mining is not always
incentive-compatible. By deviating from the protocol and
strategically withholding found blocks, a miner in posses-
sion of a proportion α of the total computational power may
occupy more than α portion of the blocks on the blockchain,
and therefore gain disproportionally higher payoffs with re-
spect to her share [1, 11, 39]. More specifically, an attacker
tries to create a private chain by keeping found blocks secret
as long as the chain is in an advantageous position with one
or more blocks more than the public branch. She releases her
private chain only when the public chain has almost caught
up, hence invalidating the public branch and all the efforts
made by the honest miners. This kind of attack, called self-
ish mining, can be more efficient when a well-connected self-
ish miner’s computational power exceeds a certain threshold
(around more than 30%). Thus, selfish mining does not pay
off if the mining power is sufficiently decentralized.

Unfortunately, the miners have an impulse to central-
ize their computing resources due to Bitcoin’s rewarding
scheme. In Bitcoin, rewarding is a zero-sum game and only
the lucky miner who manages to get her block accepted re-
ceives the reward, while others who indeed contributed com-
putational resources to produce the PoW are completely in-
visible and ignored. Increasing mining competition leads to
an extremely high variance of the payoffs of a miner with
a limited computational power. A solo miner may need to
wait months or years to receive any reward at all. As a
consequence, miners are motivated to group their resources
and form mining pools, that divide work among pool partici-
pants and share the rewards according to their contributions.
As of November 2018, only five largest pools account for
more than 65% of the mining power of the whole Bitcoin
network.2 Such mining pools not only undermine the de-
centralization property of the system but also raise various
in-pool or cross-pool security issues [5, 9, 22, 37].

Another seemingly harmless characteristic of Bitcoin is
its finite monetary supply. However, researchers in their re-
cent work [4, 27, 47] investigate the system dynamics when
incentives coming from transaction fees are non-negligible
compared with block rewards (in one extreme case the in-
centives come only from fees). They provide analysis and
evidence, indicating an undesired system degradation due
to the rational and self-interested participants. Firstly, such
a system incentivizes large miner coalitions, increasing the
system centralization even more. Secondly, it leads to a min-
ing gap where miners would avoid mining when the avail-
able fees are insufficient. Even worse, rational miners tend
to mine on chains that do not include available transactions
(and their fees), rather than following the block selection rule
specified by the protocol, resulting in a backlog of transac-

2https://btc.com/stats/pool?pool_mode=month

tions. Finally, in the sole transaction fee regime, selfish min-
ing attacks are efficient for miners with arbitrarily low min-
ing power, regardless of their network connection qualities.
These results suggest that making the block reward perma-
nent and accepting the monetary inflation may be a wise de-
sign choice to ensure the stability of the cryptocurrency in
the long run.

Moreover, the chain selection rule (i.e., the strongest chain
is accepted), together with the network delay, occasionally
lead to forks, where two or more blocks pointing to the
same block are created around the same time, causing the
participants to have different views of the current system
state. Such conflicting views will eventually be resolved
since with a high probability one branch will finally beat
the others (then the blocks from the “losing” chain become
stale blocks). The process of fork resolution is quite slow,
as blocks have the same PoW weight and they arrive in 10-
minutes intervals (on average).

Finally, the freshness properties provided by Bitcoin are
questionable. By design, the Bitcoin blockchain preserves
the order of blocks and transactions, however, the accurate
estimation of time of these events is challenging [43], de-
spite the fact that each block has an associated timestamp.
A block’s timestamp is accepted if a) it is greater than the
median timestamp of the previous eleven blocks, and b) it is
less than the network time plus two hours.3 This gives sig-
nificant room for manipulation — in theory, a timestamp can
differ in hours from the actual time since it is largely deter-
mined by a single block creator. In fact, as time cannot be
accurately determined from the timestamps, the capabilities
of the Bitcoin protocol as a timestamping service are limited,
which may lead to severe attacks by itself [3, 17].

2.3 Requirements
For the purpose of revising a consensus protocol of PoW
blockchains in a secure, well-incentivized, and seamless
way, we define the following respective requirements:

• Security – the scheme should improve the security of
Nakamoto consensus by mitigating known attack vec-
tors and preventing new ones. In essence, the scheme
should be incentive-compatible, such that miners bene-
fit from following the consensus rules and have no gain
from violating them.

• Reward Variance – another objective is to minimize
the variance in rewards. This requirement is crucial
for decentralization since a high reward variance is the
main motivation of individual miners to join centralized
mining pools. Centralization is undesirable as large-
enough mining pools can attack the Bitcoin protocol.

• Chain Quality – the scheme should provide a high
chain quality, which usually is described using the two
following properties.

3https://en.bitcoin.it/wiki/Block_timestamp
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– Mining Power Utilization – the ratio between
the mining power on the main chain and the min-
ing power of the entire blockchain network. This
property describes the performance of mining and
its ideal value is 1, which denotes that all mining
power of the system contributes to the “official” or
“canonical” chain. A high mining power utiliza-
tion implies a low stale block rate.

– Fairness – the protocol should be fair, i.e., a
miner should earn rewards proportionally to the
resources invested by her in mining. We denote
a miner with α of the global mining power as an
α-strong miner.

• Efficiency and Practicality – the scheme should not in-
troduce any significant computational, storage, or band-
width overheads. This is especially important since Bit-
coin works as a replicated state machine, therefore all
full nodes replicate data and the validation process. In
particular, the block validation time, its size, and over-
heads of SPV clients should be at least similar as to-
day. Moreover, the protocol should not introduce any
assumptions that would be misaligned with Bitcoin’s
spirit and perceived as unacceptable by the commu-
nity. In particular, the scheme should not introduce any
trusted parties and should not assume strong synchro-
nization of nodes (like global and reliable timestamps).

3 High-level Overview

3.1 Design Rationale
Our first observation is that Bitcoin mining is not transpar-
ent. It is difficult to quickly estimate the computing power
of the different participants, because the only indicator is the
found blocks. After all, blocks arrive with a low frequency,
and each block is equal in terms of its implied computational
power. Consequently, the only way of resolving forks is to
wait for a stronger chain to emerge, which can be a time-
consuming process. A related issue is block-withholding-
like attacks (e.g., selfish mining) which are based on the ob-
servation that sometimes it is profitable for an attacker to
deviate from the protocol by postponing the announcement
of new solutions. We see transparency as a helpful prop-
erty also in this context. Ideally, non-visible (hidden) so-
lutions should be penalized, however, in practice it is chal-
lenging to detect and prove that a solution was hidden. We
observe that an alternative way of mitigating these attacks
would be to promote visible solutions, such that with more
computing power aggregated around them they get stronger.
This would incentivize miners to publish their solutions im-
mediately, since keeping it secret may be too risky as other
miners could strengthen a competing potential (future) so-
lution over time. Finally, supported by recent research re-
sults [4, 11, 27, 39, 47], we envision that redesigning the Bit-

coin reward scheme is unavoidable to keep the system sus-
tainable and more secure. Beside the deflation issues (see
Section 2.2), the reward scheme in Bitcoin is a zero-sum
game rewarding only lucky miners and ignoring all effort of
other participants. That causes fierce competition between
miners and a high reward variance, which stimulates min-
ers to collaborate, but within mining pools, introducing more
risk to the system. We aim to design a system where miners
can benefit from collaboration but without introducing cen-
tralization risks.

3.2 Overview

Motivated by these observations, we see weak puzzle so-
lutions, currently invisible and “wasted” in Bitcoin, as a
promising direction. Miners exchanging them could make
the protocol more transparent as announcing them could re-
flect the current distribution of computational efforts on the
network. Furthermore, if included in consensus rules, they
could give blocks a better granularity in terms of PoW, and
incentivize miners to collaborate. In our scheme, miners
solve a puzzle as today but in addition to publishing solu-
tions, they exchange weak solutions too (i.e., almost-solved
puzzles). The lucky miner publishes her solution that em-
beds gathered weak solutions (pointing to the same previous
block) of other miners. Such a published block better reflects
the aggregated PoW of a block, which in the case of a fork
can indicate that more mining power is focused on a given
branch (i.e., actually it proves that more computing power
“believes” that the given branch is correct). Another crucial
change is to redesign the Bitcoin reward system, such that
the finders of weak solutions are also rewarded. Following
lessons learned from mining pool attacks, instead of sharing
rewards among miners, our scheme rewards weak solutions
proportionally to their PoW contributed to a given block and
all rewards are independent of other solutions of the block.
(Note, that this change requires a Bitcoin hard fork.)

There are a few intuitions behind these design choices.
First, a selfish miner finding a new block takes a high risk
by keeping this block secret. This is because blocks have
a better granularity due to honest miners exchanging partial
solutions and strengthening their prospective block, which in
the case of a fork would be stronger than the older block kept
secret (i.e., the block of the selfish miner). Secondly, min-
ers are actually incentivized to collaborate by a) exchang-
ing their weak solutions, and b) by appending weak solu-
tions submitted by other miners. For the former case, miners
are rewarded whenever their solutions are appended, hence
keeping them secret can be unprofitable for them. For the
latter case, a miner appending weak solutions of others only
increases the strength of her potential block, and moreover,
appending these solutions does not negatively influence the
miner’s potential reward. Finally, our approach comes with
another benefit. Proportional rewarding of weak solutions
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decreases the reward variance, thus miners do not have to
join large mining pools in order to stabilize their revenue.
This could lead to a higher decentralization of mining power
on the network.

In the following sections, we describe details of our sys-
tem, show its analysis, and report on its implementation.

4 StrongChain Details

4.1 Mining
As in Bitcoin, in StrongChain miners authenticate transac-
tions by collecting them into blocks whose headers are pro-
tected by a certain amount of PoW. A simplified description
of a block mining procedure in StrongChain is presented as
the mineBlock() function in Algorithm 1. Namely, every
miner tries to solve a PoW puzzle by computing the hash
function over a newly created header. The header is con-
stantly being changed by modifying its nonce field,4 until a
valid hash value is found. Whenever a miner finds a header
hdr whose hash value h = H(hdr) is smaller than the strong
target Ts, i.e., a h that satisfies the following:

h < Ts,

then the corresponding block is announced to the network
and becomes, with all its transactions and metadata, part of
the blockchain. We refer to headers of included blocks as
strong headers.

One of the main differences with Bitcoin is that our min-
ing protocol handles also headers whose hash values do not
meet the strong target Ts, but still are low enough to prove a
significant PoW. We call such a header a weak header and its
hash value h has to satisfy the following:

Ts ≤ h < Tw, (2)

where Tw > Ts and Tw is called the weak target.
Whenever a miner finds such a block header, she adds it

to her local list of weak headers (i.e., weakHdrsTmp) and
she propagates the header among all miners. Then every
miner that receives this information first validates it (see on-
RecvWeakHdr()) by checking whether

• the header points to the last strong header,
• its other fields are correct (see Section 4.2),
• and Equation 2 is satisfied.

Afterward, miners append the header to their lists of weak
headers. We do not limit the number of weak headers ap-
pended, although this number is correlated with the Tw/Ts
ratio (see Section 5).

Finally, miners continue the mining process in order to
find a strong header. In this process, a miner keeps creat-
ing candidate headers by computing hash values and check-
ing whether the strong target is met. Every candidate header

4In fact, other fields can be modified too if needed.

Algorithm 1: Pseudocode of StrongChain functions.
function mineBlock()

weakHdrsTmp← /0;
for nonce ∈ {0,1,2, ...} do

hdr← createHeader(nonce);
/* check if the header meets the strong target */
htmp← H(hdr);
if htmp < Ts then

B← createBlock(hdr,weakHdrsTmp,Txs);
broadcast(B);
return; /* signal to mine with the new block */

/* check if the header meets the weak target */
if htmp < Tw then

weakHdrsTmp.add(hdr);
broadcast(hdr);

function onRecvWeakHdr(hdr)
hw← H(hdr);
assert(Ts ≤ hw < Tw and validHeader(hdr));
assert(hdr.PrevHash == H(lastBlock.hdr)) ;
weakHdrsTmp.add(hdr);

function rewardBlock(B)
/* reward block finder with R */
reward(B.hdr.Coinbase,R+B.T xFees);
w← γ ∗Ts/Tw; /* reward weak headers proportionally */
for hdr ∈ B.weakHdrSet do

reward(hdr.Coinbase,w∗ c∗R);

function validateBlock(B)
assert(H(B.hdr)< Ts and validHeader(B.hdr));
assert(B.hdr.PrevHash == H(lastBlock.hdr)) ;
assert(validTransactions(B));
for hdr ∈ B.weakHdrSet do

assert(Ts ≤ H(hdr)< Tw and validHeader(hdr));
assert(hdr.PrevHash == H(lastBlock.hdr));

function chainPoW(chain)
sum← 0;
for B ∈ chain do

/* for each block compute its aggregated PoW */
Ts← B.hdr.Target;
sum← sum+Tmax/Ts;
for hdr ∈ B.weakHdrSet do

sum← sum+Tmax/Tw;

return sum;

function getTimestamp(B)
sumT← B.hdr.Timestamp;
sumW← 1.0;
/* average timestamp by the aggregated PoW */
w← Ts/Tw;
for hdr ∈ B.weakHdrSet do

sumT ← sumT +w∗hdr.Timestamp;
sumW ← sumW +w;

return sumT/sumW ;
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“protects” all collected weak headers (note that all of these
weak headers point to the same previous strong header).

In order to keep the number of found weak headers close
to a constant value, StrongChain adjusts the difficulty Tw of
weak headers every 2016 blocks immediately following the
adjustment of the difficulty Ts of the strong headers accord-
ing to Equation 1, such that the ratio Tw/Ts is kept at a con-
stant (we discuss its value in Section 5).

4.2 Block Layout and Validation

A block in our scheme consists of transactions, a list of weak
headers, and a strong header that authenticates these transac-
tions and weak headers. Strong and weak headers in our
system inherit the fields from Bitcoin headers and addition-
ally enrich it by a new field. A block header consists of the
following fields:
PrevHash: is a hash of the previous block header,
Target: is the value encoding the current target defining the

difficulty of finding new blocks,
Nonce: is a nonce, used to generate PoW,
Timestamp: is a Unix timestamp,
TxRoot: is the root of the Merkle tree [24] aggregating all

transactions of the block, and
Coinbase: represents an address of the miner that will re-

ceive a reward.
As our protocol rewards finders of weak headers (see details
in Section 4.4), every weak header has to be accompanied
with the information necessary to identify its finder. Oth-
erwise, a finder of a strong block could maliciously claim
that some (or all) weak headers were found by her and get
rewards for them. For this purpose and for efficiency, we in-
troduced a new 20B-long header field named Coinbase. With
the introduction of this field, StrongChain headers are 100B
long. But on the other hand, there is no longer any need
for Bitcoin coinbase transactions (see Section 2.1), as all re-
wards are determined from headers.

In our scheme, weak headers are exchanged among nodes
as part of a block, hence it is necessary to protect the in-
tegrity of all weak headers associated with the block. To re-
alize it, we introduce a special transaction, called a binding
transaction, which contains a hash value computed over the
weak headers. This transaction is the first transaction of each
block and it protects the collected weak headers. Whenever
a strong header is found, it is announced together with all its
transactions and collected weak headers, therefore, this field
protects all associated weak headers. To encode this field we
utilize the OP RETURN operation as follows:

OP RETURN H(hdr0‖hdr1‖...‖hdrn), (3)

where hdri is a weak header pointing to the previous strong
header. Since weak headers have redundant fields (the
PrevHash, Target, and Version fields have the same values as
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Figure 1: An example of a blockchain fragment with strong head-
ers, weak headers, and binding and regular transactions.

the strong header), we propose to save bandwidth and stor-
age by not including these fields into the data of a block. This
modification reduces the size of a weak header from 100B to
60B only, which is especially important for SPV clients who
keep downloading new block headers.

With our approach, a newly mined and announced block
can encompass multiple weak headers. Weak headers, in
contrast to strong headers, are not used to authenticate trans-
actions, and they are even stored and exchanged without their
corresponding transactions. Instead, the main purpose of
including weak headers it to contribute and reflect the ag-
gregated mining power concentrated on a given branch of
the blockchain. We present a fragment of a blockchain of
StrongChain in Figure 1. As depicted in the figure, each
block contains a single strong header, transactions, and a set
of weak headers aggregated via a binding transaction.

On receiving a new block, miners validate the block by
checking the following (see validateBlock() in Algorithm 1):

1. The strong header is protected by the PoW and points
to the previous strong header.

2. Header fields have correct values (i.e., the version, tar-
get, and timestamp are set correctly).

3. All included transactions are correct and protected by
the strong header. This check also includes checking
that all weak headers collected are protected by a bind-
ing transaction included in the block.

4. All included weak headers are correct: a) they meet the
targets as specified in Equation 2, b) their PrevHash
fields point to the previous strong header, and c) their
version, targets, and timestamps have correct values.

If the validation is successful, the block is accepted as part
of the blockchain.

4.3 Forks

One of the main advantages of our approach is that blocks
reflect their aggregated mining power more precisely. Each
block beside its strong header contains multiple weak head-
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Figure 2: An example of a forked blockchain in StrongChain.

ers that contribute to the block’s PoW. In the case of a fork,
our scheme relies on the strongest chain rule, however, the
PoW is computed differently than in Bitcoin. For every chain
its PoW is calculated as presented by the chainPoW() proce-
dure in Algorithm 1. Every chain is parsed and for each of
its blocks the PoW is calculated by adding:

1. the PoW of the strong header, computed as Tmax/Ts,
where Tmax is the maximum target value, and

2. the accumulated PoW of all associated weak headers,
counting each weak header equally as Tmax/Tw.

Then the chain’s PoW is expressed as just the sum of all its
blocks’ PoW. Such an aggregated chain’s PoW is compared
with the competing chain(s). The chain with the largest ag-
gregated PoW is determined as the current one. As diffi-
culty in our protocol changes over time, the strong target Ts
and PoW of weak headers are relative to the maximum tar-
get value Tmax. We assume that nodes of the network check
whether every difficulty window is computed correctly (we
skipped this check in our algorithms for easy description).

Including and empowering weak headers in our protocol
moves away from Bitcoin’s “binary” granularity and gives
blocks better expression of the PoW they convey. An ex-
ample is presented in Figure 2. For instance, nodes having
the blocks Bi and B′i can immediately decide to follow the
block Bi as it has more weak headers associated, thus it has
accumulated more PoW than the block B′i.

An exception to this rule is when miners solve conflicts.
Namely, on receiving a new block, miners run the algorithm
as presented, however, they also take into consideration PoW
contributions of known weak headers that point to the last
blocks. For instance, for a one-block-long fork within the
same difficulty window, if a block B includes l weak headers
and a miner knows of k weak headers pointing to B, then
that miner will select B over any competing block B′ that
includes l′ weak and has k′ known weak headers pointing to
it if l + k > l′+ k′. Note that this rule incentivizes miners to
propagate their solutions as quickly as possible as competing
blocks become “stronger” over time.

4.4 Rewarding Scheme

The rewards distribution is another crucial aspect of
StrongChain and it is presented by the rewardBlock() pro-
cedure from Algorithm 1. The miner that found the strong
header receives the full reward R. Moreover, in contrast to
Bitcoin, where only the “lucky” miner is paid the full reward,
in our scheme all miners that have contributed to the block’s
PoW (i.e., whose weak headers are included) are paid by
commensurate rewards to the provided PoW. A weak header
finder receive a fraction of R, i.e., γ ∗ c ∗R ∗Ts/Tw, as a re-
ward for its corresponding solution contributing to the total
PoW of a particular branch, where the γ parameter influences
the relative impact of weak header rewards and c is just a
scaling constant (we discuss their potential values and im-
plications in Section 5). Moreover, we do not limit weak
header rewards and miners can get multiple rewards for their
weak headers within a single block. Similar reward mech-
anisms are present in today’s mining pools (see Section 8),
but unlike them, weak header rewards in StrongChain are in-
dependent of each other. Therefore, the reward scheme is
not a zero-sum game and miners cannot increase their own
rewards by dropping weak headers of others (actually, as
we discuss in Section 5, they can only lose since their po-
tential solutions would have less PoW without others’ weak
headers). Furthermore, weak header rewards decrease signif-
icantly the mining variance as miners can get steady revenue,
making the system more decentralized and collaborative.

As mentioned before, the number of weak headers of a
block is unlimited, they are rewarded independently (i.e., do
not share any reward), and all block rewards in our system
are proportional to the PoW contributed. In such a setting,
a mechanism incentivizing miners to terminate a block cre-
ation is needed (without such a mechanism, miners could
keep creating huge blocks with weak headers only). In order
to achieve this, StrongChain always attributes block transac-
tion fees (B.T xFees) to the finder of the strong header (who
also receives the full reward R).

Note that in our rewarding scheme, the amount of newly
minted coins is always at least R, and consequently, unlike
Bitcoin or Ethereum [48], the total supply of the currency
in our protocol is not upper-bounded. This design decision
is made in accordance with recent results on the long-term
instability of deflationary cryptocurrencies [4, 27, 47].

4.5 Timestamps

In StrongChain, we follow the Bitcoin rules on constrain-
ing timestamps (see Section 2.1), however, we redefine how
block timestamps are interpreted. Instead of solely relying
on a timestamp put by the miner who mined the block, block
timestamps in our system are derived from the strong header
and all weak headers included in the corresponding block.
The algorithm to derive a block’s timestamp is presented as
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getTimestamp() in Algorithm 1. A block’s timestamp is de-
termined as a weighted average timestamp over the strong
header’s timestamp and all timestamps of the weak head-
ers included in the block. The strong header’s timestamp
has a weight of 1, while weights of weak header timestamps
are determined as their PoW contributed (namely, a weak
header’s timestamp has a weight of the ratio between the
strong target and the weak target). Therefore, the timestamp
value is adjusted proportionally to the mining power asso-
ciated with a given block. That change reflects an average
time of the block creation and mitigates miners that inten-
tionally or misconfigured put incorrect timestamps into the
blockchain. We show the effectiveness of this approach in
Section 5.5.

4.6 SPV Clients

Our protocol supports light SPV clients. With every new
block, an SPV client is updated with the following informa-
tion:

hdr,hdr0,hdr1, ...,hdrn,BTproof , (4)

where hdr is a strong header, hdri are associated weak head-
ers, and BTproof is an inclusion proof of a binding transac-
tion that contains a hash over the weak headers (see Equa-
tion 3). Note that headers contain redundant fields, thus as
described in Section 4.2, they can be provided to SPV clients
efficiently.

With this data, the client verifies fields of all headers, com-
putes the PoW of the block (analogous, as in chainPoW()
from Algorithm 1), and validates the BTproof proof to check
whether all weak headers are correct, and whether the trans-
action is part of the blockchain (the proof is validated against
TxRoot of hdr). Afterward, the client saves the strong header
hdr and its computed PoW, while other messages (the weak
headers and the proof) can be dropped.

5 Analysis

In this section, we evaluate the requirements discussed in
Section 2.3. We start with analyzing StrongChain’s effi-
ciency and practicality. Next, we study how our design helps
with reward variance, chain quality, and security.

5.1 Efficiency and Practicality

For the efficiency, it is important to consider the main source
of additional load on the bandwidth, storage, and processing
power of the nodes: the weak headers. Hence, in the fol-
lowing section we analyze the probability distribution of the
number of weak headers. Next, we discuss the value of the
impact of the parametrization on the average block rewards.

5.1.1 Number of Weak Headers

In Bitcoin, we assume that hashes are drawn randomly be-
tween 0 and Tmax = 2256 − 1. Hence, a single hash be-
ing smaller than Tw is a Bernoulli trial with parameter
pw = Tw/2256. The number of hashes tried until a weak
header is found is therefore geometrically distributed, and
the time in seconds between two weak headers is approxi-
mately exponentially distributed with rate η pw, where η is
the total hash rate per second and pw is chosen such that
η pw ≈ 1/600. When a weak header is found, it is also a
strong block with probability ps/pw (where ps = Ts/2256),
which is again a Bernoulli trial. Hence, the probability
distribution of the number of weak headers found between
two strong blocks is that of the number of trials before the
first successful trial — as such, it also follows a geometric
distribution, but with mean pw/ps − 1.5 For example, for
Tw/Ts = 210 this means that the average number of weak
headers per block equals 1023. With 60 bytes per weak
header (see Section 4.2) and 1MB per Bitcoin block, this
would mean that the load increases by little over 6% on av-
erage with a small computational overhead introduced (see
details in Section 7). The probability of having more than
16667 headers (or 1MB) in a block would equal.6

(
1− ps

pw

)16668

=
(

1−2−10
)16668

≈ 8.4603 ·10−8.

Since around 51,000 Bitcoin blocks are found per year, this
is expected to happen roughly once every 230 years.

5.1.2 Total Rewards

To ease the comparison to the Bitcoin protocol, we can en-
force the same average mining reward per block (currently
12.5 BTC). Let R denote Bitcoin’s mining reward. Since we
reward weak headers as well as strong blocks, we need to
scale all mining rewards by a constant c to ensure that the
total reward remains unchanged — this is done in the re-
wardBlock function in Algorithm 1. As argued previously,
we reward all weak headers equally by γRTs/Tw. Since
the average number of weak headers per strong block is
Tw/Ts−1, this means that the expected total reward per
block (i.e., strong block and weak header rewards) equals
cR+ cRγTs/Tw · (Tw/Ts−1). Hence, we find that

c =
1

1+ γ(Tw/Ts−1)Ts/Tw
,

5Another way to reach this conclusion is as follows: the number of
weak headers found in a fixed time interval is Poisson distributed, and it can
be shown that the number of Poisson arrivals in an interval with exponen-
tially distributed length is geometrically distributed.

6For an actual block implementation, we advice to introduce separate
spaces for weak headers and transactions. With such a design, miners do not
have incentives and trade-offs between including more transactions instead
of weak headers.
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which for large values of Tw/Ts is close to 1/(1+ γ). This
means that if γ = 1, the strong block and weak header re-
wards contribute almost equally to a miner’s total reward.

5.2 Reward Variance of Solo Mining
The tendency towards centralization in Bitcoin caused by
powerful mining pools can largely be attributed to the high
reward variance of solo mining [15, 37]. Therefore, keeping
the reward variance of a solo miner at a low level is a central
design goal.

Let RBC and RSC be the random variables representing the
per-block rewards for an α-strong solo miner in Bitcoin and
in StrongChain, respectively. For any given strong block in
both protocols, we define the random variable I as follows:

I =

{
1 the block is mined by the solo miner,
0 otherwise.

By definition, I has a Bernoulli distribution, which means
that E(I) = α and Var(I) = α(1−α), where E and Var are
the mean and variance of a random variable respectively. The
following technical lemma will aid our analysis of the reward
variances of solo miners:

Lemma 1. Let X1,X2, . . . be independent and identically dis-
tributed random variables. Let N be defined on {0,1, . . .}
and independent of X1,X2, . . .. Let N and all Xi have finite
mean and variance. Then

Var

(
N

∑
i=1

Xi

)
= E(N)Var(X)+Var(N)(E(X))2.

Proof. See [7].

Reward Variance of Solo Mining in Bitcoin. Bitcoin re-
wards the miner of a block creator with the fixed block re-
ward R and the variable (total) mining fees, which we denote
by the random variable F. Therefore, we have

RBC = I(R+F),

which implies that

Var(RBC) = R2Var(I)+Var(IF). (5)

Since IF = ∑I
i=0 F, we can use Lemma 1 (substituting I for

N and F for X) to obtain

Var(IF) = E(I)Var(F)+Var(I)E2(F). (6)

Combining (5) and (6) gives

Var(RBC) = E(I)Var(F)+Var(I)
(
E2(F)+R2

)

= αVar(F)+α(1−α)
(
E2(F)+R2

)
.

(7)

When the fees are small compared to the mining reward, this
simplifies to α(1−α)R2. By comparison, in [37] the vari-
ance of the block rewards (without fees) earned by a solo
miner across a time period of t seconds is studied, and found
to equal αR2t/600.7 The same quantity can be obtained by
using (7), Lemma 1, and the total number of strong blocks
found (by any miner) after t seconds of mining (which has a
Poisson distribution with mean t/600).

Reward Variance of Solo Mining in StrongChain. For
RSC, we assume that the solo miner has N weak headers in-
cluded in the strong block, and that she obtains cγRTs/Tw
reward per weak header. Then the variance equals

RSC = I(cR+F)+ cγRTs/TwN,

where c is the scaling constant derived in Section 5.1.2.
Hence, by applying Lemma 1, we compute the variance of
RSC as

Var(RSC) = (cR)2Var(I)+Var(IF)

+(cγRTs/Tw)
2Var(N).

(8)

The first term, which represents the variance of the strong
block rewards, is similar to Bitcoin but multiplied by c2. If
we choose Tw/Ts = 1024 and γ = 10 (this choice is moti-
vated later in this section), c2 roughly equals 0.0083, which
is quite small. Hence, the strong block rewards have a much
smaller impact on the reward variance in our setting than in
Bitcoin. The second term, which represents the variance of
the fees, is precisely the same as for Bitcoin. The third term
represents the variance of the weak header rewards, which in
turn completely depends on Var(N).

To evaluate Var(N), we again use Lemma 1: let, for any
weak header, J equal 1 if it is found by the solo miner, and
0 otherwise. Also, let L be the total number of weak head-
ers found in the block, so including those not found by the
solo miner. Then N is the sum of L instances of J, where J
has a Bernoulli distribution with success probability α (and
therefore E(J) = α and Var(J) = α(1−α)), and L has a
geometric distribution with success probability Ts/Tw (and
therefore E(L) = Tw/Ts−1 and Var(L) = (Tw/Ts)

2−Tw/Ts.
By substituting this into (8), we obtain:

Var(N) = E(L)Var(J)+Var(L)(E(J))2

= (Tw/Ts−1)α(1−α)

+((Tw/Ts)
2−Tw/Ts)α2

(9)

Substituting (9) for Var(N) and α(1−α) for Var(I) into (8)
then yields an expression that can be evaluated for different
values of Tw/Ts, γ , and α , as we discuss in the following.

7In particular, it is found to be htR2/(232D), where h = αη and
η/(232D)≈ 1/600.
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Figure 3: Coefficients of variation for the total rewards of α-strong
miners for different strong/weak header difficulty ratios (Tw/Ts = 1
corresponds to Bitcoin). The lines indicate the exact results ob-
tained using our analysis, whereas the markers indicate simulation
results. We used γ = log2(Tw/Ts). The black lines indicate that for
Tw/Ts = 1024, a 0.1%-strong miner has a coefficient of variation
that is comparable to a 9%-strong miner’s in Bitcoin.

Comparison The difference between between (7) and (8)
in practice is illustrated in Figure 3. This is done by com-
paring for a range of different values of α the block rewards’
coefficient of variation, which is the ratio of the square root
of the variance to the mean.

To empirically validate the results, we have also imple-
mented a simulator in Java that can evaluate Bitcoin as well
as StrongChain. We use two nodes, one of which controls a
share α of the hash rate, and another controls a share 1−α .
The nodes can broadcast information about blocks, although
we abstract away from most of the other network behav-
ior. We do not consider transactions (i.e., we mine empty
blocks), and we use a simplified model for the propagation
delays: delays are drawn from a Weibull distribution with
shape parameter 0.6 [31], although for Figure 3 the mean
was chosen to be negligible (more realistic values are chosen
for Table 1).

The black lines in Figure 3 demonstrate that when Tw/Ts =
1024, a miner with share 0.1% of the mining power has the
same coefficient of reward variation as a miner with stake 9%
in Bitcoin. Also note that for Tw/Ts = 1024 and α ≥ 1%, the
coefficient of variation does not substantially decrease any-
more, because nearly all of the reward variance is due to the
number of weak headers. Hence, there would be fewer rea-
sons for miners in our system to join large and cooperative
mining pools, which has a positive effect on the decentral-
ization of the system.

5.3 Chain Quality
One measure for the ‘quality’ of a blockchain is the stale
rate of blocks [16], i.e., the percentage of blocks that ap-
pear during forks and do not make it onto the main chain.
This is closely related to the notion of mining power utiliza-

tion [10], which is the fraction of mining power used for non-
stale blocks. In StrongChain, the stale rate of strong blocks
may increase due to high latency. After all, while a new
block is being propagated through the network, weak head-
ers that strengthen the previous block that are found will be
included by miners in their PoW calculation. As a result,
some miners may refuse to switch to the new block when
it arrives. However, the probability of this happening is very
low: because each weak header only contributes Ts/Tw to the
difficulty of a block, it would take on average 10 minutes to
find enough weak headers to outweigh a block. As we can
see in Table 1, the effect on the stale rate is negligible even
for very high network latencies (i.e., 53 seconds). We also
emphasize that the strong block stale rate is less important in
our setting, as the losing miner still would benefit from her
weak headers appended to the winning block.

Regarding the fairness, defined as the ratio between the
observed share of the rewards (we simulate using one 10%-
strong miner and a 90%-strong one) and the share of the min-
ing power, we see that StrongChain does slightly worse than
Bitcoin for high network latencies. The most likely cause is
that due to the delay in the network, the 10%-strong miner
keeps mining on a chain that has already been extended for
longer than necessary. This gives the miner a slight disad-
vantage compared to the 90%-strong miner.

5.4 Security

One of the main advantages of StrongChain is the added ro-
bustness to selfish mining strategies akin to those discussed
in [11] and [39]. In selfish mining, attackers aim to increase
their share of the earned rewards by tricking other nodes into
mining on top of a block that is unlikely to make it onto the
main chain, thus wasting their mining power. This may come
at a short-term cost, as the chance of the attacker’s blocks go-
ing stale is increased — however, the difficulty rescale that
occurs every 2016 blocks means that if the losses to the hon-
est nodes are structural, the difficulty will go down and the
gains of the attacker will increase.

In the following, we will consider the selfish mining strat-
egy of [11],8 described as follows:
• The attacker does not propagate a newly found block until

she finds at least a second block on top of it, and then only
if the difference in difficulty between her chain and the
strongest known alternative chain is between zero and R.

• The attacker adopts the strongest known alternative chain
if its difficulty is at least greater than her own by R.

8The ‘stubborn mining’ strategy of [39] offers mild improvements over
[11] for powerful miners, but the comparison with StrongChain is similar.
We have also modeled StrongChain using a Markov decision process, in
a way that is similar to the recently proposed framework of [51]. Due to
the state space explosion problem, we could only investigate the protocol
with a small number of expected weak headers, but we have not found any
strategies noticeably that are better than those presented.
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Latency Bitcoin

StrongChain
Tw/Ts = 2 Tw/Ts = 64 Tw/Ts = 1024

γ = 1 γ = 1 γ = 7 γ = 63 γ = 1 γ = 10 γ = 1023

low .0023 .0025 .0021 .0026 .0028 .0023 .0025 .0019
strong stale rate medium .0073 .0082 .0087 .0077 .0078 .0084 .0067 .0081

high .0243 .0297 .0242 .0263 .0247 .0274 .0249 .0263

low — .0043 .0047 .0049 .0046 .0049 .0047 .0047
weak stale rate medium — .0142 .0151 .0154 .0149 .0145 .0147 .0149

high — .0400 .0459 .0474 .0452 .0469 .0455 .0463

low .9966 .9814 .9749 .9747 .9838 .9645 .9809 .9812
fairness medium .9276 .9384 .9570 .9360 .9364 .9329 .9400 .9385

high .7951 .7640 .7978 .7820 .7757 .7756 .7766 .7775

Table 1: For several different protocols, the strong block stale rate, weak header rate, and the ‘fairness’ for an α-strong honest miner with
α = 0.1. Here, fairness is defined as the ratio between the observed share of the reward and the ‘fair’ share of the rewards (i.e, 0.1). ’Low’,
’medium’, and ’high’ latencies refer to the mean of the delay distribution in the simulator; these are roughly 0.53 seconds, 5.3 seconds, and
53 seconds respectively. The simulations are based on a time period corresponding to roughly 20 000 blocks.

In Figure 4a, we have depicted the profitability of this self-
ish mining strategy for different choices of Tw/Ts. As we
can see, for Tw/Ts = 1024 the probability of being ‘ahead’
after two strong blocks is so low that the strategy only be-
gins to pay off when the attackers’ mining power share is
close to 45% — this is an improvement over Bitcoin, where
the threshold is closer to 33%.

StrongChain does introduce new adversarial strategies
based on the mining of new weak headers. Some exam-
ples include not broadcasting any newly found weak blocks
(“reclusive” mining), refusing to include the weak headers
of other miners (“spiteful” mining), and postponing the pub-
lication of a new strong block and wasting the weak headers
found by other miners in the meantime. In the former case,
the attacker risks losing their weak blocks, whereas in both of
the latter two cases, the attacker risks their strong block go-
ing stale as other blocks and weak headers are found. Hence,
these are not cost-free strategies. Furthermore, because the
number of weak headers does not affect the difficulty rescale,
the attacker’s motive for increasing the stale rate of other
miners’ weak headers is less obvious (although in the long
run, an adversarial miner could push other miners out of the
market entirely, thus affecting the difficulty rescale).

In Figure 4b, we have displayed the relative payout (with
respect to the total rewards) of a reclusive α-strong miner —
this strategy does not pay for any α < 0.5. In Figure 4c, we
have depicted the relative payoff of a spiteful mine who does
not include other miners’ weak blocks unless necessary (i.e.,
unless others’ weak blocks together contribute more than R
to the difficulty, which would mean that any single block
found by the spiteful miner would always go stale). For low
latencies (the graphs were generated with an average latency
of 0.53 seconds), the strategy is almost risk-free, and the at-
tacker does manage to hurt other miners more than herself,
leading to an increased relative payout. However, as dis-
played in Figure 4d, there are no absolute gains, even mild
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Figure 4: Payoffs of an α-strong adversarial miner for different
strategies. Figure (a): relative payoff of a selfish miner following
the strategy of [11], compared to an (1−α)-strong honest miner.
Figure (b): relative payoff of a reclusive miner who does not broad-
cast her weak blocks. Figure (c): relative payoff (with respect to
the rewards of all miners combined) of a spiteful miner, who does
not include other miners’ weak blocks unless necessary. Figure
(d): absolute payoff of a spiteful miner, with 12.5 BTC on aver-
age awarded per block. We consider Bitcoin and StrongChain with
different choices of Tw/Ts, with γ = log2(Tw/Ts).

losses. As mentioned earlier, the weak headers do not af-
fect the difficulty rescale so there is no short-term incentive
to engage in this behavior — additionally there is little gain
in computational overhead as the attacker still needs to pro-
cess her own weak headers. In Section 6.1 we will discuss
protocol updates that can mitigate these strategies regardless.
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Figure 5: The deviation from the network time that an α-strong
adversary can introduce for its mined blocks by slowing (the left
graph) and accelerating (the right graph) timestamps.

5.5 More Reliable Timestamps

Finally, we conducted a series of simulations to investigate
how the introduced redefinition of timestamps interpretation
(see getTimestamp() in Algorithm 1 and Section 4.5) influ-
ences the timestamp reliability in an adversarial setting. We
assume that an adversary wants to deviate blockchain times-
tamps by as much as possible. There are two strategies for
such an attack, i.e., an adversary can either “slow down”
timestamps or “accelerate” them. In the former attack, the
best adversary’s strategy is to use the minimum acceptable
timestamp in every header created by the adversary. Namely,
the adversary sets its timestamps to the median value of the
last eleven blocks (a header with a lower timestamp would
not be accepted by the network – see Section 2.2). As for the
latter attack, the adversary can analogously bias timestamps
towards the future by putting the maximum acceptable value
in all her created headers. The maximum timestamp value
accepted by network nodes is two hours in the future with re-
spect to the nodes’ internal clocks (any header with a higher
timestamp would be rejected).

In our study, we assume that honest nodes maintain the
network time which the adversary tries to deviate from. We
consider the worst-case scenario, which is when the adver-
sary, who also biases all her header timestamps, mines the
strong block. We measure (over 10000 runs) how such a
malicious timestamp can be mitigated by our redefinition of
the block timestamps interpretation. We present the obtained
results in Figure 5, and as shown in the slow-down case
our protocol achieves much more precise timestamps than
Bitcoin (the difference is around 2000 seconds). Similarly,
when the adversary accelerates timestamps, our protocol can
mitigate it effectively, adjusting the adversarial timestamps
by 2000-3500 seconds towards the correct time. This ef-
fect is achieved due to the block’s timestamp calculation as a
weighted average of all block headers. The adversary could
try to remove honest participants’ weak headers in order to
give a stronger weight to its malicious timestamps, but in
Section 6.1 we discuss ways to mitigate it.

6 Discussion

6.1 Impact of the Parameter Choice

The results presented in Section 5 required several parame-
ters to be fixed. First of all, we had to choose γ , which de-
termines the relative contribution of the weak headers to the
total mining rewards. Second, there is the contribution of the
weak blocks to the chain difficulty, which in the chainPoW()
function in Algorithm 1 was set to be only Tmax/Tw. This
means that the PoW of a weak header relative to a strong
block’s PoW — we call this the difficulty factor — is fixed
to be Ts/Tw. In the following, we first discuss the relevant
trade-offs and then motivate our choice.

When both γ and the difficulty factor are low, the impact
on the reward variance of the miners (as per Figure 3) will be
mild as the strong block rewards still constitute about 50%
of the mining rewards. This reliance on the block rewards
also means that ‘spiteful’ mining as discussed in Section 5.4
is disincentivized as the risk of strong blocks going stale still
has a considerable impact on total rewards. However, selfish
mining as proposed in [11] relies on several blocks in a row
being mined in secret, and even for a low difficulty factor it
becomes much harder for the attacker’s chain to stay ‘ahead’
of the honest chain, as the latter accumulates strength from
the weak headers at a faster rate. Hence, in this setting we
only gain protection against selfish mining.

When γ is high but the difficulty factor is not (which is
the setting of Section 5), then in addition to disincentivizing
selfish mining, the reward variances become much less de-
pendent on the irregular strong block rewards. This benefits
small miners and reduces centralization, as we also discuss
in Section 6.2. However, spiteful mining will have more of
an impact as the possible downside (i.e., a latency-dependent
increase in the strong block stale rate) will have less of an ef-
fect on the total rewards.

When both γ and the difficulty factor are high, the impact
of spiteful mining is mitigated. The reason is that blocks
quickly accumulate enough weak headers to outweigh a
strong block, and in this case spiteful miners need to adopt
the other weak blocks or risk their strong block becoming
stale with certainty. The downside in this setting is that the
system-wide block stale rate is increased. For example, if
each weak header contributes γTs/Tw to the difficulty and
γ = 10, then after (on average) one minute enough weak
headers are found to outweigh a strong block, and if prop-
agation of the block takes longer than one minute then some
miners will not adopt the block, increasing the likelihood of
a fork.

In this paper, we have chosen the second of the three ap-
proaches — a moderately high γ , yet a minor difficulty fac-
tor. The reason is that the only downside (spiteful mining)
was considered less of a concern than the other downsides
(namely a low impact on reward variances and a higher block
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stale rate respectively) for two reasons: a) because spiteful
mining does not lead to clear gains for the attacker, and b)
because it only has a large impact on other miners’ profits
if the attacker controls a large share of the mining power,
whereas the emergence of large mining pools is exactly what
StrongChain discourages. The specific value of γ = 10 for
Tw/Ts = 1024 (or γ = log2(Tw/Ts) in general) was chosen
to sufficiently reduce mining reward variances, yet leaving
some incentive to discourage spiteful mining.

The protocol can be further extended to disincentivize
spiteful mining, e.g., by additionally awarding strong block
finders a reward that is proportional to the number of weak
headers included. This would make StrongChain more simi-
lar to Ethereum, where stale block (‘uncle’) rewards are paid
both to the miner of a stale block and the miner of the suc-
cessful block that included it (see Section 8 for additional
discussion of Ethereum’s protocol). However, we leave such
modifications and their consequences as future work.

6.2 StrongChain and Centralized Mining

Decentralized mining pools aim to reduce variance while
providing benefits for the system (i.e., trust minimization for
pools, and a higher number of validating nodes). However,
mining in Bitcoin is in fact dominated by centralized mining
pools whose value proposition, over decentralized pools, is
an easy setup and participation. Therefore, rational miners
motivated by their own benefit, instead of joining decentral-
ized pools prefer centralized “plug-and-play” mining. It is
still debatable whether centralized mining pools are benefi-
cial or harmful to the system. However, it has been proved
multiple times, that the concentration of significant comput-
ing power caused by centralized mining is risky and should
be avoided, as such a strong pool has multiple ways of mis-
behaving and becomes a single point of failure in the system.
One example is the pool GHash.IO, which in 2014 achieved
more than 51% of the mining power. This undermined trust
in the Bitcoin network to the extent that the pool was forced
to actively ask miners to join other pools [12].

In order to follow incentives of rational miners,
StrongChain does not require any radical changes from them
and is compatible with centralized mining pools; however, it
is specifically designed to mitigate their main security risk
(i.e., power centralization). In StrongChain such pools could
be much smaller than in Bitcoin (due to minimized vari-
ance) and to support this argument we conducted a study.
We listed the largest Bitcoin mining pools and their shares
in the global mining power (according to https://www.

blockchain.com/en/pools as for the time of writing).
Then for each pool, we calculated what would be the pool
size in StrongChain to offer the miner the same payout vari-
ance experience, and the variance reduction factor in that
case. As shown in Table 2, for the Bitcoin largest min-
ing pool with 18.1% of the global hash rate, an equivalent

Mining Pool Pool Size Size
Bitcoin StrongChain Reduction

BTC.com 18.1% 0.245% 74×
F2Pool 14.1% 0.172% 82×
AntPool 11.7% 0.135% 87×
SlushPool 9.1% 0.099% 92×
ViaBTC 7.5% 0.079% 95×
BTC.TOP 7.1% 0.074% 96×
BitClub 3.1% 0.030% 103×
DPOOL 2.6% 0.025% 104×
Bitcoin.com 1.9% 0.018% 106×
BitFury 1.7% 0.016% 106×

Table 2: Largest Bitcoin mining pools and the corresponding pool
sizes in StrongChain offering the same relative reward variance
(Tw/Ts = 1024 and γ = 10).

pool in StrongChain (to provide miners the same reward ex-
perience) could be as small as 0.245% of the hash rate –
around 74 times smaller. Even better reduction factors are
achieved for smaller pools. Therefore, our study indicates
that StrongChain makes the size of a pool almost an irrel-
evant factor for miners’ benefits (i.e., there is no objective
advantage of joining a large pool over a medium or a small
one). Therefore we envision that with StrongChain, central-
ized mining pools will naturally be much more distributed.

Limitations

As discussed, it is beneficial for the system if as many par-
ticipants as possible independently run full nodes; however,
miners join large centralized pools not only due to high re-
ward variance. Other potential reasons include the minimiza-
tion of operational expenses as running a full node is a large
overhead, higher efficiency since large pools may use high-
performance hardware and network, better ability to earn ex-
tra income from merge mining [29], better protection against
various attacks, anonymity benefits, etc. This work focuses
on removing the reward variance reason. Although we be-
lieve that StrongChain would produce a larger number of
small pools in a natural way, it does not eliminate the other
reasons, so some large centralized pools may still remain.
Luckily, our system is orthogonal to multiple concurrent so-
lutions. For instance, StrongChain could be easily combined
with non-outsourceable puzzle schemes (see Section 8) to in-
crease the number of full nodes by explicitly disincentivizing
miners from outsourcing their computing power. We leave
such a combination as interesting future work.

7 Realization in Practice

We implemented our system in order to investigate its feasi-
bility and confirm the stated properties. We implemented a
StrongChain full node with interactive client in Python, and
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our implementation includes the complete logic from Algo-
rithm 1 and all functionalities required to have a fully opera-
tional system (communication modules, message types, val-
idation logic, etc...).9 As described before, the main changes
in our implementation to the Bitcoin’s block layout are:

• a new (20B-long) Coinbase header field,
• a new binding transaction protecting all weak headers

of the block,
• removed original coinbase transaction,

where a binding transaction has a single (32B-long) output
as presented in Equation 3.10

Weak headers introduced by our system impact the band-
width and storage overhead (when compared with Bitcoin).
Due to compressing them (see Section 4.2), the size of a sin-
gle weak header in a block is 60B. For example, with an
average number of weak headers equal 1024, the storage and
bandwidth overhead increases by about 61.5KB per block
(e.g., with 64 weak headers, the overhead is only 3.8KB).
Taking into account the average Bitcoin block size of about
1MB (the average between 15 Oct and 15 Nov 201811),
1024 weak headers constitute around 6.1% of today’s blocks,
while 64 headers only 0.4%. The same overhead is intro-
duced to SPV clients, that besides a strong header need to
obtain weak headers and a proof for their corresponding
binding transaction. Thus, an SPV update (every 10 min-
utes) would be 61.5KB or 3.8KB on average for 1024 or
64 weak headers, respectively. However, since only strong
headers authenticate transactions, SPV clients do not need
to store weak headers and after they are validated, they can
remove them (they need to just calculate and associate their
aggregated PoW with the strong header). Such an approach
would not introduce any noticeable storage overhead on SPV
clients.

Nodes validate all incoming weak headers; however, this
overhead is a single hash computation and simple sanity
checks per header. Even with our unoptimized implemen-
tation running on a commodity PC the total validation of
a single weak header takes around 50µs on average (i.e.,
51ms per 1024 headers on a single core). Given that we do
not believe this overhead can lead to more serious denial-of-
service attacks than ones already known and existing in Bit-
coin (e.g., spamming with large invalid blocks). Addition-
ally, StrongChain can adopt prevention techniques present in
Bitcoin, like blacklisting misbehaving peers.

9Our implementation is available at https://github.com/ivan-

homoliak-sutd/strongchain-demo/.
10An alternative choice is to store a hash of weak headers in a header

itself. Although simpler, that option would incur a higher overhead if the
number of weak headers is greater than several.

11https://www.blockchain.com/en/charts/avg-block-size

8 Related work

Employing weak solutions (and their variations) in Bitcoin is
an idea [36,38] circulating on Bitcoin forums for many years.
Initial proposals leverage weak solutions (i.e., weak blocks)
for faster transaction confirmations [45,46], for signaling the
current working branch of particular miners [13,14,30]. Un-
fortunately, most of these proposals come without necessary
details or lack rigorous analysis. Below, we discuss the most
related attempts that have been made to utilize weak or stale
blocks in PoW-based decentralized consensus protocols. We
compare these systems in Table 3 according to their reward
and PoW calculation schemes.
Subchains. Rizun proposes Subchains [35], where a chain
of weak blocks (a so-called subchain) bridging each pair of
subsequent strong blocks is created. The design of Subchain
puts a special focus on increasing the transaction through-
put and the double-spend security for unconfirmed transac-
tions. Rizun argues that since the (weak) block interval of
subchains is much smaller than the strong block interval, it
allows for faster (weak) transaction confirmations. Another
claimed advantage of such an approach is that during the
process of building subchains, the miners can detect forks
earlier, and take actions accordingly to avoid wasting com-
putational power. However, the design of Subchain sidesteps
a concrete security analysis at the subchain level. In detail,
by using a chaining data structure where one weak header
referencing the previous weak header in a subchain, it intro-
duces high stale rate on a subchain. More importantly, due
to applying a Bitcoin-like subchain selection policy in case
of conflicts, this approach is vulnerable to the selfish mining
attack launched on a subchain.
Flux. Based on similar ideas as Subchain, Zamyatin et al.
propose Flux [49]. In contrast to Subchain, Flux shares re-
wards (from newly minted coins and transaction fees) evenly
among the finders of weak and strong blocks according to
the computational resources they invested. This approach
reduces the reward variance of miners, and therefore miti-
gates the need for large mining pools, which is beneficial for
the system’s decentralization. In addition, simulation exper-
iments show that Flux renders selfish mining on the main
chain less profitable. However, alike Subchains, Flux em-
ploys a chain structure for weak blocks, which inevitably in-
troduces race conditions, increasing the stale rate of weak
blocks and making it more susceptible to selfish mining at-
tacks at the subchain level. The designers of Flux let both
of these issues open and discuss the potential application of
GHOST [41] to subchains. Another limitation of this work
is that the authors do not analyze the requirements on space
consumption when putting possibly a high number of over-
lapping transactions into Flux subchains, which could nega-
tively influence network, storage, and processing resources.
Remarks on Subchain and Flux. One important difference
between our approach and the above two designs is that we
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Bitcoin v0.1 Bitcoin Fruitchains Flux StrongChain

Reward (strong) R+F R+F 0 (R+F)/(E +1) cR+F
Reward (weak) 0 0 (R+F)/E (R+F)/(E +1) cγRTs/Tw

Chain weight contrib. (strong) 1 Tmax/Ts Tmax/Ts Tmax/Ts Tmax/Ts
Chain weight contrib. (weak) 0 0 0 0 Tmax/Tw

Table 3: The comparison of reward and PoW computation schemes of StrongChain and the related systems. (F : block transaction fees, E:
expected number of weak headers per block. The entries for Flux are approximations for the PPLNS scheme in P2Pool, on which it is based.)

adopt a flat hierarchy for the weak blocks, which not only
eliminates the possibility of selfish mining in a set of weak
solutions, but also avoids the issue of stale rate of weak
blocks. In contrast, both Subchain and Flux employ a chain
structure for weak blocks, inevitably making them more sus-
ceptible to selfish mining attacks at the subchain level. More-
over, in our approach rewards are not shared, therefore min-
ers can only benefit from appending received weak solutions.
In addition, none of Subchain and Flux provide a concrete
implementation demonstrating their applicability.
FruitChains. Another approach to address the mining vari-
ance and selfish mining issues is the FruitChains protocol
proposed by Pass and Shi [32]. In FruitChains, instead of di-
rectly storing the records inside blocks, the records or trans-
actions are put inside “fruits” with relatively low mining dif-
ficulties. Fruits then are appended to a blockchain via blocks
which are mined with a higher difficulty. Mined fruits and
blocks yield rewards, hence, miners can be paid more often
and there is no need to form a mining pool.

However, some practical and technical details of
FruitChains lead to undesired side effects. First, the scheme
allows fruits with small difficulties to be announced and ac-
cepted by other miners. With too small difficulty it could
render high transmission overheads or even potential denial-
of-service attacks and its effects on the network are not in-
vestigated. On the other hand, too high fruit difficulty could
result in a low transaction throughput and a high reward vari-
ance. Second, duplicate fruits are discarded, even though
they might be found by different miners – this naturally im-
plies some stale fruit rate (uninvestigated in the paper). Sim-
ilarly, it is unclear would a block finder have an incentive
to treat all fruits equally and to not prioritize her mined
fruits (especially when fruits are associated with transac-
tion fees). Moreover, fruits that are not appended to the
blockchain quickly enough have to be mined and broadcast
again, rendering additional overheads. Finally, the descrip-
tion of FruitChains lacks important details (e.g., the size of
the fruits or the overheads introduced) as well as an actual
implementation.
GHOST and Ethereum. An alternative approach for de-
creasing a high reward variance of miners is to shorten the
block creation rate to the extent that does not hurt the over-
all system security – such an approach increases transac-
tion throughput as well. The Greedy Heaviest-Observed
Sub-Tree (GHOST) chain selection rule [41] makes use of

stale blocks to increase the weight of their ancestors, which
achieves a 600 fold speedup for the block generation com-
pared to Bitcoin, while preserving its security strength. De-
spite the inclusion of stale blocks in the blockchain, only the
miners of the main chain get rewards for the inclusion of the
stale blocks.

In contrast to the original GHOST, the white and yellow
papers of Ethereum [44, 48] propose to reward also miners
of stale blocks in order to further increase the security –
not wasting with the consumed resources for mining of stale
blocks. However, Ritz and Zugenmaier shows that rewarding
so called “uncle blocks” lowers the threshold at which self-
ish mining is profitable [34] – a selfish miner can built-up
the “heaviest” chain, as she can reference blocks previously
not broadcast to the honest network. Likewise, the inclu-
sive blockchain protocol [20], which increases the transac-
tion throughput, but leaves the selfish mining issue unsolved.
DAG-based Protocols. SPECTRE [40] is an example of
the protocols family that leverages a directed acyclic graph
(DAG). This family proposed more radical design changes
motivated by the observation that one essential through-
put limitation of Nakamoto consensus is the data struc-
ture leveraged which can be maintained only sequentially.
SPECTRE generalizes the Nakamoto’s blockchain into a
DAG of blocks, while allowing miners to add blocks con-
currently with a high frequency, just basing on their indi-
vidual current views of the DAG. Such a design provides
multiple advantages over chain-based protocols including
StrongChain. Frequently published blocks increase transac-
tion throughput and provide fast confirmation times while
relaxed consistency requirements allow to tolerate propaga-
tion delays. Like StrongChain, SPECTRE also aims to de-
crease mining reward variance, but achieves it again via fre-
quent blocks. However, frequent blocks have a side effect of
transaction redundancy which negatively impacts the stor-
age and transmission overheads, and this aspect was not in-
vestigated. Moreover, SPECTRE provides a weaker prop-
erty than chain-based consensus protocols as simultaneously
added transactions cannot be ordered. This and schemes fol-
lowing a similar design are payments oriented and to support
order-specific applications, like smart contracts, they need to
be enhanced with an additional ordering logic.

More recently, Sompolinsky and Zohar [42] proposed two
DAG-based protocols improving the prior work. PHAN-
TOM introduces and uses a greedy algorithm (called the
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GHOSTDAG protocol) to determine the order of transac-
tions. This eliminates the applicability issues of SPECTRE,
but for the cost of slowing down transaction confirmation
times. Combining advantages of PHANTOM and SPECTRE
into a full system was left by the authors as a future work.
Decentralization-oriented Schemes. Mining decentraliza-
tion was a goal of multiple previous proposals. One direc-
tion is to design mining such that miners do not have incen-
tive to outsource resources or forming coalitions. Perma-
coin [25] is an early attempt to achieve it where miners in-
stead of proving their work prove that their store (fragments
of) a globally-agreed file. Permacoin is designed such that:
a) payment private keys are bound to puzzle solutions – out-
sourcing private keys is risky for miners, b) sequential and
random storage access is critical for the mining efficiency,
thus it disincentives miners from outsourcing data. If the file
is valuable, then a side-effect of Permacoin is its usefulness,
as miners replicate the file.

The notion of non-outsourceable mining was further ex-
tended and other schemes were proposed [26, 50]. Miller
et al. [26] introduces “strongly non-outsourceable puzzles”
that aim to disincentivize pool creation by requiring all pool
participants to remain honest. In short, with these puz-
zles any pool participant can steal the pool reward without
revealing its identity. The scheme relies on zero knowl-
edge proofs requiring a trusted setup and introducing sig-
nificant computational overheads. The scheme is orthogo-
nal to StrongChain and could be integrated with easily inte-
grated with StrongChain, however, after a few years of their
introduction no system of this class was actually deployed at
scale; thus, we do not have any empirical results confirming
their promised benefits.

SmartPool is a different approach that was proposed by
Luu et al. [23]. In SmartPool, the functionality of mining
pools was implemented as a smart contract. Such an ap-
proach runs natively only on smart-contract platforms but it
allows to eliminate actual mining pools and their managers
(note that SmartPool still imposes fees for running smart
contracts), while preserving most benefits of pool mining.
Rewarding Schemes for Mining Pools. Mining pools di-
vide the block reward (together with the transaction fees) in
such a way that each miner joining the pool is paid his fair
share in proportion to his contribution. Typically, the con-
tribution of an individual miner in the pool is witnessed by
showing weak solutions called shares.

There are various rewarding schemes that mining pools
employ. The simplest and most natural method is the propor-
tional scheme where the reward of a strong block is divided
in proportion to the numbers of shares submitted by the min-
ers. However, this scheme leads to pool hopping attacks [33].
To avoid this security issue, many other rewarding systems
are developed, including the Pay-per-last-N-shares (PPLNS)
scheme and its variants. We refer the reader to [37] for a
systematic analysis of different pool rewarding systems.

The reward mechanisms in StrongChain can be seen con-
ceptually as a mining pool built-in into the protocol. How-
ever, there are important differences between our design
and the mining pools. The most contrasting one is that in
StrongChain rewarding is not a zero-sum game and miners
do not share rewards. In mining pools, all rewards are shared
and this characteristic causes multiple in- and cross-pool at-
tacks that cannot be launched against our scheme. Further-
more, the miner collaboration within Bitcoin mining pools
is a “necessary evil”, while in StrongChain the collaboration
is beneficial for miners and the overall system. We discuss
StrongChain and mining pools further in Section 6.2.

9 Conclusions

In this paper, we proposed a transparent and collaborative
proof-of-work protocol. Our approach is based on Nakamoto
consensus and Bitcoin, however, we modified their core de-
signs. In particular, in contrast to them, we take advantage
of weak solutions, which although they do not finalize a
block creation positively contribute to the blockchain proper-
ties. We also proposed a rewarding scheme such that miners
can benefit from exchanging and appending weak solutions.
These modifications lead to a more secure, fair, and efficient
system. Surprisingly, we show that our approach helps with
seemingly unrelated issues like the freshness property. Fi-
nally, our implementation indicates the efficiency and de-
ployability of our approach.

Incentives-oriented analysis of consensus protocols is a
relatively new topic and in the future we would like to extend
our work by modeling our protocol with novel frameworks
and tools. Another topic worth investigating in future is how
to combine StrongChain with systems solving other draw-
backs of Nakamoto consensus [10, 19, 21], or how to mimic
the protocol in the proof-of-stake setting.
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Abstract—Several blockchain consensus protocols proposed
to use of Directed Acyclic Graphs (DAGs) to solve the limited
processing throughput of traditional single-chain Proof-of-Work
(PoW) blockchains. Many such protocols utilize a random trans-
action selection (RTS) strategy (e.g., PHANTOM, GHOSTDAG,
SPECTRE, Inclusive, and Prism) to avoid transaction duplicates
across parallel blocks in DAG and thus maximize the network
throughput. However, previous research has not rigorously ex-
amined incentive-oriented greedy behaviors when transaction
selection deviates from the protocol. In this work, we first perform
a generic game-theoretic analysis abstracting several DAG-based
blockchain protocols that use the RTS strategy, and we prove that
such a strategy does not constitute a Nash equilibrium. Next, to
validate the conclusions from game theoretic analysis, we perform
simulations, confirming that greedy actors who do not follow
the RTS strategy can profit more than honest miners and harm
the processing throughput of the protocol. Finally, we show that
greedy miners are incentivized to form a shared mining pool to
increase their profits. This undermines the decentralization and
degrades the design of the protocols in question.

I. INTRODUCTION

Blockchains inherently suffer from the processing through-
put bottleneck, as consensus must be reached for each block
within the chain. One approach to solve this problem is to
increase the block creation rate. However, such an approach
has drawbacks. If blocks are not propagated through the
network before a new block is created, a soft fork might occur,
in which two concurrent blocks reference the same parent
block. A soft fork is resolved in a short time by a fork-
choice rule, and thus only one block is eventually accepted. All
transactions in an orphaned (a.k.a., stale) block are discarded.
As a result, consensus nodes that created orphaned blocks
wasted their resources and did not get rewarded.

As a response to the above issue, several proposals (e.g.,
Inclusive [17], PHANTOM [34], GHOSTDAG [34], SPEC-
TRE [33]) have substituted a single chaining data structure for
(unstructured) Directed Acyclic Graphs (DAGs) (see Fig. 1),
while another proposal in this direction employed structured
DAG (i.e., Prism [5]). Such a structure can maintain multiple
interconnected chains and thus theoretically increase process-
ing throughput. The assumption of concerned DAG-oriented

This work was supported by HungryEcoCities project, funded from the
EU’s Horizon Europe research and innovation programme (101069990), the
internal project of BUT (FIT-S-23-8151), Croatian Science Foundation (IP-
2019-04-1986), and Cybersecurity Innovation Hub, Digital Europe Programme
(101083932). Resources were provided by the e-INFRA CZ (ID:90254).
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Fig. 1: A structure of DAG-oriented blockchain.

solutions is to abandon transaction selection purely based
on the highest fees since this approach intuitively increases
the probability that the same transaction is included in more
than one block (hereafter transaction collision). Instead, these
approaches use the random transaction selection (i.e., RTS) 1

strategy as part of the consensus protocol to avoid transaction
collisions. Although the consequences of deviating from such
a strategy might seem intuitive, no one has yet thoroughly
analyzed the performance and robustness of concerned DAG-
oriented approaches within an empirical study investigating
incentive attacks on transaction selection.

In this work, we focus on the impact of greedy2 actors
in several DAG-oriented designs of consensus protocols. In
particular, we study the situation where a greedy attacker
(or attackers) deviates from the protocol by not following
the RTS strategy that is assumed by a few DAG-oriented
approaches [17], [34], [34], [33], [5]. Out of these approaches,
PHANTOM [34], GHOSTDAG, [34], and SPECTRE [33]
utilize RTS that was introduced in Inclusive [17] – whose game
theoretic analysis (and missing assumption about creating a
mining pool) we contradict in this work. In contrast, Prism [5]
does not provide any incentive-oriented analysis and thus did
not show that it is resistant to any incentive attacks based on
transaction selection. Nevertheless, both lines of works employ
RTS and thus enable us to abstract their details and focus on
modeling and analysis of this aspect.

We make a hypothesis stating that the attacker deviating
from RTS strategy might earn greater rewards as compared
to honest participants, and moreover, such an attacker harms
transaction throughput since transaction collision is increased.
We verify and prove our hypothesis in a game theoretical
analysis and show that RTS does not constitute Nash equilib-

1Note that RTS involves a certain randomness in transaction selection
but does not necessarily equals to uniform random transaction selection
(to be in line with the works utilizing Inclusive [17], such as PHAN-
TOM, GHOSTDAG [34], SPECTRE [33], as well as the implementation of
GHOSTDAG called Kaspa [32]).

2Greedy actors deviate from the protocol to increase their profits.



rium.3 Next, we substantiate conclusions from game theoretical
analysis by a few simulation experiments, where we focus on
an abstracted DAG-PROTOCOL, inspired by existing designs.

Contributions. The contributions of this work are as follows:

1.) We hypothesize that not following the RTS strategy in
concerned DAG-based protocols negatively affects the relative
profit of honest miners and the throughput of the network.
2.) We validate the hypothesis by a game theory approach,
concluding that the RTS does not constitute Nash equilibrium.
3.) We adapted open-source simulation tools to consider mul-
tiple chains and various incentive schemes, and thus enable us
to investigate properties of concerned DAG-based protocols.
4.) We execute experiments on an abstracted DAG-
PROTOCOL, which confirm that a greedy actor who selects
transactions based on the highest fee profits significantly more
than honest miners following the RTS.
5.) We demonstrate that multiple greedy actors can signifi-
cantly reduce the effective transaction throughput by increasing
the transaction collision rate across parallel chains of DAGs.
6.) We show that greedy actors have an incentive to form a
mining pool to increase their relative profits, which degrades
the decentralization of the concerned DAG-oriented designs.

II. BACKGROUND

We assume that the reader is familiar with the basic
terminology related to Nakamoto consensus [23], its rewarding
scheme, PoW puzzle, and mempool. We refer unfamiliar
readers to the extended version of our paper [28].

Block Creation Time. In Bitcoin, there is a default block
creation time λ set to create a new block every 10 minutes on
average. This parameter is derived directly from the network
difficulty, which changes over time, and it is adjusted every
2016 blocks to fit the target value of 10 minutes. According to
Gervais et al., [10], the stale block rate of Bitcoin is 0.41%.
Other sources [7], [12] state the values 0.5− 1%, which is
considered negligible. We assume that the mathematical model
corresponding to λ of Bitcoin is an exponentially distributed
random variable with the time between two consecutive blocks:

fT(t) = Λe−Λt , (1)

where Λ = 1
λ [6], [13] and t is time in seconds. Thus, we

model the creation of blocks by a Poisson process with λ .

III. PROBLEM DEFINITION

Let there be a PoW blockchain network that uses the
Nakamoto consensus (NC) and consists of honest and greedy
miners, with the greedy miners holding a fraction κ of the
total mining power (i.e., adversarial mining power). Then, we
denote the network propagation delay in seconds as τ and
the block creation time in seconds as λ . We assume that the
minimum value of λ is constrained by τ of the blockchain
network. It is well-known that Nakamoto-style blockchains
generate stale blocks (a.k.a., orphan blocks). As a result, a
fraction of the mining power is wasted. The rate at which stale
blocks are generated increases when λ is decreased, which is
one of the reasons why Bitcoin maintains a high λ of 600s.

3Note that we empirically validated a similar hypothesis on PHANTOM
(and its extension GHOSTDAG) only in an earlier version of this paper [26].

DAG-Oriented Designs. Many DAG-oriented designs were
proposed to allow a decrease of λ while utilizing stale
blocks in parallel chains, which should increase the transaction
throughput. Although there are some DAG-oriented designs
that do not address the problem of increasing transaction
throughput (e.g., IoTA [29], Nano [16], Byteball [3]), we focus
on the specific group of solutions addressing this problem,
such as Inclusive [17], GHOSTDAG, PHANTOM [34], SPEC-
TRE [33], and Prism [5]. We are targeting the RTS strategy,
which is a common property of this group of protocols. In
the RTS, the miners do not take into account transaction fees
of all included transactions; instead, they select transactions
to blocks randomly – although not necessarily uniformly
at random (e.g., [32]). In this way, these designs aim to
eliminate transaction collision within parallel blocks of the
DAG structure. Nevertheless, the interpretation of randomness
in RTS is not enforced/verified by these designs, and miners
are trusted to ignore fees of all (or the majority (e.g., [32])
of) transactions for the common “well-being” of the protocol.
Contrary, miners of blockchains such as Bitcoin use a well-
known transaction selection mechanism that maximizes profit
by selecting transactions of the block based on the highest fees
– we refer to this strategy as the greedy strategy in this work.

A. Assumptions

We assume a generic DAG-oriented consensus protocol
using the RTS strategy (denoted as DAG-PROTOCOL). Then,
we assume that the incentive scheme of DAG-PROTOCOL
relies on transaction fees (but additionally might also rely
on block rewards),4 and transactions are of the same size.5
Let us assume that the greedy miners may only choose a
different transaction selection strategy to make more profit than
honest miners. Then, we assume that DAG-PROTOCOL uses
rewarding where the miner of the block A gets rewarded for
all unique not-yet-mined transactions in A (while she is not
rewarded for transaction duplicates mined before).

B. Identified Problems – Incentive Attacks

Although the assumptions stated above might seem intu-
itive, there is no related work studying the impact of greedy
miners deviating from the RTS strategy on any of the con-
sidered DAG-PROTOCOLs ([34],[33],[17],[5]) and the effect
it might have on the throughput of these protocols as well
as a fair distribution of earned rewards. Note that we assume
GHOSTDAG, PHANTOM, and SPECTRE are utilizing the
RTS strategy that was proposed in the Inclusive protocol [33],
as recommended by the (partially overlapping) authors of these
works – this is further substantiated by the practical implemen-
tation of GHOSTDAG/PHANTOM called Kaspa [32], which
utilizes a variant of RTS strategy (see Sec. IV) that selects a
majority portion of transactions in a block uniformly random,
while a small portion of the block capacity is seized by the
transaction selected based on the highest fees. Nevertheless,
besides potentially increased transaction collision rate, even

4Note that block rewards would not change the applicability of our
incentive attacks, and the constraints defined in the game theoretic model
(see Sec. V-B) would remain met even with them.

5Note that this assumption serves only for simplification of the follow-up
sections. Transactions of different sizes would require normalizing fees by the
sizes of transactions to obtain an equivalent setup (i.e., a fee per Byte).
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such an approach enables more greedy behavior. We make a
hypothesis for our incentive attacks:

Hypothesis 1. A greedy transaction selection strategy will
decrease the relative profit of honest miners as well as trans-
action throughput in the DAG-PROTOCOL.6

IV. DAG-ORIENTED SOLUTIONS (DAG-PROTOCOLS)

Inclusive Protocol. Lewenberg et al. [17] proposed a new way
to structure the chain that can operate at much faster rates
than Bitcoin. The authors utilize the DAG to form blocks in
a structure called the blockDAG. This structure is created by
allowing blocks to reference multiple previous blocks, enabling
less strict transaction inclusion rules that can potentially store
conflicting transactions in parallel blocks due to allowing λ <
τ . This means that the system can process larger blocks faster
than is possible to gossip within the bounds of τ , increasing
transaction throughput. The authors propose the protocol as
a building block for other DAG-oriented protocols, and they
claim that they reduce the advantage of highly connected
miners in single-chain protocols since even stale blocks (of a
single-chain) are included. Further, the authors present the key
concept of randomly selecting transactions (i.e., RTS) to avoid
collisions. The authors theoretically analyze this assumption
by modeling the protocol and its transaction selection as
a game, in which rational miners opt to avoid collisions.
According to the authors, the game’s outcome is a sequential
equilibrium, where the growing fraction of greedy miners
causes a decrease in their profits, which should make such a
strategy less attractive (we show this phenomenon in Fig. 3a).
However, the authors do not assume that the miners can create
a mining pool, in which they can achieve significantly higher
profits than honest miners (we demonstrate it in Fig. 3b).

PHANTOM. The PHANTOM protocol [34] is a generaliza-
tion of the NC’s longest-chain protocol. While in NC each
block contains a hash of the previous block in the chain
it extends, PHANTOM organizes blocks in a DAG. As a
result, each block may contain multiple hash references to
predecessors, like in Inclusive [17]. The key contribution of
PHANTOM is that it totally orders all blocks by solving
the maximum k-cluster SubDAG problem, which utilizes the
concept of the main chain and the distance from it. Unlike
NC which discards the blocks out of the main chain (i.e.,
orphan blocks), PHANTOM includes these blocks in a DAG,
except for the attacker-created blocks that would be weakly
connected. PHANTOM uses the RTS strategy proposed by the
(partially overlapping) authors of the Inclusive protocol. The
incentive scheme of PHANTOM revolves around rewarding
all miners who include a transaction within a new block A,
while assuming that transactions in the parallel blocks are
unique and due to a DAG will not be discarded as in single-
chain blockchains. If there are some duplicate transactions,
PHANTOM rewards them only once – in the first block
that includes them, which is evaluated after establishing the
total ordering. However, such an incentive scheme must be
constructed with care, as sidechain blocks might also be the
result of an attack. Therefore, the reward a miner receives for
publishing A is indirectly proportional to the discretized delay

6Note that the greedy transaction selection strategy deviates from the
DAG-PROTOCOL and thus is considered adversarial.

at which A was referenced by the main chain. For this reason,
the protocol defines a measure of the delay in publishing A
w.r.t. the main chain, called the gap parameter c. The value by
which the reward is “decayed” is determined by the discount
function γ , where γ(c(A))∈ [0,1] and γ is weakly decreasing.7
Finally, the miner is rewarded for including transactions in A
using the payoff function. In detail, the miner gets rewarded
for all non-duplicate transactions contained in A, and after γ
was applied to the respective transaction fees.

GHOSTDAG. PHANTOM is considered impractical for ef-
ficient use [34], because it requires the solution of an NP-
hard problem (the maximum k-cluster SubDAG problem).
Therefore, the authors of PHANTOM have developed a greedy
(heuristic) algorithm to find block clusters, obtaining the
GHOSTDAG protocol. This protocol uses greedy ordering of
the DAG, which has practical advantages.

Kaspa. The RTS strategy is utilized even in the already
running blockchain Kaspa [32], which is the implementation
of the GHOSTDAG protocol. Kaspa selects transactions using
a variant of the RTS strategy, in which a small fraction of
a block is dedicated to prioritized transactions with higher
fees and remaining part of a block serves for transactions
selected uniformly at random. We argue that even this ap-
proach is vulnerable to our incentive attacks since the part
of the block relying on uniformly random selection cannot
be enforced/verified, and thus miners might still prioritize
transactions with higher fees, which can consequently result in
throughput problems and incentive attacks. Nevertheless, the
current Kaspa mainnet is not saturated, and its blocks usually
contain only 1 to 5 transactions,8 not fully utilizing the concept
of DAG for increased throughput.

Prism. Prism [5] is a protocol that aims to achieve a to-
tal ordering of transactions with consistency and liveness
guarantees while achieving high throughput and low latency.
Prism differs from traditional single-chain blockchains since
it involves a few parallel chains rather than a single chain. It
decouples transaction confirmation, validation, and proposal.
Prism replaces traditional blocks with (1) transaction blocks
(i.e., blocks that contain transactions), (2) voter blocks (i.e.,
blocks that vote for proposer blocks), and (3) proposer blocks
(i.e., blocks that reference transaction blocks). The authors of
Prism recognize that blocks mined in parallel chains might
contain duplicate transactions. To cope with it, they propose
to randomly divide unprocessed transactions of the local
mempool into multiple queues and then create blocks using
transactions only from one randomly selected queue, which is
a variant of RTS strategy and thus enables incentive attacks
based on greedy strategy. However, the authors do not provide
any analysis related to such incentive attacks.

V. GAME THEORETICAL ANALYSIS

In this section, we model a DAG-PROTOCOL9 as a two-
player game, in which the honest player/phenotype (Phon) uses

7I.e., later inclusion of the side-chain block imposes lower reward.
8https://explorer.kaspa.org/
9Note that we consider DAG-based designs (described in Sec. IV) under

this generic term of DAG-PROTOCOLS to simplify the description but not to
claim that all DAG-PROTOCOLS (with RTS) can be modeled as we do.
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the RTS strategy and the greedy player/phenotype (Pgrd) uses
the greedy transaction selection strategy. We assume that the
fees of transactions vary – the particular variance of fees
is agnostic to this analysis. We present the game theoretical
approach widely used to analyze interactions of players (i.e.,
consensus nodes) in the blockchain. Several works attempted
to study the outcomes of different scenarios in blockchain
networks (e.g., [19], [38], [30]) but none of them addressed
the case of DAG-PROTOCOLS and their transaction selection.
In game theoretic terms, we examine the following hypothesis:

Hypothesis 2. So-called (honest) H-behavior with RTS is a
Subgame Perfect Nash Equilibrium (SPNE) in an infinitely
repeated DAG-PROTOCOL game. This was presented in In-
clusive [17] and we will contradict it.

A. Model of the DAG-PROTOCOL

Players in DAG-PROTOCOL receive transaction fees after
a delay. To simplify analysis, we can divide the flow of trans-
actions into rounds of the game. This allows us to study player
behavior within defined time. In each round, players make
decisions and receive payoffs. Since no round is explicitly
marked as the last one, this game is repeated infinitely.

We model DAG-PROTOCOL in the form of an infinitely
repeated two players game with a base game

Γ = ({Phon,Pgrd};{H,G};Uhon,Umal), (2)
where Phon is the player’s determination to play H strategy and
Pgrd the player’s determination to the G-behavior. Pure strategy
H is interpreted as the RTS, while G strategy represents
picking the transactions with the highest fees. Payoff functions
are depicted in Tab. I, where the profits in the strategic
profiles (H,H) and (G,G) are uniformly distributed between
players. In the following, we analyze the model in five possible
scenarios with generic levels a,b,c,d of the payoffs.

B. Analysis of the Model

For purposes of our analysis, lets start with the assumption
that G-behavior is more attractive and profitable than H-
behavior. Otherwise, there would be no reason to investigate
Hypothesis 2. Thus, let us consider c > a as the basic con-
straint. We also assume c > b, meaning that H-behavior loses
against G-behavior in the cases of (H,G) and (G,H) profiles.
These basic constraints yield the following scenarios:

• Scenario 1: d > c > a > b,
• Scenario 2: c > d > a > b,
• Scenario 3: c > a > d > b,
• Scenario 4: c > a > b > d,
• Scenario 5: where a = d and c > a, c > b.

Note that we do not assume the case a = b since the presence
of Pgrd will drain all high-fee transactions that Phon would
originally obtain.

The following provides a high-level summary of the scenarios.
For a more comprehensive analysis, we refer the refer to the
full version of our paper [28].

• Scenarios 1 and 2 are covered just for a sake of com-
pleteness. If the transaction fees were to cause such game
outcomes, there would be no need to trust in H-behavior,

Phon/Pgrd H G
H (a,a) (b,c)
G (c,b) (d,d)

Tab. I: The utility functions Uhon,Umal in the base game.

and the system would settle in the unique (G,G) Pure Nash
Equilibrium (PNE).
• Scenario 3 (A) Purely Non-Cooperative Interpretation.
In Scenario 3, both players (Phon and Pgrd) are incentivized to
choose the greedy G strategy, even though this leads to a worse
overall outcome for both of them. This is because each player
can do better by betraying the other player than by cooperating.
This situation is known as a Prisoner’s dilemma [24].

Proof: (Informal) Strategy G strictly dominates H and
thus (G,G) is the unique PNE.
Corollary 1. If Phon is willing to follow the social norm of
using the DAG protocol, then Pgrd’s best response is also to
use the G strategy. This is because Phon’s cooperation is not
credible, and Pgrd can always benefit from betraying Phon.

• Scenario 3 (B) When Some Coordination is Allowed. It is
possible for players to coordinate their behavior and achieve
a better outcome for both of them, both playing H strategy. It
must be common knowledge to the players that Phon uses grim
trigger strategy [24], [20]. This means that Phon will cooperate
as long as Pgrd cooperates. However, if Pgrd defects even once
(playing G), then Phon will switch to the G strategy forever.
Pgrd must also have a high discount factor. This means that
she must value future payoffs more than immediate payoffs.
If Pgrd’s discount factor is too low, then she will be tempted
to defect even if she knows it will lead to punishment in the
long run.
• Scenario 4 (A) Purely Non-Cooperative Interpretation.
We choose utility functions as follows: a = 2, b = 1, c = 3
and d = 0. This scenario is an anti-coordination game [24]
instance, so the game has two PNEs (H,G) & (G,H), and
one Mixed Nash Equilibrium (MNE) in mixed strategic profile(
( 1

2 ,
1
2 ),(

1
2 ,

1
2 )
)

.

Claim 1. The most reasonable behavior in Scenario 4 is to
play ( 1

2 ,
1
2 ) for both players.

Proof: (Informal) Both players have two equally good
choices: either be H or be G. From Phon’s perspective, mixed
behavior ( 1

2 ,
1
2 ) guarantees the best stable outcome. If Pgrd

expects ( 1
2 ,

1
2 ) behavior from Phon, then Pgrd’s best response

is to play the same mixed behavior that establishes MNE.
The players gain ( 3

2 ,
3
2 ) in that MNE, which is the highest

expectation they can obtain.
Therefore, the most reasonable behavior for both players is to
play a mixed strategy where they are half-H and half-G.
• Scenario 4 (B) When Some Coordination is Allowed.
Similarly to Scenario 3, it is possible for players to coordinate
their behavior and agree to always be H. This would be a good
outcome for both players, as they would both get a payoff of
2. The same principle and consequences apply as in scenario
3(B) (Grimm trigger strategy). This will make the Pgrd player
regret defecting, and it will make her more likely to cooperate
in the future. Therefore, the conclusion from Scenario 3 applies
here as well.
• Scenario 5 (A) Purely Non-Cooperative Interpretation.
In this scenario, the game is a zero-sum game, which means
that no player can gain more than 100% profit, regardless of
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their chosen strategy. This is because the sum of all incoming
transaction fees is fixed in any set of rounds. As a result, the
total profit for all players is always constant if they all play the
honest or greedy strategy. Therefore, the only rational outcome
of this scenario is for both players to play the G strategy.
If we consider a social norm, it may be tempting to appeal to
players’ sense of responsibility and ask them to refrain from
playing the G strategy. However, this is unlikely to be effective,
as the H strategy does not benefit either player. Scenario 5
is highly similar to the classic game-theoretical model called
The Tragedy of Commons [21]. In this model, individuals are
incentivized to use a shared resource to the maximum extent
possible, even if this depletes the resource and harms the group
as a whole. In anonymous environments, where individuals
cannot be held accountable for their actions, it is even more
likely that they will prioritize their own interests over the
interests of the group. This is because they know that they
will not be punished for acting in their self-interest, meaning
there is no harm to play G strategy.

C. Summary

We conclude that Hypothesis 2 is not valid. The (H,H)
profile is not a PNE in any of our scenarios. Incentives
enforcing H-behavior are hardly feasible in the anonymous
(permissionless) environment of blockchains. A community
of honest miners can follow the DAG-PROTOCOL until the
attacker appears. The attacker playing the G strategy can
parasite on the system and there is no defense against such
a behavior (since greedy miners can leave the system anytime
and mine elsewhere, which is not assumed in [17]). Therefore,
H is not an evolutionary stable strategy [31], and thus H does
not constitute a stable equilibrium.

VI. SIMULATION MODEL

We created a simulation model to conduct various exper-
iments investigating the behavior of DAG-PROTOCOL under
incentive attacks related to the problems identified in Sec. III
and thus Hypothesis 1. Some experiments were designed to
provide empirical evidence for the conclusions from Sec. V.

A. Abstraction of DAG-PROTOCOL

For evaluation purposes, we simulated the DAG-
PROTOCOL (with RTS) by modeling the following aspects:

• All blocks in DAG are deterministically ordered.
• The mining rewards consist of transaction fees only.
• A fee of a particular transaction is awarded only to a miner
of the block that includes the transaction as the first one in the
sequence of totally ordered blocks.

Also, in terms of PHANTOM/GHOSTDAG terminology, we
generalize and do not reduce transaction fees concerning
the delay from “appearing” of the block until it is strongly
connected to the DAG. Hence, we utilize γ = 1. In other words,
for each block A, the discount function does not penalize a
block according to its gap parameter c(A), i.e. γ(c(A)) = 1.
Such a setting is optimistic for honest miners and maximizes
their profits from transaction fees when following the RTS
strategy. This abstraction enables us to model the concerned
problems of considered DAG-PROTOCOLS (see Sec. IV).

B. (Simple) Network Topology

We created a simple network topology that is convenient
for proof-of-concept simulations and encompasses some im-
portant aspects of the real-world blockchain network. In partic-
ular, we were interested in emulating the network propagation
delay τ to be similar to Bitcoin (i.e., ∼ 5s at most of the
time in 2022), but using a small ring topology. To create such
a topology, we assumed that the Bitcoin network contains
7592 nodes, according to the snapshot of reachable Bitcoin
nodes found on May 24, 2022.10 In Bitcoin core, the default
value of the consensus node’s peers is set to 8 (i.e., the node
degree).11 Therefore, the maximum number of hops that a
gossiped message requires to reach all consensus nodes in the
network is ∼ 4.29 (i.e., log8(7592)). Moreover, if we were to
assume 2− 3x more independent blockchain clients (that are
not consensus nodes), then this number would be increased
to 4.83–4.96. To model this environment, we used the ring
network topology with 10 consensus nodes, which sets the
maximum value of hops required to propagate a message to 5.
Next, we set the inter-node propagation delay ∂τ to 1s, which
fits assumed τ (i.e., 5s / 5 hops = 1s).

C. Simulator

There are simulators [25] that model blockchain protocols,
mainly focusing on network delays, different consensus pro-
tocols, and behaviors of specific attacks (e.g., SimBlock [4],
Blocksim [1], Bitcoin-Simulator [11]). However, none of these
simulators was sufficient for our purposes due to missing
support for multiple chains and incentive schemes assumed
in DAG-PROTOCOLS. To verify Hypothesis 1, we built a
simulator that focuses on the mentioned problems of DAG-
PROTOCOLS. In detail, we started with the Bitcoin mining
simulator [9], which is a discrete event simulator for the PoW
mining on a single chain, enabling a simulation of network
propagation delay within a specified network topology. We ex-
tended this simulator to support DAG-PROTOCOLs, enabling
us to monitor transaction duplicity, throughput, and relative
profits of miners with regard to their mining power. The sim-
ulator is written in C++ (see details and its evaluation in [27].
In addition, we added more simulation complexity to simulate
each block, including the particular transactions (as opposed
to simulating only the number of transactions in a block [9]).
Most importantly, we implemented two different transaction
selection strategies – greedy and random. For demonstration
purposes, we implemented the exponential distribution of
transaction fees in mempool, based on several graph cuts of fee
distributions in mempool of Bitcoin from [14].12 Our simulator
is available at https://github.com/Tem12/DAG-simulator.

VII. EVALUATION

We designed a few experiments with our simulator, which
were aimed at investigating the relative profit of greedy miners
and transaction collision rate (thus throughput) to investigate
Hypothesis 1. In all experiments, honest miners followed the
RTS, while greedy miners followed the greedy strategy. Unless

10https://bitnodes.io/nodes/
11Nevertheless, the node degree is often higher than 8 in reality [22].
12Distribution of transaction fees in mempool might change over time;

however, it mostly preserves the low number of high-fee transactions.
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stated otherwise, the block creation time was set to λ = 20s.
However, we abstracted from τ of transactions and ensured
that the mempools of nodes were regularly filled (i.e., every
60s) by the same set of new transactions, while the number
of transactions in the mempool was always sufficient to fully
satisfy the block capacity that was set to 100 transactions.
We set the size of mempool equal to 10000 transactions,
and thus the ratio between these two values is similar to
Bitcoin [14] in common situations. In all experiments, we
executed multiple runs and consolidated their results; however,
in all experiments with the simple topology, the spread was
negligible, and therefore we do not depict it in graphs.

A. Experiment I

Goal. The goal of this experiment was to compare the relative
profits earned by two miners/phenotypes in a network, corre-
sponding to our game theoretical settings (see Sec. V). Thus,
one miner was greedy and followed the greedy strategy, while
the other one was honest and followed the RTS.

Methodology and Results. The ratio of total mining power
between the two miners was varied with a granularity of
10%, and the network consisted of 10 miners, where only
the two miners had assigned the mining power. Other miners
acted as relays, emulating the maximal network delay of 5
hops between the two miners in a duel. The relative profits
of the miners were monitored as their profit factor P w.r.t.
their mining power. We conducted 10 simulation runs and
averaged their results (see Fig. 2). Results show that the greedy
miner earned a profit disproportionately higher than her mining
power, while the honest miner’s relative profit was negatively
affected by the presence of the greedy miner. We can observe
that P of greedy miner was indirectly proportional to her κ ,
which was caused by the exponential distribution of transaction
fees that contributed more significantly to the higher P of a
smaller miner. In sum, the profit advantage of the greedy miner
aligns with the conclusions from the game theoretical model
(Scenario 5, see Sec. V) in particular, which represents the case
of κ=50%. Nevertheless, our results indicate that the greedy
strategy is more profitable than the RTS for any non-zero κ .

B. Experiment II

Goal. The goal of this experiment was investigation of the
relative profits of a few greedy miners following the greedy
strategy in contrast to honest miners following the RTS.

Methodology and Results. We experimented with 10 miners,
where the number of greedy miners G vs. the number of honest
miners (i.e., 10 - G) was varied, and each held 10% of the total
mining power. We monitored their profit factor P averaged
per miner. We conducted 10 simulation runs and averaged
their results (see Fig. 3a). Alike in Sec. VII-A, we can see
that greedy miners earned profit disproportionately higher than
their mining power. Similarly, this experiment showed that the
profit advantage of greedy miners decreases as their number
increases. This is similar to increasing κ in a duel of two
miners from Sec. VII-A; however, in contrast to it, P of greedy
miners is slightly lower with the same total κ of all greedy
miners, while P of honest miners had not suffered with such
a decrease. Intuitively, this happened because multiple greedy
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Fig. 2: The profit factor P of an honest vs. a greedy miner
with their mining powers of 100% - κ and κ , respectively. The
baseline shows the expected P of the honest miner; λ = 20s.

miners increase transaction collision. In detail, since miners are
only rewarded for transactions that were first to be included in
a new block, the profit for the second and later miners is lost if
a duplicate transaction is included. This observation might be
seen as beneficial for the protocol as it disincentivizes multiple
miners to use the greedy transaction selection strategy, which
would support the sequential equilibrium from [17]. However,
the authors of [17] do not assume cooperating players, which
is unrealistic since miners can cooperate and create the pool
to avoid collisions and thus maximize their profits (resulting
in a similar outcome, as in Sec. VII-A).

C. Experiment III

Goal. The goal of this experiment was to investigate the
relative profit of the greedy mining pool depending on its κ
versus the honest mining pool with the same mining power. It
is equivalent to Scenario 5 of game theoretical analysis (see
Sec. V) although there is the honest rest of the network.

Methodology and Results. We experimented with 10 miners,
and out of them, we choose one greedy miner and one honest
miner, both having equal mining power, while the remaining
miners in the network were honest and possessed the rest
of the network’s mining power. Thus, we emulated a duel
of the greedy pool versus the honest pool. We conducted 10
simulation runs and averaged their results (see Fig. 3b). The
results demonstrate that the greedy pool’s relative earned profit
grows proportionally to κ as compared to the honest pool with
equal mining power, supporting our conclusions from Sec. V.

D. Experiment IV

Goal. The goal of this experiment was to investigate the trans-
action collision rate under the occurrence of greedy miners
who selected transactions using the greedy strategy.

Methodology and Results. In contrast to the previous exper-
iments, we considered three different values of block creation
time (λ ∈ {10s,20s,60s}). We experimented with 10 miners,
where the number of greedy miners G vs. the number of honest
miners (i.e., 10 - G) was varied, and each held 10% of the
total mining power. For all configurations, we computed the
transaction collision rate (see Fig. 3c). We can see that the
increase of G causes the increase in the transaction collision
rate. Note that lower λ has a higher impact on the collision
rate, and DAG protocols are designed with the intention to
have small λ (i.e., even smaller than τ). Consequently, the
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(a) The averaged profit factor P per honest
miner and greedy miner, each with 10% of
mining power. The number of honest miners
is 10 - G. The baseline shows the expected P
of an honest miner with 10% of mining power.
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(c) The transaction collision rate C w.r.t. #
of greedy miners G (each with κ = 10%),
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shows C when all transactions are duplicates.

Fig. 3: Experiment II, Experiment III (i.e., duel of mining pools) and Experiment IV (i.e., transaction collision rate & throughput).

increased collision rate affected the overall throughput of the
network (which is complementary to Fig. 3c).

VIII. COUNTERMEASURES

Experiments supported Hypothesis 1. The main problem
is not sufficiently enforcing the RTS, i.e., verifying that
transaction selection was indeed random at the protocol level.
Therefore, using the RTS in the DAG-PROTOCOL that does
not enforce the interpretation of randomness will never avoid
the occurrence of attackers from greedy transaction selection
that increases their individual (or pooled) profits.

Enforcing Interpretation of the Randomness. One counter-
measure how to avoid arbitrary interpretation of the random-
ness in the RTS is to enforce it by the consensus protocol.
An example of a DAG-based design using this approach is
Sycomore [2], which utilizes the prefix of cryptographically-
secure hashes of transactions as the criteria for extending a
particular chain in DAG. The PoW mining in Sycomore is
further equipped with the unpredictability of a chain that the
miner of a new block extends, avoiding the concentration of
the mining power on “rich” chains. Note that transactions are
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(a) The profit factor P of a honest vs. a greedy miner
with the mining power of 100% - κ and κ , respectively.
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(b) The averaged profit factor P of a greedy miner with
κ . The rest of the network consisted of 9 honest miners,
each equipped with 100%−κ

9 % of mining power.

Fig. 4: Profit factors of honest and greedy miners. The baseline
shows the expected P of the honest miner; λ = 20s.

evenly spread across all chains of the DAG, which happens
because prefixes of transaction hashes respect the uniform
distribution – transactions are created by clients (different from
miners) who have no incentives for biasing their transactions.

Fixed Transaction Fees. Another option how to make the
RTS viable is to employ fixed fees for all transactions as
a blockchain network-adjusted parameter. In the case of the
full block capacity utilization within some period, the fixed
fee parameter would be increased and vice versa in the case
of not sufficiently utilized block capacity. In contrast to the
previous countermeasure, this mechanism does not enforce
the interpretation of randomness while at the same time does
not make incentives for greedy miners to follow other than
the RTS strategy. Therefore, miners using other than the RTS
would not earn extra profits – we demonstrate it in Fig. 4a
and Fig. 4b, considering one honest vs. one greedy miner
and one greedy vs. 9 honest miners, respectively. Note that
small deviations from the baseline are caused by the inherent
simulation error that is present in the original simulator that
we extended. On the other hand, greedy miners may still
cause increased transaction collision rate, and thus decreased
throughput. Therefore, we consider the fixed transaction fee
option weaker than the previous one.

IX. RELATED WORK

Wang et al. [37] performed a detailed systematic
overview of DAG-designs. They described six categories
containing more than thirty DAG-based blockchain systems
classified based on their characteristics and principles. They
extend the commonly used classification based on the type
of ledgers [36]. GHOST [35], Inclusive Blockchain [17],
Conflux [18], Haootia [36], and Byteball [3] represent DAG
with the main chain. Hashgraph [15] and Nano [16] repre-
sent ledgers with parallel chains. Nevertheless, out of these
categories, only DAGs with the main chain are related to our
research, such as Inclusive [17], SPECTRE [33], PHANTOM
and GHOSTDAG [34]. We refer the reader to Sec. IV for
details about these protocols.

Sycomore [2] and its extension Sycomore++ [8] is another
DAG-oriented consensus protocol that utilizes DAGs to in-
crease Nakamoto consensus throughput. The protocol proposes
that the chain responds to the dynamically increased number of
transactions and splits them into multiple chains, thus creating
DAG structure. Transactions are evenly partitioned based on

7



the prefix of their hash, and they are randomly inserted into
their corresponding chain (branch). The protocol does not
directly suffer from our proposed attacks, although it might
suffer from different problems related to double spending of
transactions mined in parallel, which is, however, common for
all DAG-oriented protocols.

X. CONCLUSION

We started with an overview of DAG-oriented consensus
protocols for PoW blockchains, which promise to increase
the transaction throughput by using the RTS strategy. We
formulated a hypothesis that DAG protocols using the RTS
can be exploited by attackers not respecting such a strategy
and instead selecting transaction based on the fees (i.e., greedy
strategy), which can lead to deterioration of the overall trans-
action throughput. We made a game theoretical analysis of
concerned DAG-oriented protocols and concluded that the RTS
strategy, as proposed in these protocols, does not constitute
a Nash equilibrium since honest players enable the greedy
player to “parasite” on the system. This is contradictory result
to Inclusive paper [17], which does not assume that multiple
greedy miners can form a mining pool. We conducted several
experiments on a network topology consisting of 10 nodes,
where we analyzed the impact of greedy miners who deviated
from the modeled DAG protocol by selecting transactions
based on the highest fee. We demonstrated that greedy miners
have a significant advantage over honest miners in terms
of profit maximization. Moreover, we showed that greedy
miners have a detrimental impact on transaction throughput
and have the incentive to form a mining pool, worsening the
decentralization of assumed DAG-PROTOCOLs.
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Abstract—In this paper, we review the undercutting attacks
in the transaction-fee-based regime (i.e., without block rewards)
of proof-of-work (PoW) blockchains with the longest chain fork-
choice rule. Next, we focus on the two related problems: (1)
fluctuations in mining revenue and (2) the mining gap – i.e., a
situation, in which the immediate reward from transaction fees
does not cover miners’ expenditures.

To mitigate these issues, we propose a solution that splits
transaction fees from a mined block into two parts – (1) an instant
reward for the miner of a block and (2) a deposit sent to one or
more fee-redistribution smart contracts (FRSCs) that are part of
the consensus protocol. At the same time, these FRSCs reward
the miner of a block with a certain fraction of the accumulated
funds over a predefined time. This setting enables us to achieve
several interesting properties that improve the incentive stability
and security of the protocol, which is beneficial for the honest
miners. With our solution, the fraction of DEFAULT-COMPLIANT
miners who strictly do not execute undercutting attacks is lowered
from the state-of-the-art result of 66% to 30%.

I. INTRODUCTION

There are two sources of miners’ income in cryptocur-
rencies – block rewards and transaction fees. Block rewards
incentivize miners to produce new blocks. Transaction fees not
only contribute to the revenue of miners, but motivate them to
include transactions in blocks. Miners maximize their profits
by prioritizing the transactions with the highest fees. In Bitcoin
and its numerous clones [1], the block reward is divided by
two approx. every four years (i.e., after every 210k blocks),
which will eventually result in a zero block reward and thus
a pure transaction-fee-based regime. There was only very
little research made (see § VII) to investigate properties of
transaction-fee-based regimes, which motivated our work.

Before 2016, there was a belief that the dominant source
of the miners’ income does not impact the security of the
blockchain. However, Carlsten et al. [2] pointed out the effects
of the high variance of the miners’ revenue per block caused by
exponentially distributed block arrival time in the transaction-
fee-based protocols. The authors showed that undercutting
(i.e., forking) a wealthy block is a profitable strategy for a
malicious miner. Nevertheless, literature [3], [4] showed that
this attack is viable even in blockchains containing traditional
block rewards due to front-running competition of arbitrage
bots who are willing to extremely increase transaction fees to
earn Maximum Extractable Value profits.

In this paper, we focus on mitigation of the undercutting
attack the in transaction-fee-based regime of PoW blockchains

– i.e., blockchains that prefer availability over consistency
within the CAP theorem and thus are designed to resolve
forks often. We also discuss related problems present (not
only) in transaction-fee-based regime. In particular, we focus
on minimizing the mining gap [2], [5], (i.e., the situation,
where the immediate reward from transaction fees does not
cover miners’ expenditures) as well as balancing significant
fluctuations in miners’ revenue. To mitigate these issues, we
propose a solution that splits transaction fees from a mined
block into two parts – (1) an instant reward for the miner
and (2) a deposit sent into one or more fee-redistribution
smart contracts (FRSCs). At the same time, these FRSCs
reward the miner of a block with a certain fraction of the
accumulated funds over a fixed number of blocks. Our solution
can be deployed with hard-fork and imposes only negligible
performance overhead.

Contributions In detail, our contributions are as follows:

1) We propose an approach that normalizes the mining
rewards coming from transaction fees by one or more
FRSCs that emulate moving average on a certain portion
of the transaction fees.

2) We evaluate our approach using various fractions of
the transaction fees from a block distributed between
a miner and FRSCs. We experiment with the various
numbers and lengths of FRSCs, and we demonstrate that
usage of multiple FRSCs of various lengths has the best
advantages mitigating the problems we are addressing.

3) We demonstrate that with our approach, the mining gap
can be minimized since the miners at the beginning of
the mining round can get the reward from FRSCs, which
stabilizes their income.

4) We demonstrate that the threshold of DEFAULT-
COMPLIANT miners who strictly do not execute under-
cutting attack is lowered from 66% (as reported in the
original work [2]) to 30% with our approach.

II. PROBLEM DEFINITION

In transaction fee-based regime schemes, a few problems
have emerged, which we can observe even nowadays in Bitcoin
protocol [2]. We have selected three main problems and aim
to lower their impact for protocols relying on transaction fees
only. In detail, we focus on the following problems:

1) Undercutting attack. In this attack (see Fig. 1), a
malicious miner attempts to obtain transaction fees by
re-mining a top block of the longest chain, and thus



Fig. 1: The undercutting attack, according to Carlsten et al. [2].

motivates other miners to mine on top of her block [2].
In detail, consider a situation, where an honest miner
mines a block containing transactions with substantially
higher transaction fees than is usual. The malicious miner
can fork this block while he leaves some portion of
the “generous” transactions un-mined. These transactions
motivate other miners to mine on top of the attacker’s
chain, and thus undercut the original block. Such a
malicious behavior might result in higher orphan rate,
unreliability of the system, and even double spending.

2) The mining gap. As discussed in [2], the problem of min-
ing gap arises once the mempool does not contain enough
transaction fees to motivate miners in mining. Suppose a
miner succeeds at mining a new block shortly after the
previous block was created, which can happen due to well
known exponential distribution of block creation time in
PoW blockchains. Therefore, the miner might not receive
enough rewards to cover his expenses because most of
the transactions from the mempool were included in the
previous block, while new transactions might not have
yet arrived or have small fees. Consequently, the miners
are motivated to postpone mining until the mempool is
reasonably filled with enough transactions (and their fees).
The mining gap was also analyzed by the simulation in the
work of Tsabary and Eyal [5], who further demonstrated
that mining gap incentivizes larger mining coalitions (i.e.,
mining pools), negatively impacting decentralization.

3) Varying transaction fees over time. In the transaction-
fee-based regime, any fluctuation in transaction fees di-
rectly affects the miners’ revenue. High fluctuation of
transaction fees during certain time frames, e.g., in a span
of a day or a week [6], can lead to an undesirable lack
of predictability in miners’ rewards and indirectly affect
the security of the underlying protocol.

III. PROPOSED APPROACH

We propose a solution that collects a percentage of trans-
action fees in a native cryptocurrency from the mined blocks
into one or multiple fee-redistribution smart contracts (i.e.,
FRSCs). Miners of the blocks who must contribute to these
contracts are at the same time rewarded from them, while
the received reward approximates a moving average of the
incoming transaction fees across the fixed sliding window of
the blocks. The fraction of transaction fees (i.e., C) from the
mined block is sent to the FRSC and the remaining fraction of
transaction fees (i.e., M) is directly assigned to the miner, such
that C+M = 1. The role of M is to incentivize the miners in
prioritization of the transactions with the higher fees while the
role of C is to mitigate the problems of undercutting attacks
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Fig. 2: Overview of our solution.

and the mining gap.

Overview. We depict the overview of our approach in
Fig. 2, and it consists of the following steps:

1) Using FRSC, the miner calculates the reward for the next
block B (i.e., nextClaim(FRSC) – see Eq. 4) that will
be payed by FRSC to the miner of that block.

2) The miner mines the block B using the selected set of
the highest fee transactions from her mempool.

3) The mined block B directly awards a certain fraction of
the transaction fees (i.e., B.fees ∗ M) to the miner and
the remaining part (i.e., B.fees ∗ C) to FRSC.

4) The miner obtains nextClaim from FRSC.

Our approach is embedded into the consensus protocol, and
therefore consensus nodes are obliged to respect it in order to
ensure that their blocks are valid. It can be implemented with
standard smart contracts of the blockchain platform or within
the native code of the consensus protocol.

A. Prioritization of High-Fee Transactions

In the environment with constant transaction fees, a miner
would receive the same amount with or without our solution.
However, in public blockchains (especially with transaction-
fee-based regime) there exists a prioritization in processing of
transactions with higher fees, which might result into fluctua-
tions in rewards of the miners. In our approach, we preserve
the transaction prioritization since we directly attribute a fixed
fraction of the transaction fees to the miner (i.e., M).

B. Fee-Redistribution Smart Contracts

We define the fee-redistribution smart contract as a tuple
FRSC = (ν, λ, ρ), (1)

where ν is the accumulated amount of tokens in the contract,
λ denotes the size of FRSC’s sliding window in terms of the
number of preceding blocks that contributed to ν, and ρ is
the parameter defining the ratio for redistribution of incoming
transaction fees among multiple contracts (if there are multiple
FRSCs), while the sum of ρ across all FRSCs must be equal
to 1: ∑

x ∈ FRSCs
x.ρ = 1. (2)

In contrast to a single FRSC, we envision multiple FRSCs
to enable better adjustment of compensation to miners during
periods of higher transaction fee fluctuations or in an unpre-
dictable environment (we show this in § V-C).



We denote the state of FRSCs at the blockchain height
H as FRSC[H]. Then, we determine the reward from
FRSC[H] ∈ FRSCs[H] for the miner of the next block with
height H + 1 as follows:

∂Claim
FRSC[H]

[H+1] =
FRSC[H].ν

FRSC[H].λ
, (3)

while the reward obtained from all FRSCs is
nextClaim[H+1] =

∑

X[H] ∈ FRSCs[H]

∂Claim
X[H]

[H+1]. (4)

Then, the total reward of the miner who mined the block
B[H+1] with all transaction fees B[H+1].fees is
rewardT[H+1] = nextClaim[H+1] +M ∗B[H+1].fees. (5)

The new state of contracts at the height H + 1 is
FRSCs[H+1] = {X[H+1](ν, λ, ρ) | (6)

λ = X[H].λ, (7)
ρ = X[H].ρ, (8)
ν = X[H].ν − ∂Claim[H+1] + deposit ∗ ρ, (9)

deposit = B[H+1].fees ∗ C}, (10)
where deposit represents the fraction C of all transaction fees
from the block B[H+1] that are deposited across all FRSCs
in ratios respecting Eq. 2.

C. Example

We consider Bitcoin [7] with the current height of the
blockchain H . We utilize only a single FRSC:

FRSC[H] = (2016, 2016, 1).

We set M = 0.4 and C = 0.6, which means a miner directly
obtains 40% of the B[H+1].fees and FRSC obtains 60%.
Next, we compute the reward from FRSC obtained by the
miner of the block with height H + 1 as

∂Claim[H+1] =
FRSC[H].ν

FRSC[H].λ
=

2016

2016
= 1 BTC,

resulting into
nextClaim[H+1] = ∂Claim[H+1] = 1 BTC.

Further, we assume that the total reward collected from trans-
actions in the block with height H + 1 is B[H+1].fees = 2
BTC. Hence, the total reward obtained by the miner of the
block B[H+1] is
rewardT[H+1] = nextClaim[H+1] +M ∗B[H+1].fees

= 1 + 0.4 ∗ 2 = 1.8 BTC,
and the contribution of transaction fees from B[H+1] to the
FRSC is

deposit = B[H+1].fees ∗ C = 1.2 BTC.
Therefore, the value of ν in FRSC is updated at height H + 1
as follows:

v[H+1] = FRSC[H].ν − nextClaim[H+1] + deposit

= 2016− 1 + 1.2 BTC = 2016.2 BTC.

Traditional Way in Tx-Fee Regime In traditional
blockchains, rewardT[H+1] would be equal to the sum of
all transaction fees B[H+1].fees (i.e., 2 BTC); hence, using
M = 1. In our approach, rewardT[H+1] is equal to the sum

of all transaction fees in the block B[H+1], if:

B[H+1].fees =
nextClaim[H+1]

C
. (11)

In our example, a miner can mine the block B[H+1] while
obtaining the same total reward as the sum of all transaction
fees in the block if the transactions carry 1.66 BTC in fees:

B[H+1].fees =
1

0.6
= 1.66 BTC.

D. Initial Setup of FRSCs Contracts

To enable an even start, we propose to initiate FRSCs
of our approach by a genesis value. The following formula
calculates the genesis values per FRSC and initializes starting
state of FRSCs[0]:

{FRSCx[0](ν, λ, ρ) | ν = fees ∗ C ∗ ρ ∗ λ}, (12)

where fees is the expected average of incoming fees.

IV. IMPLEMENTATION

Our implementation is based on Bitcoin Mining Simula-
tor [8], introduced in [2], which we modified for our purposes.

1) Our Changes in Simulator. We have created a
configuration file to simulate custom scenarios of incoming
transactions instead of the accumulated fees in the original
design [2]. We added an option to switch simulation into a
mode with a full mempool, and thus bound the total fees
(and consequently the total number of transactions) that can
be earned within a block – this mostly relates to blocks whose
mining takes longer time than the average time to mine a
block.1 Next, we moved several parameters to arguments of
the simulator to eliminate the need for frequent recompi-
lation of the program, and therefore simplified the process
of running various experiments with the simulator. Finally,
we integrated our FRSC-based solution into the simulator.
FRSCs are initiated from a corresponding configuration file.
The source code of our modified simulator is available at
https://github.com/The-Huginn/mining simulator.

V. EVALUATION

We evaluated our proof-of-concept implementation of
FRSCs on a custom long-term scenario designed to demon-
strate significant changes in the total transaction fees in the
mempool evolving across the time. This scenario is depicted
in the resulting graphs of most of our experiments, represented
by the “Fees in mempool” series – see § V-A and § V-B.

We experimented with different parameters and investi-
gated how they influenced the total rewards of miners coming
from FRSCs versus the baseline without our solution. Mainly,
these included a setting of C as well as different lengths λ
of FRSCs. For demonstration purposes, we used the value
of transaction fees per block equal to 50 BTC, the same as
Carlsten et al. [2] used. Across all our experiments but the
last one (i.e., § V-D), we enabled the full mempool option to
ensure more realistic conditions.

1Note that the original simulator [2] assumes that the number of transactions
(and thus the total fees) in the block is constrained only by the duration of a
time required to mine the block, which was also criticized in [9].



(a) FRSC1 and C = 0.5. (b) FRSC2 and C = 0.5.

(c) FRSC1 and C = 0.7. (d) FRSC2 and C = 0.7.

(e) FRSC1 and C = 0.9. (f) FRSC2 and C = 0.9.
Fig. 3: Experiment I investigating various Cs and λs of a single FRSC, where FRSC1.λ = 2016 and FRSC2.λ = 5600.
Fees in mempool show the total value of fees in the mined block (i.e., representing the baseline). Block Value is the reward a
miner received in block B as a sum of the fees he obtained directly (i.e. M ∗B.fees) and the reward he got from FRSC (i.e.,
nextClaim[H]). Expected income from Contract represents the reward of a miner obtained from FRSC (i.e., nextClaim[H]).

A. Experiment I

1) Methodology. The purpose of this experiment was to
investigate the amount of the reward a miner earns with our
approach versus the baseline (i.e., the full reward is based on
all transaction fees). We investigated how C influences the total
reward of the miner and how λ of the sliding window averaged
the rewards. In detail, we created two independent FRSCs
with different λ – one was set to 2016 (i.e., FRSC1), and
the second one was set to 5600 (i.e., FRSC2). We simulated
these FRSCs with three values of C ∈ {0.5, 0.7, 0.9}.

2) Results. The results of this experiment are depicted
in Fig. 3. Across all runs of our experiment, we can observe
that FRSC2 adapts slower as compared to FRSC1, which
leads to a more significant averaging of the total reward paid
to the miner.

B. Experiment II

1) Methodology. In this experiment, we investigated
how multiple FRSCs dealt with the same scenario as before
– i.e., varying C. In detail, we investigated how individual
FRSCs contributed to the nextClaim[H+1] by their individ-
ual ∂Claim

FRSC[H]

[H+1] . This time, we varied only the parameter
C ∈ {0.5, 0.7, 0.9}, and we considered four FRSCs:

FRSCs = {
FRSC1( , 1008, 0.07),FRSC2( , 2016, 0.14),
FRSC3( , 4032, 0.28),FRSC4( , 8064, 0.51)},

where their lengths λ were set to consecutive multiples of 2
(to see differences in more intensive averaging across longer
intervals), and their redistribution ratios ρ were set to maximize
the potential of averaging by longer FRSCs.



(a) Scenario with 4 FRSCs,
C = 0.5.

(b) ∂Claims and nextClaim,
C = 0.5.

(c) ∂Claims normalized by ρ,
C = 0.5.

(d) Scenario with 4 FRSCs,
C = 0.7.

(e) ∂Claims and nextClaim,
C = 0.7.

(f) ∂Claims normalized by ρ,
C = 0.7.

(g) Scenario with 4 FRSCs,
C = 0.9.

(h) ∂Claims and nextClaim,
C = 0.9.

(i) ∂Claims normalized by ρ,
C = 0.9.

Fig. 4: Experiment II investigating various Cs in the setting with multiple FRSCs with their corresponding λ =
{1008, 2016, 4032, 8064} and ρ = {0.07, 0.14, 0.28, 0.51}. ∂Claims represents contributions of individual FRSCs to the total
reward of the miner (i.e., its nextClaim component).

2) Results. The results of this experiment are depicted
in Fig. 4. We can observe that the shorter FRSCs quickly
adapted to new changes and the longer FRSCs kept more
steady income for the miner. In this sense, we can see that
∂Claim4 held steadily over the scenario while for example
∂Claim1 fluctuated more significantly. Since the scenarios of
fees evolution in the mempool was the same across all our
experiments (but § V-C), we can compare the FRSC with
λ = 5600 from § V-A and the current setup involving four
FRSCs – both had some similarities. This gave us intuition
for replacing multiple FRSCs with a single one (see § V-C).

3) Different Fee Redistribution Ratios Across FRSCs
In Fig. 5 we investigated different values of ρ in the same set of
four contracts and their impact on ∂Claims. The results show
that the values of ρ should correlate with λ of multiple FRSCs
to maximize the potential of averaging by longer FRSCs.

C. Experiment III

1) Methodology. In this experiment, we investigated
whether it is possible to use a single FRSC setup to replace
a multiple FRSCs while preserving the same effect on the
nextClaim. To quantify a difference between such cases, we
introduced a new metric of FRSCs, called effective λ, which

can be calculated as follows:
effective λ(FRSCs) =

∑

x ∈ FRSCs
x.ρ ∗ x.λ. (13)

We were interested in comparing a single FRSC with 4
FRSCs, both configurations having the equal effective λ. The
configurations of these two cases are as follows:

(1) FRSC( , 5292, 1) and
(2) FRSCs = {

FRSC1( , 1008, 0.07),FRSC2( , 2016, 0.19),
FRSC3( , 4032, 0.28),FRSC4( , 8064, 0.46)}.

We can easily verify that the effective λ of 4 FRSCs is the
same as in a single FRSC using Eq. 13: 0.07 ∗ 1008+0.19 ∗
2016 + 0.28 ∗ 4032 + 0.46 ∗ 8064 = 5292.

We conducted this experiment using a custom fee evolution
scenario involving mainly linearly increasing/decreasing fees
in the mempool (see Fig. 6a), and we set C to 0.7 for both
configurations. The custom scenario of the fee evolution in
mempool in this experiment was chosen to contain extreme
changes in fees, emphasizing possible differences in two
investigated setups.



(a) ρ correlates with λ. (b) ρ equal for every FRSC. (c) ρ negatively correlates with λ.

Fig. 5: Experiment II – multiple FRSCs using various distributions of ρ and their impact on ∂Claim, where C = 0.7.

(a) A custom fee scenario
for Experiment III.

(b) A relative difference in nextClaim between
4 FRSCs and a single FRSC.

Fig. 6: Experiment III comparing 4 FRSCs and 1 FRSC, both configurations having the same effective λ.

2) Results. In Fig. 6b, we show the relative difference
in percentages of nextClaim rewards between the settings of
4 FRSCs versus 1 FRSC. It is clear that the setting of 4
FRSCs in contrast to a single FRSC provided better reward
compensation in times of very low fees value in the mempool,
while it provided smaller reward in the times of higher values
of fees in the mempool. Therefore, we concluded that it is not
possible to replace a setup of multiple FRSCs with a single
one while retaining the same fee redistribution behavior.

D. Experiment IV

We focused on reproducing the experiment from Section
5.5 of [2], while utilizing our approach. The experiment
is aimed on searching for the minimal ratio of DEFAULT-
COMPLIANT miners, at which the undercutting attack is no
longer profitable strategy. DEFAULT-COMPLIANT miners are
honest miners who follow the rules of the consensus protocol
such as building on top of the longest chain. We executed sev-
eral simulations, each consisting of multiple games (i.e., 300k
as in [2]) with various fractions of DEFAULT-COMPLIANT
miners. From the remaining miners we evenly created learning
miners, who learn on the previous runs of games and switch
with a certain probability the best strategy out of the following:

• PETTYCOMPLIANT: This miner behaves as DEFAULT-
COMPLIANT except one difference. In the case of seeing
two chains, he does not mine on the oldest block but
rather the most profitable block. Thus, this miner is not
the (directly) attacking miner.

• LAZYFORK: This miner checks which out of two options
is more profitable: (1) mining on the longest-chain block
or (2) undercutting that block. In either way, he leaves half
of the mempool fees for the next miners, which prevents
another LAZYFORK miner to undercut him.

• FUNCTION-FORK() The behavior of the miner can be
parametrized with a function f(.) expressing the level of
his undercutting. The higher the output number the less
reward he receives and more he leaves to incentivize other
miners to mine on top of his block. This miner undercuts
every time he forks the chain.

1) Methodology. With the missing feature for difficulty
re-adjustment (in the simulator from [2] that we extended)
the higher orphan rate occurs, which might directly impact
our FRSC-based approach. If the orphan rate is around 40%,
roughly corresponding to [2], our blocks would take on average
40% longer time to be created, increasing the block creation
time (i.e., time to mine a block). This does not affect the
original simulator, as there are no FRSCs that would change
the total reward for the miner who found the block.

Nevertheless, this is not true for FRSC-based simulations
as the initial setup of FRSCs is calculated with fees = 50
BTC (as per the original simulations). However, with longer
block creation time and transaction fees being calculated from
it, the amount of fees also changes. With no adjustments, this
results in FRSCs initially paying smaller reward back to the
miner before FRSCs are saturated. To mitigate this problem,
we increased the initial values of individual FRSCs by the or-
phan rate from the previous game before each run. This results
in very similar conditions, which can be verified by comparing
the final value in the longest chain of our simulation versus the
original simulations. We decided to use this approach to be as
close as possible to the original experiment. This is particularly
important when the full mempool parameter is equal to false
(see § IV), which means that the incoming transaction fees to
mempool are calculated based on the block creation time. In
our simulations, we used the following parameters: 100 miners,
10 000 blocks per game, 300 000 games (in each simulation



(a) Simulations of our approach. (b) Simulations of the original work [2].

Fig. 7: Experiment IV – The ratio of DEFAULT-COMPLIANT miners in our approach is ∼30% (in contrast to ∼ 66% of [2]).

run), exp3 learning model, and C = 0.7. Modeling of fees
utilized the same parameters as in the original paper [2]: the
full mempool parameter disabled, a constant inflow of 5 000
000 000 Satoshi (i.e., 50 BTC) every 600s. For more details
about the learning strategies and other parameters, we refer the
reader to [2].

Setup of FRSCs. Since we have a steady inflow of
fees to the mempool, we do not need to average the income
for the miner. Therefore, we used only a single FRSC defined
as FRSC(7 056 000 000 000, 2016, 1), where the initial
value of FRSC.ν was adjusted according to Eq. 12, assuming
fees = 50 BTC. In the subsequent runs of each game,
FRSC.ν was increased by the orphan rate from the previous
runs, as mentioned above.

2) Results. The results of this experiment, depicted in
Fig. 7, demonstrate, that with our approach using FRSCs, we
decreased the number of DEFAULT-COMPLIANT miners from
the original 66% to 30%. This means that the profitability of
undercutting miners is avoided with at least 30% of DEFAULT-
COMPLIANT miners, indicating more robust results.

VI. SECURITY ANALYSIS AND DISCUSSION

In this section, we analyze security implications of our so-
lutions, we discuss its limitations and possible improvements.

A. Contract-Drying Attack

In this potential attack, the adversary aims to get his reward
only from FRSCs and does not include transactions in the
block (or includes only a small number of them). This might
result in slow drying of the funds from FRSCs and would
mean less reward for future honest miners. Moreover, the
attacker can mine in “good” times of higher saturation of
FRSCs and, after some time, decide to switch off the mining.
This might cause a deterioration in profitability for honest
miners, consequently leading to deteriorated security w.r.t.,
undercutting attacks. However, the contract-drying attack is not
profitable for the adversary and we state it only as the example
of the abusive attack aimed at attacking the functionality of

our scheme. If the attacker keeps repeating this behavior,
the mempool of honest nodes will contain more un-mined
transactions (and thus more fees). Therefore, if an honest miner
mines a block, he gets a higher reward and at the same time
deposits a higher amount to FRSCs, which indicates a certain
self-regulation of our approach, mitigating this kind of attack.

Next, we can think of further lowering the impact of this
attack by rewarding the miner with the full nextClaim[H+1]

by FRSCs only if the block contains enough transaction fees
(e.g., specified by the network-regulated parameter). However,
this assumes that there is always a reasonable amount of fees
in the mempool, which might not be the case all the time and
might result in a situation where the miners temporarily stop
mining due to the insufficient amount of available transactions.
Nonetheless, it would require additional research to investigate
solutions mitigating this type of abusive attack, which we left
for future work.

B. Possible Improvements

FRSC can contain the parameter enabling the inter-
val of the possible change in the reward paid by FRSCx
(i.e., nextClaimx

[H+1]) from the median of its value (com-
puted over λ). If nextClaimx

[H+1] would drastically increase
from its median value as significantly more fees would
come into the mempool, then FRSCx[H] would reward the
miner with a certain value (specified by the parameter)
from the interval ⟨average, nextClaimx

[H+1]⟩ instead of the
full nextClaimx

[H+1]. This would be particularly useful for
FRSCs with a small λ parameter. The parameter used for
sampling might contain a stochastic function (e.g., exponen-
tial), attributing a higher likelihood of getting the values not
far from the median. However, we left the evaluation of such
a technique to our future work, while in this work, we focused
solely on demonstrating the feasibility of our approach.

C. Adjustment of Mining Difficulty

If the PoW blockchain with the longest chain fork-choice
rule uses transaction-fee-based regime, the profitability of



miners might be more volatile, which can further lead to
decreased security w.r.t. undercutting attacks. Although our
solution with FRSCs helps in mitigation of this problem,
we propose another functionality that resides in adjusting the
mining difficulty based on the total collected fees during the
epoch. In detail, the difficulty can be increased with higher fees
collected from transactions during the epoch and vice versa.
Further research would be needed to evaluate this proposition.

D. Out-of-Band Fees

Any fees paid outside the protocol, e.g., transaction fees
not being paid in BTC, in the case of Bitcoin, are referred
to as out-of-band fees. These fees can be leveraged e.g., by
big exchanges, trusted wallet providers, etc. who control their
mining pool and might influence transaction selection from
the mempool, enabling to mine even low fee/0-fee transac-
tions [10]. Under normal circumstances, such a transaction
would not be chosen by a rational miner due to unprofitability.
However, if the user has a mutual agreement with some miners,
that upon including such transaction, they would pay them out-
of-band fees, one of the miners will include this transaction.
Even though out-of-band fees are not widely used nowadays,
our fee redistribution scheme might lead to higher utilization of
this concept. As with redistribution contracts, the miner would
be losing his income in favor of a future miner; therefore,
he might opt to receive a slightly smaller fee if this fee goes
directly to him, i.e., circumventing C fraction. Also, the user
would benefit from this, as he would be paying smaller fee
overall, with the miner preferring out-of-band fees.

E. Practical Deployment

Our solution can be deployed by the hard-fork to enforce
the execution of FRSCs as part of the consensus protocol.
The solution imposes only negligible performance overhead
since the (optimized) logic of FRSCs emulates the moving
average, and the execution is triggered once per each block.

VII. RELATED WORK

The work of Carlsten et al. [2] is the inspiration for our
paper, which for the first time describes undercutting attacks
arising from the exponential distribution of block creation time
and significant differences in transaction fees. The authors sim-
ulated Bitcoin under transaction-fee-based regime and found a
minimal threshold of DEFAULT-COMPLIANT miners equal to
66%. Gong et al. [9] argue that using all fees accumulated in
the mempool regardless of the block size limit is infeasible
in practice and can inflate the profitability of undercutting
that was originally described in [2]. Furthermore, Houy [11]
demonstrates that a constraint on the block size limit (thus
the number of transactions) has economic importance and
prevents the transaction fees from dropping to zero. Therefore,
Gong et al. [9] model the profitability of undercutting with
the block size limit present, which bounds the claimable fees
in a mining round. The authors presented a countermeasure
that selectively assembles transactions into the new block,
while claiming fewer fees to avoid undercutting. We argue
that in contrast to our approach, this solution cannot be
enforced by the consensus protocol, and thus might still enable
undercutting to occur. Zhou et al. [12] deal with the problem of
a mining gap, which is more significant when the throughput

of blockchain is high. Therefore, the authors propose the self-
adaptive algorithm to adjust the block size every 1000 blocks
and thus ensure that blocks have enough space to pack new
transactions. Even though Bitcoin-NG [13] proposes a new
consensus mechanism, it also contains the idea of splitting the
transaction fees between two entities – the current leader and
the miner of block – which should incentivize the miner to
include blocks created by the leader. However, Bitcoin-NG is,
in some sense, centralized and therefore, undercutting attacks
are not its subject.

VIII. CONCLUSION

We focused on 3 problems related to transaction-fee-based
regime of blockchains with the longest chain rule: (1) the
instability of mining rewards, (2) the mining gap, and (3) the
possibility of undercutting attacks. To mitigate these problems,
we proposed an approach approximating a moving average
based on the fee-redistributions smart contracts (enforced by
the consensus protocol) that accumulate a certain fraction of
transaction fees and, at the same time, reward the miners from
their reserves. This way, the miners are sufficiently rewarded
even at times of very low transaction fees, such as at the
beginning of the mining round, for new miners entering the
mining protocol, during market deviations, etc.
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Abstract—Voting is a means to agree on a collective decision
based on available choices (e.g., candidates), where participants
agree to abide by their outcome. To improve some features of e-
voting, decentralized blockchain-based solutions can be employed,
where the blockchain represents a public bulletin board that in
contrast to a centralized bulletin board provides extremely high
availability, censorship resistance, and correct code execution.
A blockchain ensures that all entities in the voting system
have the same view of the actions made by others due to
its immutability and append-only features. The existing remote
blockchain-based boardroom voting solution called Open Vote
Network (OVN) provides the privacy of votes, universal & End-to-
End verifiability, and perfect ballot secrecy; however, it supports
only 2 choices and lacks recovery from stalling participants.

We present BBB-Voting, an equivalent blockchain-based ap-
proach for decentralized voting such as OVN, but in contrast to it,
BBB-Voting supports 1-out-of-k choices and provides robustness
that enables recovery from stalling participants. We make a cost-
optimized implementation using an Ethereum-based environment
respecting Ethereum Enterprise Alliance standards, which we
compare with OVN and show that our work decreases the costs
for voters by 13.5% in normalized gas consumption. Finally, we
show how BBB-Voting can be extended to support the number of
participants limited only by the expenses paid by the authority
and the computing power to obtain the tally.

I. INTRODUCTION

Voting is an integral part of democratic governance, where
eligible participants can cast a vote for their representative
choice (e.g., candidate or policy) through a secret ballot.
The outcome of voting announces a tally of votes. Voting is
usually centralized and suffers from a single point of failure
that can be manifested in censorship, tampering, and issues
with availability of a service. Blockchain is an emerging
decentralized technology that provides interesting properties
such as decentralization, censorship-resistance, immutability of
data, correct execution of code, and extremely high availability,
which can be harnessed in addressing the existing issues
of e-voting. A few blockchain-based e-voting solutions have
been proposed in recent years, mostly focusing on boardroom
voting [1], [2], [3], [4] or small-scale voting [5], [6], [3].

Decentralization was a desired property of e-voting even
before invention of blockchains. For example, (partially) de-

The work was supported by the DAIS project, which has received funding
from the ECSEL Joint Undertaking and the Czech Ministry of Education,
Youth and Sports, grant agreement 101007273. Also, this work was supported
by the FIT BUT internal project FIT-S-23-815. Further, this research was partly
supported by the National Key Research and Development Program of China
under Grant No. 2021YFA1000600 as well as the National Natural Science
Foundation of Shandong Province, China, under Grant No. ZR2023MF045
and the Natural Science Foundation of Qingdao, China, under Grant No. 23-
2-1-152-zyyd-jch.

centralized e-voting that uses the homomorphic properties of
El-Gamal encryption was introduced by Cramer et al. [7]. It
assumes a threshold number of honest election authorities to
provide the privacy of vote. However, when this threshold
is adversarial, it does not protect from computing partial
tallies, making statistical inferences about it, or even worse
– the vote choices of participants. A solution that removed
trust in tallying authorities was for the first time proposed
by Kiayias and Yung [8] in their privacy-preserving self-
tallying boardroom voting protocol. A similar protocol was
later proposed by Hao et al. [9], which was later extended
to a blockchain environment by McCorry et al. [1] in their
Open Vote Network (OVN). An interesting property of OVN
is that it requires only a single honest voting participant to
maintain the privacy of the votes. However, OVN supports
only two vote choices (based on [9]), assumes no stalling
participants, and requires expensive on-chain tally computation
(limiting its scalability). The scalability of OVN was improved
by Seifelnasr et al. [5], but retaining the limitation of 2 choices
and missing robustness.

Our goal is to build a remote boardroom voting protocol
that resolves these limitations and enables a straightforward
extension to support scalability. Therefore, we introduce BBB-
Voting, a blockchain-based boardroom voting system providing
1-out-of-k voting, while additionally offering a mechanism
for resolution of faulty participants. Alike OVN, BBB-Voting
also provides the maximum privacy of votes in the setting
that outputs the full tally of votes (as opposed to tally-hiding
protocols [10], [11]). Both OVN and BBB-Voting require the
authority whose role is limited to registering participants and
shifting the phases of the protocol. The communication be-
tween the participants and the blockchain is semi-synchronous;
i.e., each participant is expected to execute certain actions
within a given time frame. When all registered participants
submit their votes, the result can be tallied by anybody and
the correctness of the result is verified by the blockchain.

Contributions. We make the following contributions.

i) We present BBB-Voting, an approach for remote end-to-
end verifiable privacy-preserving self-tallying 1-out-of-k
boardroom voting on the blockchain (see § IV). In detail,
we start with the voting protocol proposed by Hao et
al. [9] that provides a low bandwidth requirements and
computational costs but is limited to 2 vote choices. We
extend this protocol to support k choices utilizing the
1-out-of-k proof verification proposed by Kiayias and
Yung [8]. We accommodate this approach to run on the
blockchain with Turing-complete smart contract capabil-
ity, enabling on-chain zero-knowledge proof verification



of blinded votes (and other proofs).
ii) We incorporate a robustness approach [12] into our pro-

tocol, which enables us to eliminate (even reoccurring)
stalling (i.e., faulty) participants and thus finish voting
without restarting the protocol (see § IV-B).

iii) We make two implementations, one based on discrete
logarithm problem (DLP) for integers modulo p and
the second one based on the elliptic curve DLP. For
both implementations we propose various optimizations
reducing the costs imposed by the blockchain platform
(§ V-A). Due to the optimizations, our implementation
(with elliptic curve DLP) increases the number of partici-
pants fitting a single block by 9% in contrast to OVN [1]
under the same assumptions, while it decreases the costs
for voters by 13.5%.

iv) We outline a scalability extension of our work, enabling
the number of participants to be limited only by the
expenses paid by the authority to register participants
and compute their multi-party computation (MPC) keys
as well as the computing power to obtain the tally. For
demonstration purposes, we evaluate its utility in the
context of the voting that is a magnitude greater than
the boardroom voting (i.e., up to 1000 participants) while
preserving almost the same per-participant costs paid by
the authority as without this extension (see § VI-A).

II. PRELIMINARIES

In this section, we describe voting terminology. We assume
that the reader is familiar with blockchains and smart contracts.

An involved party refers to any stakeholder of the voting
process and it covers all participants and the authority. A
voting protocol is expected to meet several properties. A list of
such properties appears in the works of Kiayias and Yung [8],
Groth [13], and Cramer et al. [7].

(1) Privacy of Vote: ensures the secrecy of the ballot con-
tents [8]. Hence, a participant’s vote must not be revealed
other than by the participant herself upon her discretion (or
through the collusion of all remaining participants). Usually,
privacy is ensured by trusting authorities in traditional elec-
tions or by homomorphic encryption in some decentralized
e-voting solutions (e.g., [8], [9], [1], [5], [6]). (2) Perfect
Ballot Secrecy: is an extension of the privacy of the vote.
It implies that a partial tally (i.e., prior to the end of voting)
is available only if all remaining participants are involved
in its computation. (3) Fairness: ensures that a tally may
be calculated only after all participants have submitted their
votes. Therefore, no partial tally can be revealed to anyone
before the end of the voting protocol [8]. (4a) Universal
Verifiability: any involved party can verify that all cast votes
are correct and they are correctly included in the final tally [8].
(4b) End-to-End (E2E) Verifiability: The verifiability of
voting systems is also assessed by E2E verifiability [14],
which involves cast-as-intended, recorded-as-cast, and tallied-
as-recorded verifiability [15]. (5) Dispute-Freeness: extends
the notion of verifiability. A dispute-free [8] voting protocol
contains built-in mechanisms eliminating disputes between
participants; therefore, anyone can verify whether a participant
followed the protocol. Such a scheme has a publicly-verifiable
audit trail that contributes to the reliability and trustworthiness
of the scheme. (6) Self-Tallying: once all the votes are cast,

any involved party can compute the tally. Self-tallying systems
need to deal with the fairness issues (see (3) above) because the
last participant is able to compute the tally even before casting
her vote. This can be rectified with an additional verifiable
dummy vote [8]. (7) Robustness (Fault Tolerance): the voting
protocol is able to recover from faulty (stalling) participants,
where faults are publicly visible and verifiable due to dispute-
freeness [8]. Fault recovery is possible when all the remaining
honest participants are involved in the recovery. (8) Resistance
to Serious Failures: Serious failures are defined as situations
in which voting results were changed either by a simple error
or an adversarial attack. Such a change may or may not be
detected. If detected in non-resistant systems, it is irreparable
without restarting the entire voting [16].

III. SYSTEM MODEL & OVERVIEW

Our system model has the following actor/components: (1)
a participant (P) who votes, (2) a voting authority (V A) who
is responsible for validating the eligibility of P s to vote, their
registration, and (3) a smart contract (SC), which collects the
votes, acts as a verifier of zero-knowledge proofs, enforces the
rules of voting, and verifies the tally.

A. Adversary Model

The adversary A has bounded computing power, is unable
to break used cryptographic primitives, and can control at most
t of n participants during the protocol, where t ≤ n − 2
∧ n ≥ 3. Any P under the control of A can misbehave
during the protocol execution. A is also a passive listener
of all communication entering the blockchain network but
cannot block it or replace it with a malicious message since
all transactions sent to the blockchain are authenticated by
signatures of P s or V A. Finally, V A is only trusted in terms
of identity management, i.e., it performs identity verification
of P s honestly, and neither censor any P nor register any
spoofed P . Nevertheless, no other trust in V A is required.

IV. BBB-VOTING SCHEME

BBB-Voting scheme provides all properties mentioned in
§ II. Similar to OVN [1], BBB-Voting publishes the full tally
at the output and uses homomorphic encryption to achieve
privacy of votes and perfect ballot secrecy. In detail, we extend
the protocol of Hao et al. [9] to support k choices utilizing
the 1-out-of-k proof verification proposed by Kiayias and
Yung [8], and we accommodate this approach to run on the
blockchain. Additionally, we extend our protocol to support
the robustness, based on Khader et al. [12], which enables the
protocol to recover (without a restart) from faulty participants
who did not submit their votes. As a consequence, robustness
increases the resistance of our protocol to serious failures.

A. Base Variant

The base variant of BBB-Voting does not involve a fault
recovery and is divided into five stages: registration (identity
verification, key ownership verification, enrollment at SC),
a setup (an agreement on system parameters, submission of
ephemeral public keys), pre-voting (computation of MPC
keys), voting (vote packing, blinding, and verification), and
tally phases. All faulty behaviors of P s and V A are subject
to deposit-based penalties. In detail, P who submitted her
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Fig. 1: Basic protocol of BBB-Voting. tx(param)A denotes a
transaction signed by A’s wallet private key.

ephemeral key (in the setup phase) and then has not voted
within the timeout will lose the deposit. To achieve fairness,
V A acts as the last P who submits a “dummy” vote with her
ephemeral private key1 after all other P s cast their vote (or
upon the voting timeout expiration).

1) Phase 1 (Registration) V A first verifies the iden-
tity proof of each P . For decentralized identity management
(IDM), the identity proof is represented by the verifiable cre-
dentials (VC) [17] signed by the issuer, while in a centralized
IDM the identity proof is interactively provided by a third-
party identity provider (e.g., Google). First, V A verifies the
issuer’s signature on the identity proof. Next, V A challenges
P to prove (using her VC) that she is indeed the owner of
the identity. Further, each P creates her blockchain wallet
address (i.e., the blockchain public key (PK)) and provides
it to V A. The V A locally stores a bijective mapping between
a P ’s identity and her wallet address.2 Next, V A enrolls all
verified P s by sending their wallet addresses to SC.

2) Phase 2 (Setup) P s agree on system parameters
that are universal to voting – the parameters for voting are

1Privacy for a dummy vote is not guaranteed since it is subtracted.
2Note that the address of P must not be part of identity proof – avoiding V A

to possess a proof of identity to blockchain address mapping (see § VII-B).

publicly visible on SC (deployed by V A in a transaction).
Therefore, any P may verify these parameters before joining
the protocol. Note the deployment transaction also contains the
specification of timeouts for all further phases of the protocol
as well as deposit-based penalties for misbehavior of V A and
P s. The parameters for voting are set as follows:

1) V A selects a common generator g ∈ F∗p. The value of p
is chosen to be a safe prime, i.e., p = 2 · q + 1, where q is
a prime. A safe prime is chosen to ensure the multiplicative
group of order p− 1 = 2 · q, which has no small subgroups
that are trivial to detect.3 Let n < p− 1.

2) Any participant Pi is later permitted to submit a vote
{vi | i ∈ {1, 2, ..., k}} for one of k choices. This is achieved
by selecting k independent generators {f1, ..., fk} in F∗p (one
for each choice). These generators for choices should meet a
property described by Hao et al. [9] to preclude having two
different valid tallies that fit Eq. 4:

fi =





g2
0

for choice 1,
g2

m

for choice 2,
· · ·

g2
(k−1)m

for choice k,

(1)

where m is the smallest integer such that 2m > n (the
number of participants).

Ephemeral Key Generation & Committing to Vote. Each
Pi creates her ephemeral private key as a random number
xi ∈R F∗p and ephemeral public key as gxi . Each Pi sends
her ephemeral public key to SC in a transaction signed
by her wallet, thereby, committing to submit a vote later.4
Furthermore, Pi sends a deposit in this transaction, which can
be retrieved back after the end of voting. However, if Pi does
not vote within a timeout (or does not participate in a fault
recovery (see § IV-B)), the deposit is lost, and it is split to
the remaining involved parties. P s who do not submit their
ephemeral keys in this stage are indicating that they do not
intend to vote; the protocol continues without them and they
are not subject to penalties. Finally, each P obtains (from SC)
the ephemeral public keys of all other verified P s who have
committed to voting. Ephemeral keys are one-time keys, and
thus can be used only within one run of the protocol to ensure
privacy of votes (other runs require fresh ephemeral keys).

3) Phase 3 (Pre-Voting) This phase represents multiparty
computation (MPC), which is run to synchronize the keys
among all P s and achieve the self-tallying property. However,
no direct interaction among P s is required since all ephemeral
public keys are published at SC. The MPC keys are computed
by SC, when V A triggers the compute operation via a
transaction. The SC computes and stores the MPC key for
each Pi as follows:

h = gyi =

i−1∏

j=1

gxj/

n∏

j=i+1

gxj , (2)

where yi =
∑

j<i xj −
∑

j>i xj and
∑

i xiyi = 0 (see Hao
et al. [9] for the proof). While anyone can compute gyi , to
reveal yi, all P s \ Pi must either collude or solve the DLP

3We use modular exponentiation by repeated squaring to compute gx mod
p, which has a time complexity of O((log x)·(log2 p)) [18].

4In contrast to OVN [1] (based on the idea from [9]), we do not require Pi to
submit ZKP of knowledge of xi to SC since Pi may only lose by submitting
gxi to which she does not know xi (i.e., a chance to vote + deposit).
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Fig. 2: ZKP of set membership for 1-out-of-k choices.

for Eq. 2. As the corollary of Eq. 2, the protocol preserves
vote privacy if there are at least 3 P s with at least 2 honest
(we defer the proof to the journal version of the paper due to
space constraints).

4) Phase 4 (Voting) In this phase, each Pi blinds
and submits her vote to SC. These steps must ensure the
recoverability of the tally, vote privacy, and well-formedness
of the vote. Vote privacy is achieved by multiplying the Pi’s
blinding key with her vote choice. The blinded vote of the
participant Pi is

Bi =





gxiyif1 if Pi votes for choice 1,
gxiyif2 if Pi votes for choice 2,

...

gxiyifk if Pi votes for choice k.

(3)

The P sends her choice within a blinded vote along with a
1-out-of-k non-interactive zero-knowledge (NIZK) proof of
set membership to SC (i.e., proving that the vote choice
∈ {1, ..., k}). We modified the approach proposed by Kiayias
et al. [8] to the form used by Hao et al. [9], which is convenient
for practical deployment on existing smart contract platforms.
The verification of set membership using this protocol is
depicted in Fig. 2, where Pi is a prover and SC is the verifier.
Hence, SC verifies the correctness of the proof and then stores
the blinded vote. In this stage, it is important to ensure that no
re-voting is possible, which is to avoid any inference about the
final vote of P in the case she would change her vote choice
during the voting stage. Such a re-voting logic can be enforced
by SC, while user interface of the P should also not allow
it. Moreover, to ensure fairness, V A acts as the last P who
submits a dummy vote and her ephemeral private key.

5) Phase 5 (Tally) When the voting finishes (i.e., voting
timeout expires or all P s and V A cast their votes), the tally
of votes received for each of k choices is computed off-chain

Participant Pi Smart Contract
A← gxi , B ← gxj , xi A← gxi , B ← gxj

Let wi,∈r Fp

C ← gxixj

m1 ← gwi

m2 ← Bwi

c← Hzk(A,B,m1,m2)
ri ← wi + cxi

C, ri,m1,m2- c← Hzk(A,B,m1,m2)

gr ?
= m1A

c

Br ?
= m2C

c

Fig. 3: ZKP verifying correspondence of gxixj to public keys
A = gxi , B = gxj .

by any party and then submitted to SC. When SC receives
the tally, it verifies whether Eq. 4 holds, subtracts a dummy
vote of V A, and notifies all P s about the result. The tally is
represented by vote counts cti,∀i ∈ {1, ..., k} of each choice,
which are computed using an exhaustive search fitting

n∏

i=1

Bi =

n∏

i=1

gxiyif = g
∑

i xiyif = f1
ct1f2

ct2 ...fk
ctk . (4)

The maximum number of attempts is bounded by combinations
with repetitions to

(
n+k−1

k

)
. Although the exhaustive search

of 1-out-of-k voting is more computationally demanding in
contrast to 1-out-of-2 voting [1], [9], this process can be
heavily parallelized. See time measurements in § V-B.

B. Variant with Robustness

We extend the base variant of BBB-Voting by a fault
recovery mechanism. If one or more P s stall (i.e., are faulty)
and do not submit their blinded vote in the voting stage despite
committing in doing so, the tally cannot be computed directly.
To recover from faulty P s, we adapt the solution proposed
by Khader et al. [12], and we place the fault recovery phase
immediately after the voting phase. All remaining honest P s
are expected to repair their vote by a transaction to SC, which
contains key materials shared with all faulty P s and their
NIZK proof of correctness. SC verifies all key materials with
proofs (see Fig. 3), and then they are used to invert out the
counter-party keys from a blinded vote of an honest P who
sent the vote-repairing transaction to SC. Even if some of
the honest (i.e., non-faulty) P s would be faulty during the
recovery phase (i.e., do not submit vote-repairing transaction),
it is still possible to recover from such a state by repeating the
next round of the fault recovery, but this time only with key
materials related to new faulty P s. To disincentivize stalling
participants, they lose their deposits, which is split across
remaining P s as a compensation for the cost of fault recovery.

V. IMPLEMENTATION & EVALUATION

We selected the Ethereum-based environment for evalu-
ation due to its widespread adoption and open standardized
architecture (driven by the Enterprise Ethereum Alliance [19]),
which is incorporated by many blockchain projects. We imple-
mented SC components in Solidity, while V A and P compo-
nents were implemented in Javascript as testing clients of the
truffle project. Executing smart contracts over blockchain, i.e.,
performing computations and storing data, has its costs. In
Ethereum Virtual Machine (EVM), these costs are expressed
by the level of execution complexity of particular instructions,
referred to as gas. In this section, we analyze the costs imposed
by our approach, perform a few optimizations, and compare
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Fig. 4: A computation of MPC keys by the authority.

the costs with OVN [1]. In the context of this work, we assume
10M as the block gas limit. With block gas limit assumed, our
implementation supports up to 135 participants (see Fig. 4),
up to 7 vote choices (see Fig. 5a), and up to 9 simultaneously
stalling faulty participants (see Fig. 5b).5

We made two different implementations, the first one is
based on DLP for integers modulo p (denoted as integer arith-
metic (IA)), and the second one is based on the elliptic curve
DLP (denoted as ECC). In the ECC, we used a standardized
Secp256k1 curve from existing libraries [20], [1]. In the case
of IA, we used a dedicated library [21] for operations with big
numbers since EVM natively supports only 256-bit long words,
which does not provide sufficient security level with respect
to the DLP for integers modulo p.6 We consider 1024 bits the
minimal secure (library-supported) length of numbers in IA.
As we will show below, IA implementation even with minimal
1024 bits is overly expensive, and thus in many cases does
not fit the block gas limit by a single transaction. Therefore,
in our experiments, we put emphasis on ECC implementa-
tion. The source code of our implementation is available at
https://github.com/ivan-homoliak-sutd/BBB-Voting.

A. Cost Optimizations

Since ECC operations in ZKP verifications and computa-
tion of MPC keys impose a high execution cost when running
at the blockchain, we have made several cost optimizations.

(1) Caching in MPC Key Computation. If imple-
mented naively, the computation of all MPC keys in SC
would contain a high number of overlapped additions, and
hence the price would be excessively high (see series “ECC-
Affine (naive)” in Fig. 4).7 Therefore, in the code of SC we
accumulate and reuse the value of the left side of MPC key
computation during iteration through all participants. Similarly,
the sum at the right side can be computed when processing
the first participant, and then in each follow-up iteration, it
can be subtracted by one item. However, we found out that
subtraction imposes non-negligible costs since it contains one
affine transformation (which we later optimize). In the result,
we found pre-computation of all intermediary right items in
the expression during the processing of the first participant
as the most optimal. The resulting savings are depicted as
“ECC-Affine (caching)” series in Fig. 4. We applied the same
optimization for IA; however, even after adding a further
optimization (i.e., pre-computation of modular inverses; see

5The max. corresponds to a single recovery round but the total number of
faulty participants can be unlimited since the fault recovery round can repeat.

6Since this DLP was already computed for 795-bit long safe prime in
2019 [22], only values higher than 795-bit are considered secure enough.

7The same phenomenon occurs in IA (see Eq. 2) but with overlapped
multiplications (see series “IA 1024 bits (naive)”).

§ V-A.4), the costs were still prohibitively high (see “IA 1024
bits (caching+modi)” series in Fig. 4), with the max. number
of participants fitting the gas limit only 29.

(2) Affine vs. Jacobi Coordinates. In the ECC
libraries employed [20] [1], by default, all operations are
performed with points in Jacobi coordinates and then explicitly
transformed to affine coordinates. However, such a trans-
formation involves one modular inversion and four modular
multiplications over 256-bit long integers, which is costly.
Therefore, we maximized the utilization of internal functions
from the Witnet library [20], which do not perform affine
transformation after operation execution but keep the result
in Jacobi coordinates. This is possible only until the moment
when two points are compared – a comparison requires affine
coordinates. Hence, a few calls of the affine transformation
are inevitable. This optimization is depicted in Fig. 4 (series
“ECC-Jacobi (caching)”) and Fig. 5a (series “ECC-Jacobi”).
In the case of computation of MPC keys, this optimization
brought improvement of costs by 23% in contrast to the
version with affine coordinates and caching enabled. Due to
this optimization, up to 111 participants can be processed in a
single transaction not exceeding the block gas limit. In the case
of vote submission, this optimization brought improvement of
costs by 33% in contrast to the version with affine coordinates.

(3) Multiplication with Scalar Decomposition. The
most expensive operation on an elliptic curve is a scalar
multiplication; based on our experiments, it is often 5x-10x
more expensive than the point addition since it involves several
point additions (and/or point doubling). The literature proposes
several ways of optimizing the scalar multiplication, where
one of the most significant ways is w-NAF (Non-Adjacent
Form) scalar decomposition followed by two simultaneous
multiplications with scalars of halved sizes [23]. This approach
was also adopted in the Witnet library [20] that we base
on. The library boosts the performance (and decreases costs)
by computing the sum of two simultaneous multiplications
kP + lQ, where k = (k1 + k2λ), l = (l1 + l2λ), and λ
is a specific constant to the endomorphism of the elliptic
curve. To use this approach, a scalar decomposition of k
and l needs to be computed beforehand. Nevertheless, such
a scalar decomposition can be computed off-chain (and
verified on-chain), while only a simultaneous multiplication
is computed on-chain. However, to leverage the full potential
of the doubled simultaneous multiplication, one must have
the expression kP + lQ, which is often not the case. In our
case, we modified the check at SC to fit this form. Alike
the vote submission, this optimization can be applied in vote
repair. We depict the performance improvement brought by
this optimization as series “ECC-Jacobi (smul)” in Fig. 5.

(4) Pre-Computation of Modular Inversions. Each affine
transformation in the vote submission contains one operation
of modular inversion – assuming previous optimizations, ZKP
verification of one item in 1-out-of-k ZKP requires three affine
transformations (e.g., for k = 5, it is 15). Similarly, the
ZKP verification of correctness in the repair vote requires two
affine transformations per each faulty participant submitted.
The modular inversion operation runs the extended Euclidean
algorithm, which imposes non-negligible costs. However, all
modular inversions can be pre-computed off-chain, while
only their verification can be made on-chain (i.e., modular
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(b) Vote repair by Pi.
Fig. 5: Vote submission and vote repair (i.e., fault recovery) with various optimizations.

multiplication), which imposes much lower costs. We depict
the impact of this optimization as “ECC-Jacobi (smul+modi)”
series in Fig. 5 and “...modi...” series in Fig. 4. In the result,
it has brought 5% savings of costs in contrast to the version
with the simultaneous multiplication.

B. Tally Computation

In Tab. I, we provide time measurements of tally compu-
tation through the entire search space on 1 core vs. all cores
of the i7-10510U CPU laptop.8 We see that for n ≤ 100 and
k ≤ 6, the tally can be computed even on a commodity PC in a
reasonable time. However, for higher n and k, we recommend
using a more powerful machine or distributed computation
across all P s. One should realize that our measurements
correspond to the upper bound, and if some ranges of tally fre-
quencies are more likely than other ones, they can be processed
first – in this way, the computation time can be significantly
reduced. Moreover, we emphasize that an exhaustive search
for tally computation is not specific only to our scheme but
to homomorphic-encryption-based schemes providing perfect
ballot secrecy and privacy of votes (e.g., [8], [9], [1]).

C. Cost Comparison

In Tab. II, we made a cost comparison of BBB-Voting
(using ECC) with OVN [1], where we assumed two choices
and 40 participants (the same setting as in [1]). We see
that the total costs are similar but BBB-Voting improves P ’s
costs by 13.5% and V A’s cost by 0.9% even though using
more complex setting that allows 1-out-of-k voting. We also
emphasize that the protocol used for vote casting in BBB-
Voting contains more operations than OVN but regardless
of it, the costs are close to those of OVN, which is mostly
caused by the proposed optimizations.9 Next, we found that
OVN computes tally on-chain, which is an expensive option.
In contrast, BBB-Voting computes tally off-chain and SC

8In some cases we estimated the time since we knew the number of attempts.
9To verify 1-out-of-k ZKP in vote casting, BBB-Voting computes 5 · k

multiplications and 3·k additions on the elliptic curve – i.e., 10 multiplications
and 6 additions for k = 2. In contrast, OVN computes only 8 multiplications
and 5 additions for k = 2.

Voters Choices
(n) k = 2 k = 4 k = 6 k = 8

20 0.01s 0.01s 0.07s 0.07s
30 0.01s 0.01s 0.53s 13.3s
40 0.01s 0.04s 02.6s 112s
50 0.01s 0.08s 10.0s 606s
60 0.01s 0.16s 28.2s 2424s
70 0.01s 0.48s 69.6s ∼ 2.1h
80 0.01s 0.82s 160s ∼ 5.8h
90 0.01s 1.08s 320s ∼ 14.2h

100 0.01s 1.2s 722s ∼ 33h

(a) 1 core

Voters Choices
(n) k = 6 k = 8

20 0.01s 0.01s
30 0.08s 2.0s
40 0.39s 16.8s
50 1.5s 90.9s
60 4.44s 267s
70 11.85s 773s
80 19.46s 2210s
90 44.02s ∼ 2.7h

100 108.3s ∼ 4.9h

(b) 8 cores
Tab. I: Upper time bound for tally computation.

performs only verification of its correctness, which enables
us to minimize the cost of this operation. Another gas saving
optimization of BBB-Voting in contrast to OVN (and Hao
et al. [9]) is that we do not require voters to submit ZKP
of knowledge of xi in gxi during the registration phase to
SC since Pi may only lose by providing incorrect ephemeral
public key gxi – she might lose the chance to vote and her
deposit. Finally, we note that we consider the deployment
costs of our SC equal to 4.8M units of gas; however, our SC
implementation contains a few auxiliary view-only functions
for a pre-computation of modular inverses, with which, the
deployment costs would increase to 7.67M due to code size.
Nevertheless, these operations can be safely off-chained and
we utilized them on-chain only for simplicity.

VI. DISCUSSION OF EXTENSIONS

In this section, we discuss the extensions addressing the
scalability and performance limitations of BBB-Voting.

A. Scalability Limitation & Extension

The limitation of BBB-Voting (like in OVN) is a lack of
scalability, where the block gas limit might be exceeded with
a high number of P s. Therefore, we primarily position our
solution as boardroom voting; however, we will show in this
section that it can be extended even to larger voting. Our voting
protocol (see § IV-A) has a few platform-specific bottlenecks.
The first bottleneck is in the setup phase, where V A submits
the wallet addresses of all P s to SC in a single transaction,
which might exceed the block gas limit when the number of
participants n > 201. The second bottleneck occurs in the pre-
voting phase, where V A calls the function of SC to compute
all MPC keys; exceeding the block gas limit occurs when the
number of participants n > 135. The next bottleneck occurs
in the voting phase, where voters submit their blinded votes
together with 1-out-of-k ZKP, exceeding the block gas limit
when the number of choices k > 7. The last bottleneck occurs
in the fault recovery phase and the block gas limit is exceeded
when the number of simultaneously faulty participants f > 9.

Gas Paid by OVN BBB-Voting

Deployment of Voting SC V A 3.78M 4.8M
Deployment of
Cryptographic SCs

V A 2.44M
2.15M
(1.22M+0.93M)

Enroll voters V A
2.38M
(2.15M+0.23M)

1.93M

Submit Ephemeral PK P 0.76M 0.15M
Cast Vote P 2.50M 2.72M
Tally V A (or P ) 0.75M 0.39M

Total Costs for P 3.26M 2.87M
Total Costs for VA 9.35M 9.27M

Tab. II: A normalized cost comparison of BBB-Voting with
OVN for n = 40 and k = 2.
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Fig. 6: A computation of MPC keys by the authority V A using
various batch sizes and the most optimized ECC variant.

Nevertheless, transaction batching can be introduced for
the elimination of all these bottlenecks. To realize a batching
of pre-voting, voting, and fault-recovery phases, the additional
integrity preservation logic across batches needs to be ad-
dressed while the verification of integrity has to be made by
SC. For demonstration purposes, we addressed the bottleneck
of the pre-voting stage (see Fig. 6) and setup stage, which
further improves the vote privacy in BBB-Voting (see § VII-B)
and causes only a minimal cost increase due to the overhead
of integrity preservation (i.e., 1%). With this extension, n is
limited only by the expenses paid by V A to register P s and
compute their MPC keys, and the computing power to obtain
the tally.10 If a certain combination of high n and k would
make computation of a tally overly computationally expensive
(or the cost of its verification by SC), it is further possible
to partition P s into multiple groups (i.e., voting booths), each
managed by an instance of BBB-Voting, while the total results
could be summed across instances. Scalability evaluation and
other operations is subject to our future work, which provides
more empirical evidence [24].

B. Cost and Performance Limitations

Although we thoroughly optimized the costs (and thus
performance) of our implementation (see § V-A), the expenses
imposed by a public permissionless smart contract platform
might be still high, especially during peaks of the gas price
and/or in the case of a larger voting than boardroom voting
(see § VI-A). Besides, the transactional throughput of such
platforms might be too small for such larger voting instances
to occur in a specified time window. Therefore, to further
optimize the costs of BBB-Voting and its performance, it can
run on a public permissioned Proof-of-Authority platforms,
e.g., using Hyperledger projects (such as safety-favored Besu
with Byzantine Fault Tolerant (BFT) protocol). Another op-
tion is to use smart contract platforms utilizing the trusted
computing that off-chains expensive computations (e.g., Eki-
den [25], TeeChain [26], Aquareum [27]), or other partially-
decentralized second layer solutions (e.g., Plasma [28], Poly-
gon Matic [29], Hydra [30]). Even though these solutions
might preserve most of the blockchain features harnessed in
e-voting, availability and decentralization might be decreased,
which the security/performance trade-off.

VII. SECURITY ANALYSIS

We first analyze security of BBB-Voting with regard to
the voting properties specified in § II. Next, we analyze
blockchain-specific security & privacy issues and discuss their

10E.g., for n = 1000, k = 2 (and k = 4), it takes 0.15s (and ∼ 4h) to
obtain the tally on a commodity PC with 8 cores, respectively.

mitigations. The security of our scheme relies on well-known
cryptographic primitives under their standard assumptions.

A. Properties of Voting

(1) Privacy in BBB-Voting requires at least 3 P s, out of which
at least 2 are honest (see § IV-A). Privacy in BBB-voting is
achieved by blinding votes using ElGamal encryption [31],
whose security is based on the decisional Diffie-Hellman
assumption. Unlike the conventional ElGamal algorithm, a de-
cryption operation is not required to unblind the votes. Instead,
we rely on the self-tallying property of our voting protocol.
The ciphertext representing a blinded vote is a tuple (c1, c2),
where c1 = gxy.f and c2 = gy , where the purpose of c2 is
to assist with the decryption. Decryption involves computing
(c2)

−x · c1 to reveal f , which unambiguously identifies a
vote choice. As a result, the blinding operation for participant
Pi in Eq. 3 is equivalent to ElGamal encryption involving
the computation of c1 but not the decryption component c2.
Furthermore, the blinding keys are ephemeral and used exactly
once for encryption (i.e., blinding) of the vote within a single
run of voting protocol11 – i.e., if the protocol is executed
correctly, there are no two votes fl and fm encrypted with
the same ephemeral blinding key of Pi, such that

(gxy · fl)
(gxy · fm)

=
fl
fm

, (5)

from which the individual votes could be deduced. For the
blockchain-specific privacy analysis, see also § VII-B.

(2) Ballot Secrecy. It is achieved by blinding the vote using
ElGamal homomorphic encryption [7], and it is not required
to possess a private key to decrypt the tally because of
the self-tallying property (g

∑
i xiyi = 1). Therefore, given a

homomorphic encryption function, it is possible to record a
sequence of encrypted votes without being able to read the
votes choices. However, if all Ps are involved in the recovery
of a partial tally consisting of a recorded set of votes, these
votes can be unblinded (as allowed by ballot secrecy). Even a
subset of n− 2 P s12 who have already cast their votes cannot
recover a partial tally that reveals their vote choices because
of the self-tallying property (g

∑
i xiyi = 1) has not been met.

(3) Fairness. If implemented naively, the last voting P can
privately reveal the full tally by solving Eq. 4 before she casts
her vote since all remaining blinded votes are already recorded
on the blockchain (a.k.a., the last participant conundrum). This
can be resolved by V A who is required to submit the final
dummy vote including the proof of her vote choice, which is
later subtracted from the final tally by SC.13

(4a) Universal Verifiability. Any involved party can check
whether all recorded votes in the blockchain are correct and
are correctly included in the final tally [8]. Besides, the blinded
votes are verified at SC, which provides correctness of its ex-
ecution and public verifiability, relying on the honest majority
of the consensus power in the blockchain (see § VII-B).

(4b) E2E Verifiability. To satisfy E2E verifiability [2]: (I)
each P can verify whether her vote was cast-as-intended and

11As a consequence, BBB-Voting can be utilized in a repetitive voting [32]
with a limitation of a single vote within an epoch.

12Note that at least 2 P s are required to be honest (see § III-A).
13Note that If V A were not to execute this step, the fault recovery would

exclude V A’s share from MPC keys, and the protocol would continue.



recorded-as-cast, (II) anyone can verify whether all votes are
tallied-as-recorded. BBB-Voting meets (I) since each P can
locally compute her vote choice (anytime) and compare it
against the one recorded in the blockchain. BBB-Voting meets
(II) since SC executes the code verifying that the submitted
tally fits Eq. 4 that embeds all recorded votes.

(5) Dispute-Freeness. Since the blockchain acts as a tamper-
resistant bulletin board (see § VII-B), and moreover it provides
correctness of code execution (i.e., on-chain execution of
verification checks for votes, tally, and fault recovery shares)
and verifiability, the election remains dispute-free under the
standard blockchain assumptions about the honest majority and
waiting the time to finality.

(6) Self-Tallying. BBB-Voting meet this property since in the
tally phase of our protocol (and anytime after), all cast votes
are recorded in SC; therefore any party can use them to fit
Eq. 4, obtaining the final tally.

(7) Robustness (Fault Tolerance). BBB-Voting is robust since
it enables to remove (even reoccurring) stalling P s by its fault
recovery mechanism (see § IV-B). Removing of stalling P s
involves SC verifiability of ZKP submitted by P s along with
their counter-party shares corresponding to stalling P s.

(8) Resistance to Serious Failures. The resistance of BBB-
Voting to serious failures relies on the integrity and append-
only features of the blockchain, which (under its assumptions
§ VII-B) does not allow the change of already cast votes.

B. Blockchain-Specific Aspects and Issues

In the following, we focus on the most important
blockchain-specific aspects and issues related to BBB-Voting.

(1) Bulletin Board vs. Blockchains. The definition of a
bulletin board [8] assumes its immutability and append-only
feature, which can be provided by blockchains that more-
over provide correct execution of code. CAP theorem [33]
enables a distributed system (such as the blockchain) to
select either consistency or availability during the time of
network partitions. If the system selects consistency (e.g.,
Algorand [34], BFT-based blockchains such as [35]), it stalls
during network partitions and does not provide liveness (i.e.,
the blocks are not produced) but provides safety (i.e., all
nodes agree on the same blocks when some are produced).
On the other hand, if the system selects availability (e.g.,
Bitcoin [36], Ethereum [37]), it does not provide safety but
provides liveness, which translates into possibility of creating
accidental forks and eventually accepting one as valid. Many
public blockchains favor availability over consistency, and
thus do not guarantee immediate immutability. Furthermore,
blockchains might suffer from malicious forks that are longer
than accidental forks and are expensive for the attacker. Usu-
ally, their goal is to execute double-spending or selfish min-
ing [38], violating the assumptions of the consensus protocol
employed – more than 51% / 66% of honest nodes presented
in PoW / BFT-based protocols. To prevent accidental forks and
mitigate malicious forks in liveness-favoring blockchains, it is
recommended to wait for a certain number of blocks (a.k.a.,
block confirmations). Another option to cope with forks is to
utilize safety-favoring blockchains (e.g., [34], [35]).

Considering BBB-Voting, we argue that these forks are not

critical for the proposed protocol since any transaction can be
resubmitted if it is not included in the blockchain after a fork.
Waiting for the time to finality (with a potential resubmission)
can be done as a background task of the client software at P s’
devices, so P s do not have to wait. Finally, we emphasize that
the time to finality is negligible in contrast to timeouts of the
protocol phases; therefore, there is enough time to make an
automatic resubmission if needed.
(2) Privacy of Votes. In BBB-Voting, the privacy of vote
choices can be “violated” only in the case of unanimous
voting by all P s, assuming A who can link the identities of
P s (approximated by their IP addresses) to their blockchain
addresses by passive monitoring of network traffic. However,
this is the acceptable property in the class of voting protocols
that provide the full tally of votes at the output, such as
BBB-Voting and other protocols (e.g., [1], [8], [9], [39],
[4]). Moreover, A can do deductions about the probability
of selecting a particular vote choice by P s. For example,
in the case that the majority m of all participants n voted
for a winning vote choice, then A passively monitoring the
network traffic can link the blockchain addresses of Ps to
their identities (i.e., IP addresses), and thus A can infer that
each P from the group of all P s cast her vote to the winning
choice with the probability equal to m

n > 0.5. However, it does
not violate the privacy of votes and such an inferring is not
possible solely from the data publicly stored at the blockchain
since it stores only blinded votes and blockchain addresses
of P s, not the identities of P s. To mitigate these issues, P s
can use anonymization networks or VPN services for sending
transactions to the blockchain. Moreover, neither A nor V A
can provide the public with the indisputable proof that links
P ’s identity to her blockchain address.
(3) Privacy of Votes in Larger Voting. The privacy issue
of unanimous and majority voting (assuming A with network
monitoring capability) are less likely to occur in the larger
voting than boardroom voting since the voting group of P s is
larger and potentially more divergent. We showed that BBB-
Voting can be extended to such a large voting by integrity-
preserving batching in § VI-A. We experimented with batching
up to 1000 P s, which is a magnitude greater voting than the
boardroom voting. We depict the gas expenses paid by V A
(per P ) in Fig. 6, where we distinguish various batch sizes. In
sum, the bigger the batch size, the lower the price per P .

VIII. RELATED WORK

In this section, we briefly survey existing paradigms in
e-voting and describe a few blockchain-based e-voting ap-
proaches. In particular, we focus on remote voting approaches
(with sufficient specification), which we compare in Tab. III.
E-Voting Paradigms. Utilization of mix-nets that shuffle the
votes to break the map between P s and their votes was pro-
posed by Chaum [40]. Benaloh and Fischer [41] were among
the first who showed a paradigm shift from anonymizing P s to
providing privacy of the vote. Cramer et al. [7] present a model
where all votes are sent to a single combiner, utilizing homo-
morphic properties of the ElGamal cryptosystem [31]. Using
bulletin board and zero-knowledge proofs allow their protocol
to be universally verifiable. The work of Kiayias and Yung [8]
converts this scheme into a self-tallying combiner supporting
1-out-of-2 choices; further, the authors outline an extension
of their base protocol to support 1-out-of-k choices. Hao et



al. [9] improve upon the self-tallying protocol by proposing a
simple general-purpose two-round voting protocol for 1-out-of-
2 choices with low bandwidth requirements and computational
costs. Khader et al. [12] take it a step further by adding fairness
and robustness properties. Groth [13] introduces an anonymous
broadcast channel with perfect message secrecy leveraged in
his voting protocol that is simpler and more efficient than [8].
However, it requires sequential voting, where each voter has
to download a fresh state of the bulletin board before voting.
Zagorski et al. [42] propose Remotegrity that is based on
Scanintegrity [43] ballots mailed to voters, allowing them
remotely vote and verify that their ballots were correctly posted
to the bulletin board and at the same time providing protection
against malware in clients. Another direction (e.g., [10], [11])
focuses on the tally-hiding [44], [45] property that enable to
reveal only the best m candidates.
Location. Voting systems can be classified by the physical
location where the vote is cast. Some schemes allow P s
to submit a vote from their devices (i.e., remote voting),
e.g., [46], [47], [42], and blockchain-based [48], [49]. Others
systems require voting to be carried out at a designated site
(a.k.a., supervised voting), e.g., [43], [50], [51], [52], and
blockchain-based [53], [54], [55].

A. Blockchain-Based E-Voting

We extend the categorization of (remote) blockchain-based
voting [4], and we focused on smart contract-based systems.
(1) Voting Systems Using Smart Contracts. McCorry et al. [1]
proposed OVN, a self-tallying voting protocol (basing on [9])
that provides vote privacy and supports two vote choices. OVN
is implemented as Ethereum SC and is suitable for boardroom
voting. It does not provide robustness and expensive tally
computation is made by SC. In contrast, BBB-Voting performs
only tally verification in SC, while it is computed off-chain.
Similar approach basing on [9] was proposed by Li et al. [3],
who further provided robustness from [12]. Seifelnasr et al. [5]
aimed to increase the scalability of OVN by off-chaining tally
computation and registration at V A in a verifiable way. Due
to the higher costs imposed by storing data on SC, they
compute the Merkle tree of voter identities and store only
its root hash at SC. Their approach requires only a single
honest P to maintain the protocol’s security by enabling her
to dispute the incorrect tally submitted to SC. The scalability
technique proposed in this paper is orthogonal to us, and it can
be combined with our techniques (see § VI-A) to optimize on-
chain costs. Yu et al. [4] employ ring signature to ensure that
the ballot is from one of the valid choices, and they achieve
scalability by linkable ring signature key accumulation. Their
approach provides receipt-freeness under the assumption of
trusted V A. However, due to receipt-freeness, this approach
does not provide E2E verifiability. Killer et al. [39] present an
E2E verifiable remote voting scheme with two vote choices.
The authors employ threshold cryptography for achieving
robustness using a scheme similar to Shamir secret sharing.
However, it supports only integers up to a 256 bits (i.e., a size
of the EVM word), which is far below a minimal secure length.
Matile et al. [56] proposed a voting system providing cast-as-
intended (but neither E2E nor universal) verifiability. Their
system uses ElGamal encryption based on DLP with integers
modulo p. Since existing blockchains support natively only up
to 256-bit security for this DLP, the authors create the custom
blockchain with sufficient security. Dagher et al. [6] proposed

Approach Privacy of Votes

Perfect Ballot Secrecy

Fairness
Self-Tallying

Robustness

Uses Blockchain

Uni. Verifiability

E2E Verifiability

Open Source

Choices

Hao et al. [9] ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ 2

Khader et. [12] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ 2

Kiayias and Yung [8] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ 2/k

McCorry et. [1] (OVN) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 2

Seifelnasr et al. [5]
(sOVN)

✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 2

Li et al. [3] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 2

Baudron et al. [61] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ k

Groth [13] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ k

Adida [47] (Helios) ✓∗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ k

Matile et al. [56] (CaIV) ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ k

Killer [39] (Provotum) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 2

Dagher et al. [6]
(BroncoVote)

✓ ✓∗ ✓∗ ✗ ✗ ✓ ✗ ✗ ✗ k

Kostal et al. [57] ✓∗ ✓∗ ✗ ✓ ✓∗ ✓ ✓ ✓ ✗ k

Zagorski et al. [42]
(Remotegrity)

✓∗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ k

Yu et al. [4] ✓ ✓∗ ✓∗ ✓ ✓∗ ✓ ✓ ✗ ✗ k

BBB-Voting ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ k

Tab. III: A comparison of various remote voting protocols.
∗Assuming a trusted V A.

BroncoVote, a voting system that preserves vote privacy by
homomorphic encryption (i.e., Paillier cryptosystem) – the
authors off-chain all cryptographic operations to a trusted
server (without verifiability), which introduces a vulnerability.
Kostal et al. [57] propose voting system, in which V A serves
as a trusted key generator that distributes private keys for
homomorphic encryption to voters, enabling them to resolve
robustness issues at the cost of putting a trust into V A.
(2) Voting Systems Using Cryptocurrency. Zhao and
Chan [58] propose a privacy-preserving voting system with 1-
out-2 choices based on Bitcoin, which uses a lottery-based ap-
proach with an off-chain distribution of voters’ secret random
numbers with their ZKPs. The authors use deposits incentiviz-
ing P s to comply with the protocol; however, a malicious P
can sabotage the voting by refusing to vote or vote in a wrong
order. Tarasov and Tewari [59] proposed a voting system based
on Zcash. The privacy of vote is ensured by the z-address
that preserves unlinkability. The correctness of the voting is
guaranteed by the trusted V A and the candidates. If V A is
compromised, double-voting or tracing the source of the ballot
(violating privacy) is possible. Liu and Wang [60] propose a
conceptual voting approach based on blind signatures with
2 vote choices. Blockchain is utilized only for (auditable)
sending of the messages among parties. However, despite using
blind signatures, P s send their vote to blockchain in plain-text.

IX. CONCLUSION

In this paper, we proposed BBB-Voting, a 1-out-of-k
blockchain-based boardroom voting solution that supports fault
tolerance. We made two variants of full implementation on
EVM: one based on ECC DLP and the other one based
on DLP for integer modulo p. We showed that only ECC
variant is feasible in the real settings of public blockchains.
We performed several cost optimizations and discussed further
improvements concerning costs and scalability, where we made
a proof-of-concept implementation with up to 1000 voters.
Finally, we compared our solution with OVN and results
indicate that BBB-Voting reduces the costs for voters and the
authority by 13.5% and 0.9%, respectively.
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[10] R. Küsters et al., “Ordinos: A verifiable tally-hiding e-voting system,”
in EuroS&P. IEEE, 2020, pp. 216–235.

[11] N. Huber et al., “Kryvos: Publicly tally-hiding verifiable e-voting,” in
ACM SIGSAC Conference on CCS, 2022, pp. 1443–1457.

[12] D. Khader et al., “A fair and robust voting system by broadcast,”
in (EVOTE 2012), July 11-14, 2012, Castle Hofen, Bregenz, Austria.
Bonn, Germany: GI, 2012, pp. 285–299.

[13] J. Groth, “Efficient maximal privacy in boardroom voting and anony-
mous broadcast,” in Financial Cryptography. Springer, 2004, pp. 90–
104.

[14] J. Benaloh et al., “End-to-end verifiability,” arXiv preprint
arXiv:1504.03778, 2015.

[15] H. Jonker et al., “Privacy and verifiability in voting systems: Methods,
developments and trends,” Computer Science Review, vol. 10, pp. 1–30,
2013.

[16] S. Park et al., “Going from bad to worse: from internet voting to
blockchain voting,” Journal of Cybersecurity, vol. 7, no. 1, 2021.

[17] W3C Working Group, “Verifiable credentials use cases,” [Online], 2019.

[18] N. Koblitz, A course in number theory and cryptography, 2nd Edition,
ser. Graduate texts in mathematics. Springer, 1994, vol. 114.

[19] entethalliance.org, “Enterprise Ethereum Alliance,” [Online], 2017.

[20] Witnet Team, “elliptic-curve-solidity,” [Online], 2019.

[21] Zerocoin Team, “Big number library for solidity,” [Online], 2017.

[22] F. Boudot et al., “Discrete Logarithms in GF(p) – 795 bits,” [Online],
2019.

[23] D. Hankerson et al., “Guide to elliptic curve cryptography,” Computing
Reviews, vol. 46, no. 1, p. 13, 2005.
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ABSTRACT
Decentralized electronic voting solutions represent a promising ad-
vancement in electronic voting. One of the e-voting paradigms, the
self-tallying scheme, offers strong protection of the voters’ privacy
while making the whole voting process verifiable. Decentralized
smart contract platforms became interesting practical instantia-
tion of the immutable bulletin board that this scheme requires to
preserve its properties. Existing smart contract-based approaches
employing the self-tallying scheme (such as OVN or BBB-Voting)
are only suitable for a boardroom voting due to their scalability
limitation. The goal of our work is to build on existing solutions to
achieve scalability without losing privacy guarantees and verifia-
bility. We present SBvote, a blockchain-based self-tallying voting
protocol that is scalable in the number of voters, and therefore
suitable for large-scale elections. The evaluation of our proof-of-
concept implementation shows that the protocol’s scalability is
limited only by the underlying blockchain platform. We evaluated
the scalability of SBvote on two public smart contract platforms
– Gnosis and Harmony. Despite the limitations imposed by the
throughput of the blockchain platforms, SBvote can accommodate
elections with millions of voters.

CCS CONCEPTS
• Applied computing → Voting / election technologies; • Se-
curity and privacy → Distributed systems security;
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1 INTRODUCTION
Voting is an essential means of achieving a collective decision.
Traditionally, in large-scale voting such as national elections, the
participants cast anonymous paper ballots that are later tallied by
a trusted authority. With the advances in information technology,
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electronic voting systems have been introduced. While several
small-scale or boardroom e-voting protocols with decentralized
architecture have been proposed [19, 27], large-scale electronic
voting systems mostly follow a centralized model [1, 8]. However, a
centralized entity that is in a control of the voting process represents
a single point of failure as well as a possible element for misbehavior.

The verifiability of many e-voting protocols depends on the as-
sumed existence of a public bulletin board (PBB) that allows append-
only modifications and immutability of the historical data [14].
Voting systems such as Helios [1] implement the public bulletin
board as a single web server. However, this introduces a possibil-
ity of several issues, including unavailability of the server (e.g.,
due to a denial-of-service attack) or a censorship by the authority
controlling the server.

Other systems [19, 27, 31] instantiate the public bulletin board
by a blockchain with a smart contract platform. On top of the im-
mutability and append-only features, such blockchains also provide
correct execution of a code that enables decentralized e-voting
schemes to utilize public verifiability of the data submitted to the
bulletin board (e.g., votes and a tally). Protocols such as Open Vote
Network (OVN) [19] and BBB-Voting [27] use smart contracts to
orchestrate the procedures of the boardroom voting protocol. The
distributed nature of these protocols also eliminates the need to rely
on the authority to tally the votes. In these approaches, referred to
as self-tallying voting, any participant can sum and verify the tally.

We base our work on BBB-Voting since it enables more than
two voting choices and a recovery of faulty participants in contrast
to OVN. Our goal is to build a voting protocol that resolves the
scalability limitation of the self-tallying approaches while maintain-
ing the maximum voter privacy. Therefore, we introduce SBvote, a
decentralized blockchain-based e-voting protocol providing scala-
bility in the number of participants by grouping them into voting
booths instantiated as dedicated smart contracts that are controlled
and verified by the aggregation smart contract. Our approach is
suitable for privacy-preserving self-tallying large-scale e-voting.

Contributions. We make the following contributions:
i) We introduce SBvote, a blockchain-based self-tallying e-voting
protocol that enables scalability in the number of voters and
is based on BBB-Voting protocol. SBvote introduces multiple
voting smart contracts booths that are managed and aggregated
by the main smart contract.

ii) Our extended solution maintains all properties of decentralized
e-voting, including public verifiability, perfect ballot secrecy,
and fault tolerance. Moreover, it improves the privacy of voters
within booths.

iii) We made a proof-of-concept implementation and evaluated it
on two smart contract platforms, Harmony and Gnosis. We
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achieved the best scalability results using the Harmony block-
chain, allowing us to run elections with 1.5M voters and two
candidates within a two-days interval.

Organization. The rest of this paper is organized as follows. Essen-
tial preliminaries are presented in Section 2. We introduce SBvote
in Section 3 and evaluate its scalability in Section 4. We provide the
security analysis of SBvote and discuss its properties in Section 5.
We review the related work in Section 6 and finally conclude our
paper in Section 7.

2 PRELIMINARIES
We briefly review the properties of voting protocols and provide a
short description of blockchains and smart contracts. Finally, we
describe the BBB-Voting protocol on which we base our work.

2.1 Voting
We provide a list of the most important “desired” properties of
voting protocols in the following.
Privacy. The votes remain anonymous. Only the voter herself

knows which candidate she voted for. Privacy protection is
a crucial attribute of voting systems used in practice and is
very important in publicly verifiable voting schemes.

Perfect Ballot Secrecy. It was defined by Kiayias and Yung [16],
and it extends the privacy property. In a scheme with perfect
ballot secrecy, a partial result can only be revealed if all
remaining voters collude to uncover it.

Self-Tallying. This property ensures that any interested party can
compute the tally once all the votes are cast.

Fault Tolerance. The protocol allows for excluding faulty partici-
pants in a publicly verifiable manner without restarting the
whole voting protocol.

Verifiability. Verifiability includes individual verifiability (allow-
ing the voter to verify her vote has been counted) and uni-
versal verifiability (allowing any interested party to verify
all cast votes have been correctly tallied). Furthermore, the
verifiability of a voting system can be described [3] as fol-
lows:
• cast-as-intended: a voter can verify the encrypted vote
contains her choice of candidate,
• recorded-as-cast: a voter can verify the system recorded
her vote correctly,
• tallied-as-recorded: any interested party is able to verify
whether the final tally corresponds to the recorded votes.

A voting system that satisfies all these properties is consid-
ered end-to-end verifiable.

Dispute-Freeness. The protocol’s design prevents any disputes
among involved parties by allowing anyone to verifywhether
a participant followed the protocol.

Completeness. All valid votes are included in the final tally.

2.2 Blockchains and Smart Contracts
Blockchain is a continuously growing distributed ledger consisting
of blocks maintained by a network of consensus nodes that run
a consensus protocol. Once the consensus nodes agree on a new
block, it is added to the blockchain. The blocks are cryptographically
linked to ensure the immutability of the entire ledger and typically

contain records of cryptocurrency transfers executed within the
network. Orders to execute transfers are communicated to the net-
work in messages called transactions. A block may also contain
application code written in a supported language of a blockchain
equipped with a smart contract platform. This code is invoked by
a transaction containing execution orders (i.e., function calls of
a smart contract). The blockchain network then acts as a decen-
tralized computation platform – the blockchain nodes execute the
smart contract code.

Smart contract platforms (such as Ethereum [30]) measure the
execution complexity of smart contracts in units of gas. The sender
of a transaction containing a smart contract invocation has to pay
for the consumed gas to cover the expenditures of the consensus
nodes executing the computation. The gas price is volatile and
based on the demand on the network.

2.3 BBB-Voting
BBB-Voting [27] is a system for boardroom voting supporting k ≥ 2
voting choices. The basic protocol used in BBB-Voting consists of
five phases (i.e., registration, setup, pre-voting, voting, tally) and
an optional fault-recovery phase.

In the registration phase, a voting authority registers eligible
voters and their wallet addresses to the voting smart contract. In the
setup phase, the cryptographic parameters of the voting are agreed
upon by all participants. Each voter then creates her ephemeral
private/public key pair and submits her ephemeral public key to the
smart contract. The multi-party computation (MPC) key for each
voter is computed by the smart contract in the pre-voting phase. In
the voting phase, each voter computes her blinding key (consisting
of ephemeral private key and MPC key), uses the blinding key
to encrypt a vote to a selected candidate and then submits the
blinded vote to the smart contract. A 1-out-of-k non-interactive
zero-knowledge (NIZK) proof of set membership is submitted to
the smart contract along with the blinded vote. Next, the smart
contract verifies the correctness of such a vote. During the tally
phase of the protocol, the tally of votes is computed off-chain by
an arbitrary party and submitted to the smart contract. The smart
contract verifies that the tally was computed correctly.

The protocol also includes an optional fault-recovery extension
that can be placed after the voting phase. This phase is useful if
some participants have stalled and have not cast their blinded votes.

The BBB-Voting scheme provides perfect ballot secrecy, fair-
ness, public verifiability, self-tallying feature, dispute-freeness, re-
sistance to serious failures, and maximizes the voters’ privacy (see
Section 2.1). Also, it introduces several optimizations of the imple-
mentation to decrease the costs of the protocol and accommodate
a larger number of participants than the previous approaches (i.e.,
OVN [19]). BBB-Voting is designed as a single smart contract de-
ployed on the Ethereum blockchain. Nevertheless, BBB-Voting is
intended only for boardroom voting with a low number of involved
participants. Hence it does not provide scalability as might be re-
quired in national elections. Another limitation of BBB-Voting is
the low number of stalling participants the system can recover from
in a single fault recovery round due to the block gas limit.
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3 SCALABLE VOTING PROTOCOL
In this section, we propose SBvote, a scalable e-voting protocol that
is based on BBB-Voting (see Section 2.3).

3.1 System Model
We focus on a decentralized e-voting that provides all desired prop-
erties of e-voting schemes mentioned in Section 2.1 as well as scal-
ability in the number of the participants. We assume a centralized
authority that is responsible for the enrollment of the participants
and shifting the stages of the protocol. However, the authority
can neither change nor censor the votes of the participants, and it
cannot compromise the privacy of the votes.

We assume that a public bulletin board required for e-voting is
instantiated by a blockchain platform that moreover supports the
execution of smart contracts. We assume that all participants of
voting have their thin clients that can verify the inclusion of their
transactions in the blockchain as well as the correct execution of
the smart contract code.

Adversary Model. We consider an adversary that passively lis-
tens to a communication on the blockchain network. The adversary
cannot modify or replace any honest transactions since she does
not hold the private keys of the participants. Next, we assume
that the adversary cannot block an honest transaction due to the
censorship-resistance property of the blockchain. The adversary
can link a voter’s IP address to her blockchain address. However,
she does not possess the computational resources to break the cryp-
tographic primitives used in the blockchain platform and the voting
protocol. The adversary cannot access or compromise the voter’s
device or the user interface of the voting application. We assume
that in each voting group of n participants, at most t of them can be
controlled by the adversary and disobey the voting protocol, where
t ≤ n − 2 and n ≥ 3. This eliminates the possibility of full collusion
against a single voter [13].

3.2 Proposed Approach
Involved Parties. Our proposed approach has the following

actors and components: (1) a participant P (a voter) who chooses a
candidate (i.e., a voting choice) and casts a vote, (2) a voting authority
VA responsible for the registration of participants and initiating
actions performed by smart contracts, (3) a booth contract BC, which
is replicated into multiple instances, where each instance serves
a limited number of participants. New instances might be added
on-demand to provide scalability. (4) The main contractMC, which
assigns participants to voting booths, deploys booth contracts, and
aggregates the final tally from booth contracts.

Protocol. We depict our protocol in Figure 1. SBvote follows sim-
ilar phases as BBB-Voting but with several alterations that enable
better scalability. The registration phase requires VA to authenti-
cate users and generate a list of eligible voters. In BBB-Voting, the
setup phase of the protocol allows users to submit their ephemeral
public keys. However, in contrast to BBB-Voting, SBvote requires
additional steps to set up the booth contracts. First, eligible voters
are assigned to voting groups and then BC is deployed for each
voting group. Once the setup is finished, voters proceed to submit
their ephemeral public keys during a sign-up phase. These keys

are further used to compute multi-party computation (MPC) keys
within each voting group during a pre-voting phase. In the voting
phase, voters cast their blinded votes along with corresponding
NIZK proofs. The NIZK proof allows BC to verify that a blinded
vote correctly encrypts one of the valid candidates. If some of the
voters who submitted their ephemeral public keys have failed to
cast their vote, the remaining active voters repair their votes in the
subsequent fault recovery phase. This is achieved by removing the
key material of stalling voters from the encryption of the correctly
cast votes. The key material has to be provided by each active voter
along with NIZK proof of correctness. After the repair of votes, the
tallies for individual voting groups are computed during the tally
phase of a booth. Then, partial tally results are aggregated to obtain
the final tally byMC.

In the following, we describe the phases of our protocol in more
detail. Phases 2–6 are executed independently (and thus in parallel)
within each of the voting groups/booth contracts.

Registration. In this phase, the participants interact with VA
to register as eligible voters. A suitable identity management (IDM)
system is required, allowing VA to verify participants’ identities
and eligibility to vote.1 Each participant creates her blockchain wal-
let address and registers it with VA that stores a mapping between
a participant’s identity and her wallet address.

Phase 1 (Setup). First, VA deploysMC to the blockchain. Then,
VA enrolls the wallet addresses of all registered participants toMC
within a transaction.2 Once all the registered participants have been
enrolled, VA triggersMC to pseudo-randomly distribute enrolled
participants into groups whose size is pre-determined and ensures
a certain degree of privacy. Note that distributed randomness pro-
tocols such as RoundHound [25] might be used for this purpose,
however, in this work we assume a trusted randomness source that
is agreed upon by all voters (e.g., a hash of a Bitcoin block).

In every group, the participants agree on the parameters of the
voting. Let n be the number of participants in the group and k
the number of candidates. We specify the parameters of voting as
follows:
1) a common generator д ∈ F∗p , where p = 2 · q + 1, q is a prime
and n < p − 1.

2) k independent generators { f1, ..., fk } inF∗p such that fi = д2
(i−1)m ,

wherem is the smallest integer such that 2m > n.
Then, VA deploys a booth contract BC for each group of partic-

ipants with these previously agreed upon voting parameters.MC
stores a mapping between a participant’s wallet address and the
group she was assigned to.

Phase 2 (Sign-Up). Eligible voters enrolled in the setup phase
review the candidates and the voting parameters. Each voter who
intends to participate obtains the address of BC she was assigned to
byMC. From this point onward, each participant interacts only with
her BC representing the group she is part of. Every participant Pi
creates her ephemeral key pair consisting of a private key xi ∈R F∗p
and public key дxi . The Pi then sends her public key to BC. By
1The details of IDM are out-of-scope for this work.
2Note that in practice this step utilizes transaction batching to cope with the limits of
the blockchain platform (see Section 3.3).
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Figure 1: Overview of SBvote protocol.

submitting an ephemeral public key, the participant commits to
cast a vote later. Furthermore, participants are required to send a
deposit within this transaction. If the voter does not cast her vote
or later does not participate in the potential fault recovery phase,
she will be penalized by losing the deposit. Voters who participate
correctly retrieve their deposit at the end of the voting.

Phase 3 (Pre-Voting). In this step, each BC computes synchro-
nized multi-party computation (MPC) keys from the participants’
ephemeral public keys submitted in the previous step. To achieve
scalability, the MPC keys are computed independently in each BC
over the set of ephemeral public keys within the group. The MPC
key for participant Pi is computed as follows:

дyi =
i−1∏
j=1

дx j /
n∏

j=i+1
дx j , (1)

Participant Pi Booth Contract
( h ← дyi , vi ) ( h ← дyi )

Select vi ∈ {1, ...,k},
Use cand . дenerators
fl ∈ { f1, ..., fk } ⊆ F∗p ,
Publish x ← дxi

Publish Bi ← hxi fl
w ∈R F∗p
∀l ∈ {1, ..,k} \vi :

1. rl ,dl ∈R F∗p
2. al ← x−dlдrl
3. bl ← hrl (Bifl )

−dl
f or vi :
1. avi ← дw

2. bvi ← hw

c ← H ({{al }, {bl }}l )

f or vi :
1. dvi ←

∑
l,vi dl

2. dvi ← c − dvi
3. rvi ← w + xidvi
4. q ← p − 1
5. rvi ← rvi mod q

∀l : {al }, {bl },
{rl }, {dl }-

Ψ← {∀l : {al }, {bl }}
c ← H (Ψ)∑
l dl

?
= c

∀l ∈ {1, ..,k}
1. дrl ?

= alx
dl

2. hrl ?
= bl (Bifl )

dl

Figure 2: Non-interactive zero-knowledge proof for 1-out-of-
k set membership.

where yi =
∑
j<i x j −

∑
j>i x j and

∑
i xiyi = 0 (see Hao et al. [13]

for the proof). The computation of MPC keys is triggered by VA in
each BC. After the computation, each participant obtains her MPC
key from BC and proceeds to compute her ephemeral blinding key
as дxiyi using her private key xi .

Phase 4 (Voting). Before participating in this phase of the proto-
col, each voter must create her blinded vote and a NIZK proof of its
correctness. The blinded vote of the participant Pi is Bi = дxiyi fj ,
where fj ∈ f1, ..., fk represents her choice of a candidate. The
participant casts the blinded vote by sending it to BC in a trans-
action cast(Bi ,πM ), where πM is a 1-out-of-k NIZK proof of set
membership. This proof allows BC to verify that the vote contains
one of the candidate generators from f1, ..., fk without revealing
the voter’s choice. BC performs a check of the proof’s correctness
and accepts well-formed votes. Construction and verification of the
NIZK proof are depicted in Figure 2.
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Figure 3: NIZK proof verifying correspondence of дxix j to
public keys A = дxi ,B = дx j .

Phase 5 (Fault-Recovery). The use of synchronized MPC keys
ensures that a vote cast by each voter contains the key material
shared with all voters within the group. If some of the voters within
a group stall during the voting phase, the tally cannot be computed
from the remaining data. Therefore, we include a fault-recovery
phase, where remaining voters provide BC with the key material
they share with each stalling voter, enabling BC to repair their
votes. In detail, for a stalling voter Pj and an active voter Pi (i ,
j), the shared key material дxix j consists of the stalling voter’s
ephemeral public key дx j (previously published in BC) and the
active voter’s ephemeral private key xi . The active voters send the
shared key material to BC along with a NIZK proof depicted in
Figure 3. The NIZK proof allows BC to verify that the shared key
material provided by the voter corresponds to the ephemeral public
keys дxi and дx j .

Suppose some of the previously active voters become inactive
during the fault-recovery phase (i.e., do not provide the shared
key material needed to repair their votes). In that case, the fault-
recovery phase can be repeated to exclude these voters. Note that
this phase takes place in groups where all the voters who committed
to vote during the sign-up phase have cast their votes.

Phase 6 (Booth Tallies). At first, the tally has to be computed
for each group separately. Computation of the result is not per-
formed by BC itself. Instead, VA (or any participant) obtains the
blinded votes fromBC, computes the tally, and then sends the result
back to BC, which verifies whether a provided tally fits

n∏
i=1

Bi =
n∏
i=1

дxiyi fj = д
∑
i xiyi fj = f1

ct1 f2
ct2 ... fk

ctk , (2)

where ctj ∈ ct1, ..., ctk denotes the vote count for each candidate.

Phase 7 (Final Tally). Once BC obtains a correctly computed
tally, it sends it to MC. MC collects and summarizes the partial
tallies from individual booths and announces the final tally once all
booths have provided their results. The participants can also review
the partial results from already processed booths without waiting
for the final tally since the booth tallies are processed independently.

3.3 Design Choices and Optimizations
We introduce several specific features of SBvote, which allow us to
achieve the scalability and privacy properties.

Storage of Voters’ Addresses. If we were to store the voters’
wallet addresses in the booth contracts, it would cause high stor-
age overhead and thus high costs. However, we proposed to store
these addresses only inMC, while booth contracts can only query
MC whenever they require these addresses (i.e., when they verify
whether a voter belongs to the booth’s group). As a result, this elim-
inates the costs of transactions when deploying booth contracts,
and moreover saving the blockchain storage space.

Elimination of Bottlenecks. The main focus of our proposed
approach is to eliminate the bottlenecks that limit the number of
voters and thus the size of the voting groups. In particular, passing
the necessary data within a single transaction could potentially
exceed the block gas limit.

The scalability of the Setup phase of SBvote is straightforward
to resolve since it does not involve any transient integrity violation
checks (excluding duplicity checks). In all these cases, VA splits
the data into multiple independent transactions. Similarly, each
active voter can send the key material required to repair her vote in
several batches in the Fault-Recovery phase, allowing the system
to recover from an arbitrary number of stalling participants.

In contrast to the Setup and Fault-Recovery phases, batching in
the Pre-Voting phase is not trivial since it requires transient preser-
vation of integrity between consecutive batches of the particular
voting group. Therefore, we designed a custom batching mecha-
nism, which eliminates this bottleneck while also optimizing the
cost of the MPC computation.

MPCBatching andOptimization. If computed independently
for each participant, the computation of MPC keys leads to a high
number of overlapping multiplications. Therefore, we optimize this
step by dividing the computation into two parts, respecting both

Algorithm 1 Pre-computation of right side values from Equation 1.
Inputs:
• n: # of voters
• mpc_batch : batch size for MPC computation
• voterPKs : array of voters’ ephemeral public keys

Outputs:
• riдht_markers : pre-computed right side values

1: riдht_tmp ← 0
2: if n modmpc_batch , 0 then
3: riдht_markers .push(riдht_tmp)
4: end if
5: for i ← 0 to n do
6: if n modmpc_batch = (i − 1) modmpc_batch then
7: riдht_markers .push(riдht_tmp)
8: end if
9: riдht_tmp ← riдht_tmp ∗voterPKs[n − i]
10: end for
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Algorithm 2 Computation of a batch of MPC keys.
Inputs:
• voterPKs : array of voters’ ephemeral public keys
• mpc_batch : batch size for MPC computation
• start , end : start and end index of the current batch
• riдht_marker : pre-computed right side value for the first
index in a batch
• act_le f t : left side value from the previous batch

Outputs:
• act_le f t : left side value at the last index of the current
batch
• mpc_keys : array of MPC keys for the current batch

Compute right side values for the batch:
1: riдht_tab[mpc_batch − 1] ← riдht_marker
2: for i ← 0 tompc_batch do
3: j ←mpc_batch − i
4: riдht_tab[j − 1] ← riдht_tab[j] ∗ voterPKs[i − 1]
5: end for

Compute the current batch of MPC keys:
6: for i ← start to end do
7: act_le f t ← act_le f t ∗voterPKs[i − 1]
8: end for
9: mpc_keys[i] ← act_le f t ÷ riдht_tab[i] modmpc_batch

sides of the expression in Equation 1 and reusing accumulated
values for each side.

First, we pre-compute the right part (i.e., divisor) of Equation 1,
which consists of a product of ephemeral public keys of voters with
a higher index than the current voter’s one (i.e., i in Equation 1).
The product is accumulated and saved in the contract’s storage at
regular intervals during a single iteration over all ephemeral public
keys. The size of these intervals corresponds to the batch size chosen
for the computation of the remaining (left side) of the equation. We
refer to these saved values as right markers (see Algorithm 1). We
only choose to save the right markers in the storage of BC instead
of saving all accumulated values due to the high cost of storing
data in the smart contract storage. Though the intermediate values
between right markers have to be computed again later, they are
only kept in memory (not persistent between consecutive function
calls). Therefore, they do not significantly impact the cost of the
computation.

The second part of the computation is processed in batches. First,
the right-side values for all voters within the current batch are
obtained using the pre-computed right marker corresponding to
this batch (see lines 1–5 of Algorithm 2). Then, the left part of
Equation 1 is computed for each voter within the batch, followed
by evaluating the entire equation to obtain the MPC key (lines 6–9
of Algorithm 2). This left-side value is not discarded; therefore,
computing the left side for the next voter’s MPC key only requires
single multiplication. The last dividend value in the current batch is
saved in the contract’s storage to allow its reuse for the next batch.
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Figure 4: Per voter cost of the MPC key computation w.r.t.
the batch size.

4 EVALUATION
To evaluate the scalability of SBvote, we created the proof of con-
cept implementation that builds on BBB-Voting [27]. We used the
Truffle framework and Solidity programming language to imple-
ment the smart contract part and Javascript for the client API of
all other components. We also utilized the Witnet library [29] for
on-chain elliptic curve operations on the standardized Secp256k1
curve [23]. Although Solidity was primarily intended for Ethereum
and its Ethereum Virtual Machine (EVM), we have not selected
Ethereum for our evaluation due to its high operational costs and
low transactional throughput, which is contrary to our goal of im-
proving scalability. However, there are many other smart contract
platforms supporting Solidity and EVM, out of which we selected
Gnosis3 and Harmony4 due to their low costs and high throughput.

Throughout our evaluation, we considered the following param-
eters of the chosen platforms: 30M block gas limit with 5 second
block creation time on Gnosis and 80M block gas limit with 2 second
block creation time on Harmony.

MPC Batch Size. The MPC keys in the Pre-Voting phase are
computed in batches (see Section 3.3). In detail, there is a pre-
computed value available for the first voter in each batch. Using
a small batch size imposes many transactions and high execution
costs due to utilizing fewer pre-computed values. In contrast, using
a large batch size requires more expensive pre-computation and
storage allocation, which results in a trade-off. This trade-off is
illustrated in Figure 4, depicting how the batch size affects the cost
of the computation per voter. We can see that the best value for our
setup is 150 voters per batch.

The Number of Candidates. The number of candidates our
voting system can accommodate remains limited. This is mainly
caused by the block gas limit of a particular platform. In detail, we
can only run voting with a candidate set small enough so that the
vote-casting transaction does not exceed the underlying platform’s
block gas limit. Such transaction must be accompanied by a NIZK
proof of set membership (i.e., proof that the voter’s encrypted choice
belongs to the set of candidates), and the size of the candidate
set determines its execution complexity. Figure 5 illustrates this

3https://developers.gnosischain.com, Accessed: 2022-09-26.
4https://www.harmony.one, Accessed: 2022-09-26.
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Figure 5: The cost of vote casting w.r.t. the number of candi-
dates.

dependency. Our experiments show that the proposed system can
accommodate up to 38 and 14 candidates on Harmony and Gnosis,
respectively.

TheTotalNumber of Participants. The time period overwhich
the voters can cast their ballots typically lasts only several days in
realistic elections. The platform’s throughput over a restricted time
period and the high cost of the vote-casting transactions result in a
trade-off between the number of voters and the number of candi-
dates. We evaluated the limitations of the proposed voting protocol
on both Harmony and Gnosis, as shown in Figure 6 and Figure 7.
Note that in these examples, we considered only the most expensive
phase of the protocol (i.e., voting phase) to be time-restricted.

We determined that with two candidates, the proposed system
can accommodate ∼1.5M voters over a 2-day voting period and
up to 3.8M voters over a 5-day voting period on the Harmony
blockchain. On the other side of the trade-off, with the maximum
number of 38 candidates on Harmony, maximally 216K voters can
participate within a 5-day voting period.

5 SECURITY ANALYSIS AND DISCUSSION
We discuss the properties and scenarios affecting the security and
privacy of SBvote.

Privacy. Within each voting group, SBvote maintains perfect
ballot secrecy. The adversary, as defined in Section 3.1, cannot reveal
a participant’s vote through a collusion of all remaining participants
since adversary can control at most n − 2 participants. The privacy
of votes can be violated only if all participants in a voting group
vote for the same candidate. However, this is a natural property
of voting protocols, which output the tally rather than only the
winning candidate. SBvote mitigates this problem by implementing
transaction batching, which allows the authority to maintain a
sufficiently large size of the voting groups to lower the probability
of a unanimous vote within the groups. This probability is further
decreased in SBvote by the smart-contract-based pseudo-random
assignment of participants to the groups. We refer the reader to the
work of Ullrich [26] that addresses the issue of unanimous voting
and the probability of its occurrence.
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Figure 6: Themaximumnumber of candidates our approach
can process during a fixed 5-day voting interval, assuming
various numbers of voting participants.

Deanonymization & Linking Addresses. In common block-
chains, the network-level adversary might be able to link the par-
ticipant’s address with her IP address. Such an adversary can also
intercept the participant’s blinded vote; however, she cannot ex-
tract the vote choice due to the privacy-preserving feature of our
voting protocol. Therefore, even if the adversary were to link the
IP address to the participant’s identity, the only information she
could obtain is whether the participant has voted. Nevertheless,
to prevent the linking of addresses, participants can use VPNs or
anonymization services such as Tor.

Re-Voting. It is important to ensure that no re-voting is possible,
which is to avoid any inference about the final vote of a participant
in the case she would reuse her ephemeral blinding key to change
her vote during the voting stage. Such a re-voting logic can be
easily enforced by the smart contract, while the user interface
of the participant should also not allow re-voting. Also, note that
ephemeral keys are one-time keys and thus are intended to use only
within one instance of e-voting protocol to ensure the security and
privacy of the protocol. If a participant were to vote in a different
instance of e-voting, she would generate new ephemeral keys.

Forks in Blockchain. Blockchains do not guarantee immediate
immutability due to possible forks. This differentiates blockchains
from public bulletin boards, as defined in [16]. However, since
our protocol does not contain any two-phase commitment scheme
with revealed secrets, its security is not impacted by accidental or
malicious forks. Temporary forks also do not impact the voting
stage since the same votes can be resubmitted by client interfaces.

Self-Tallying Property. The self-tallying property holds within
each voting group since the correctness of obtained tallies can be
verified by anybody. Consequently, this property holds for the
whole voting protocol since the main contract aggregates the booth
tallies of the groups in a verifiable fashion.

Verifiability. SBvote achieves both individual and universal
verifiability. By querying the booth contract, each voter can verify
her vote has been recorded. Each voter (and any interested party)
can verify the booth tally since it satisfies the self-tallying property,
i.e., the Equation 2 would not hold should any vote be left out. Any
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Figure 7: The maximum number of voters that our approach can accommodate w.r.t. the number of candidates.

party can verify the final tally aggregated in the main contact by
querying all the booth contracts to obtain individual booth tallies.

Platform-Dependent Limitations. Although our system itself
does not limit the number of participants, the required transactions
are computationally intensive, which results in high gas consump-
tion. Therefore, large-scale voting using our system might be too
demanding on the underlying smart contract platform. As a poten-
tial solution, public permissioned blockchains dedicated to e-voting
might be utilized.

Adversary Controlling Multiple Participants in the Fault
Recovery. One issue that needs to be addressed in the fault recov-
ery is the adversary controlling multiple participants and letting
them stall one by one in each fault recovery round. Even though
the fault recovery mechanism will eventually finish with no new
stalling participants, such behavior might increase the costs paid by
remaining participants who are required to submit counter-party
shares in each round of the protocol. For this reason, similar to the
voting stage, we require the fault recovery stage to penalize stalling
participants by losing the deposit they put into the smart contract
at the beginning of our protocol. On the other hand, the adversary
can cause a delay in the voting protocol within a particular booth.
However, it does not impact other booths. To further disincentivize
the adversary from such a behavior, the fault-recovery might re-
quire additional deposits that could be increased in each round,
while all deposits could be redeemed at the tally stage.

Tally computation. Tallying the results in individual booths
requires an exhaustive search for a solution of Equation 2 with(n+k−1

k−1
)
possible combinations [13], where n is the number of votes

and t is the number of candidates. Therefore, the authority should
select the size of the voting groups accordingly to the budget and
available computational resources (see [27] for the evaluation).

6 RELATEDWORK
We provide a brief survey of e-voting solutions in the following.

Several protocols have been proposed, focusing on ensuring the
vote’s privacy rather than breaking the map between the voter

and her ballot. Cohen and Fisher [7] proposed a verifiable voting
scheme where the participants cannot unveil the votes. However,
the election authority in this scheme has the ability to read any vote.
Cohen [6] provided an extension to this scheme, where the function
of authority is distributed among a number of tellers: at least one
honest teller is sufficient to ensure the privacy of the votes.

A few other works build on the approach from [7], such as
[4, 9, 10, 22]. The multi-authority protocol proposed by Cramer
et al. [10] employs the ElGamal cryptosystem to guarantee vote
privacy. This protocol can tolerate malicious behavior of a constant
fraction of authorities. Baudron et al. [2] focused onmulti-candidate
elections with hierarchical levels of authorities.

Kiayias and Yung [16] introduced a new voting paradigm with
several properties they defined – perfect ballot secrecy, self-tallying,
and dispute-freeness. The protocol presented by Groth [12] im-
proved the computational complexity of [16] but required more
rounds of computation as a trade-off. Hao et al. [13] further im-
proved this approach and created a 2-round self-tallying voting
scheme. Khader et al. [15] proposed a variant of [13] that also
ensures fairness and robustness.

Protocols based on [7] and [16] as well as other approaches
[1, 5, 8, 18, 21] require a public bulletin board (PBB), defined as a
broadcast channel with memory. According to its definition, PBB is
not affected by denial-of-service attacks and allows each participant
to write solely in her designated section in an append-only manner.
To achieve these properties in practice, Cramer et al. [10] suggest
implementing PBB as a set of replicated servers running a Byzantine
agreement protocol. The introduction of blockchain technology
brought a suitable solution for a practical instantiation of PBB since
it offers the required properties of immutability and availability.

McCorry et al. [19] were the first to implement the self-tallying
scheme using smart contracts on Ethereum in the system called
Open Vote Network (OVN). However, OVN is only suitable for a
small-scale (boardroom) voting. Venugopalan et al. [27] presented
BBB-Voting, also a boardroom voting protocol, but with several
improvements in contrast to OVN. BBB-voting [27] supports multi-
ple candidate choices, fault recovery, and provides cost-optimized
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implementation on Ethereum. Seifelnasr et al. [24] improved the
scalability of [19] by reducing the storage requirements and dele-
gating the tally computation to an off-chain entity.

Besides self-tallying approaches, other blockchain-based voting
systems have been proposed, such as Zhang et al. [33], Dagher et
al. [11] (BroncoVote), Killer et al. [17] (Provotum), Venugopalan et
al. [28] (Always on Voting), and Zhang et al. [32] (Chaintegrity).
Blockchain-based voting was also criticized by Park et al. [20] for
bringing additional security issues rather than improvements.

7 CONCLUSION
In this paper, we present a scalable self-tallying blockchain-based
voting protocol. We implemented the protocol and evaluated its
performance on two EVM-compatible platforms – Gnosis and Har-
mony. We showed that our protocol is scalable to accommodate
large-scale voting, with the only limitation being the throughput of
the underlying blockchain platform. Our experiments show that our
system can run voting with millions of participants on a sufficiently
fast blockchain (e.g., Harmony).

In future work, we will focus on replacing the NIZK proofs of
the voting phase with zk-SNARKs to improve on-chain overhead
of vote casting. Furthermore, we intend to investigate the tech-
niques that increase the throughput of smart contract platforms
(e.g., sharding) and analyze the impact of these approaches on the
security properties and scalability of SBvote.
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Always on Voting: A Framework for Repetitive
Voting on the Blockchain
Sarad Venugopalan, Ivana Stančı́ková, Ivan Homoliak

Abstract—Elections repeat commonly after a fixed time interval, ranging from months to years. This results in limitations on
governance since elected candidates or policies are difficult to remove before the next elections, if needed, and allowed by the
corresponding law. Participants may decide (through a public deliberation) to change their choices but have no opportunity to vote for
these choices before the next elections. Another issue is the peak-end effect, where the judgment of voters is based on how they felt a
short time before the elections. To address these issues, we propose Always on Voting (AoV) – a repetitive voting framework that
allows participants to vote and change elected candidates or policies without waiting for the next elections. Participants are permitted
to privately change their vote at any point in time, while the effect of their change is manifested at the end of each epoch, whose
duration is shorter than the time between two main elections. To thwart the problem of peak-end effect in epochs, the ends of epochs
are randomized and made unpredictable, while preserved within soft bounds. These goals are achieved using the synergy between a
Bitcoin puzzle oracle, verifiable delay function, and smart contracts.

Index Terms—Blockchain Governance, Voting, Security, Peak-End Effect, Verifiable Delay Function.

✦

1 INTRODUCTION

Voting is an integral part of democratic governance, where
eligible participants can cast a vote for their representative
(candidate or policy) through a secret ballot. The outcome
is an announcement of winners through a tally of votes. In
practice, the time interval between two regularly scheduled
elections is usually large – ranging from months to years.
Over time, a previously popular winning candidate (or
policy) may have fallen out of favor with the majority of
participants. Therefore, we argue that a common lacking at-
tribute in governance is the ability of participants to reverse
or correct the previous decisions that were collectively voted
for when new information is available after the election.
Reasons for poor decision making (i.e., error premise [1])
may arise from insufficient or false information, search
engine manipulation [2], social media manipulation [3], or
from agenda setters [4]. To deal with this issue, we propose
a repetitive voting strategy, which gives its participants the
ability to change their vote anytime they decide. Neverthe-
less, even in a repetitive voting with fixed time intervals,
participants remain exposed to constant manipulation at-
tacks. However, in contrast to standard voting with long
time intervals, participants of repetitive voting might hold
any elected candidate accountable by changing their vote
choice.

A second concern is a peak-end effect, whose discovery
in behavioral science is attributed to Nobel laureate Kah-
neman and his research collaborators [5]. Their study on
the correlation of pain perception over time indicated that
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Technology, Czech Republic.

duration plays a minor part in retrospective evaluations of
aversive experiences. The experiences are also dominated by
discomfort at the worst and the final moments of episodes.
Carmon and Kahneman [6] found that how participants felt
at the final moment of the experience was a good predictor
of their overall experience evaluation responses.

There are many studies in political science analyzing and
confirming the existence and impact of the peak-end effect
that might be caused by economic growth in the elections
and pre-elections year [7], [8], [9], increased spending on
highly visible areas [10], [11], [12], private and government
credit easing [13], strategically planned welfare reforms [14],
and cash transfer in exchange for using school and health
services by poor households [15] (see background on peak-
end-effects in Section 2.5).

Our Approach. We propose Always-on-Voting (AoV) that
supports 1-out-of-k candidate voting and runs on a
blockchain1. AoV has three key features: (1) it works in
repetitive epochs, (2) voters are allowed to change their
vote anytime before the end of each epoch (when the tally
is computed), and (3) ends of epochs are randomized and
unpredictable. Only the supermajority of votes can change
the previous winning vote choice at the end of each epoch.

In AoV, to thwart2 peak-end effects and decrease ma-
nipulation of participants, we randomize the time intervals
between epochs of elections using public randomness and
secure it with a verifiable delay function (VDF). The tally

1A Byzantine Fault Tolerant state machine replication protocol.
2The voting start and end times need to be known in advance to

put in place the policies required to boost the elections campaign and
entice a large number of voters over a short period of time. However,
with AoV, though it is possible to make pre-elections promises, they
run hollow after a while, and the spending budget is distributed over a
longer period of time because of the repeated nature of voting and its
uncertain tally timing, reducing the peak ‘awe’ effect, making it a less
effective strategy to win votes.
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time is random and unpredictable, precluding the interested
parties from timely peak-end effect manipulations. One of
the obstacles to implementing repetitive voting is increased
resource expenditure (e.g., time & money). To alleviate cost
concerns, improve decentralization and to enhance security
properties such as tamper resistance, we recommend our
voting framework to be run on a public permissioned
blockchain (see Section 7.2).

Several e-voting and blockchain voting solutions under
various security requirements are compared in Section 8.1.
In this work, we focus on addressing security challenges
arising from introducing repetitive strategy, i.e., randomized
tally times and repetitive voting.
Contributions. We make the following contributions.

i) We identify two shortcomings in present governance
systems for voting: a) the inability of participants to
change their vote between two consecutive elections
(e.g., that might be many months or a few years apart),
and b) a manipulation of participants via peak-end
effect (see Section 2.5).

ii) We propose Always-on-Voting (AoV) framework for
repetitive voting, which incorporates voting epochs
and alleviates the shortcomings of present governance
systems (see Section 5).

iii) We propose the use of public randomness to determine
when the current interval of voting should end using
commitments to a future event in order to thwart the
peak-end effect (see Section 5.4).

iv) Finally, we analyze the randomness of the Bitcoin Proof-
of-Work puzzle solution (hereafter referred to as a
nonce) and AoV entropy requirements in Section 6.3.

2 BACKGROUND

In this section, we describe the preliminaries required to
describe our approach.

2.1 The Blockchain
The data structure used in the blockchain represents an
append-only distributed ledger. Its entries consist of trans-
actions aggregated within ordered blocks. The order of
the blocks is agreed upon by a mutually untrusted honest
majority of participants running a consensus protocol, i.e.,
consensus nodes (a.k.a., miners). The blockchain is resis-
tant to tampering by design since blocks are linked using
a cryptographic hash function. The blocks are considered
irreversible (with overwhelming probability) after elapsing
a time to finality. Some blockchains are equipped with smart
contract platforms that enable the users to write application
code (i.e., smart contracts) and execute it. All transactions
sent to the blockchain are executed and validated by mutu-
ally untrusted consensus nodes. In this way, smart contracts
enable trusted code execution, where the trust relies on
the honest threshold of consensus nodes (e.g., greater than
50% in Proof-of-Work protocols and 67% in Byzantine Fault
Tolerant protocols).

2.2 Bitcoin Proof-of-Work Puzzle
Bitcoin uses Proof-of-Work (PoW) to achieve consensus
among consensus nodes (a.k.a, miners). A block in Bitcoin

is generated once every 10 minutes, on average. A block
consists of 2 parts, the header and body. The Bitcoin header
has a field called nBits that encodes Bitcoin mining difficulty.
The merkle root field stores the root of the Merkle hash tree
corresponding to the transactions in the block. The Bitcoin
PoW puzzle is a lottery solved by finding a nonce s; such
that the SHA-256 hash of the Bitcoin block header that
contains s is lower than target.3 The 32-bit nonce itself is
a part of the header and adjusted using a random trial-
and-error approach until a solution is found. The mining
difficulty changes every 2016 blocks (i.e., ∼every 2 weeks):
it is decreased if it took more time to mine 2016 blocks and
increased if less time was required. In this work, we use
Bitcoin headers from already generated blocks as the source
of randomness (see details in Section 6.3).

2.3 Verifiable Delay Function
The functionality of VDF [16] is similar to a time lock,4

but in addition to it, by providing a short proof, a verifier
may easily check if the prover knows the output of the
VDF. The function is effectively serialized, and parallel
processing does not help to speed up VDF computation.
A moderate amount of sequential computation is required
to compute VDF. Given a time delay t, a VDF must satisfy
the following conditions: for any input x, anyone equipped
with commercial hardware can find y = VDF(x, t) in t
sequential steps, but an adversary with p parallel process-
ing units must not distinguish y from a random number
in significantly fewer steps. For our purposes, the value
of t is fixed once it is determined. Therefore, to simplify
our notation, we use VDF(x) instead of VDF(x, t) in the
remaining text. Further, given output y of VDF, the prover
can supply a proof π to a verifier, who may check the output
y = VDF(x) using π in logarithmic time w.r.t. time delay t

(i.e., V DF V erify(y, π)
?
= True).

Finally, the safety factor Amax is defined as the time ratio
that the adversary is estimated to run VDF computation
faster on proprietary hardware as opposed to a benign VDF
computation using commercial hardware (see Drake [17]).
CPU overclocking records [18] indicate that Amax = 10 is a
reasonable estimate.

2.4 E-Voting
Typically, e-voting approaches have the setup phase, the
registration phase, followed by the voting and tally phases.
E-voting approaches include actors such as the election
authority, candidates, and participants (i.e., voters). In recent
years, many blockchain-based e-voting approaches emerged
(e.g., [19], [20], [21], [22], [23]) since blockchains enable
not only to instantiate the immutable public bulletin board
required for e-voting [24] but also provide other features
such as censorship-resistance and correct execution of smart
contract code, which are beneficial in this context, e.g.,
to verify the correctness of submitted (encrypted/blinded)
votes and compute the tally in a publicly verifiable fashion.
Also, blockchains contribute to end-to-end verifiability [22],
[25] as well as universal verifiability [21], [24].

3See https://learnmeabitcoin.com/technical/target.
4Time locks are computational problems that can only be solved by

running a continuous computation for a given amount of time.
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Figure 1. The time between two regular elections is divided into the fixed number ft of intervals (a.k.a., epochs). First, the ratios of votes for all vote
choices (i.e., candidates) are initialized from the last election. Next, repeated voting within k epochs results in a winning vote choice transition (from
C to A). The new winner A is declared when she obtains a supermajority of total votes (i.e., 70%) at interval k; k ≤ ft (see Section 5). Note that
r1, . . . , rk are randomized times that determine the length of the intervals 1, ..., k. The tally is computed at the end of each interval.

2.5 Peak End Effects

In political science, the consequences of peak-end effects on
voting have been extensively reviewed. We summarize the
results of such studies in the following.

Healy and Lenz [8] studied the bias in voter response
to the elections-year economy. It showed that respondents
put 75% weight on the elections-year and 25% weight on
the year before, whereas the first 2 years of 4 years con-
sidered were insignificant. They showed that when the re-
spondents were presented with easy-to-follow information
on economic growth for all 4 years, the bias significantly
decreased. Wlezien [9] showed that voters weighed their
decision not only on the elections-year economic indicators
but also on the pre-elections year. The author attaches
equal importance to the pre-elections year in influencing
voter decisions. Dash and Ferris [7] found the impacts of
income growth during the election year as more significant
in deciding the incumbents’ re-election chances.

Kern and Amri [13] demonstrated that both private
and government credit easing was common during the
election year to court votes and stimulate credit growth.
Li et al. [10] showed the existence of a pattern to political
investment cycles – significantly more spending occurred
during the election year. Olejnik [11] conducted a study
on Polish local government investment expenditure during
the election year, indicating a significant increase in highly
visible areas such as public infrastructure, tourism, and
culture. Guinjoan and Rodon [12] observed a similar pattern
of increased spending in highly visible areas such as local
festivities during the election year. Voters without expert
knowledge in evaluating the investments may base their
vote on the visibility of the actions taken. Wenzelburger et
al. [14] presented empirical evidence on how governments
strategically plan welfare reforms to expand their benefits as
the elections approach. Galiani et al. [15] indicated the peak-
end pattern of the experiment on cash transfer in exchange
for using school and health services by poor households in
Honduras. The study showed the increased vote share of
the incumbent party in the elections, indicating sensitivity
to recent economic activity.

Aguiar-Conraria et al. [26] examined the role of gov-
ernment transparency, i.e., the disclosure of relevant infor-
mation. For the municipalities whose transparency indexes
were high, voters rewarded policies that brought long-
term benefits. The results of Carlin et al. [27] showed that
restrictions on relevant information distorted the ability of
voters to choose in their best interests. On the other hand,

transparent governance and independent media allowed
voters to hold them accountable.

3 SYSTEM & ADVERSARY MODEL

3.1 System Model
Our model has the following main actors and components:
i) A participant (P ) who partakes in governance by casting a
vote for her choice or candidate. ii) Election Authority (EA)
is responsible for validating the eligibility of participants to
vote in elections, registering them, and shifting between the
phases of the voting. A single EA might be replaced by mul-
tiple election authorities (EAs) to improve decentralization.
For example, a quorum of > 2/3rd of its EAs must be in
agreement to make election decisions. In our case, a single
election authority is considered for simplicity. iii) A smart
contract (SC) collects the votes, acts as a verifier of valid
voting, enforces the rules of the election and verifies the
tallies of votes. iv) Bitcoin Puzzle Oracle (BPO) provides an
off-chain data feed from the Bitcoin network and supplies
the requested Bitcoin block header (BH) when it is available
on the Bitcoin network. v) A VDF prover is any benign party
in the voting ecosystem who computes the output of VDF
and supplies proof of its correctness to SC.

3.2 Adversary Model
The adversary in our voting framework with respect to
epoch triggering is a Bitcoin mining adversary Advmin. This
adversary is static and has bounded computing power, i.e.,
it is unable to break used cryptographic primitives under
the standard security assumptions. Advmin can mine on
the Bitcoin blockchain. Her goal is to find a solution to
the Bitcoin PoW puzzle that also triggers the end of the
current voting interval, thereby influencing the end time
of epoch. Our voting framework uses a function of the
Bitcoin block header (BH) inclusive of its PoW solution s,
i.e., f(BH) to trigger the end of the current voting interval.
Such a manipulation would potentially enable Advmin to
prematurely finish the current interval and start the next
one (see Section 5.4).

Finally, we assume that EA verifies identities honestly
and supply addresses of only verified participants to SC.

4 SOLUTION OUTLINE & DESIGN GOALS

4.1 Solution Outline
In certain forms of governance (such as with tradi-
tional governance), elections are repeated only after many
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months/years. Here, its participants will have to wait until
the next election to change their vote. Due to the fixed
time allocated for governance to the winning candidate,
it is not possible to change this elected candidate before
the allocated time for governance expires. During the time
period between 2 consecutive elections, the incumbent may
have fallen out of favor to a majority of the participants
but current voting frameworks have no option to re-vote
until the time to next election has elapsed. This results
in limitations on governance since elected candidates or
policies are difficult to remove before the next elections. This
is an issue we address in our voting framework by breaking
it down into smaller repeated epochs (along with thwarting
the peak-end-effects in elections).

Our solution presents a 1-out-of-k voting framework
repeated over time. When the voting is repeated over a fixed
time epoch, its working is similar to voting carried out in a
traditional election. However, in our proposed framework,
we introduce three main changes. (1) The time interval
between consecutive elections is shorter when compared to
regularly held elections (repeated after months or years). (2)
A single trigger is used to end the current voting epoch and
to immediately start the next voting epoch. Hence, there is
no time delay between any two consecutive voting epochs.
(3) To thwart the peak-end-effect in voting (see Section 2.5),
a variable-time epoch voting is used. Here, the start time of
a new and upcoming voting epoch is not known in advance
and it cannot be conclusively determined by any of the
parties in the election.

There exist a few issues related to centralized e-voting,
such as censorship and tampering with the results and data
(see Section 7.4). For these reasons, our voting framework
may be implemented on a blockchain, such as using Hy-
perledger projects (see Section 7.2). The bitcoin headers
from the Bitcoin network are used as an initial source of
randomness (see Section 6.3) to trigger the start of the voting
epochs. This is unrelated to the blockchain platform on
which the voting was implemented. Bitcoin headers were
chosen because of the difficulty for the mining adversary to
find a suitable nonce to the Bitcoin PoW puzzle within 10
minutes (on average), that would trigger the voting epoch.

The VDF is an additional component used in securing
the arbitrary length interval from being maliciously trig-
gered by the mining adversary. The newly mined blocks
from the Bitcoin network are sent to a VDF, to further
delay the mining adversary from maliciously triggering the
voting epoch. Since Bitcoin mining is a lottery, the Bitcoin
network accepts the first valid nonce from any miner and
appends that mined block to the chain, thereby preventing
the malicious miner attack on our voting framework. The
focus of our voting framework is in thwarting the peak-
end-effect and addressing the security issues due to the
introduction of variable time epoch triggers.

4.2 Design Goals

The AoV framework has the following main design goals.
1) Repeated voting epochs: Participants are allowed to

continuously vote and change elected candidates or
policies without waiting for the next election. Partici-
pants are permitted to privately change their vote at

any point in time, while the effect of their change is
considered rightful at the end of each epoch. The dura-
tion of such epochs is shorter than the time between the
two main elections.

2) Randomized time epochs: The end of each epoch is
randomized and made unpredictable. In contrast to
fixed-length time epochs, the proposed randomized
time epochs are used to thwart the peak-end-effect.

3) Plug & play voting protocols: The AoV framework
is designed to “plug & play” new or existing voting
protocols. As a result, AoV inherits the properties of the
underlying protocol chosen. However, in the interest
of vote confidentiality on a blockchain, we recommend
protocols providing secret ballots whose correctness
can be publicly verified by SC without leaking any
information, e.g., [21], [22], [28], [29]. Also, due to the
repetitive nature of AoV, e-voting protocols with expen-
sive on-chain computations and required fault recovery
(due to stalling participants) may be less appealing but
still acceptable with some limitations, e.g., [19], [20],
[23], [30], [31] (see also Section 8.2).

5 ALWAYS ON VOTING FRAMEWORK

Always-on-Voting (AoV) is a framework for blockchain-
based e-voting, in which voting does not end when the
votes are tallied and the winners are announced. Instead,
participants can continue voting for their previous vote
choice or change their vote. A possible outcome of such
repetitive voting is transitioning from a previous winning
candidate to a new winner. To achieve this, the whole
time interval between two regularly scheduled elections
is unpredictably divided into several intervals, denoted as
voting epochs. Participants may change their vote anytime
before the end of a voting epoch (i.e., before a tally of the
epoch is computed); however, they do not know beforehand
when the end occurs. Any vote choice that transitioned into
the supermajority threshold of votes is declared as the new
winner of the election, and it remains a winning choice until
another vote choice reaches a supermajority threshold.

5.1 Underlying Voting Protocol
AoV provides the option to plug & play any suitable e-
voting protocol. To provide the baseline security and pri-
vacy of votes (with on-chain verifiability), we assume the
voting protocol plugged into AoV allows participants to
blind or encrypt their votes whose correctness is verified
on-chain by SC. However, AoV does not deal with other
features supported by the plugged-in voting protocol (such
as end-to-end verifiability [32], coercion-resistance [21],
receipt-freeness [24], and fairness [24]).

5.2 Example of Operation
Figure 1 illustrates a scenario with 4 candidates A-D, where
C is the present winner of the election. For example, the
supermajority threshold of 70% votes is set for future win-
nings, which is a tunable parameter that may be suitably
tailored to the situation. All candidates are initialized to
their winning percentages of obtained votes from the last
election. Over time, the individual tally is observed to shift
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Figure 2. When the tally computation is triggered, each booth computes
the sum of all votes cast at the booth (referred to as booth tally). Each
booth tally is further summed up to determine the total tally. Pictorially,
the booths are numbered 1 to X along the rows and 1 to Y along the
columns. There are a total of X · Y booths.

as the supermajority of participants decided to change their
vote in favor of another candidate by voting in the epoch
intervals. Through k intervals, the winner-ship is seen to
transition from candidate C to A. At the kth interval, A
obtains the 70% threshold of votes and is declared as the
new winner. Note that the supermajority is required only
in the voting epochs between two regularly scheduled elec-
tions. The regular elections are also executed in AoV, and
they repeat every M months/years, while requiring only a
majority of votes (i.e., >50%) to declare a winner. Hence,
in contrast to existing electoral systems, we only propose
changes between regularly scheduled elections and enable
new candidates to be added or removed (see in Section 7.6).
Justification for Supermajority. A supermajority of 70%
was chosen (see Appendix A for background) to help the
incumbent carry out reforms without the risk of losing when
there is still sufficient support from participants. On the
other hand, the main purpose of this threshold is to block (or
repeal) policies that are unpopular or negatively affecting a
vast majority of participants. Further, participants may be
inclined to vote in favor of the referendum/proposal if it
is coming from a leader who won with a super-majority.
Additionally, we aim to avoid the quorum paradox (see Ap-
pendix B) by setting a minimum participation requirement
of 70% from the just concluded main election.

5.3 Overview of AoV Phases
Once the setup phase (that ensures participants agree
upon all system parameters) is completed, electronic voting
frameworks typically consist of three phases: (1) a registra-
tion phase to verify voter credentials and add them to the
voting system, (2) a voting phase, in which participants cast
their vote via a secret ballot, and (3) a tally phase, where
the total votes for each candidate are counted and revealed
to participants. The voting protocol plugged-in with the
AoV framework may contain additional phases, but we omit
them here for brevity.

The architecture of AoV is shown in Figure 3. In AoV,
participants (in step 1) register their wallet address5 with the

5Refer to Appendix C for a proposed method to improve anonymity
for wallet users.
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Figure 3. Interaction among participants (Ps), election authority (EA),
smart contracts, the Oracle, and VDF prover. (1) Registering wallet
addresses of participants and (2) their identity verification are made by
the EA. (3) Participants send a blinded vote and its zero-knowledge
proof of correctness to their assigned booth contract. The booth contract
verifies the validity of the vote. (4) The Bitcoin Puzzle Oracle (BPO)
provides the latest Bitcoin block header (BH) and (5) VDF prover sends
a proof of sequential work with y (the output of VDF(BH)) to the validator
contract. (6) The validator contract finishes the epoch and shifts the state
of the elections to the tally upon meeting the required conditions. (7) The
aggregator contract is responsible for totaling individual booth tallies and
(8) publicly announcing the total tally. The on-chain components of AoV
are depicted in gray.

EA, who then (in step 2) verifies and updates it on the booth
smart contract6. This is followed by the voting phase (in
step 3), where participants publicly cast their secret ballots
(i.e, not revealing the vote choice nor identity). The BPO
(step 4) supplies the validator contract and VDF prover
with the target, recent Bitcoin block header BH and its
block height. The VDF prover7 (in step 5) computes and
submits V DF (BH) and a proof of sequential work (π) to
the validator contract. The validator contract (in step 6)
verifies the VDF proof and checks whether the supplied
nonce s (included in the block header) is a valid solution
to the Bitcoin PoW puzzle of the supplied header. If both
verifications pass, the validator contract finalizes the epoch
and triggers the tally computation for the epoch. Otherwise,
it waits for the next block header submission from the BPO
and the proof of sequential work from the VDF prover.
When the tally computation is triggered, each booth contract
{1, 2, ..., X · Y }, sums up all its local vote counts and sends
them to the aggregator contract (step 7). Then, the aggrega-
tor contract totals the votes from each booth contract8 and
publishes the final tally (step 8).

In AoV, the EA is authorized to register/remove par-
ticipants and candidates in a future interval. Nevertheless,
candidates can also be managed by other means, and AoV
does not mandate how it should be done (see discussion in
Section 7.6) When there are no other changes in the next
interval, revoting repeats with step 2 and ends with step 8.

From the initialization of AoV until the next regular
elections, the validator smart contract accepts all future Bit-

6Participants are randomly grouped and assigned to booths ∈
{1, 2, ..., X · Y } (see Figure 2), represented by a booth smart contract.

7A VDF prover is any benign user in the voting ecosystem with
commercial hardware to evaluate the input of VDF, i.e., y = VDF(BH)
and supply a proof π.

8Refer to Appendix E for privacy implications of booth sharding.
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coin block headers. The new block headers (as part of their
blocks) arriving every 10 minutes on average are appended
to the Bitcoin blockchain. The BPO is responsible for timely
supplying9 each new block header to the VDF prover and
validator contract. The VDF prover computes the VDF on
each of those block headers after they are supplied.

5.4 Calculating the Epoch Tally Time

Due to concerns that Bitcoin nonces are a weak entropy
source, additional steps are taken to make it cryptograph-
ically secure (see details in Section 6.3). Our notion of ran-
domness relies on Bitcoin Proof-of-Work to generate valid
nonces.10 The validator contract awaits future block headers
yet to be mined on the Bitcoin network. When new Bitcoin
block headers arrive, they are sent to the validator contract
and the VDF prover via the BPO. The VDF ensures that a
mining adversary cannot find more than one valid nonce
to the block at a given height and test if the nonce is
favorable within 10 minutes. The VDF is computed with
the block header at the input by the VDF prover, who then
submits the VDF output and the proof of sequential work
to the validator contract. The choice of VDF depends on its
security properties, speed of verification, and a size of the
proof [33]. Let BH be the Bitcoin block header. Once VDF
prover computes y = V DF (BH), a small proof (π) is used
to trivially verify its correctness using V DF V erify(y, π).
Wesolowski’s construction [34] is known for its fast verifica-
tion and a short proof: Let TL be the number of sequential
computations. Prover claims

y = BH2TL

and computes a proof

π = BH⌊
2TL

B ⌋,

where B = Blake256(BH || y || TL) hash. Verifier checks
whether

πB ·BH2TLmod B ?
= y.

Since we employ VDF, Advmin does not know the value of y
before evaluating the VDF and is forced to wait for a given
amount of time to see if the output is in her favor (before
trying again). However, since Bitcoin mining is a lottery,
other miners can solve the puzzle and append a block by
propagating the solution to the Bitcoin network, rendering
any withheld or attempted solution by the adversary that
was not published useless.

9To respect the finality of the Bitcoin network, we assume that BPO
supplies only the block headers that contain at least 6 confirmations on
top of them. As a consequence, the probability that such a confirmed
block will be reverted is negligible. Note that this does not influence
the chances of ADVmin to succeed since she is already “delayed” by
VDF in finding multiple PoW solutions at the same height; therefore,
she prefers to work on top of the chain with her new attempts.

10If the nonce overflows, a parameter called extraNonce (part of the
coinbase transaction) is used to provide miners with the extra entropy
needed to solve the PoW puzzle.

5.4.1 Interactions of BPO, VDF Prover, and Validator

Let TotalT ime be the time in minutes between 2 regular
elections. The BPO (see step 4 in Figure 3) feeds the block
header BH of every future Bitcoin block (when it is avail-
able) to the validator contract and VDF prover. Further, BPO
provides validator contrast also with the value of target
when it changes; i.e., every 2016 block (see Section 2.2).

Upon obtaining data from BPO, the VDF prover com-
putes VDF output

y = V DF (BH) (1)

with the VDF proof π and sends them to the validator
contract (see step 5 in Figure 3). Next, the validator contract
verifies the following conditions:

V DF V erify(y, π)
?
= True, (2)

SHA256(BH) < target. (3)

The first verification checks whether the VDF output y and
supplied proof π (i.e., Equation 2) correspond to the BPO-
supplied block header BH . The second verification (i.e.,
Equation 3) checks whether the nonce received from BPO11

is a valid solution to the Bitcoin PoW puzzle. Once both
checks pass, the validator contract proceeds to compute

a = SHA(y), (4)

where SHA(.) is SHA-X-25612 hash. The goal of Equation 4
is to consolidate the entropy by passing it through a com-
pression function that acts as a randomness extractor (see
Section 6.3). Using a, the validator contract computes

b = a (mod BHsInInterval), (5)

where the expected number of block headers are

BHsInInterval =
IntervalT ime

BlockT ime
. (6)

and the time interval is found as

IntervalT ime =
TotalT ime

ft
. (7)

As seen in Figure 1, ft is the number of intervals
(epochs) that the total time (TotalT ime) between 2 regular
elections is divided into. BlockT ime is the average time of
block generation (i.e., 10 minutes in Bitcoin).

The computation of tally for the current interval is trig-
gered when the output of the validator contract is True (see
step 6 in Figure 3):

V Coutput =

{
True, if b = 0

False, otherwise.
(8)

11We note that the BPO may be replaced by a quorum to improve
decentralization. The validator contract will then accept the input from
BPO only when 2/3 (and more) of the quorum is in agreement.

12X denotes a suitable hash function such as SHA-3, and 256 is the
output length in bits.
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Example: Let TotalT ime = 4 years = 525600 · 4 min-
utes and ft = 8; then IntervalT ime = (525600 · 4)/(8) =
262800 minutes ≈ 182.5 days and BHsInInterval =
262800/10 = 26280 blocks. Therefore, the BPO will send
on average 26280 block headers (BH values) to the val-
idator contract within an assumed 182.5 days long epoch
(assuming 10 minutes block creation interval), i.e., 1/8 of
the total time. We expect the tally will be triggered on
average once in every 182.5 days because of the Poisson
probability distribution of this event. Therefore, ft expresses
the expected number of epochs, while ft might differ across
the regular election iterations.

6 ANALYSIS

6.1 Mining Adversary
The goal of Advmin is to find a valid nonce s that solves
the Bitcoin puzzle such that b in Equation 5 is 0. When
these two conditions are met, and the new epoch is about
to start, the validator contract triggers the tally computation
of votes. We set the difficulty for the benign VDF prover
(with commercial hardware) to take 100 minutes13 to solve
VDF(BH). Based on Amax limit, we assume Advmin to take
at least 10 minutes to solve the VDF. As a result, Advmin is
restricted to a maximum of 1 try (considering 10 minutes as
an average Bitcoin block creation time), excluding the Proof-
of-Work required to solve the Bitcoin mining puzzle.

However, since a Bitcoin block header is generated on
average once every 10 minutes and the benign VDF prover
is occupied for 100 minutes, the question is – how many
VDF provers are required to prevent the block headers from
queuing up? We can see in Table 1 that VDF prover 1 runs
a task for time 0-100 minutes, and she picks up the next
task to run for time 100-199 minutes. Similarly, all other
provers pick up the next task after completing the present
one. Hence, 10 VDF provers are sufficient to prevent block
headers from queuing up because Amax = 10.

On the other hand, a benign VDF prover might reduce
Amax of VDF computation by using specialized hardware
instead of commercial hardware (depending on the cost-to-
benefit ratio). However, we emphasize that the VDF can be
computed only after solving the PoW mining puzzle, which
is prohibitively expensive. Moreover, the puzzle difficulty
increases proportionally to the mining power of the Bitcoin
network. Hence, the proposed serial combination of solving
the Bitcoin mining puzzle followed by the computation
of VDF output improves the aggregate security against
Advmin from choosing a favorable nonce. The estimated
requirement of Amax = 10 might be further increased as
more studies to efficiently solve VDFs on ASICs are carried
out. However, if Amax will increase in the future, our
solution can cope with it by employing more VDF provers.

6.2 Implications of VDF Prover Synchronization and
Optimizing Frequency of Supplied Block Headers
Several VDF provers are synchronized to supply the VDF
proofs to the validator contract in sequence. However, there
are no adverse effects when the proofs are generated and

13We consider Amax = 10, i.e., what is solved by a benign VDF
prover in 10 units of time, while in the case of Advmin it is in 1 unit.

VDF
Prover

Time (minutes) VDF
Prover

Time (minutes)

1 0-100 1 100-199
2 10-110 2 110-209
3 20-120 3 120-219
4 30-130 4 130-229
5 40-140 5 140-239
6 50-150 6 150-249
7 60-160 7 160-259
8 70-170 8 170-269
9 80-180 9 180-279
10 90-190 10 190-289

Table 1
Scheduling 10 VDF provers without queuing. Note the VDF

computations on a VDF prover machine are not parallelized. It is the
scheduling alone that is in parallel. The start time is based on the job
arrival time at the VDF prover, where it will run for 100 minutes. Once
completed, it is ready to take on the next job. In column 2, the start

times are 10 minutes apart and correspond to the average BTC
interblock (job) arrival time. The largest idle time in column 1 is for VDF

Prover 10 at 90 minutes, waiting for the job to start. Beyond this, all
VDF prover machines are continuously occupied since a new job is

available to start immediately after the current job ends.

supplied out of sequence. The validator smart contract
stores the latest block height for which the VDF proof was
last accepted. It only allows proof verification for stored
block height+1 on the contract and any out-of-order proofs
have to be re-sent. Once the order is corrected, a handful of
VDF proofs may appear in quick succession at the validator
contract. However, the tally for the interval is only triggered
when V Coutput in Equation 8 is True.

In terms of gas consumption, it can be costly to process
every single Bitcoin block header (supplied to the VDF
prover and the validator contract by the BPO). We suggest
optimizing this by choosing a coarser time granularity of
the block header supply, independent of the Bitcoin block
interval (e.g., every x-th block). We modify the example from
Section 5.4.1 by considering the processing of every 100th

Bitcoin block header.14 TotalT ime = 4 years = 525600 · 4
minutes and the total number of intervals ft = 8. Then,
IntervalT ime = (525600 · 4)/(8) = 262800 minutes and
BHsInInterval = 262800/(10 · 100) = 262.8. On average,
the oracle will send 262.8 block headers (BH values) to the
validator contract within 182.5 days instead of the 26280
block headers required in the original example. In this case,
we only need 1 VDF prover instead of 10, and it provides
similar security guarantees as before.

6.3 Randomness of Bitcoin Nonces & AoV Entropy

We decided to utilize a single public source of randomness
instead of a distributed randomness due to the low com-
putation cost and synchronization complexity. Bonneau et
al. [35] showed that if the underlying hash function used
to solve the Bitcoin PoW puzzle is secure, then each block
in the canonical chain has a computational min-entropy
of at least d bits, representing the mining difficulty. I.e.,
d consecutive 0 bits must appear in the hash of the block
header15. Hence, ⌊d2⌋ near-uniform bits can be securely ex-
tracted. Nevertheless, empirical evaluation has shown that

14Note that this would need another condition to be met, i.e., the
block height (mod 100) should be equal to 0.

15At the time of writing, d ≈ 76.
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Bitcoin nonces have visible white spaces (non-uniformity)
in its scatter-plot [36]. A possible explanation is that some
miners are presetting some of the bits in the 32-bit nonce
field and using the extraNonce to solve the PoW puzzle. We
use the entire block header as the initial source of entropy
instead of the 32-bit nonce alone to avoid such biases. To
reduce the probability of Advmin biasing the solution in her
favor, the block header is passed through a verifiable delay
function (see Equation 1). The output of VDF is hashed (see
Equation 4) to consolidate the entropy.

7 DISCUSSION

7.1 Voting in a Referendum
The proposed framework for repetitive voting is also suit-
able for a referendum, where participants may vote on a
proposal. Unlike elections scheduled at regular intervals of
time, a referendum may not be necessarily tabled (i.e., put
up for voting) more than once. Nevertheless, AoV may be
used to make the referendum voting repetitive. Any change
to the outcome of a referendum using the AoV framework
requires a supermajority unless the proposal is re-tabled
through an agreement, in which case normal operations
follow.16 The danger of low participant turnout in-between
regularly scheduled votings may be mitigated by setting a
minimum threshold on the number of participants (e.g., 70%
of the just concluded elections) to overturn a decision. In the
case of a referendum, a similar minimum threshold based on
previous participant turnouts is recommended. Further, the
proposed framework may also be used as an extra tool to
record changing public opinion.

7.2 Voting Costs on a Public Permissioned Blockchain
& Incentives for the VDF Prover
The expenses imposed by a public permissionless smart
contract platform may be high. Furthermore, the transac-
tional throughput of such platforms may be insufficient to
cater to a larger number of participants voting in a specified
time window. To reduce costs and improve performance,
AoV can run on a public permissioned Proof-of-Authority
(PoA)17 blockchain, e.g., using Hyperledger projects (such
as safety-favored Besu with BFT), in which all nodes have
the same consensus power. Since nodes in PoA protocols
“stake” their reputation that is backed by the knowledge
of their identities, any misbehavior can lead to loss of the
reputation, which is expensive and nodes are thus naturally
disincentivized from such misbehaviors. Optionally, smart
contract platforms backed by trusted computing that off-
chains expensive computations may be used (e.g., Eki-
den [37] and TeeChain [38]). Other partially-decentralized
second layer solutions (e.g., Plasma18, Polygon Matic,19 and
Hydra20 may also be used. Even though these solutions

16Some referendums require only a majority while others need a
supermajority to arrive at a decision. AoV does not change the voting
requirements when it is first tabled or re-tabled.

17In a PoA consensus, a strict vetting process is used for machines
that are given the right to generate blocks. Vetting is carried out by
pre-approved moderators who checks the blocks and its transactions.

18See https://plasma.io/plasma.pdf.
19See https://github.com/maticnetwork/whitepaper.
20See https://hydra.family/head-protocol/.

might preserve most of the blockchain features harnessed
in e-voting, availability and decentralization may be de-
creased. The selection depends on the security/performance
trade-off (alike the number of full nodes used).

In a permissioned blockchain, only authorized partic-
ipants are allowed to append transactions to the chain.
Unlike a public blockchain, the only costs involved in a per-
missioned blockchain reside in maintaining the blockchain
infrastructure. Consider the following example to put the
costs of the PoA blockchain into the real perspective. Let
us assume that 4 independent candidates are contesting the
election, along with 6 public notaries and 1 EA. Each of
them may run a consensus node or rent it out from a cloud
for a low fee (e.g., ∼20-50 USD/month). The consensus
nodes might be run by EA, public notaries, and some
of the participants. The VDF provers may be incentivized
through a cryptocurrency21 treasury [39] to supply crypto-
coins for their services (supplying VDF proofs). A fraction
of all transaction fees on the blockchain may be sent to
a treasury smart contract and claimed by the VDF prover
upon verification of a valid VDF proof by the validator con-
tract in Figure 3. This incentive would ensure a consistent
supply of the VDF proofs, which is required to maintain
the probability of entering a new epoch within each of the
predefined intervals.

7.3 Limitations
AoV may be less suitable for voting where a winner is found
through set reduction22. AoV is suited for elections with 1-
out-of-k voting choices, i.e., plurality voting such as first-
past-the-post (FPTP) [40]. Also, FPTP is the second most
commonly used electoral system in the world. It covers
59/232 countries in national legislature elections and 24/232
countries in presidential elections [41], encompassing bil-
lions of voting participants under this electoral system.

7.4 Blockchain in the AoV Framework
In our approach, the blockchain with smart contract plat-
form enables us to enforce the rules of the elections, includ-
ing the plugged-in e-voting protocol as well as wrapping the
AoV framework itself. In the case of plugged-in protocol,
the blockchain verifies the correctness of submitted (pri-
vate) votes, computes the tally in a verifiable fashion (i.e.,
tallied-as-recorded verifiability), and enables participants to
achieve cast-as-intended and recorded-as-cast verifiability,
all together providing end-to-end verifiability [22], [25].
Furthermore, in the case of AoV that wraps the plugged-in
blockchain-based e-voting protocols, the blockchain enables
to re-vote anytime and the correctness of their vote is
verified by a smart contract.

7.5 Randomization of the Epoch End Times
The voting intervals in AoV have soft bounds on when
the end of an epoch is triggered, i.e., it triggers when
a in Equation 4 has a zero remainder when divided by
BHsInInterval in Equation 5. In particular, the event of

21Funds may also be supplied via central bank digital currency.
22In set reduction, candidates are eliminated based on a tally cut-off

criteria and revote is carried out on the reduced candidate set.
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interval end follows the Poisson distribution. The end of the
interval is triggered faster when the value of IntervalT ime
is smaller.

To the extent, indecisive voters may be prompted and
reminded to vote (e.g., by push notifications in a smart-
phone, or emails). For example, a smartphone or tablet may
prompt the user with a push notification at the start of each
new epoch. It may also send reminders that they had not
already voted in that epoch after a certain elapsed time. If a
voter does not have a smartphone, there may be alternative
solutions for notification, such as sending an email.

7.6 Adding and Removing Candidates
AoV allows the list of candidates to be updated at any time
by the authorized entity (or entities), and thus candidates
not willing to participate can be removed in the new epoch.
Similarly, new candidates can be added. Such rules may
be added to the smart contract based on the agreement
between the EA and the candidate (or even in some de-
centralized fashion). In the context of this work, we abstract
from the implementation details of this aspect, and we focus
on addressing the continuous voting and peak-end effect.

8 RELATED WORK

8.1 Blockchain-Based E-Voting
Many blockchain-based e-voting protocols and systems are
present in the literature, out of which, we are not aware of
any continuous e-voting system that addresses the peak-end
effect problem. In the following, we extend the categoriza-
tion of remote blockchain-based e-voting systems proposed
by Yu et al. [21] with more examples.

8.1.1 Voting Systems Using Smart Contracts
McCorry et al. [19] proposed OVN, a self-tallying voting
protocol that provides vote privacy and supports two vote
choices; however, it does not provide robustness (i.e., recov-
ery from stalling participants) and suffers from expensive
computation on the smart contract. A similar approach
based on the same protocol was proposed by Li et al. [30],
who further provided robustness (based on Khander et
al. [42]). Seifelnasr et al. [20] increased the scalability of
OVN by off-chaining tally computation and registration
at EA. Due to the higher costs imposed by storing data
on smart contracts, they compute the Merkle tree of voter
identities and store only its root hash in the smart contract.
Their approach requires only a single honest participant to
maintain the protocol’s security. Venugopalan et al. [23] pro-
posed BBB-Voting, an approach that on top of OVN features
enables k ≥ 2 vote choices and provides robustness and
further cost optimizations. Stančı́ková and Homoliak [31]
proposed SBvote, an approach that extends BBB-Voting by
integrity-preserving batching and hierarchical booth aggre-
gation to improve scalability, which supports millions of
participants. Yu et al. [21] employed ring signatures to
ensure that the vote is from one of the valid choices, and
they achieve scalability by linkable ring signature key accu-
mulation. Their approach provided receipt-freeness under
the assumption of trusted EA; however, it does not provide
end-to-end (E2E) verifiability. Killer et al. [22] presented

Provotum, an E2E verifiable remote voting system with 2
vote choices. The authors employed threshold cryptography
to achieve robustness using a scheme similar to Shamir
secret sharing. Matile et al. [28] proposed a voting system
providing cast-as-intended (but neither E2E nor universal)
verifiability. Their system uses ElGamal encryption based
on DLP with integers modulo p.

8.1.2 Voting Systems Using Cryptocurrency
Zhao and Chan [43] proposed a privacy-preserving voting
system with 2 vote choices based on Bitcoin, which uses
a lottery-based approach with an off-chain distribution of
voters’ secret random numbers. Random numbers enable
to hide the vote choice and are distributed via ZKP. The
authors use deposits to incentivize participants to com-
ply with the protocol. Tarasov and Tewari [44] proposed
a conceptual voting system based on Zcash. The voter’s
anonymity (and thus the privacy of vote) is ensured by the
z-address that preserves unlinkability. The correctness of the
voting is guaranteed by the trusted EA and the candidates.
Liu and Wang [45] proposed a conceptual voting approach
that is based on blind signatures with 2 vote choices. They
utilized blockchain only for auditable sending of messages
among participants and EA.

8.1.3 Commercial Voting Systems with Ballot Box
This category of voting systems usually does not offer
the privacy of votes, instead relies on the unlinkability
of blockchain wallet addresses with participant identities;
therefore, one may use VPNs and/or anonymization ser-
vices. Examples are FollowMyVote23, Tivi,24, and Agora,25

which use blockchain only for recording votes into a ballot
box. In contrast to the previous solutions, NetVote26 is a
solution addressing privacy by trusting EA to reveal the
encryption key of ballots after the elections end.

8.2 Plug-able Protocols into AoV
We reviewed several blockchain-based e-voting approaches,
out of which, the smart contract-based ones (see Sec-
tion 8.1.1) are suitable to be plugged into AoV. The most
convenient approaches to be plugged in AoV are the ones
that allow re-voting within an epoch (i.e., participants can
change their votes), such as [21], [22], [28], [29]. However,
approaches using distributed MPC keys, a.k.a., self-tallying
protocols [24] such as [19], [20], [23], [30], [31] have a
limitation in terms of AoV despite having other benefits
(e.g., perfect ballot secrecy, fairness). In particular, they can
be applied in AoV with a limitation of a single vote within
an epoch. They do not enable re-voting within an epoch
since they provide the privacy of vote only with a single
cast of a vote (i.e., requirements on the shared MPC key).

9 CONCLUSIONS

We reviewed the works in political science that motivated
an engineering solution to the peak-end effect problem in

23See https://followmyvote.com/.
24See https://tivi.io/tivi/.
25See https://www.agora.vote/.
26See https://github.com/netvote/elections-solidity.
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voting and voter manipulation. We showed that existing
voting systems provide little to no recourse with changing
the elected candidates (until the next main elections) – even
when they lost the support of a majority of voters. Therefore,
we proposed the Always-on-Voting (AoV) framework that
allows participants to change their vote between two main
elections and thwart the peak-end effects. To achieve this in
unbiased fashion, we divided the time between two main
elections into a few shorter epochs whose ends were made
unpredictable, and tallying the votes at the end of each
epoch. The AoV framework used verifiable delay functions
and Bitcoin block headers as the source of randomness
to thwart the mining adversary who intends to bias the
ends of epochs. AoV recommended a public permissioned
blockchain to ensure its security properties and save costs.
It can be integrated with various existing blockchain-based
e-voting solutions. Finally, we proposed a supermajority
requirement to elicit a change reflecting the current result
of the elections, which helps to maintain the stability of the
existing system.
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ABSTRACT
With the recent rise of cryptocurrencies’ popularity, the security
and management of crypto-tokens have become critical. We have
witnessedmany attacks on users and providers, which have resulted
in significant financial losses. To remedy these issues, several wallet
solutions have been proposed. However, these solutions often lack
either essential security features, usability, or do not allow users to
customize their spending rules.

In this paper, we propose SmartOTPs, a smart-contract wallet
framework that gives a flexible, usable, and secure way of manag-
ing crypto-tokens in a self-sovereign fashion. The proposed frame-
work consists of four components (i.e., an authenticator, a client,
a hardware wallet, and a smart contract), and it provides 2-factor
authentication (2FA) performed in two stages of interaction with
the blockchain. To the best of our knowledge, our framework is
the first one that utilizes one-time passwords (OTPs) in the setting
of the public blockchain. In SmartOTPs, the OTPs are aggregated
by a Merkle tree and hash chains whereby for each authentication
only a short OTP (e.g., 16B-long) is transferred from the authen-
ticator to the client. Such a novel setting enables us to make a
fully air-gapped authenticator by utilizing small QR codes or a
few mnemonic words, while additionally offering resilience against
quantum cryptanalysis. We have made a proof-of-concept based on
the Ethereum platform. Our cost analysis shows that the average
cost of a transfer operation is comparable to existing 2FA solutions
using smart contracts with multi-signatures.
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1 INTRODUCTION
The success of cryptocurrencies has surpassed all expectations re-
sulting in various open and decentralized platforms that allow users
to conduct monetary transfers, write smart contracts, and partici-
pate in predictive markets. Cryptocurrencies introduce their own
crypto-tokens, which can be transferred in transactions authenti-
cated by private keys that belong to crypto-token owners. These
private keys are managed by a wallet software that gives users an
interface to interact with the cryptocurrency. There are many cases
of stolen keys that were secured by various means [9, 16, 18, 26].
Such cases have brought the attention of the research community
to the security issues related to key management in cryptocurren-
cies [14, 32, 34]. According to the previous work [14, 32], there are
a few categories of key management approaches.

In password-protected wallets, private keys are encrypted with
selected passwords. Unfortunately, users often choose weak pass-
words that can be brute-forced if stolen by malware [1]; optionally,
such malware may use a keylogger for capturing a passphrase [14,
65]. Another similar option is to use password-derived wallets that
generate keys based on the provided password. However, they also
suffer from the possibility of weak passwords [26]. Hardware wal-
lets are a category that promises the provision of better security
by introducing devices that enable only the signing of transactions,
without revealing the private keys stored on the device. However,
these wallets do not provide protection from an attacker with full
access to the device [29, 44, 45], and more importantly, wallets that
do not have a secure channel for informing the user about the de-
tails of a transaction being signed (e.g., [48]) may be exploited by
malware targeting IPC mechanisms [15].

A popular option for storing private keys is to deposit them into
server-side hosted (i.e., custodial) wallets and currency-exchange
services [10, 20, 50, 61, 62, 66]. In contrast to the previous cate-
gories, server-side wallets imply trust in a provider, which is a
potential risk of this category. Due to many cases of compromising
server-side wallets [2, 9, 53, 68, 77] or fraudulent currency-exchange
operators [76], client-side hosted wallets have started to proliferate.
In such wallets, the main functionality, including the storage of
private keys, has moved to the user side [17, 19, 21, 40, 57]; hence,
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trust in the provider is reduced but the users still depend on the
provider’s infrastructure.

To increase security of former wallet categories, multi-factor
authentication (MFA) is often used, which enables spending crypto-
tokens only when a number of secrets are used together. However,
we emphasize that different security implications stem from the
multi-factor authentication made against a centralized party (e.g.,
using Google Authenticator) and against the blockchain itself. In the
former, the authentication factor is only as secure as the centralized
party, while the latter provides stronger security that depends on
the assumption of an honest majority of decentralized consensus
nodes (i.e., miners) and security of cryptographic primitives used.
Wallets from a split control category [32] provide MFA against
the blockchain. This can be achieved by threshold cryptography
wallets [34, 56], multi-signature wallets [6, 25, 30, 74], and state-
aware smart-contract wallets [22, 72, 75]. The last class of wallets
is of our concern, as spending rules and security features can be
encoded in a smart contract.

Although there are several smart-contract wallets using MFA
against the blockchain [22, 75], to the best of our knowledge, none
of them provide an air-gapped authentication in the form of short
OTPs similar to Google Authenticator.
Proposed Approach. In this paper, we propose SmartOTPs, a
framework for smart-contract cryptocurrency wallets, which pro-
vides 2FA against data stored on the blockchain. The first factor
is represented by the user’s private key and the second factor by
OTPs. To produce OTPs, the authenticator device of SmartOTPs
utilizes hash-based cryptographic constructs, namely a pseudo-
random function, a Merkle tree, and hash chains. We propose a
novel combination of these elements that minimizes the amount of
data transferred from the authenticator, which enables us to imple-
ment the authenticator in a fully air-gapped setting, not requiring
any USB or another connection. SmartOTPs belongs to the category
of state-aware smart contract wallets, and it provides protection
against the attacker that possesses the user’s private key or the
user’s authenticator or the attacker that tampers with the client.
Contributions. Our main contributions are as follows:
• We show that standard 2FA methods against the blockchain
do not meet either the security or usability requirements for
an air-gapped setting (see Section 3.2).
• We propose SmartOTPs, a smart-contract wallet framework
that provides 2FA against the blockchain while using short
OTPs serving as the second factor (see Section 4). OTPs are
managed in a novel way, enabling us to make an authentica-
tor device fully air-gapped.
• To increase the number of OTPs, we resolve the time-space
trade-off at the client by combining hash chains with Merkle
trees in a novel way (see Section 4.4).
• We implement and evaluate our approach (including hard-
ware version of the authenticator), and we provide the source
code of our solution (see Section 6).

2 BACKGROUND AND PRELIMINARIES
We assume a generic cryptocurrency of which the blocks of records
are stored in an ever-growing public distributed ledger called a
blockchain, which is by design resistant to modifications. In a

blockchain, blocks are linked using a cryptographic hash func-
tion, and each new block has to be agreed upon by participants
running a consensus protocol (i.e.,miners). Each block may contain
orders transferring crypto-tokens, application codes written in a
platform-supported language, and the execution orders of such
applications. These application codes are referred to as smart con-
tracts and can encode arbitrary processing logic (e.g., agreements).
Interactions between clients and the cryptocurrency system are
based on messages called transactions, which can contain either or-
ders transferring crypto-tokens or calls of smart contract functions.
All transactions sent to a blockchain are validated by miners who
replicate the state of the blockchain.
Merkle Tree. AMerkle tree is a data structure based on the binary
tree in which every leaf node contains a hash of a single data
block, while every non-leaf node contains a hash of its concatenated
children. A Merkle tree enables efficient verification as to whether
some data are associatedwith a leaf node by comparing the expected
root hash of a tree with the one computed from a hash of the data
in the query and the remaining nodes required to reconstruct the
root hash (i.e., proof or authentication path). The reconstruction of
the root hash has logarithmic time complexity, which makes the
Merkle tree an efficient scheme for membership verification.

2.1 Notation
By the term operation we refer to an action with a smart-contract
wallet using SmartOTPs, which may involve, for instance, a trans-
fer of crypto-tokens or a change of daily spending limits. Then,
we use the term transfer for the indication of transferring crypto-
tokens. By {msд}U we denote the messagemsд digitally signed by
U, and bymsд.σ we refer to the signature; RO is the random ora-
cle; h(.): stands for a cryptographic hash function; hi (.) substitutes
i-times chained function h(.), e.g., h2(.) ≡ h(h(.)); ∥ is the string
concatenation; hiD (.) substitutes i-times chained function h(.) with
embedded domain separation, e.g., h2D (.) = h(2 | | h(1 | | .)); Fk (.) ≡
h(k ∥ .) denotes a pseudo-random function that is parametrized
by a secret seed k ; % represents modulo operation over integers;
Σ.{KeyGen,Veri f y, Siдn} represents a signature scheme of the
blockchain platform; SKU, PKU is the private/public key-pair of U,
under Σ, and a | b represents bitwise OR of arguments a and b.

3 PROBLEM DEFINITION
The main goal of this work is to propose a cryptocurrency wallet
framework that provides a secure and usable way of managing
crypto-tokens. In particular, we aim to achieve:
Self-Sovereignty: ensures that the user does not depend on the 3rd

party’s infrastructure, and the user does not share his secrets
with anybody. Self-sovereign (i.e., non-custodial) wallets do
not pose a single point of failure in contrast to server-side
(i.e., custodial) wallets, which when compromised, resulted
in huge financial loses [2, 9, 53, 68, 77].

Security: the insufficient security level of some self-sovereign wal-
lets has caused significant financial losses for individuals
and companies [16, 18, 26, 60]. We argue that wallets should
be designed with security in mind and in particular, we point
out 2FA solutions, which have successfully contributed to
the security of other environments [3, 69]. Our motivation
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is to provide a cheap security extension of the hardware
wallets (i.e., the first factor) by using OTPs as the second
factor in a fashion similar to Google Authenticator.

3.1 Threat Model
For a generic cryptocurrency described in Section 2, we assume
an adversary A whose goal is to conduct unauthorized operations
on the user’s behalf or render the user’s wallet unusable. A is able
to eavesdrop on the network traffic as well as to participate in the
underlying consensus protocol. However, A is unable to take over
the cryptocurrency platform nor to break the used cryptographic
primitives. We further assume thatA is able to intercept and “over-
ride” the user’s transactions, e.g., by launching a man-in-the-middle
(MITM) attack or by creating a conflicting malicious transaction
with a higher fee, which will incentivize miners to include A’s
transaction and discard the user’s one; this attack is also referred to
as transaction front-running. We assume three types of exclusively
occurring attackers, each targeting one of the three components of
our framework: (1)A with access to the user’s private key hardware
wallet, (2) A that tampers with the client, and for completeness
we also assume (3) A with access to the authenticator. Next, we
assume that the legitimate user correctly executes the proposed
protocols and h(.) is an instantiation of RO.

3.2 Design Space
There are many types of wallets with different properties. In our
context, to achieve self-sovereignty we identify smart-contract
wallets as a promising category. These wallets manage crypto-
tokens by the functionality of smart contracts, enabling users to
have customized control over their wallets. The advantages of these
solutions are that spending rules can be explicitly specified and then
enforced by the cryptocurrency platform itself. Therefore, using
this approach, it is possible to build a flexible wallet with features
such as daily spending limits or transfer limits.
General OTPs.With spending rules encoded in a smart contract,
it is feasible to design custom security features, such as OTP-based
authentication serving as the second factor. In such a setting, the
authenticator produces OTPs to authenticate transactions in the
smart contract. However, in contrast to digital signatures, OTPs
do not provide non-repudiation of data present in a transaction
with an OTP; moreover, they can be intercepted and misused by the
front-running or the MITM attacks. To overcome this limitation, we
argue that a two-stage protocol Π<G>

O must be employed, enabling
secure utilization of general OTPs in the context of blockchains. In
the first stage of Π<G>

O , an operation O , signed by the user U, is
submitted to the blockchain, where it obtains an identifier i . Then,
in the second stage, Oi is executed on the blockchain upon the
submission of OTPi that is unambiguously associated with the
operation initiated in the first stage.
Requirements of General and Air-Gapped OTPs. Based on the
above, we define the necessary security requirements of general
OTPs used in the blockchain as follows:

(1) Authenticity: each OTP must be associated only with a
unique authenticator instance.

(2) Linkage: each OTPi must be linked with exactly a single
operation Oi , ensuring that OTPi cannot be misused for the
authentication of O j , i , j.

(3) Independence: OTPi linked with the operation Oi cannot
be derived from OTPj of an operation O j , where i , j , or an
arbitrary set of other OTPs.

Nevertheless, in the air-gapped setting (important for a high usabil-
ity and security), one more requirement comes into play: the short
length of OTPs. Short OTPs allow the users to use a relatively
small number of mnemonic words or a small QR code to transfer an
OTP in an air-gapped fashion. This requirement is of high impor-
tance especially in the case when the authenticator is implemented
as a resource-constrained embedded device with a small display
(e.g., credit-card-shaped wallet, such as CoolBitX [24]).
Analysis of Existing Solutions.We argue that not all solutions
meet the requirements of air-gapped OTPs. Asymmetric cryptogra-
phy primitives such as digital signatures or zero-knowledge proofs
are inadequate in this setting, despite meeting all general OTP
requirements. State-of-the-art signature schemes with reasonable
performance overhead [8, 41] and short signature size produce a
48B-64B long output. The BLS signatures [12] go even beyond the
previous constructs and might produce signatures of size 32B. Nev-
ertheless, BLS signatures are unattractive in the setting of the smart
contract platforms that put high execution costs for BLS signature
verification, which is ∼33 times more expensive than in the case of
ECDSA with the equivalent security level [13]. Hence, we assume
48B as the minimal feasible OTP size for assymetric cryptography.

However, transferring even 48B in a fully air-gapped environ-
ment by transcription of mnemonic words [59] would lack usability
for regular users – considering study from Dhakal et al. [27], tran-
scription of 36 English words takes 42s on average, which is much
longer than users are willing to “sacrifice.” We note that the sit-
uation is better with QR code, but on the other hand it has two
limitations: (1) when the authenticator is implemented as a simple
embedded device, its display might be unable to fit a requested
QR code with sufficient scanning properties (to preserve the maxi-
mal scanning distance of QR code, the “denser” QR code must be
displayed in a larger image [67]) and (2) occasionally, the users
might not have a camera in their devices, thus, they can proceed
only with a fallback method that uses mnemonics. Finally, most of
the currently deployed asymmetric constructions are vulnerable to
quantum computing [7].

The problem of long signatures also exists in hash-based sig-
nature constructs [28, 46, 51]. Lamport-Diffie one-time signatures
(LD-OTS) [46] produce an output of length 2|h(.)|2, which, for ex-
ample in the case of |h(.)| = 16B yields 4kB-long signatures. The
signature size of LD-OTS can be reduced by using one string of
one-time key for simultaneous signing of several bits in the mes-
sage digest (i.e., Winternitz one-time signatures (W-OTS) [28]), but
at the expense of exponentially increased number of hash computa-
tions (in the number of encoded bits) during a signature generation
and verification. The extreme case minimizing the size of W-OTS
to |h(.)| (for simplicity omitting checksum) would require 2 |h(.) |
hash computations for signature generation, which is unfeasible.

Approaches based on symmetric cryptography primitives pro-
duce much shorter outputs, but it is challenging to implement them
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with smart-contract wallets. Widely used one-time passwords like
HOTP [54] or TOTP [55] require the user to share a secret key
k with the authentication server. Then, with each authentication
request the user proves that he possesses k by returning the out-
put of an Fk (.) computed with a nonce (i.e., HOTP) or the current
timestamp (i.e., TOTP). This approach is insecure in the setting of
the blockchain, as the user would have to share the secret k with a
smart-contract wallet, making k publicly visible.

A solution that does not publicly disclose secret information
and, at the same time, provides short enough OTPs (e.g., 16B ≃ 12
mnemonic words ≃ QR code v1), can be implemented by Lamport’s
hash chains [47] or other single hash-chain-based constructs, such
as T/Key [43]. A hash chain enables the production of many OTPs
by the consecutive execution of a hash function, starting from k that
represents a secret key of the authenticator. Upon the initialization,
a smart contract is preloaded with the last generated value hn (k).
When the user wants to authenticate the ith operation, he sends
the hn−i (k) to the smart contract in the second stage of Π<G>

O . The
smart contract then computes h(.) consecutively i times and checks
to ascertain whether the obtained value equals the stored value.
However, the main drawback of this solution is that each OTP can
be trivially derived from any previous one, and thereby this scheme
does not meet the requirement of OTPs on independence. To detail
an attack misusing this flaw, assume the MITM attacker possessing
SKU (i.e., the first factor) is able to initiate operations in the first
stage of Π<G>

O . The attackerA initiates operationOi and waits for
U to initiate and confirm an arbitrary follow-up operationO j , j > i .
When U sends OTPj in the second stage of Π<G>

O , A intercepts
and “front-runs” the user’s transaction by a malicious transaction
with OTPi computed as hj−i (OTPj ). Although one may argue that
this scheme can be hardened by a modification denying to confirm
older operations than the last initiated one, it would bring a race
condition issue in which A might keep initiating operations in
the first stage of Π<G>

O each time he intercepts a confirmation
transaction from U, causing the DoS attack on the wallet.

4 PROPOSED APPROACH
For a cryptocurrency described in Section 2, we propose SmartOTPs,
a 2FA against the blockchain, which consists of: (1) a client C, (2)
a private key hardware wallet W equipped with a display, (3) a
smart-contract S, and (4) an air-gapped authenticator A that might
be implemented as an embedded device with limited resources.
First, we explain the key idea of our approach, which enables us to
construct A as a fully air-gapped device. Then, we present the base
version of SmartOTPs, and finally, we describe modifications.

4.1 Design of an Air-Gapped Authenticator
In our approach, OTPs are generated by a pseudo-random function
Fk (.) and then aggregated by a Merkle tree, providing a single
value, the root hash (R). R is stored at S and serves as a PK for
OTPs. Assuming the two stage protocol Π<G>

O (further denoted as
ΠO ), the user U might confirm the initiated operation OopID by
a corresponding OTPopID (provided by A) in the second stage of
ΠO , whereby S verifies the correctness of OTPopID with use of R.
A challenge of such an approach is the size of an OTP.

Algorithm 1: Smart contract S with 2FA
▷ Variables and functions of environment:

tx: a current transaction processed by S,
balance: the current balance of a contract,
transfer(r, v): transfer v crypto-tokens from a smart contract to r,

▷ Declaration of types:
Operation { addr, param, pending, type ∈ {TRANSFER, . . . } }

▷ Declaration of functions:
function constructor (root, pk) public

operations← []; ▷ An append-only list
PKU ← pk, R ← root, nextOpID← 0;
return SID ; ▷ Computed by a blockchain platform.

function initOp(a, p, type) public
assert Σ.ver if y(tx .σ , PKU); ▷ 1st factor of 2FA
opID← nextOpID++;
operations[opID]← new Operation(a, p, true, type);

function conf irmOp(otp, π , opID) public
assert operations[opID].pending;
verifyOTP(otp, π , opID); ▷ 2nd factor of 2FA
execOp(operations[opID]);
operations[opID].pending← false;

function ver if yOT P (otp, πopID , opID) private
assert deriveRootHash(otp, πopID , opID) = R;

function execOp(oper) private
if TRANSFER = oper.type then

assert oper.param ≤ balance;
transfer(oper.addr, oper.param);

4.1.1 From Straw-Man to the Base Version. Using the straw-
man version, a 2FA requires A to provide an OTP and its proof.
However, in such a straw-man version, the user U has to transfer
(S+S×H )

8 bytes from A each time he confirms an operation, where
S represents the bit-length of an OTP as well as the output of h(.),
and H represents the height of a Merkle tree with N leaves; hence
H = loд2(N ). For example, if S = 256 and H = 10, then U would
have to transfer 352B each time he confirms an operation, which has
very low usability in an air-gapped setting utilizing transcription
of mnemonic words [59] (i.e., 264 words) or scanning of several QR
codes (e.g., 21 QR codes v1) displayed on an embedded device with
a small display. Even further reduction of S to 128 bits would not
help to resolve this issue, as the amount of user transferred data
would be equal to 176B ≃ 132 mnemonic words ≃ 11 QR codes v1.

Wemake the observation that it is possible to decouple providing
OTPs from providing their proofs. The only data that need to be kept
secret are OTPs, while any node of a Merkle tree may potentially be
disclosed – no OTP can be derived from these nodes. Therefore, we
propose providing OTPs byA, while their proofs can be constructed
at C from stored hashes of OTPs. This modification enables us to
fetch the nodes of the proof from the storage of C, while U has to
transfer only the OTP itself from A when confirming an operation
(i.e, S = 128 ≃ 12 mnemonic words by default).

4.2 Base Version
4.2.1 Secure Bootstrapping. As common in other schemes and
protocols, by default, we assume a secure environment for boot-
strapping protocol ΠSB (see Figure 1 and Appendix A.5), which
means that C is trusted and cannot be compromised during exe-
cution of ΠSB . First, A generates a secret seed k , which is stored
as a recovery phrase by U.W generates a key-pair SKU, PKU ←
Σ.KeyGen(). Next, U transfers k from A to C in an air-gapped man-
ner (i.e., transcribing a fewmnemonic words or scanning a QR code).
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Figure 1: Bootstrapping of SmartOTPs in a secure environment (ΠSB ).

Then, C generates OTPs by computing Fk (i) | i ∈ {0, 1, . . . ,N − 1},
where N is the number of leaves (equal to the number of OTPs in
the base version). Next, C computes and stores the leaves of the tree
– i.e., the hashes of the OTPs (i.e., hOTPs), which do not contain
any confidential data.1 After this step, k and the OTPs are deleted
from C, and C computes R from the stored hashes of the OTPs.
Then, C creates a transaction containing constructor of S (see Algo-
rithm 1) with R as the argument and passes it toW for appending
PKU. Finally, C sends the transaction with the constructor to the
blockchain where the deployment of S is made. In the construc-
tor, R with PKU are stored and ID of S (i.e., SID ) is assigned by a
blockchain platform and returned in a response.2 Storing R and
PKU binds an instance of S with the user’s authenticator A and the
user’s private key walletW, respectively. In detail, PKU enables S
to verify whether an arbitrary transaction was signed by the user
who created S, while R enables the verification whether the given
OTP was produced by the user’s A.

4.2.2 Operation Execution. When the wallet framework is ini-
tialized, it is ready for executing operations by a two-stage protocol
ΠO (see Figure 2 and Appendix A.5):

(1) Initialization Stage. When U decides to execute an opera-
tion with SmartOTPs, he enters the details of the operation
into C that creates a transaction calling initOp(), which is
provided with operation-specific parameters – the type of op-
eration (e.g., transfer), a numerical parameter (e.g., amount or
daily limit), and an address parameter (e.g., recipient). Then,
C sends this transaction toW, which displays the details of
the transaction and prompts U to confirm signing by a hard-
ware button. Upon confirmation,W signs the transaction by

1To improve performance during provisioning of proofs, C might additionally store
non-leaf nodes, increasing the requirement on C’s storage 2x.
2Note that SID represents a public identification of S, which serves as a destination
for sending crypto-tokens to S by any party.
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Figure 2: Execution of an operation (ΠO ).

SKU and sends it back to C. C forwards the transaction to
S. In the function initOp(), S verifies whether the signature
was created by U (the first factor), stores the parameters of
the operation, and then assigns a sequential ID (i.e., opID) to
the initiated operation. In the response from S, C is provided
with an opID.

(2) Confirmation Stage. After the transaction (that initiated
the operation) is persisted on the blockchain, U proceeds to
the second stage of ΠO . U enters opID to A, which, in turn,
computes and displaysOTPopID as Fk (opID). StoringhOTPs
computed from OTPs at C enables U to transfer only the
displayed OTP fromA toC, which can be accomplished in an
air-gapped manner. Considering the mnemonic implementa-
tion [59], this means an air-gapped transfer of 12 words in
the case ofO = 16B. Then, C computes and appends the cor-
responding proof πopID to the OTP. The proof of the OTP is
computed from stored hOTPs in the C’s storage (or directly
fetched from the storage if C stores all nodes of the Merkle
tree). Next,C sends a transaction withOTPopID and its proof
πopID to the blockchain, calling the function confirmOp() of
S, which handles the second factor. This function verifies the
authenticity of the OTP (i.e., the first requirement of OTPs)
and its association with the requested operation (i.e., the
second requirement of OTPs), which together implies the
correctness of the provided OTP.3 In detail, upon calling the
confirmOp() function with opID,OTPopID , and πopID as the
arguments, S reconstructs the root hash from the provided
arguments by the function deriveRootHash() that is presented
in Appendix A.2.4 If the reconstructed value matches the
stored value R, the operation is executed (e.g., crypto-tokens
are transferred).

3Note that SmartOTPs meet the third requirement of OTPs by the design.
4Note that this algorithm contains, not yet described, improvements.
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In the following, we present extensions of SmartOTPs, improving
its efficiency and usability, and introducing new features.

4.3 Bootstrapping in an Insecure Environment
The main advantage of ΠSB described above is its high usability, re-
quiring only an air-gapped transfer of k and connectedW. However,
ΠSB is not resistant againstA tampering with C;A might intercept
k or forge R for R ′. Similarly, A might forge PKU for PKA , while
staying unnoticeable forUwho expects that SID obtained is correct.
Therefore, we propose an alternative bootstrapping protocol ΠIB
(see Appendix A.5), assuming that A can tamper with C during
bootstrapping. In this protocol, first we protect SmartOTPs from
the interception of k and then from forging R and PKU.

To avoid the interception of k , instead of transferring k , U per-
forms a transfer of all leaves of the Merkle tree (i.e., hOTPs) from
A to C, which can be achieved with a microSD card. Note that the
leaves are hashes of OTPs, hence they do not contain any confi-
dential data. Next, to protect SmartOTPs from forging of PKU and
R, we require a deterministic computation of SID by a blockchain
platform using PKU and R, hence SID can be computed and dis-
played together with R inW before the deployment of S. In detail,
SID is computed as h(PKU ∥ R), thus each pair consisting of a
public key and a root hash maps to the only SID . However, even
with this modification, R can still be forged by C. Therefore, when
transaction with the constructor is sent toW, U has to compare R
displayed atW with the one computed and displayed by A. In the
case of equality, U records SID displayed inW.

4.4 Increasing the Number of OTPs
A small number of OTPs can have negative usability and security
implications. First, users executing many transactions5 would need
to create new OTPs often, and thus change their addresses. Second,
an attacker possessing SKU can flood S with initialized operations,
rendering all the OTPs unusable. Therefore, we need to increase the
number of OTPs to make the attack unfeasible. However, increasing
the number of OTPs linearly increases the amount of data that C
needs to preserve in its storage. For example, if the number of OTPs
is 220, then C has to store 33.6MB of data (considering S = 16B
and C storing all leaves), which is feasible even on storage-limited
devices. However, e.g., for 232 OTPs, C needs to store 137.4GB of
data, which might be infeasible even on PCs, especially when C
handles multiple instances of SmartOTPs.

To resolve this issue, we modify the base approach by applying
a time-space trade-off [38] for OTPs. Namely, we introduce hash
chains of which last items are aggregated by the Merkle tree. With
such a construction, OTPs can be encoded as elements of chains and
revealed layer by layer in the reverse order of creating the chains.
This allows multiplication of the number of OTPs by the chain
length without increasing the C’s storage but imposing a larger
number of hash computations on S and A. Nonetheless, smart
contract platforms set only a low execution cost for h(.).

An illustration of this construction is presented in the bottom
left part of Figure 3.6 A hash chain of length P is built from each
OTP assumed so far. Then, the last items of all hash chains are
5E.g., several smart contracts in Ethereum have over 220 transactions made.
6Note that this figure contains further, not yet described, improvements.

used as the first iteration layer, which provides N
P OTPs.7 Similarly,

the penultimate items of all the hash chains are used as the second
iteration layer, etc., until the last iteration layer consisting of the first
items of hash chains (i.e., outputs of Fk (.)) has been reached (see the
middle part of Figure 3). We emphasize that introducing hash chains
may cause a violation of the requirement on the independence of
OTPs if implemented incorrectly; i.e., OTPs from upper iteration
layers can be derived from lower layers. Therefore, to enforce this
requirement, we invalidate all the OTPs of all the previous iteration
layers by a sliding window at S.

Furthermore, if a hash chain were to use the same hash function
throughout the entire chain, it would be vulnerable to birthday
attacks [39]. To harden a hash chain against a birthday attack, a
domain separation proposed by Leighton and Micali [49] can be
used: a different hash function is applied in each step of a hash chain.
Note that without domain separation, inverting the ith iterate of
h(.) is i times easier than inverting a single hash function (see the
proof in [37]). Therefore, we use a different hash function for all
but the last iteration layer 1 ≤ i < P as follows:

hD[i](x) = h(P − i + 1 | | x), (1)
where x represents the OTP from the next iteration layer.

Although domain separation hardens a single hash chain against
the birthday attack, this attack is still possible within the current
iteration layer, which is an inevitable consequence of using multiple
hash chains. Therefore, the number of leaves L (i.e., N/P) is the
parameter that must be considered when quantifying the security
level of our scheme (see Section 5).

With this improvement, A is updated to provide OTPs by

дetOTP(i) = h
α (i)
D

(
Fk

(
β(i)

))
, (2)

where i is the operation ID,α(i) determines the index in a hash chain,
and β(i) determines the index in the last iteration layer of OTPs.
We provide concrete expressions for α(i) and β(i) in Equation 4,
which involves all proposed improvements and optimizations. A
derivation of R from the OTP at S needs to be updated as well (see
Algorithm 6 in Appendix). In detail, S executes P − α(i) − 1 =⌊
iP
N

⌋
hash computations, which is a complementary number to the

number of hash computations at A with regard to P . Also, C has to
be modified, requiring computation of a proof to use the leaf index
relative to the current iteration layer of OTPs (i.e., i % N

P ).
With this improvement, given the number of leaves equal to 220

and P = 212, C stores only 33.6MB of data and it has 232 OTPs
available. On the other hand, this modification implies, on average,
the execution of additional P/2 hash computations at S, imposing
additional costs. However, our experiments show the benefits of
this approach (see Section 6.1).

4.5 Depletion of OTPs
Even with the previous modification, the number of OTPs remains
bounded, therefore they may be depleted. We propose handling
of depleted OTPs by a special operation that replaces the current
tree with a new one. To introduce a new tree securely, we propose
updating R value while using the last OTP of the current tree for
7For simplicity, we assume that GCD(N , P ) = P .
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Figure 3: An overview of our approach and its improvements.

confirmation. Nevertheless, for this purpose we cannot use ΠO
consisting of two stages, as A possessing SKU could be “faster”
than the user and might initialize the last operation and thus block
all the user’s funds. If we were to allow repeated initialization of
this operation, then we would create a race condition issue.

To avoid this race condition issue, we propose a protocol ΠNR
that replacesR during three stages of interactionwith the blockchain,
which requires two append-only lists L1 and L2 (see Algorithm 2):

(1) U enters OTPN−1 to C. C sends h(OTPN−1 ∥ Rnew ) to S,
which appends it to L1.

(2) C sends Rnew to S, which appends it to L2.
(3) C passes OTPN−1 with πN−1 to S, where the first matching

entries of L1 and L2 are located to perform the introduction
of Rnew . Finally, the lists are cleared for future updates.

Locating the first entries in the lists relies on the append-only
feature of lists, hence no A can make the first valid pair of en-
tries in the lists. Similarly as in ΠB , we propose two variants of
ΠNR intended for secure (i.e., ΠSNR ) and insecure environment (i.e.,

Algorithm 2: Introduction of a new R in S
L1 ← []; ▷ Items have form < h(Rnew ∥ OTP ) >
L2 ← []; ▷ Items have form < Rnew>

function 1_newRootHash(hRootAndOTP) public
assert Σ.ver if y(tx .σ , PKU);
assert nextOpID % N = N − 1; ▷ The last oper. of tree
L1 .append(hRootAndOTP);

function 2_newRootHash(Rnew ) public
assert Σ.ver if y(tx .σ , PKU);
assert nextOpID % N = N − 1; ▷ The last oper. of tree
L2 .append(Rnew );

function 3_newRootHash(otp, π ) public
assert nextOpID % N = N − 1; ▷ The last oper. of tree
verifyOTP(otp, π , nextOpID);
if L1 .len > LENMAX | L2 .len > LENMAX then

L1 , L2 ← [], [];
return; ▷ To avoid A DoS-ing S by gas depletion.

for {i ← 0; i < L2 .len; i++} do
for {j ← 0; j < L1 .len; j++} do

if h(L2[i] ∥ otp) = L1[j] then
R ← L2[i];
L1 , L2 ← [], [];
nextOpID++;

ΠINR ). In ΠINR (see Appendix A.5), A must compute and display
h(OTPN−1 ∥ Rnew ) and Rnew to enable protection againstA that
tampers with C. Hence,U can verify the equality of items displayed
atW with the ones displayed at A during the first and the second
stage of ΠINR , preventing A from forging the tree. To adapt this
improvement at C, C needs to store all nodes of the new tree. There-
fore, U provides C with all nodes of the new tree, transferred from
A on a microSD card. In the case of ΠSNR , the nodes of the new tree
are transferred by a transcription of k from A to C and no values
are displayed atW and A for U’s verification.

4.6 Cost & Security Optimizations
4.6.1 Caching in the Smart Contract. With a high Merkle tree,
the reconstruction of R from a leaf node may be costly. Although
the number of hash computations stemming from the Merkle tree
is logarithmic in the number of leaves, the cost imposed on the
blockchain platformmay be significant for higher trees. We propose
to reduce this cost by caching an arbitrary tree layer of depth L at
S and do proof verifications against a cached layer. Hence, every
call of deriveRootHash() will execute L fewer hash computations in
contrast to the version that reconstructs R, while C will transfer
by L fewer elements in the proof.

Theminimal operational cost can be achieved by directly caching
leaves of the tree, which accounts only for hash computations com-
ing from hash chains, not a Merkle tree. However, storing such a
high amount of cached data on the blockchain is too expensive.
Therefore, this cost optimization must be viewed as a trade-off be-
tween the depth L of the cached layer and the price required for the
storage of such a cached layer on the blockchain (see Section 6.1).

We depict this modification in the left part of Figure 3, and we
show that an optimal caching layer can be further partitioned into
caching sublayers of subtrees (introduced later). To enable this
optimization, the cached layer of the Merkle tree must be stored in
the constructor of S. From that moment, the cached layer replaces
the functionality of R, reducing the size of proofs. During the
confirmation stage of ΠO , an OTP and its proof are used for the
reconstruction of a particular node in the cached layer, instead of R.
Then the reconstructed value is compared with an expected node
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Algorithm 3: Introduction of the next subtree at S
currentSubLayer[]; ▷ Adjusted in the constructor
function nextSubtree (nextSubLayer, otp, πotp , πsr ) public

assert nextOpID % N , N − 1; ▷ Not the last op. of parent
assert nextOpID % NS = NS − 1; ▷ The last op. of subtree
assert currentSubLayer.len = nextSubLayer.len;
assert deriveRootHash(otp, πotp , nextOpID) = R;
currentSubLayer← nextSubLayer;
Rs ← reduceMT(currentSubLayer, currentSubLayer.len);
assert subtreeConsistency(Rs , πsr , R);
nextOpID++; ▷ Accounts for this introduction of a subtree

of the cached layer. The index of an expected node is computed as

idxInCache(i) =
⌊(
i % N

P

)
/ 2H−L

⌋
, (3)

where i is the ID of an operation.

4.6.2 Partitioning to Subtrees. The caching of the optimal layer
minimizes the operational costs of SmartOTPs, but on the other
hand, it requires prepayment for storing the cache on the blockchain.
If the cached layer were to contain a high number of nodes, then the
initial deployment cost could be prohibitively high, and moreover,
the user might not deplete all the prepaid OTPs. On top of that,
after revealing the first iteration layer of OTPs, the security of our
scheme described so far is decreased by loд2(N /P) bits due to the
birthday attack (see Section 5) on OTPs. Hence, bigger trees suffer
from higher security loss than smaller trees.

To overcome the prepayment issue and to mitigate the birthday
attack, we propose partitioning an optimal cached layer to smaller
groups having the same size, forming sublayers that belong to
subtrees (see the left part of Figure 3). The obtained security loss is
loд2(NS /P), NS ≪ N .

Starting with the deployment of S, the cached sublayer of the
first subtree and the “parent” root hash (i.e., R) are passed to the
constructor; the cached sublayer is stored on the blockchain and its
consistency against R is verified. Then during the operational stage
of ΠO , when confirmation of operation is performed, the passed
OTP is verified against an expected node in the cached sublayer of
the current subtree, saving costs for not doing verification against
R (see Algorithm 5 in Appendix).

If the last OTP of the current subtree is reached, then no opera-
tion other than the introduction of the next subtree can be initialized
(see the green dashed arrow in Figure 3). We propose a protocol
ΠST for the introduction of the next subtree (see Appendix A.5
for the detailed description). Namely, C introduces the next sub-
tree in a single step by calling a function nextSubtree() of S with
the arguments containing: (1) the last OTP of the current subtree
OTP(NS−1)+δNS , δ ∈ {1, . . . , N /NS − 1}, (2) its proof πotp , (3)
the cached sublayer of the next subtree, and (4) the proof πsr of
the next subtree’s root; all items but OTP are computed by C. The
pseudo-code of the next subtree introduction at S is shown in Al-
gorithm 3. The current subtree’s cached sublayer is replaced by the
new one, which is verified by the function subtreeConsistency()
against R with the use of the passed proof πsr of the new subtree’s
root hash Rs . Note that introducing a new subtree invalidates all
initialized yet to be confirmed operations of the previous subtree.

At A, this improvement requires accommodating the iteration
over layers of hash chains in shorter periods. Hence, A provides

OTPs by Equation 2 with the following expressions:

α(i) = P −
⌊ (i % NS )P

NS

⌋
− 1,

β(i) =
⌊
i

NS

⌋
NS
P
+

(
i % NS

P

)
,

(4)

where i is an operation ID and NS is the number of OTPs provided
by a single subtree. We remark, that due to this optimization, the up-
date of a new parent root R as well as the constructor of S requires,
additionally to Algorithm 2 and Algorithm 1, the introduction of a
cached sublayer of the first subtree (omitted here for simplicity).

5 SECURITY ANALYSIS
We analyze the security of SmartOTPs and its resilience to attacker
models under the assumption of random oracle model RO.

5.1 Security of OTPs
OTPs in our scheme are related to two cryptographic constructs: a
list of hash chains and the Merkle tree aggregating their last values.
In this subsection, we assume an adversary A who is trying to
invert OTPs, and we give a concrete expressions for security of
our scheme. Since we employ the hash domain separation tech-
nique [49] for hash chains, each hash execution can be seen as an
execution of an independent hash function. For such a construc-
tion, Kogan et al. give the following upper bound (see Theorem 4.6
in [43]) on the advantage of A breaking a chain:

Pr [A breaks a chain] ≤ 2Q + 2P + 1
2S

, (5)

where Q is the number of queries that A can make to h(.), P is the
chain length, and S is the bit-length of OTPs (and the output of
h(.)). Kogan et al. [43] proved that inverting a hash chain hardened
by the domain separation imposes a loss of security equal to the
factor of 2. Therefore, to make a hardened hash chain as secure
as λ-bit RO, it is enough to set S = λ + 2. E.g., to achieve 128-bit
security, S should be equal to 130.
SmartOTPs without Subtrees. This scheme (see Section 4.6) uses
a Merkle tree that aggregates L = N

P hash chains, where the chains
are created independently of each other; they have the same length
and the same number of OTPs. A can win by inverting any of the
chains; hence, the probability that this scheme is secure is

Pr [Scheme is secure] =
(
1 − 2Q + 2P + 1

2S

)L
. (6)

We can apply the alternative form of Bernoulli’s inequality (1 −
x)L ≥ 1 − xL, where L ≥ 1 and 0 ≤ x ≤ 1 must hold. In our case,
the input conditions hold since the number of hash chains is always
greater than one and the probability that A breaks a single chain
from Equation 5 fits the range of x (i.e., 0 ≤ 2Q+2P+1

2S ≤ 1). Hence,
we lower-bound the probability from Equation 6 as follows:

Pr [Scheme is secure] ≥ 1 − L(2Q + 2P + 1)
2S

. (7)

Corollary 5.1. To make SmartOTPs without partitioning into
subtrees as secure as λ-bit RO, it is enough to set S = λ+ 2+ loд2(L).
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For example, to achieve 128-bit security with L = 64 and P ≥ 1, S
should be equal to 136, and thus an OTP can be transferred by one
QR code v1 or 13 mnemonic words.
Full SmartOTPs. The full SmartOTPs scheme contains partition-
ing into subtrees, in which all leaves of the next subtree “are visible”
only after depleting OTPs of the current subtree (and using OTPs
from the 1st iteration layer of the next subtree). This improves the
security of our scheme under the assumption that C’s storage is not
compromised by A, which is true for A that possesses PKU or A.
Therefore, we replace L in Equation 7 for LS = NS

P , NS ≪ N .

Corollary 5.2. To make the full scheme of SmartOTPs as secure
as λ-bit RO, it is enough to set S = λ + 2 + loд2(LS).
Therefore, to achieve 128-bit security with L = N

NS
LS , LS = 64,

and P ≥ 1, S should be equal to 136, and thus an OTP can be
transferred by a QR code v1 or 13 mnemonic words. To achieve the
same security with LS = 1024, we need to set S = 140, and thus
an OTP can be transferred in a QR code v2 or 13 mnemonic words.

5.2 The Attacker Possessing SKU
Theorem 5.3. A with access to SKU is able to initiate operations

by ΠO but is unable to confirm them.

Justification. The security of ΠO is achieved by meeting all
requirements on general OTPs (see Section 3.2). In detail, the re-
quirement on the independence of two different OTPs is satisfied
by the definition of Fk (.) ≡ h(k ∥ .), where h(.) is instantiated by
RO. This is applicable when P = 1. However, if P > 1, then items
in previous iteration layers of OTPs can be computed from the next
ones. Therefore, to enforce this requirement, we employ an explicit
invalidation of OTPs belonging to all previous iteration layers by
a sliding window at S (see Section 4.4). The requirement on the
linkage of each OTPi with operation Oi is satisfied due to (1) RO
used for instantiation of h(.) and (2) by the definition of the Merkle
tree, preserving the order of its aggregated leaves. By meeting these
requirements,A is able to initiate an operationO j in the first stage
of ΠO but is unable to use an OTPi intercepted in the second stage
of ΠO to confirm O j , where j , i . Finally, the requirement on the
authenticity of OTPs is ensured by a random generation of k and
by anchoring R associated with k at the constructor of S. □

Theorem 5.4. Assuming δ ∈ {0, . . . , NNS
− 2}, A with access

to SKU is unable to deplete all OTPs or misuse a stolen OTP that
introduces the (δ + 1)th subtree by ΠST .

Justification. When all but one OTPs of the δ th subtree are de-
pleted, the last remaining operationO(NS−1)+δNS , δ ∈ {0, . . . , N

NS
−

2} is enforced by S to be the introduction of the next subtree. This
operation is executed in a single transaction calling the function
nextSubtree() of S (see Algorithm 3) requiring the corresponding
OTP(NS−1)+δNS that is under control ofU; henceA cannot execute
the function to proceed with a further depletion of OTPs in the
(δ + 1)th subtree. If A were to intercept OTP(NS−1)+δNS during
the execution of ΠST by U, he could use the intercepted OTP only
for the introduction of the next valid subtree since the function
nextSubtree() also checks a valid cached sublayer of the (δ + 1)th
subtree against the parent root hash R. □

Theorem 5.5. Assuming δ = N
NS
− 1, A with access to SKU is

neither able to deplete all OTPs nor introduce a new parent tree nor
render SmartOTPs unusable.

Justification. In contrast to the adjustment of the next subtree,
the situation here is more difficult to handle, since the new par-
ent tree cannot be verified at S against any paramount field. If we
were to use ΠO while constraining to the last initialized operation
O(N−1)+ηN , η ∈ {0, 1, . . .} of the parent tree, then A could render
SmartOTPs unusable by submitting an arbitrary R in initOp(), thus
blocking all the funds of the user. If we were to allow repeated ini-
tialization of this operation, then we would create a race condition
issue. Therefore, this operation needs to be handled outside of the
protocol ΠO , using two unlimited append-only lists L1 and L2 that
are manipulated in three stages of interaction with the blockchain
(see Section 4.5). In the first stage, h(Rnew ∥ OTP(N−1)+ηN ) is ap-
pended to L1, hence A cannot extract the value of OTP. In the
second stage, Rnew is appended to L2, and finally, in the third
stage, the user reveals the OTP for confirmation of the first match-
ing entries in both lists. AlthoughA might use an intercepted OTP
from the third stage for appending malicious arguments into L1 and
L2, when he proceeds to the third stage and submits the intercepted
OTP to S, the user’s entries will match as the first ones. □

5.3 The Attacker that Tampers with the Client
Theorem 5.6. If C is tampered with after ΠB , U can detect such a

situation and prevent any malicious operation from being initialized.

Justification. If we were to assume thatW is implemented as
a software wallet (or hardware wallet without a display), then A
tampering withCmight also tamper with theW’s software running
on the same machine. This would in turn enable a malicious oper-
ation to be initialized and further confirmed by U, since U would
be presented with a legitimate data in C andW, while the transac-
tions would contain malicious data. Therefore, we require thatW
is implemented as a hardware wallet with a display, which exposes
only signing capabilities, while SKU never leaves the device (e.g.,
[11, 31, 42, 73]). Due to it, U can verify the details of a transaction
being signed inW and confirm signing only if the details match
the information shown in C (for ΠO ) or A (for ΠINR ). We refer the
reader to the work of Arapinis et al. [5] for the security analysis of
hardware wallets with displays. □

Theorem 5.7. If C is tampered with during an execution of ΠIB ,A can neither intercept k nor forge R nor forge PKU.

Justification. When the protocol ΠIB is used, instead of an air-
gapped transfer of k from A to C, U transfers leaves of the Merkle
tree by microSD card. The leaves represent hashes of OTPs in the
base version or the hashes of the last items of hash chains in the full
version of SmartOTPs. In both versions, the transferred data do not
contain any secrets, henceA cannot take advantage of intercepting
them. The next option thatA may seek for is to forge R for R ′ and
PKU for PKA , which results in different SID than in the case of
R and PKU, since SID is computed as h(PKU ∥ R). While PKU is
stored atW, the authenticity of R needs to be verified by U who
compares displays of A and W. Only in the case of equality, U
knows that SID displayed inWmaps to legitimate PKU and R. □
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Figure 4: Deployment costs (H = HS ).

5.4 The Attacker Possessing the Authenticator
It is trivial to see thatA with access to A is unable to initialize any
operation with SmartOTPs since he does not hold PKU.

5.5 Further Properties and Implications
Requirement on Block Confirmations. Most cryptocurrencies
suffer from long time to finality, potentially enabling the acciden-
tal forks, which create parallel inconsistent blockchain views. On
the other hand, this issue is not present at blockchain platforms
with fast finality, such as Algorand [33], HoneyBadgerBFT [52], or
StrongChain [71]. In blockchains with long time to finality, overly
fast confirmation of an operation may be dangerous, as, if an op-
eration were initiated in an “incorrect” view, an attacker holding
SKU would hijack the OTP and reuse it for a malicious operation
settled in the “correct” view. To prevent this threat, the recommen-
dation is to wait for several block confirmations to ensure that an
accidental fork has not happened. For example, in Ethereum, the
recommended number of block confirmations to wait is 12 (i.e.,
∼3 minutes). Note that such waiting can be done as a background
task of C, hence U does not have to wait: (1) considering that A
possesses SKU, C can detect such a fork during the wait and re-
submit the initOp() transaction, (2) in the case of A tampering
with C, no operation can be initialized since U never signs A’s
transaction (due to the hardware wallet), and (3) A possessing A
cannot initialize any operation as well.
Attacks with a Post QuantumComputer. Although a resilience
to quantum computing (QC) is not the focus of this paper, it is of
worthy to note that our scheme inherits a resilience toQC from the
hash-based cryptography. The resilience of our scheme to QC is
dependent on the output size of h(.). A generic QC attack against
h(.) is Grover’s algorithm [35], providing a quadratic speedup in
searching for the input of the black box function. As indicated by
Amy et al. [4], using this algorithm under realistic assumptions, the
security of SHA-3 is reduced from 256 to 166 bits. Applying these
results to OTPs with 128-bit security from examples in Section 5.1,
we obtain 98-bits post-QC security. Further, when assuming the
example with L = 64 from Section 5.1 and [4], to achieve 128-bits
of post-QC security, we estimate the length of OTPs to 205-bits.

6 REALIZATION IN PRACTICE
We have selected the Ethereum platform and the Solidity language
for the implementation of S, HTML/JS for DAPP of C, Java for
smartphone App of A, and Trezor T&One [73] forW. We selected
S = 128 bits, which has practical advantages for an air-gapped A,
producing OTPs that are 12 mnemonic words long or a QR code
v1 (with a capacity of 17B). Next, we used SHA-3 with truncated
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Figure 6: Average total cost per transfer (H = HS ).

output to 128 bits as h(.). We selected the size of k equal to 128 bits,
fitting 12 mnemonic words ≃ 1 QR code v1.

So far, we have considered only the crypto-token transfer op-
eration. However, our proposed protocol enables us to extend the
set of operations. For demonstration purposes, we extended the
operation set by supporting daily limits and last resort information
(see Appendix A.3). We also tested our contracts by static/dynamic
analysis tools Mythril [23], Slither [70], and ContractGuard [36];
none of them detected any vulnerabilities. In addition, we made a
hardware implementation ofA using NodeMCU [58] equipped with
ESP8266 (see Appendix A.6). The source code of our implementation
and videos are available at https://github.com/ivan-homoliak-sutd/
SmartOTPs.

6.1 Analysis of the Costs
Executing smart contracts over blockchain, i.e., performing compu-
tations and storing data, has its costs. In Ethereum Virtual Machine
(EVM), these costs are expressed by the level of execution complex-
ity of particular instructions, referred to as gas. One unit of gas has
its market price in GWEI. In this section, we analyze the costs of our
approach using the same bit-length S for h(.) as well as for OTPs. S
significantly influences the gas consumption for storing the cached
layer on the blockchain. We remark that measured costs can also
be influenced by EVM internals (e.g., 32B-long words/alignment).

6.1.1 Costs Related to the Merkle Tree.
Deployment Cost. The cost of a smart contract deployment is
driven mainly by the LS (related to the first subtree) and S . A less
significant factor is the consistency check of a Merkle tree, which
is driven by LS : the higher LS is, more layers have to be reduced.
Similarly, the greater H − HS is, more steps have to be done in
the proof verification. On the other hand, deployment costs are
independent of the length P of a hash chain; therefore, we omit the
hash chain in this experiment and set P = 1. Further, we abstract
from the concept of subtrees in order to analyze a single tree (i.e.,
H = HS ). The deployment costs of our scheme with respect to the
depth L (≡ LS ) of the cached layer are presented in Figure 4. The
figure depicts two cases: one uses a single S and the second assumes
a contract factory producing instances of S. Thanks to the contract
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Figure 7: Rolling average cost per transfer (H = HS ).
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Figure 8: Average total cost per transfer with regards to the length P of hash chains.

factory, we managed to save a constant amount of gas equal to
∼ 1.3M , regardless of LS . Since we assume 8M as the maximum gas
limit at the Ethereum main network, we can build a caching layer
with LS = 7 at maximum. Later, we will see that the maximum
HS that can be used for the optimal caching layer of a subtree is
HS = 10, yielding 210 leaves and thus 210P OTPs per subtree.
Cost of a Transfer.Although the cost of each operation supported
by ΠO is similar, here we selected the transfer of crypto-tokensOt ,
and we measured the total cost of Ot as follows:

Ot _cost(L, N , P) = cost
(
Ot (L, N , P)

)
+
cost

(
Od (L)

)
N

,

cost
(
Ot (L, N , P)

)
=

1
N

N∑
i=1

cost
(
Ot
i (L, N , P)

)
,

cost
(
Ot
i (L, N , P)

)
= cost

(
Ot .init
i

)
+cost

(
O
t .conf irm
i (L, N , P)

)
,

where cost() measures the cost of an operation in gas units, and
Od represents the deployment operation. As the purpose of the
cached layer is to reduce the number of hash computations in
confirmOp(), the size of an optimal cached layer is subject to a trade-
off between the cost of storing the cached layer on the blockchain
and the savings benefit of the caching. To explore the properties
of the only Merkle tree, we adjusted H = HS and P = 1. As each
execution of Ot (i.e., Ot

i ) may have a slightly different gas cost, we
measured the average cost of a transaction (i.e., cost(Ot (L, N , P))
for both stages of ΠO ; note that the cost of initOp() ≃ 70k of gas
in all operations. For completeness, we present the transaction
costs of all proposed operations in Appendix A.4. In Figure 6, we
can see that the total average cost per transfer decreases with the
increasing number of OTPs, as the deployment cost is spread across
more OTPs. The optimal point depicted in the figure minimizes
Ot by balancing cost(Od (L))) and cost(Ot (L, N , P)). We see that

L = H − 3 for such an optimal point. In contrast to the version
without caching, this optimization has brought a cost reduction of
3.87%, 5.61%, 7.32%, and 8.92%, for 128, 256, 512, and 1,024 leaves,
respectively. Next, we explored the number of transfer operations
to be executed until a profit of the caching has begun (see Figure 7).
We computed a rolling average cost per Ot , while distinguishing
between the optimal caching layer and disabled caching – the profit
from caching begins after 53, 90, and 156 transfers, respectively.
Costs with Subtrees. We measured the cost of introducing the
next subtree within a parent tree depending on LS , while we set
H = 20 andHS = 10 (see Figure 5).We found out that when subtrees
(and their cached sublayers) are introduced within a dedicated
operation, it is significantly cheaper compared to the introduction
of a subtree during the deployment.

6.1.2 Costs Related to Hash Chains. Since each iteration layer
of hash chains contributes to an average cost of conf irmOp() with
around the same value, we measured this value on a few trees with
P up to 512. Next, using this value and the deployment cost, we
calculated the average total cost per transfer by adding layers of
hash chains to a tree with H = HS , thus increasing N by a factor
of P until the minimum cost was found. As a result, the optimal
caching layer shifted to the leaves of the tree (see Figure 8a), which
would however, exceed the gas limit of Ethereum. To respect the gas
limit, we adjusted L = 7, as depicted in Figure 8b. In contrast to the
configurations with L = 0 and P = 1 (from Figure 6), we achieved
savings of 27.80%, 19.61%, 14.95%, and 12.51% for trees withH equal
to 7, 8, 9, and 10, respectively. For completeness, we calculated costs
for L = 0 as well (see Figure 8c). Note that for L = 0 and L = 7,
smaller trees are “less expensive,” as they require less operations
related to the proof verification in contrast to bigger trees; these
operations consume substantially more gas than operations related
to hash chains. Although we minimized the total cost per transfer
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by finding an optimal P , we highlight that increasing P contributes
to the cost only minimally but on the other hand, it increases the
variance of the cost. Hence, one may set this parameter even at
higher values, depending on the use case.

6.1.3 Costs in Fiat Money. We assume the average exchange
rate of ETH/USD equal to 211 and the “standard” gas price 5 GWEI
as of May 2, 2020. For example, in the case of N = 225 (i.e., H =
20, HS = 10, P = 25, LS = 7), expenses per transfer operation are
$0.2, while expenses for deployment and introduction of a new
subtree are $6.90 and $1.23, respectively.

7 RELATEDWORK
In this section, we compare SmartOTPs with other hash-based
approaches and other smart-contract wallets.
Hash-Based Approaches. Although Merkle signatures [51] uti-
lize Merkle trees for aggregation of several one-time verification
keys (e.g., [46]), the size of these keys and signatures is substantially
larger than the size of OTPs in SmartOTPs. Even further optimiza-
tion of the signature size (i.e., Winternitz OTS [28]) does not make
signatures as short as in SmartOTPs. Next, we highlight that we
utilize hash chains for multiplication of OTPs, which is different
than their application in Winternitz OTS [28] that utilize them for
the purpose of reducing the size of a single Lamport-Diffie OTS [46]
by encoding multiple bits of a message digest into the number of
recurrent hash computations. The next related schemes are Lam-
port’s hash chain [47] and its modification T/Key [43] that applies
the domain separation. However, since they contain only a single
chain, they are not secure in the setting of the public blockchain
(see Section 3.2) in contrast to SmartOTPs that never consecutively
iterate OTPs within a single hash chain. Moreover, T/Key [43] is
using OTPs expiring in 30s to mitigate phishing attacks, which are
unrelated in our case. TESLA [63, 64] is another related scheme that
utilizes a single hash-chain in a centralized setting of time-based
multi-cast authentication of streamed messages.
SmartContractWallets.An example of the 2-of-3multi-signature
approach that only supports Trezorwallets is TrezorMultisig2of3 [75].
A disadvantage of this solution is that U has to own three Trezor
devices, which might be an expensive solution. The n-of-m multi-
signature scheme is provided by Gnosis Wallet [22], which currently
holds a significant amount of Ether across various smart contracts.
Similar to the previous example, a disadvantage of this wallet is
that U has to own two hardware wallets for 2FA.

Themain reason why existing smart contract wallets using asym-
metric cryptography are not suitable for an air-gapped authentica-
tion is due to the signature size of 64B. Hence, to input OTP, U has
to transcribe 48 mnemonic words in the case of lacking a camera
on C, which would take ∼4x longer than in the case of SmartOTPs.
WhenC is equipped with a camera,A implemented as an embedded
device might not be capable of displaying a single OTP as a small
QR code since the minimal required QR code having enough data
capacity is v4. Therefore, several QR codes of a lower version would
be needed, which introduces additional complexity for U.

Another drawback of asymmetric cryptography (used in these
wallets) stems from its resource demands that increase the opera-
tional costs, both on S andW: (1) smart contract platforms place

a high execution cost for asymmetric cryptography, and (2)W re-
quires more advanced MCU for cryptographic computations, while
A from SmartOTPs requires only a secure hash function. Based on
the latter, we believe that hardware realization of A (see Appen-
dix A.6) in SmartOTPs is less expensive than the second hardware
wallet used in multi-signature smart contracts. Moreover, we note
that if SmartOTPs were to use only mnemonic words and omit QR
codes, then hardware requirements of A (and thus the overall cost)
would be even lower – mnemonic words can be displayed even on
a smart-card-embedded display, such as in CoolBitX [24].

8 DISCUSSION
Vulnerability in HWWallets.We found out that two used hard-
ware wallets do not display all data of transactions being signed:
Trezor One displays first 24B of data and Trezor T displays 35B.
With regard to Ethereum transactions, this means that used wallets
display only the first 8B and 19B of data representing the parameters
of a contract call. Hence, A that tampers with C might purposely
preserve user expected values in the displayed data while forging
data that are not displayed. We reported this vulnerability to the
vendor, and as a mitigation, we put the most critical parameter (i.e.,
address) of all concerning functions at the first displayed position.
Usability. Our approach inherits the common usability character-
istics of 2FA schemes, such as an extra device to carry,8 effort for
securely storing the recovery phrase k , effort for recalling/entering
passwords, and effort for a transfer of OTPs, which can be made by
scanning a QR code or transcription of mnemonic words. Note that
these usability implications are almost the same as in the case of
existing smart contract wallets with 2FA [22, 75]. In addition to the
previous, SmartOTPs requires U to introduce a new subtree/parent
tree once in a while. Nevertheless, we envision this effort to be re-
lated only to large businesses rather than regular users; considering
the example from Section 6.1.3, U has to introduce the next subtree
after using ∼ 32K OTPs, while ∼ 33.5M OTPs are available to use
before re-initialization of the parent tree. Next, we note that enter-
ing opID into A might be seen as a usability limitation, especially
when N is large. However, opID can be reset after each iteration
layer of the current subtree, thus fitting a small range (i.e., ⟨1, NS

P ⟩).
To compare SmartOTPs with Gnosis Wallet [22], we counted the

number of elementary actions (i.e., clicks, button presses, inputs
of form fields, QR code scanning) required to make a transfer of
funds. In the result, SmartOTPs required 33 actions while Gnosis
wallet required 39 actions.
Costs. With consumption of up to ∼ 150k gas units per opera-
tion, our approach is comparable to equivalent 2FA solutions using
smart contracts: Gnosis Wallet [22] requires ∼ 275k gas units9 and
TrezorMultisig2of3 [75] requires ∼ 95k gas units10 per operation.
Lost Secrets. When U loses access to A, he can initialize a new
instance ofA from the backup of seedk . Moreover, ifU losses access
to A andW at the same time, he can still recover the funds with
the last resort functionality that we implemented (see Section 6).

8Assuming that the user already has a hardware wallet (the first factor).
9https://etherscan.io/tx/0xdb6e938... and https://etherscan.io/tx/0x328a7cc...
10https://etherscan.io/tx/0xfc7bbdd... (2 signatures in a single transaction).
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State at the Client. The only state C has to store is the cache of
hashes of OTPs from the first iteration layer. This might be seen as
a limitation when U changes a client device. However, the state can
be recovered anytime from the seed k or transferred by microSD
card from A to C (see Section 4.2.1 and Section 4.3).
Transaction Size. Although the base version of SmartOTPs might
slightly bloat the transaction due to H items of the proof, this is
improved with the caching at S, which reduces the number of items
in the proof toH - L. For example, in the case ofH = 10 and optimal
caching (see Section 6.1.1) where L = 7, only three items of the proof
are required. In this case, SmartOTPs consume 68B of transaction
data (assuming 4B for operation ID), which is similar to asymmetric
cryptography used in most of the blockchains.

9 CONCLUSION
In this paper, we have proposed SmartOTPs, a smart-contract wallet
framework that provides a secure and usable method of managing
crypto-tokens. The framework provides 2FA that is executed in two
stages of interaction with the blockchain and protects against the
attacker possessing a user’s private key or a user’s authenticator or
the attacker that tampers with the client. Our framework uses OTPs
constructed using a pseudo-random function, Merkle trees, and
hash chains. We combine these primitives in a novel way, which en-
ables an air-gapped setting using transcription of mnemonic words
or scanning of small QR codes. Our protocol is general and can be
utilized, besides the wallets, in any smart contract application for
the purpose of 2FA. The provided smart contract is self-contained
but its operation set can be extended by the community.
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A APPENDIX
A.1 Notation
We use the following notation in addition to the notation used so far:
LSB(.) extracts a value of the least significant bit; a ≪ b represents
the bitwise left shift of a by b bits; a & b represents bitwise AND;

Algorithm 4: Generation of OTPs of the last it. layer
function дenerateOT Ps (k, N, η)

LL_OTPs← [];
for {i ∈ [0, . . ., N

P − 1]} do
LL_OTPs.append(Fk (η ∗ NP + i));

return LL_OTPs;

Algorithm 5: A reconstruction of a node in a cached sub-
layer of a subtree from OTP and its proof π
function der iveNodeInCache (otp, π , opID)

assert π .len = HS − LS ; ▷ HS = loд2
(
NS
P

)
eci← дetExpectedIdx InCache

(
opID %

(
NS
P

))
;

assert eci = deriveIdxInCache(π );
a ← ⌊(opID % NS ) ∗ P/NS ⌋;
res← haD[a:P ](otp); ▷ Resolve hash chain

▷ Then resolve π
for {i ← 0; i < π .len; i++} do

if 1 = LSB(π [i]) then
res← h(res ∥ π [i]); ▷ A node of π [i] is on the right

else
res← h(π [i] ∥ res); ▷ A node of π [i] is on the left

return res;
function der iveIdx InCache (π )

idx← 0;
for {i ← 0; i < HS − LS ; i++} do

if 1 = LSB(π [i]) then
idx← idx | (1 ≪ i);

return idx;
function дetExpectedIdx InCache (childLeaf ID)

mask← 0xFFFFFFFF ≡ 232 − 1; ▷ Assuming max. HS = 32
retID← childLeaf ID ;
for {i ← HS − LS ; i < HS ; i++} do

bitToClear← 0x01 ≪ i;
retID← retID & (mask ⊕ bitToClear);

return retID;

Algorithm 6: A reconstruction of R from OTP and π
function der iveRootHash(otp, π , opID)

assert π .len = H; ▷ H = loд2
(
N
P

)
assert opID %

(
N
P

)
= deriveIdx(π );

a ← ⌊(opID % NS ) ∗ P/NS ⌋;
res← haD[a:P ](otp); ▷ Resolve hash chain

▷ Then resolve π
for {i ← 0; i < π .len; i++} do

if 1 = LSB(π [i]) then
res← h(res ∥ π [i]); ▷ A node of π [i] is on the right

else
res← h(π [i] ∥ res); ▷ A node of π [i] is on the left

return res;
function der iveIdx (π )

idx← 0;
for {i ← 0; i < π .len; i++} do

if 1 = LSB(π [i]) then
idx← idx | (1 ≪ i);

return idx;

a ⊕ b represents bitwise exclusive OR; andhD[a:b](.) represent (b −
a)-times chained function h(.) with embedded domain separation
respecting interval ⟨a,b⟩, e.g., hD[2:3](.) = h(3 ∥ h(2 ∥ .)),
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Algorithm 7: Aggregation of OTPs
function aддreдateOT Ps (OTPs)

hOTPs← [];
for {i ∈ [0, . . ., OTPs .len − 1]} do

hOTPs[i]← hPD (i + 1 ∥ OTPs[i]); ▷ Leaves of par. tree

return reduceMT(hOTPs, hOTPs.len);
function r educeMT (hashes, length)

if 1 = length then
return hashes[0];

for {i ← 0; i ≤ lenдth/2; i++} do
hashes[i]← h(hashes[2i] ∥ hashes[2i + 1]);

return reduceMT(hashes, length / 2);

A.2 Details of Algorithms and Implementation
When bootstrapping C, OTPs of the last iteration layer are gener-
ated by Algorithm 4. Generated OTPs are then processed by hash
chains, obtaining the first iteration layer of OTPs; this layer is fur-
ther aggregated into R by Algorithm 7, which contains recursive
in-situ implementation. When the OTPopID is used for the authen-
tication of the operation OopID , R is reconstructed from the OTP
and its proof πopID ; first, by resolving hash chains and then πopID
(see Algorithm 6).

A.3 Functionality Extension of the Wallet
Daily Limit. Adjusting a daily limit is a functionality that con-
tributes primarily to U’s self-monitoring of expenses but at the
same time it avoids typos in transfers that exceeds a daily limit.
This operation has the only argument representing an amount that
can be spent in a single calendar day. Security implications for this
operation are the same as in the case of the transfer crypto-tokens
operation (see Section 5).

Last Resort Address and Timeout. As users may lose all secrets,
leading to an unrecoverable state, we propose an extension that
deals with such a situation based on the last resort address and
timeout options. This sort of a functionality needs two dedicated
operations of ΠO : one for the adjustment of the last resort address

Operation Stage Mean
[дas]

Standard
Deviation
[дas]

Sum
[дas]

Transfer Init. 70,558 0 139,098Confirm. 68,540 129

Set Daily Limit Init. 69,342 0 133,938Confirm. 64,596 129

Set Last Resort
Timeout

Init. 69,342 0 134,324Confirm. 64,982 474

Set Last Resort
Address

Init. 70,366 0 135,604Confirm. 65,238 129

Introduction
of the Next
Parent Tree

Stage 1 34,223 -
1,165,691Stage 2 49,459 -

Stage 3 1,082,009 -

Introduction of
the Next Subtree Depends mainly on LS (see Figure 5)

Send Crypto-Tokens to
the Last Resort Address - 13,887 - 13,887

Table 1: Costs of all operations (H = 10, LS = 7, P = 1).

(enforced to be different than the address of U) and another one
for the adjustment of the timeout. If the timeout has elapsed, then
anyone may call a dedicated function that transfers all the funds
to the last resort address and destroys the contract. Note that the
last resort address is enforced to be different than the address of
the owner of the smart contract in order to avoid transferring all
funds of the wallet to the owner’s address (i.e., that might be under
control of the A) when U loses all secrets. Note that update of the
activity is made only in the second stage of ΠO , requiring an OTP.

A.4 Cost of All Operations
Operational costs of all implemented operations are shown in Ta-
ble 1. In the table, we do not account for deployment costs, hence
we measure only instant gas consumption of the function calls.
The cost measurements were obtained using configuration with
the optimal cost (i.e., LS = HS − 3), H = HS and P = 1, which are
independent of H .

A.5 Detailed Description of Protocols

Bootstrapping – protocol ΠSB
(for a secure environment)

• Authenticator A: Generate k ← random() and display
k to U.
• Client C: Upon k , N , NS , and P are entered

by U into C, compute OTPsLL ← Fk (η ∗ NP + i), i ∈
{0,. . ., NP − 1}, η ∈ {0,1,. . .}. Then compute and store
hOTPs ← hPD (OTPsLL[i]), i ∈ {0,. . ., NP − 1} (leaves of
the parent tree). Then delete OTPsLL and k . Then com-
pute R ← reduceMT (hOTPs) by Algorithm 7, the cached
sublayer cache of the first subtree and the proof πsr
of that subtree’s root hash Rs against R. Then create
txconstructor (R, cache, πsr ) and send it toW. Upon receiv-
ing {txconstructor (R, cache, πsr , PKU)} fromW, forward it
to S. Upon receiving the event ContrDeployed(SID ) from S,
update UI and inform U about the deployment and display
SID .
• User U: Once k is generated by A, transfer k from A to

C in an air-gapped manner. Once C displays SID , record SID
as a public reference to S.
• Private Key Wallet W: Generate private/pub-

lic key-pair SKU, PKU ← Σ.KeyGen(). Upon receiving
txconstructor (R, cache) from C, add PKU to this transaction
and send it to C.
• Smart Contract S: Upon receiving {txconstructor

(R, cache, πsr , PKU)} from C, deploy the code of S (i.e., Al-
gorithm 1 enriched by storing of cache) on the blockchain,
assigning SID to S. During the deployment, store R, PKU,
cache , and adjust nextOpID ← 0. Next, compute root hash
from currentSubLayer and verify its consistency against R
using πsr . Finally, send event ContrDeployed(SID ) to C.

Bootstrapping – protocol ΠIB
(for an insecure environment)
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• Authenticator A: Generate k ← random(). Once U en-
ters N , NS , and P toA, computeOTPsLL ← Fk (η ∗ NP + i), i ∈
{0,. . ., NP − 1}. Then compute hOTPs ← hPD (OTPsLL[i]), i ∈
{0,. . ., NP − 1} and export them to microSD card. Then com-
pute R ← reduceMT (hOTPs) by Algorithm 7 and display it
to U.
• Client C: Upon delivering hOTPs by U to C, store them

in the local storage. Then compute root ← reduceMT (hOTPs)
by Algorithm 7, the cached sublayer cache of the first subtree
and the proof πsr of that subtree’s root hash Rs . Then create
txconstructor (R, cache, πsr ) and send it toW. Upon receiving
{txconstructor (R, cache, πsr , PKU)} fromW, forward it to S.
Upon receiving event ContrDeployed(SID ) from S, inform U
in UI.
• User U: Enter N , NS , and P to A and C. Upon hOTPs

are exported by A to microSD card, transfer them to C. Upon
R ′ of {txconstructor (R ′, cache, πsr )} is displayed atW, ver-
ify whether R = R ′ by reading displays ofW and A. In the
positive case, proceed with the deployment by pressing a hard-
ware button ofW. OnceW displays SID , record it as a public
reference.
• Private Key Wallet W: Generate private/pub-

lic key-pair SKU, PKU ← Σ.KeyGen(). Upon receiving
txconstructor (R ′, cache, πsr ) from C, display R ′ and
SID ← h(PKU ∥ R ′) to U. Upon confirmation by U, add PKU
to this transaction and send it to C.
• Smart Contract S: The same as in ΠSB . The only differ-

ence in contrast to ΠSB is the requirement of a deterministic
computation of SID by a blockchain platform using both PKU
and R. Hence SID can be computed by W and S indepen-
dently.

Operation execution – protocol ΠO

• Authenticator A: Upon receiving opID from U, com-
puteOTPopID ← h

α (opID)
D (Fk (β(opID))),where α(opID) and

β(opID) are computed by Equation 4. Then display OTPopID
to U.
• Client C: Once arдs are entered by U into C, con-

struct txinitOp (arдs) and send it to W. Upon receiving
{txinitOp (arдs)}U from W, forward it to S. Upon receiving
event InitOpEvent(opID) from S, update UI and inform U
about initialization of OopID . Upon entering OTPopID by
U, create proof πopID from the local storage. Then create
txconf irmOp (OTPopID ,πopID ,opID) and send it to S. Upon
receiving event Conf irmOpEvent(opID) from S, update UI
and inform U.
• User U: Enter arдs of an operation into C. Upon arдs ′

of txinitOp (arдs ′) are displayed atW, verify whether arдs =
arдs ′ by reading display of W and UI of C. In the positive
case, confirm signing of transaction by a hardware button of
W. Once C informs about initialized OopID , enter opID into
A. Once A displays OTPopID , transfer OTPopID to C in an
air-gapped manner.

• Private KeyWalletW: Upon receiving txinitOp (arдs ′)
from C, display arдs ′ to U. Upon confirmation of arдs ′ by U,
sign txinitOp (arдs ′) by Σ.Siдn(tx , SKU) and send it to C.
• Smart Contract S: Upon receiving {txinitOp (arдs)}U

from C, verify signature tx .σ by Σ.Veri f y(tx .σ , PKU). Then
create a new operation OopID with opID ← nextOpID using
arдs and increment nextOpID. Then send InitOpEvent(opID)
to C. Upon receiving txconf irmOp (OTPopID ,πopID ,opID)
from C, verify OopID .pendinд = true . Then verify
correctness of OTPopID by checking currentSub-
Layer [(opID % (NS / P)) / 2HS−LS ] = deriveNode-
InCache(OTPopID ,πopID ,opID) from Algorithm 5 (or
alternatively R = deriveRootHash(OTPopID ,πopID ,opID)
from Algorithm 6 for the version without subtrees). Then
executeOopID and setOopID .pendinд← f alse . Finally, send
Conf irmOpEvent(opID) to C.

Introduction of a new parent tree – protocol ΠSNR
(for a secure environment)

• Authenticator A: Once U enters opID into A, check
whether opID % N = N − 1, and if so, notify U that a new
parent tree is being introduced and display k to U. Then
compute OTPopID ← hα (opID)(Fk (β(opID))). Next, compute
OTPsLL ← Fk (η N

P + i), i ∈ {0,. . ., NP − 1}, where η ← η + 1.
Then compute Rnew ← aддreдateOTPs(OTPsLL) by Algo-
rithm 7 and hRootAndOTP ← h(Rnew ∥ OTPopID ). Finally,
show Rnew and hRootAndOTP to U.
• Client C: •[Stage I] C notifies U that a new

parent tree needs to be introduced and displays
opID = N − 1+ηN , η ∈ {0,1,. . .}. Once U enters k into
C, compute OTPN−1 ← hα (opID)(Fk (β(opID))), where
α(opID) and β(opID) are computed by Equation 4. Then
create proof πopID from the local storage. Then compute
OTPsLL ← Fk (η N

P + i), i ∈ {0,. . ., NP − 1}, where η ← η + 1.
Then compute and store hOTPs ← hPD (OTPsLL[i]), i ∈
{0,. . ., NP − 1}. Then delete OTPsLL and k . Then compute
Rnew ← reduceMT (hOTPs) by Algorithm 7. Then com-
pute hRootAndOTP ← h(Rnew ∥ OTPopID ), construct
tx1_newRootHash (hRootAndOTP), and send it to W. Upon
receiving {tx1_newRootHash (hRootAndOTP)}U fromW, for-
ward it to S. •[Stage II ] Upon newRootHash1(hRootAndOTP)
event is received from S, construct tx2_newRootHash (Rnew )
and send it to W. Once {tx2_newRootHash (Rnew )}U is
received fromW, forward it to S. •[Stage III] Upon receiving
the event newRootHash2(Rnew ) from S, compute the cached
sublayer cs of the first subtree in the new parent tree and
the proof πsr of the subtree’s root hash Rs . Then construct
tx3_newRootHash (OTPopID , πopID , cs, πsr ) and send it to
S. Upon receiving event newRootHash3(OTPopID ) from S,
update UI and inform U.
• User U: Once C displays opID = N − 1+ηN , η ∈

{0,1,. . .} and informs U about the necessity of intro-
ducing a new parent tree, enter opID into A. Once
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A displays k and shows a message that a new par-
ent tree is being introduced, transfer k from A to
C in an air-gapped manner. Once hRootAndOTP ′ of
{tx1_newRootHash (hRootAndOTP ′)} is displayed at W, ver-
ify hRootAndOTP ′ = hRootAndOTP by reading displays of
W and A. Once Rnew ′ of {tx2_newRootHash (Rnew

′)} is dis-
played atW, verify Rnew ′ = Rnew by reading displays ofW
and A. If so, confirm signing by a hardware button ofW.
• Private Key WalletW: The same as in ΠO .
• Smart Contract S: •[Stage I] Upon receiving

{tx1_newRootHash (hRootAndOTP)}U from C, verify
signature tx .σ by Σ.Veri f y(tx .σ , PKU). Then verify
nextOpID % N = N − 1; if so, append hRootAndOTP into
L1. Then send event newRootHash1(hRootAndOTP) to C.
•[Stage II] Upon receiving {tx2_newRootHash (Rnew )}U
from C, verify signature tx .σ by Σ.Veri f y(tx .σ , PKU). Then
verify nextOpID % N = N − 1; if so, append Rnew into L2.
Then send event newRootHash2(Rnew ) to C. •[Stage III]
Once {tx3_newRootHash (OTPopID , πopID , cs,πsr )}
is received from C, verify nextOpID % N = N − 1.
Then verify correctness of OTPopID by checking
currentSubLayer [(opID % (NS / P)) / 2HS−LS ] =
deriveNodeInCache(OTPopID , πopID , opID) from Al-
gorithm 5 (or R = deriveRootHash(OTPopID , πopID , opID)
from Algorithm 6 in the version without subtrees).
Then locate the first entries of L1 and L2 that match
the condition h(L2[i] ∥ OTPopID ) = L1[j]. If match-
ing entries are found, then set R ← L2[i], increment
nextOpID, adjust currentSubLayer ← cs and verify its
consistency by subtreeConsistency(Rs , πsr , R), where
Rs ← reduceMT (currentSubLayer ,currentSubLayer .len).
Finally, clear the lists L1,L2 ← [],[].

Introduction of a new parent tree – protocol ΠINR
(for an insecure environment)

• Authenticator A: Once U enters opID into A, check
whether opID % N = N − 1, and if so display OTPopID ←
hα (opID)(Fk (β(opID))) and notify U that a new parent tree is
being introduced. Then, compute OTPsLL ← Fk (η N

P + i), i ∈
{0,. . ., NP − 1}, where η ← η + 1. Then compute hOTPs ←
hP (OTPsLL[i]), i ∈ {0,. . ., NP − 1} and export it to a microSD
card. Finally, compute Rnew ← reduceMT (hOTPs) by Algo-
rithm 7 and hRootAndOTP ← h(Rnew ∥ OTPopID ), and dis-
play both to U.
• Client C: [Stage I] C notifies U that a new parent tree

needs to be introduced and displays opID = N − 1+ηN , η ∈
{0,1,. . .}. Upon entering OTPopID by U, create proof πopID
from the local storage. Once leaves of the tree hOTPs are de-
livered by U into C, store hOTPs in the local storage. Then
compute Rnew ← reduceMT (hOTPs) by Algorithm 7. Then
compute hRootAndOTP ← h(Rnew ∥ OTPopID ), construct
tx1_newRootHash (hRootAndOTP), and send it to W. Upon

receiving {tx1_newRootHash (hRootAndOTP)}U fromW, for-
ward it to S. [Stages II ] and [Stage III ] are the same as in ΠSNR• User U: Once C displays opID = N − 1+ηN , η ∈
{0,1,. . .} and informs U about necessity of introducing a new
parent tree, enter opID into A. Once A displaysOTPopID and
notify U that the new parent tree is being introduced, trans-
fer OTPopID to C in an air-gapped manner. Once hOTPs are
exported by A to microSD card, transfer them to C. Once
hRootAndOTP ′ of {tx1_newRootHash (hRootAndOTP ′)} is dis-
played atW, verify hRootAndOTP ′ = hRootAndOTP by read-
ing displays of W and A; in the positive case, confirm sign-
ing of transaction within W by a hardware button. Once
Rnew ′ of {tx2_newRootHash (Rnew

′)} is displayed atW, ver-
ify Rnew ′ = Rnew by reading displays of W and A; in the
positive case, confirm signing of transaction withinW by a
hardware button.
• Private Key WalletW: The same as in ΠO .
• Smart Contract S: The same as in ΠNRS .

Introduction of the next subtree – protocol ΠST

• Authenticator A: The same as in ΠO , while in addition,
A displays a message that the next tree is being introduced.
• Client C: C notifies U that a new subtree needs to

be introduced and displays opID = (NS − 1)+δNS , δ ∈
{0, . . ., N

NS
− 2}. Upon entering OTPopID by U, cre-

ate the proof πopID from the local storage. Then
compute nextSubLayer (i.e., the cached sublayer
of the next subtree) and πsr (i.e., the proof of the
next subtree’s root) from C’s storage. Next construct
txnextSubtree (nextSubLayer , OTPopID , πopID , πsr ) and
send it to S. Upon receiving event newSubtree(opID) from S,
update UI and inform U.
• User U: Once C displays opID = (NS − 1)+δNS , δ ∈

{0, . . ., N
NS
− 2} and informs U about necessity of introducing

the next subtree, enter opID intoA. OnceA displaysOTPopID
and confirming that the next tree is being introduced, transfer
it to C in an air-gapped manner.
• Private Key WalletW: No interaction required.
• Smart Contract S: Upon receiving

txnextSubtree (nextSubLayer , OTPopID , πopID , πsr ) from
C, verify nextOpID % N , N − 1∧nextOpID % NS =

NS − 1∧ currentSubLayer .len = nextSubLayer .len.
Then verify correctness of OTPopID by check-
ing cache[(opID % (NS / P)) / 2HS−LS ] =
deriveNodeInCache(OTPopID , πopID , opID) from Al-
gorithm 5. Next, update the current cached sublayer
currentSubLayer ← nextSubLayer and check its consistency
against R by a function subtreeConsistency(Rs , πsr , R).
Note that this function requires already com-
puted R of the next subtree using Algorithm 7:
Rs ← reduceMT (currentSubLayer , currentSubLayer .len)
and its proof πsr . Finally, increment nextOpID and send
event newSubtree(opID) to C.
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A.6 Hardware Implementation of A
For demonstration purposes, we constructed a proof-of-concept
hardware implementation of the authenticator of SmartOTPs using
cheap hardware and C language. In detail, we selected NodeMCU
with ESP8266 MCU that costs around $2. Next, we selected a 0.96"
OLED display with resolution of 128x64 that was connected to MCU
by 4-wire SPI interface (the cost of such a display falls below $2).
To control the display, we used Adafruit_SSD1306 a Adafruit_GFX
libraries. Finally, we used a simple 4x4 keyboard with 3+4 wires
addressing a combination of 3 columns and 4 rows (the cost of
the keyboard is around $0.5). To interact with the keyboard, we
utilized Keypad library of Adruino that is built for matrix style
keyboards. Further, we used software version of hash function,
available from https://github.com/ethereum/ethash. The scheme
of our hardware implementation is depicted in Figure 9 and the
source with a demonstration video is provided at https://github.
com/ivan-homoliak-sutd/SmartOTPs.

Figure 9: The scheme of a proof-of-concept hardware implementation
of the authenticator.
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ABSTRACT
Distributed ledger systems (i.e., blockchains) have received a lot of
attention recently. They promise to enable mutually untrusted par-
ticipants to execute transactions, while providing the immutability
of the transaction history and censorship resistance. Although de-
centralized ledgers may become a disruptive innovation, as of today,
they suffer from scalability, privacy, or governance issues. There-
fore, they are inapplicable for many important use cases, where
interestingly, centralized ledger systems quietly gain adoption and
find new use cases. Unfortunately, centralized ledgers have also
several drawbacks, like a lack of efficient verifiability or a higher
risk of censorship and equivocation.

In this paper, we present Aquareum, a novel framework for cen-
tralized ledgers removing their main limitations. By combining
a trusted execution environment with a public blockchain plat-
form, Aquareum provides publicly verifiable, non-equivocating,
censorship-evident, private, and high-performance ledgers. Aqua-
reum ledgers are integratedwith a Turing-complete virtual machine,
allowing arbitrary transaction processing logics, including tokens
or client-specified smart contracts. Aquareum is fully implemented
and deployment-ready, even with currently existing technologies.

1 INTRODUCTION
Ledger systems are append-only databases providing immutability
(i.e., tamper resistance) as a core property. To facilitate their append-
only feature, cryptographic constructions, such as hash chains
or hash trees, are usually deployed. Traditionally, public ledger
systems are centralized, controlled by a single entity that acts as a
trusted party. In such a setting, ledgers are being deployed in various
applications, including payments, logging, timestamping services,
repositories, or public logs of various artifacts (e.g., keys [6, 33],
certificates issued by authorities [29], and binaries [17]).

Although being successfully deployed and envisioned for mul-
tiple novel use cases, centralized ledgers have some fundamental
limitations due to their centralization. Firstly, they lack efficient
verifiability, which would ensure their clients that the ledger is
indeed append-only and internally consistent (i.e., does not con-
tain conflicting transactions). A naive solution is just to publish
the ledger or share it with parties interested in auditing it, which,
however, may be inefficient or stand against the ledger operator’s
deployment models (e.g., the privacy of the clients conducting fi-
nancial transactions can be violated). Second, it is challenging to
provide non-equivocation to centralized systems [31]. In simple yet
devastating fork attacks, a ledger operator creates two conflicting
copies of the ledger and presents it to different clients. Although
the forked ledgers are internally consistent, the “global” view of the

database is equivocated, thus completely undermining the security
of the entire system. Finally, centralized systems are inherently
prone to censorship. A ledger operator can refuse any request or a
transaction at her will without leaving any evidence of censoring.
This may be risky especially when a censored client may suffer
from some consequences (e.g., fines when being unable to settle
a transaction on time) or in the case when the operator wishes to
hide some ledger content (e.g., data proving her misbehavior). On
the other hand, recently emerged public distributed ledgers com-
bine an append-only cryptographic data structure with a consensus
algorithm, spreading trust across all participating consensus nodes.
These systems are by design publicly verifiable, non-equivocating,
and censorship resistant. However, they offer a low throughput,
they are expensive in deployment, they do not inherently provide
privacy, and their public nature makes their governance difficult
and unacceptable for many applications.

Proposed Approach. In this paper, we propose Aquareum, a
framework for centralized ledgers mitigating their main limitations.
Aquareum employs trusted execution environment (TEE) and a
public smart contract platform (i.e., built on a blockchain) to pro-
vide verifiability, non-equivocation, and to mitigate censorship. In
Aquareum, a ledger operator deploys a pre-defined TEE enclave
code, which verifies the consistency and correctness of the ledger
for every ledger update. Then, a proof produced by the enclave
is published utilizing an existing public smart contract platform,
guaranteeing that the given snapshot of the ledger is verified and
no alternative snapshot of this ledger exists. Furthermore, when-
ever a client suspects that her query (or transaction) is censored,
she can (confidentially) request a resolution of the query via the
smart contract platform. The ledger operator noticing the query
is obligated to handle it. She passes the query to the enclave that
creates a public proof of query resolution and publishes it using the
smart contract platform. With such a censorship-evident design, an
operator is publicly visible when misbehaving, thus the clients can
take appropriate actions (e.g., suing the operator) or encode some
automated service-level agreements into their smart contracts.

Aquareum can be adjusted to different ledgers and use cases, but
we implemented and deployed it with minimized Ethereum Virtual
Machine (EVM) since EVM provides a Turing-complete execution
environment and it is widely adopted in the community of decen-
tralized applications. Aquareum enables hosting and execution of
arbitrary ledger applications, such as key:value databases, tokens,
or client-defined smart contracts, while preserving the same en-
clave code for verification. Aquareum is fully implemented and we
show that it is practical and efficient, even when built using the
current technologies and tools.

1

ar
X

iv
:2

00
5.

13
33

9v
1 

 [
cs

.C
R

] 
 2

7 
M

ay
 2

02
0



2 BACKGROUND
2.1 Blockchain and Smart Contracts
A blockchain (a.k.a., a distributed ledger) is an append-only data
structure that is resistant by design against modifications combined
with a consensus protocol. In a blockchain, blocks containing data
records are linked using a cryptographic hash function, and each
new block has to be agreed upon by participants running a consen-
sus protocol (i.e., consensus nodes). Each block may contain data
records representing orders that transfer crypto-tokens, application
codes written in a platform-supported language, and the execution
orders of such application codes. These application codes are re-
ferred to as smart contracts, and they encode arbitrary processing
logic (e.g., agreements) written in a supported language of a smart
contract platform. Interactions between clients and the smart con-
tract platform are based on messages called transactions, which can
contain either orders transferring crypto-tokens or calls of smart
contract functions. All transactions sent to a blockchain are vali-
dated by consensus nodes who maintain a replicated state of the
blockchain. To incentivize consensus nodes, blockchain platforms
introduce reward and fee schemes.

2.2 Trusted Execution Environment
Trusted Execution Environment (TEE) is a hardware-based compo-
nent that can securely execute arbitrary code in an isolated environ-
ment. TEE uses cryptography primitives and hardware-embedded
secrets that protect data confidentiality and the integrity of compu-
tations. In particular, the adversary model of TEE usually includes
privileged applications and an operating system, which may com-
promise unprivileged user-space applications. There are several
practical instances of TEE, such as Intel Software Guard Extensions
(SGX) [1, 23, 32] available at Intel’s CPUs or based on RISC-V ar-
chitecture such as Keystone-enclave [15] and Sanctum [11]. In the
context of this work, we built on top of Intel SGX, therefore we
adopt the terminology introduced by it.

Intel SGX is a set of instructions that ensures hardware-level
isolation of protected user-space codes called enclaves. An enclave
process cannot execute system calls but can read and write mem-
ory outside the enclave. Thus isolated execution in SGX may be
viewed as an ideal model in which a process is guaranteed to be
executed correctly with ideal confidentiality, while it might run on
a potentially malicious operating system.

Intel SGX allows a local process or a remote system to securely
communicate with the enclave as well as execute verification of
the integrity of the enclave’s code. When an enclave is created,
the CPU outputs a report of its initial state, also referred to as
a measurement, which is signed by the private key of TEE and
encrypted by a public key of Intel Attestation Service (IAS). The
hardware-protected signature serves as the proof that the measured
code is running in an SGX-protected enclave, while the encryption
by IAS public key ensures that the SGX-equipped CPU is genuine
and was manufactured by Intel. This proof is also known as a quote
or attestation, and it can be verified by a local process or by a remote
system. The enclave process-provided public key can be used by a
verifier to establish a secure channel with the enclave or to verify
the signature during the attestation. We assume that a trustworthy

measurement of the enclave’s code is available for any client that
wishes to verify an attestation.

2.3 Merkle Tree
A Merkle tree [34] is a data structure based on the binary tree in
which each leaf node contains a hash of a single data block, while
each non-leaf node contains a hash of its concatenated children.
At the top of a Merkle tree is the root hash, which provides a
tamper-evident summary of the contents. A Merkle tree enables
efficient verification as to whether some data are associated with
a leaf node by comparing the expected root hash of a tree with
the one computed from a hash of the data in the query and the
remaining nodes required to reconstruct the root hash (i.e., proof
or authentication path). The reconstruction of the root hash has the
logarithmic time and space complexity, which makes the Merkle
tree an efficient scheme for membership verification. To provide
a membership verification of element xi in the list of elements
X = {xi }, i ≥ 1, the Merkle tree supports the following operations:
MkRoot(X) → Root: an aggregation of all elements of the list X

by a Merkle tree, providing a single value Root .
MkProof(xi,X) → πmk: a Merkle proof generation for the ith

element xi present in the list of all elements X .
πmk.Verify(xi,Root) → {True, False}: verification of the Merkle

proof πmk , witnessing that xi is included in the list X that
is aggregated by the Merkle tree with the root hash Root .

2.4 History Tree
A Merkle tree has been primarily used for proving membership.
However, Crosby and Wallach [12] extended its application for
an append-only tamper-evident log, denoted as a history tree. A
history tree is the Merkle tree, in which leaf nodes are added in
an append-only fashion, and which allows to produce logarith-
mic proofs witnessing that arbitrary two versions of the tree are
consistent (i.e., one version of the tree is an extension of another).
Therefore, once added, a leaf node cannot be modified or removed.

A history tree brings a versioned computation of hashes over the
Merkle tree, enabling to prove that different versions (i.e., commit-
ments) of a log, with distinct root hashes, make consistent claims
about the past. To provide a tamper-evident history system [12],
the log represented by the history tree L supports the following
operations:
L.add(x) → Cj: appending of the record x to L, returning a new

commitment Cj that represents the most recent value of
the root hash of the history tree.

L.IncProof(Ci,Cj) → π inc: an incremental proof generation be-
tween two commitments Ci and Cj , where i ≤ j.

L.MemProof(i,Cj) → πmem: a membership proof generation for
the record xi from the commitment Cj , where i ≤ j.

π inc.Verify(Ci,Cj) → {True, False}: verification of the incremen-
tal proof π inc , witnessing that the commitmentCj contains
the same history of records xk ,k ∈ {0, . . . , i} as the com-
mitment Ci , where i ≤ j.

πmem.Verify(i, xi,Cj) → {True, False}: verification of the mem-
bership proof πmem , witnessing that xi is the ith record
in the jth version of L, fixed by the commitment Cj , i ≤ j.
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π inc.DeriveNewRoot() → Cj: a reconstruction of the commitment
Cj from the incremental proof π inc that was generated by
L.IncProo f (Ci ,Cj ).

π inc.DeriveOldRoot() → Ci: a reconstruction of the commitment
Ci from the incremental proof π inc that was generated by
L.IncProo f (Ci ,Cj ).

2.5 Radix and Merkle-Patricia Tries
Radix trie serves as a key-value storage. In the Radix trie, every
node at the l-th layer of the trie has the form of ⟨(p0,p1, . . . ,pn ),v⟩,
where v is a stored value and all pi , i ∈ {0, 1, . . . ,n} represent
the pointers on the nodes in the next (lower) layer l + 1 of the
trie, which is selected by following the (l + 1)-th item of the key.
Note that key consists of an arbitrary number of items that belong
to an alphabet with n symbols (e.g., hex symbols). Hence, each
node of the Radix trie has n children and to access a leaf node
(i.e., data v), one must descend the trie starting from the root node
while following the items of the key one-by-one. Note that Radix
trie requires underlying database of key-value storage that maps
pointers to nodes. However, Radix trie does not contain integrity
protection, and when its key is too long (e.g., hash value), the Radix
trie will be sparse, thus imposing a high overhead for storage of all
the nodes on the path from the root to values.

Merkle Patricia Trie (MPT) [40, 49] is a combination of theMerkle
tree (see Section 2.3) and Radix trie data structures, and similar the
Radix Trie, it serves as a key-value data storage. However, in con-
trast to Radix trie, the pointers are replaced by a cryptographically
secure hash of the data in nodes, providing integrity protection.
In detail, MPT guarantees integrity by using a cryptographically
secure hash of the value for the MPT key as well as for the real-
ization of keys in the underlying database that maps the hashes of
nodes to their content; therefore, the hash of the root node of the
MPT represents an integrity snapshot of the whole MPT trie. Next,
Merkle-Patricia trie introduces the extension nodes, due to which,
there is no need to keep a dedicated node for each item of the path
in the key. The MPT trie T supports the following operations:
T.root→ Root: accessing the hash of the root node of MPT, which

is stored as a key in the underlying database.
T.add(k, x) → Root: adding the value x with the key k to T while

obtaining the new hash value of the root node.
T.get(k) → {x,⊥}: fetching a value x that corresponds to key k ;

return ⊥ if no such value exists.
T.delete(k) → {True, False}: deleting the entry with key equal to

k , returning True upon success, False otherwise.
T.MptProof(k) → {πmpt,πmpt}: aMPT (inclusion / exclusion) proof

generation for the entry with key k .
πmpt.Verify(k,Root) → {True, False}: verification of theMPT proof

πmpt , witnessing that entry with the key k is in the MPT
whose hash of the root node is equal to Root .

πmpt.VerifyNeg(k,Root) → {True, False}: verification of the neg-
ative MPT proof, witnessing that entry with the key k is
not in the MPT with the root hash equal to Root .

2.6 Notation
The notation used throughout the paper is presented in the follow-
ing. By {msд}U, we denote the message msд digitally signed by

U, and bymsд.σ we refer to a signature; h(.) stands for a crypto-
graphic hash function; ∥ is the string concatenation; % represents
modulo operation over integers; Σp .{KeyGen,Veri f y, Siдn} repre-
sents a signature (and encryption) scheme of the platform p, where
p ∈ {pb, tee} (i.e., public blockchain platform and trusted execution
environment platform); and SKp

U
, PKp

U
is the private/public key-pair

ofU, under Σp . Then, we use π s for denoting proofs of various data
structures s ∈ {mk,mem, inc}: πmk denotes the inclusion proof in
the Merkle tree, πmem and π inc denote the membership proof and
the incremental proof in the history tree, respectively.

3 SYSTEM MODEL AND OVERVIEW
3.1 System Model
In Aquareum, an operator is an entity that maintains and manages
a ledger containing chronologically sorted transactions. Clients
interact with the ledger by sending requests, such as queries and
transactions to be handled. We assume that all involved parties
can interact with a blockchain platform supporting smart contracts
(e.g., Ethereum). Next, we assume that the operator has access to a
TEE platform (e.g., Intel SGX). Finally, we assume that the operator
can be malicious and her goals are as follows:
Violation of the ledger’s integrity by creating its internal in-

consistent state – e.g., via inserting two conflicting trans-
actions or by removing/modifying existing transactions.

Equivocation of the ledger by presenting at least two inconsis-
tent views of the ledger to (at least) two distinct clients
who would accept such views as valid.

Censorship of client queries without leaving any audit trails
evincing the censorship occurrence.

Next, we assume that the adversary cannot undermine the crypto-
graphic primitives used, the underlying blockchain platform, and
the TEE platform deployed.

3.2 Desired Properties
We target the following security properties for Aquareum ledgers:
Verifiability: clients should be able to obtain easily verifiable

evidence that the ledger they interact with is internally
correct and consistent. In particular, it means that none of
the previously inserted transaction was neither modified
nor deleted, and there are no conflicting transactions. Tra-
ditionally, the verifiability is achieved by replicating the
ledger (like in blockchains) or by trusted auditors who
download the full copy of the ledger and sequentially vali-
date it. However, this property should be provided even if
the operator does not wish to share the full database with
third parties. Besides, the system should be self-auditable,
such that any client can easily verify (and prove to others)
that some transaction is included in the ledger, and she can
prove the state of the ledger at the given point in time.

Non-Equivocation: the system should protect from forking at-
tacks and thus guarantee that no concurrent (equivocating)
versions of the ledger exist at any point in time. The conse-
quence of this property is that whenever a client interacts
with the ledger or relies on the ledger’s logged artifacts,
the client is ensured that other clients have ledger views
consistent with her view.
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Censorship Evidence: preventing censorship in a centralized sys-
tem is particularly challenging, as its operator can simply
pretend unavailability in order to censor undesired queries
or transactions. However, this property requires that when-
ever the operator censors client’s requests, the client can do
a resolution of an arbitrary (i.e., censored) request publicly.
We emphasize that proving censorship is a non-trivial task
since it is difficult to distinguish “pretended” unavailability
from “genuine” one. Genuine censorship evidence enables
clients to enforce potential service-level agreements with
the operator, either by a legal dispute or by automated
rules encoded in smart contracts.

Besides those properties, we intend the system to provide privacy
(keeping the clients’ communication confidential), efficiency and
high performance, not introducing any significant overhead, deploy-
ability with today’s technologies and infrastructures, as well as
flexibility enabling various applications and scenarios.

3.3 High-Level Overview
Aquareum ledger is initialized by an operator (O) who creates an
internal ledger (L) that will store all transactions processed and the
state that they render. Initially, L contains an empty transaction set
and a null state. During the initialization, O creates a TEE enclave
(E) whose role is to execute updates of L and verify consistency of
L before each update. Initialization of E involves the generation of
two public private key pairs – one for the signature scheme of TEE
(i.e., PKtee

E
, SKtee
E

) and one for the signature scheme of the public
blockchain (i.e., PKpb

E
, SK

pb
E

).1 The code of E is publicly-known
(see Algorithm 1 and Algorithm 6), and it can be remotely attested
with the TEE infrastructure by any client.

Next, O generates her public-private key pair (i.e., PKO, SKO)
and deploys a special smart contract (S) initialized with the empty L
represented by its hash LHash, the operator’s public key PKO, and
both enclave public keys PKtee

E
and PKpb

E
. After the deployment

of S, an instance of L is uniquely identified by the address of S. A
client (C) wishing to interact with L obtains the address of S and
performs the remote attestation of E using the PKtee

E
.

Whenever C sends a transaction to O (see Figure 1), E validates
whether it is authentic and non-conflicting; and if so, E updates
L with the transaction, yielding the new version of L. The C is
responded with a receipt and “a version transition of L”, both signed
by E, which prove that the transaction was processed successfully
and is included in the new version of L. For efficiency reasons,
transactions are processed in batches that are referred to as blocks.
In detail,O starts the update procedure of L (see Figure 1) as follows:
a) O sends all received transactions since the previous update to
E, together with the current partial state of L and a small subset
of L’s data ∂Li , such that h(∂Li ) = h(Li ), which is required to
validate L’s consistency and perform its incremental extension.

b) E validates and executes the transactions in its virtual machine,
updates the current partial state and partial data of L, and finally
creates a blockchain transaction2 {h(∂Li ),h(∂Li+1)}E signed by
SK

pb
E

, which represents a version transition of the ledger from

1Note that neither of the private keys ever leaves E.
2Note that {h(∂Li ), h(∂Li+1)}E = {h(Li ), h(Li+1)}E
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Figure 1: Operation procedure of Aquareum ledger.

version i to its new version i + 1, also referred to as the version
transition pair.

c) The blockchain transaction with version transition pair is re-
turned to O, who sends this transaction to S.

d) S accepts the second item of the version transition pair as the
current hash of L iff it is signed by SKpb

E
and the current hash

of L stored by S (i.e., LHash) is equal to the first item of the pair.

After the update of L is finished, clients with receipts obtained can
verify that their transactions were processed by E (see details in
Section 4.3). The update procedure ensures that the new version of
L is: (1) internally correct since it was executed by trusted code
of E, (2) a consistent extension of the previous version – relying
on trusted code of E and a witnessed version transition by S, and
(3) non-equivocating since S stores only hash of a single version
of L (i.e., LHash) at any point in time.

Whenever C suspects that her transactions or read queries are
censored,Cmight send such requests via S (see details in Section 4.4
and Section 4.5). To do so, C encrypts her request with PK

pb
E

and
publishes it on the blockchain via S. O noticing a new request is
obligated to pass the request toE, whichwill process the request and
reply with an encrypted response (by PKpb

C
) that is processed by S.

If a pending request at S is not handled by O, it is public evidence
that O censors the request. We do not specify how can C utilize
such a proof, but it could be shown in a potential legal dispute or S
itself could have an automated deposit-based punishments rules.

3.4 Design Consideration
We might design L as an append-only chain (as in blockchains), but
such a design would bring a high overhead on clients who want to
verify that a particular block is a part of L. During the verification,
clients would have to download the headers of all blocks between
the head of L and the block in the query, resulting into linear space
& time complexity. In contrast, when a history tree (see Section 2.4)
is utilized for integrity preservation of L, the presence of any block
in L can be verified with logarithmic space and time complexity.
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Figure 2: Aquareum components. Trusted components are depicted in green.

4 DETAILS
The schematic overview of Aquareum is depicted in Figure 2, where
trusted components are depicted in green. The right part of the
figure describes data aggregation of L. We utilize a history tree [12]
for tamper-evident logging of data blocks due to its efficient mem-
bership and incremental proofs (see Section 3.4). The aggregation
of blocks within a history tree is represented by root hash LRoot ,
which instantiates ledger hash LHash from Section 3.3. In Aqua-
reum, each data block consists of a header, a list of transactions,
and a list of execution receipts from VM that is running within E.
A header contains the following fields:

• ID: this field is assigned for each newly created block as
a counter of all blocks. ID of each block represents the
IDth version of the history tree of L, which contains blocks
B0, . . . ,BID−1 and is characterized by the root hash r ←
MkRoot({H0, . . . ,HID−1}), where Hi stands for a header
of a block Bi . Note that the IDth version of L with the root
hash r can also be expressed by the notation #(r ).

• txsRoot, rcpRoot: two root hash values that aggregate set
of transactions and the set of their corresponding execution
receipts (containing execution logs) by Merkle trees [34],

• stRoot: the root hash that aggregates the current global
state of the virtual machine by Merkle-Patricia trie [40, 49].
In detail, MPT aggregates all account states into a global
state, where keys of MPT represent IDs of client accounts
(i.e., h(PKpb

C
)) and values represent an account state data

structures, which (similar to [49]) contains: (1) balance
of a native token (if any), (2) code that is executed when
an account receives a transaction; accounts with no code
represent simple accounts and accounts with a code field
represent smart contract accounts, (3) nonce represents the
number of transactions sent from the simple account or the
number of contracts created by the smart contract account,
(4) storage represents encoded variables of a smart contract,
which can be realized by Merkle-Patricia trie [40, 49] or
other integrity-preserving mapping structures.

AlthoughO persists the full content of L (and maintains its full state
in the memory), she is unable to directly modify L while remaining
undetected since all modifications of L must be done through E. In

detail, upon receiving enough transactions from clients, E executes
received transactions by its virtual machine (VM) and updates L
accordingly. While updating L, E leverages the incremental proofs
of the history tree to ensure integrity and consistency with the past
versions of L.

The enclave E in our approach stores the last produced header
(hdrlast ) and the current root hash of the history tree of L (i.e.,
LRoot ), which enables E to make extensions of L that are consistent
with L’s history and at the same time avoiding dishonest O to
tamper with L. Although state-fullness of E might be seen as a
limitation in the case of a failed enclave, we show how to deal with
this situation and provide a procedure that publicly replaces a failed
enclave using S (see Section 4.6).

4.1 Setup
The setup of Aquareum is presented in Figure 3.3 First, O initializes
an empty L, a root hash LRootcur for the most recent local version
of L, the root hash LRootpb for the version synchronized with PB,
the empty global state of L, and the empty list of reported censored
requests. Then, O initializes E with code proдE (see Algorithm 1).
In this initialization, E generates two key-pairs, SKpb

E
, PK

pb
E

and
SKtee
E
, PKtee

E
, respectively; the first key-pair is intended for inter-

action with the blockchain platform and the second one is intended
for the remote attestation with TEE infrastructure. Next, E initial-
izes L and two root hashes in the same vein as O did. In addition,
E stores the header hdrcur of the last block created and signed by
E and its ID. Then, E sends its public keys PKpb

E
and PKtee

E
to O.

Next, O creates a deployment transaction of S’s code proдS (see
Algorithm 2) with public keys PKpb

E
, PKtee

E
, PKO as the arguments

(see Algorithm 4 in Appendix for pseudo-code of O). Then, O sends
the deployment transaction to the blockchain. In the constructor of
S, all public keys are stored, and the root hash of L with the list of
censored requests are initialized. Finally, S publishes its identifier
SID , which serves as a public reference to S.

When the infrastructure of Aquareum is initialized, Cs register
at O. For simplicity, we omit details of the registration and access
control, and we let this up to the discretion of O.

3We assume that O has already generated her public/private key-pair PKpb
O

, SKpb
O

.
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4.2 Normal Operation
In the case of normal operation (see Figure 4), O is not censoring
any transactions produced by instances of C, hence all transactions
are correctly executed within E and appended to L, while S publicly
witnesses the correct execution of transactions and the consistency
of the new version of L with its history. In detail, when O receives
a transaction from Cx , it performs access control of Cx ,4 and upon
the success, O adds the transaction in its cache of unprocessed
transactions (see Algorithm 4 in Appendix). When O accumulates
enough transactions from clients, it passes these transactions to E,
together with the current partial state ∂statecur of the VM.

4.2.1 VM Execution with Partial State. The current partial
state of VM represents only data related to all account states that
the execution of transactions is about to modify or create. The
motivation for such an approach is the limited memory size of E
(e.g., in the case of SGX it is only ∼100MB), which does not allow
to internally store the full global state of L (neither L itself). The
partial state does not contain only the account states of concerning
transactions, but it also contains intermediary nodes of MPT (i.e.,
extension and branch nodes) that are on the path from the root node
of MPT to leaf nodes of concerning account states. Using passed
partial state, E verifies its integrity, obtains the state root of MPT
and compares it with the last known state root (i.e., hdrlast .stRoot )
produced by E. If the roots match, E executes transactions using
the passed partial state, obtains the new partial state of VM and
execution receipts with additional information about the execution
of particular transactions (i.e., return codes and logs). Note that E
obtains the new partial state by consecutively updating the current
partial state with each transaction executed.

Next, E creates the header of the new block (i.e., hdrcur ) from ag-
gregated transactions, receipts, and new partial state. Using created
header, E extends the previous version of the history tree of L, while
obtaining the new root hash LRootcur of L (see Section 4.2.2). Then,
E signs a version transition pair ⟨LRootpb ,LRootcur ⟩ of the history
tree by SKpb

E
and sends it to O, together with the new header, the

new partial state, and execution receipts. Moreover, E stores the

4For simplicity, we omit access control at O.
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Figure 4: Protocol for normal operation (ΠN ).

last produced header (i.e., hdrlast ) and the root hash LRootcur of L
associated with the last version of the history tree.

4.2.2 Incremental Update of the Ledger. We omitted the
details about the consistent update of L within E in the above
text and Figure 4. In general, an incremental update of a history
tree assumes trusted full access to its data. However, E does not
store full data of L (only the last header created), and thus cannot
directly make a consistent update of L. Therefore, we design a
simple procedure that enables E to extend L without storing it
internally.

In the procedure,O creates a proof template π incnext for the next in-
cremental proof of the history tree, which extends L exactly by one
empty block (see function nextIncProo f () in Algorithm 4) while ob-
taining a new version of Lwith the (temporary) root hash LRoottmp .
Note that this template represents ∂L from Section 3.3, and it en-
ables E to make an integrity verification and consistent extension
of L without storing it. In detail, O sends π incnext and LRoottmp to E,
together with transactions that are about to be processed by func-
tion Exec(). E verifies π incnext with respect to its last known version
of L (i.e., #(LRootcur )), replaces the header hash of the empty block
in the proof template by the hash of newly created header in E, and
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Algorithm 1: The program proдE of enclave E
▷ Declaration of types and functions:

Header { ID , txsRoot , rcpRoot , stRoot };
#(r ) → v : denotes the version v of L having LRoot = r ,

▷ Variables of TEE:
SK tee
E , PK tee

E : keypair of E under Σtee ,
SKpb
E , PKpb

E : keypair of E under Σpb ,
hdrlast ←⊥: the last header created by E,
LRootpb ←⊥: the last root of L flushed to PB,
LRootcur ←⊥: the root of L ∪ blksp (not flushed to PB),
IDcur ← 1: the current version of L (not flushed to PB),

▷ Declaration of functions:
function Init () public

(SKpb
E , PKpb

E )← Σpb .Keyдen();
(SK tee

E , PK tee
E )← Σtee .Keyдen();

Output(PK tee
E , PKpb

E );

function Exec (txs[], ∂stold , π incnext , LRoottmp ) public
assert ∂stold .root = hdrlast .stRoot ;
∂stnew , rcps, txser ← processT xs(txs, ∂stold , π incnext , LRoottmp );
σ ← Σpb .siдn(SKpb

E , (LRootpb , LRootcur ));
Output(LRootpb , LRootcur , ∂stnew , hdrlast , rcps , txser , σ );

function F lush() public
LRootpb ← LRootcur ; ▷ Shift the version of L synchronized with PB.

function processT xs (txs[], ∂stold , π incnext , LRoottmp ) private
∂stnew , rcps[], txser ← runVM(txs , ∂stold ); ▷ Run txs in VM.
txs ← txs \ txser ; ▷ Filter out parsing errors/wrong signatures.
hdr ← Header(IDcur , MkRoot (txs), MkRoot (rcps), ∂stnew .root ));
hdrlast ← hdr ;
IDcur ← IDcur + 1;
LRootcur ← newLRoot (hdr, π incnext , LRoottmp );
return ∂stnew , rcps , txser ;

function newLRoot (hdr, π incnext , LRoottmp ) private
▷ A modification of the incr. proof. template to contain hdr

assert #(LRootcur ) + 1 = #(LRoottmp ); ▷ 1 block ∆.
assert π incnext .V er if y(LRootcur , LRoottmp );
π incnext [-1] ← h(hdr );
return der iveN ewRoot (π incnext );

then uses such modified proof to compute the new root hash of L,
which is then stored as LRootcur by E.

When O receives the output of E, it updates the full state of L
and creates the new block using client transactions, the received
receipts, and the header of the new block. Then, O appends the
new block to L and responds to client requests for receipts of their
transactions (see Section 4.3), which serve as promises confirming
the execution of transactions. These promises became irreversible
when O syncs L with S that runs on the blockchain platform.

4.2.3 Syncing the Ledger with the Blockchain. O periodi-
cally syncs L with S to provide non-equivocation of L. However,
O is able to sync only such a version of L that was signed within
E and is newer than the last known version by S, which provides
consistency and non-equivocation of L. During the sync of L, O
creates a special blockchain transaction containing the version tran-
sition pair ⟨LRootpb ,LRootcur ⟩ signed within E and sends it to S
(i.e., calling the function PostLRoot()). S verifies whether the ver-
sion transition pair was signed within E by checking the signature
with PK

pb
E

. Then, S verifies whether the last published version of
L (corresponding to LRootpb at S) is equal to the first entry in the
version transition pair. In the positive case, S publicly performs
the version transition of L by updating its LRootpb to the second

Algorithm 2: The program proдS of the smart contract S
▷ Declaration of types and constants:

CensInfo { etx, equery, status, edata },
msд: a current transaction that called S,

▷ Declaration of functions:
function Init (PKpb

E , PK tee
E , PKO) public

PK tee
E [].add (PK tee

E ); ▷ PK of enclave E under Σtee .

PKpb
E [].add (PK

pb
E ); ▷ PK of enclave E under Σpb .

PKpb
O
← PKO ; ▷ PK of operator O under Σpb .

LRootpb ←⊥; ▷ The most recent root hash of L synchronized with S.
censReqs ← []; ▷ Request that Cs wants to resolve publicly.

function PostLRoot (rootA, rootB, σ ) public
▷ Verify whether a state transition was made within E.

assert Σpb .ver if y((σ , PKpb
E [-1]), (rootA, rootB ));

▷ Verify whether a version transition extends the last one.
if LRootpb = rootA then

LRootpb ← rootB ; ▷ Do a version transition of L.

function ReplaceEnc (PKN pb
E , PKN tee

E , rA, rB, σ , σmsд ) public
▷ Called by O in the case of enclave failure.

assert Σpb .ver if y((σmsд, PK
pb
O
),msд); ▷ Avoiding MiTM attack.

PostLRoot (rA, rB, σ ) ; ▷ Do a version transition.
PK tee
E .add (PKN tee

E ); ▷ Upon change, Cs make remote attestation.

PKpb
E .add (PKN pb

E );
function SubmitCensT x (etx, σmsд ) public

▷ Called by C in the case her TX is censored.
accessControl(σmsд,msд .PKpb

C
);

censReqs .add(CensInfo(etx, ⊥, ⊥, ⊥));
function ResolveCensT x (idxr eq, status, σ ) public

▷ Called by O to prove that C’s TX was processed.
assert idxr eq < |censReqs |;
r ← censReqs[idxr eq ];
assert Σpb .ver if y((σ , PKpb

E [-1]), (h(r .etx ), status));
r .status ← status ;

function SubmitCensQry(equery, σmsд ) public
▷ Called by C in the case its read query is censored.

accessControl(σmsд,msд .PKpb
C

);
censReqs .add(CensInfo(⊥, equery, ⊥, ⊥));

function ResolveCensQry(idxr eq, status, edata, σ ) public
▷ Called by O as a response to the C’s censored read query.

assert idxr eq < |censReqs |;
r ← censReqs[idxr eq ];
assert
Σpb .ver if y((σ , PKpb

E [-1]), (h(r .equery), status, h(edata)));
r . {edata ← edata, status ← status };

item of the version transition pair. From that moment, the Aqua-
reum transactions processed until the current version of L cannot
be tampered with – providing a non-equivocation of L. Finally, O
notifies E about successful sync by calling function Flush() (see
Algorithm 1), where E “shifts” LRootpb to LRootcur .

Note that if O were to sync L with S upon every new block cre-
ated, it might be too expensive. On the other hand, if O were to
sync L to Swith long delays, “a level” of non-equivocation would be
decreased, which in turn would extend the time to finality. Hence,
the sync interval must be viewed as a trade-off between costs and
a level of non-equivocation (see examples in Section 5.2). The fre-
quency of syncs might be defined in SLA with clients and violation
might be penalized by S.

4.3 Retrieval and Verification of Receipts
Receipt retrieval and verification serves as a lightweight audit proce-
dure in which C verifies inclusion and execution of the transaction
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txi by obtaining its receipt. An execution receipt contains three
fields: (1) hash of txi , (2) return code of VM, and (3) log of events
emitted by EVM.

To obtain an execution receipt of txi ,C first retrieves the last root
hash of L (i.e., LRootpb ) from S. Then, C requests O for an inclusion
proof of her transaction txi in the most recent version of L that
extends the version #(LRootpb ). Upon request,O finds a block b that
contains txi and computes a membership proof πmem

hdr of b’s header
in the most recent version #(LRootcur ) of L. The second proof that
O computes is the Merkle proof πmk

rcpi , which witnesses that receipt
rcpi of transaction txi is included in the block b. Then, O computes
the incremental proof π inc of the most recent version transition
⟨LRootpb ,LRootcur ⟩ that was executed within E. In response, O
sends the following data to C:

• the receipt rcpi with its proof πmk
rcpi ,

• the header of b with its proof πmem
hdr ,

• the most recent version LRootcur of L with its proof π inc ,
• the signature σlast of the most recent version transition
⟨LRootpb ,LRootcur ⟩ made by E.

C verifies the signature and the provided proofs against LRootpb ,
and it also checks whether the retrieved receipt corresponds to
txi . In the positive case, C has a guarantee that the transaction txi
was included in L and its execution in VM exited with a particular
status, represented by a return code in the receipt.

We highlight that the previous receipt retrieval protocol assumes
that txi is “very recent,” and is included only in the version of L that
was not synchronized with S yet. When txi is already included in
the synchronized version of L, we can put LRootcur = LRootpb in
the protocol, and thus omit computation of π inc and its verification.
We also note that the receipt retrieval protocol can be integrated
with the transaction submission in ΠN by following it.
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Figure 6: Protocol for resolution of a censored transaction (ΠCT ).

4.4 Resolution of Censored Transactions
In the case when C suspects O of censoring a transaction tx (see
Figure 6),C initiates a request for an inclusion proof of tx through S.
In detail, C creates a transaction of the public blockchain platform,
which calls the function SubmitCensTx() with tx encrypted by
PK

pb
E

(i.e., etx ) as an argument and sends it to S; hence, preserving
confidentially for public. S does the access control (see Section 6.1.2),
appends etx to the list of censored requests,5 and generates asyn-
chronous event informing O about new unresolved transaction.
When O receives the event, first she decrypts tx through E and
then executes tx in E if it has not been executed before. If a fresh
execution of tx occurred, O syncs the most recent version of L with
S. Then, O sends the encrypted tx to E (i.e., function SiдnTx())
together with the header and the proofs that bind tx to L, i.e., to its
version #(LRootpb ). In the function SiдnTx() (see Algorithm 1), E
decrypts tx and checks whether it is correctly parsed and whether
its signature is correct. If these checks are not successful, E includes
this information into a status of the response and signs it. If the
checks are successful, E proceeds to the verification of provided
proofs with regard to the version #(LRootpb ) of L synchronized to S.
Upon successful verification, E signs both the transaction’s status
and the hash of encrypted tx , and then returns them to O, who
publishes the signature and the status through S (i.e., the function
ResolveCensTx()). When S receives the message with the status
of tx signed by E, it computes the hash of etx and uses it in the
5Note that to save operational costs for allocating storage of the the smart contract
platform, S can store only the hash of etx instead (see Section 5.2.1).
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Figure 7: Protocol for resolution of a censored query (ΠCQ ).

signature verification. In the successful case, S updates the status of
the suspected censored transaction with the result from E. Finally,
S notifies C and O about the resolution of tx .

4.5 Resolution of Censored Queries
Besides censoring transactions, O might also censor read queries
of Cs. When C suspects O of censoring a read query qry (see Fig-
ure 7), C initiates inclusion of qry through S. In detail, C creates
a transaction of the public blockchain platform, which calls the
function SubmitCensQry() (see Algorithm 2) with qry encrypted
by PK

pb
E

(i.e., equery) as an argument and sends it to S. S does
the access control (see Section 6.1.2), appends equery to the list of
censored requests, and generates asynchronous event informing
O about new unresolved query. When O receives the event, first
she decrypts qry through E, then fetches the data requested by
qry and computes their inclusion proof(s) π<∗>

data in the version of
L synchronized to S.6 Then, O sends the encrypted qry to E (i.e.,
function SiдnQry⟨∗⟩()) together with the fetched data and their
inclusion proof π<∗>

data . In the function SiдnQry⟨∗⟩(), E decrypts
qry and checks whether it is correctly parsed. Upon the success,
E proceeds to the verification of π<∗>

data with regards to the passed
data and the version #(LRootpb ) of L synchronized with S. Upon
successful verification, E encrypts data by PK

pb
C

(i.e., edata) and
signs the triplet consisting of the transaction’s status, the hash
of eqry, and the hash of edata; which are returned to O. Then, O

6Note that if the query requests non-existing data,O creates an exclusion proof instead.

calls the function ResolveCensQry() of S (see Algorithm 2) with
signature, status, and encrypted data contained in the arguments.
When S receives the message with the status of qry signed by E,
it computes the hashes of equery and edata, and it uses them in
the signature verification. Upon successful verification, S updates
the status and edata of the suspected censored query with the data
from E. Finally, S notifies C and O about the resolution of qry. We
provide code of E specific to censorship resolution and examples
of handling different queries in Appendix A.1.

4.6 Terminated and Failed Enclave
During the execution of proдE, E stores its secrets and state objects
in a sealed file, which is updated and stored on the hard drive
of O with each new block created. Hence, if E terminates due a
temporary reason, such as a power outage or intentional command
byO, it can be initialized again byOwho provides Ewith the sealed
file; this file is used to recover its protected state objects.

However, if E experiences a permanent hardware failure of TEE,
the sealed file cannot be decrypted on other TEE platforms. There-
fore, we propose a simple mechanism that deals with this situation
under the assumption that O is the only allowed entity that can
replace the platform of E. In detail, O first snapshots the header
hdrsync of the last block that was synchronized with S as well
as all blocks blksunsync of L that were not synchronized with S.
Then, O restores L and her internal state objects into the version
#(LRootpb ). After the restoration of L, O calls the function ReInit()
of E (see Algorithm 3) with hdrsync , blksunsync , and LRootpb as
the arguments. In this function, E first generates its public/private
key-pair SKpb

E
, PK

pb
E

, and then stores the passed header as hdrlast
and copies the passed root hash into LRootcur and LRootpb . Then,
E iterates over all passed unprocessed blocks and their transactions
txs , which are executed within VM of E. Before the processing of
txs of each passed block, E calls the unprotected code ofO to obtain
the current partial state ∂stold of L and incremental proof template
(see Section 4.2.2) that serves for extending L within E. However,
these unprotected calls are always verified within E and malicious
O cannot misuse them. In detail, E verifies ∂stold obtained from O
against the root hash of the state stored in the last header hdrlast
of E, while the incremental proof template is also verified against
LRootcur in the function newLRoot() of E.

Next, E processes txs of a block, extends L, and then it calls
the unprotected code of O again, but this time to process txs of

Algorithm 3: Reinitialization of a failed E (part of proдE).
function ReInit (LRootold , prevBlks[], hdrlast ) public

(SKpb
E , PKpb

E )← Σpb .Keyдen();
hdrlast ← hdrlast ;
LRootcur ← LRootold , LRootpb ← LRootold ;
for {b : prevBlks } do

π incnext , LRoottmp ← proдO .next IncProof ();
∂stold ← proдO .дetPar tialState(b .txs);
assert ∂stold .root = hdrlast .stRoot ;
. . . ← processT xs(b .txs, ∂stold , π incnext , LRoottmp );
LRootr et ← proдO .runVM (b .txs); ▷ Run VM at O.
assert LRootcur = LRootr et ; ▷ E and O are at the same point.

σ ← Σpb .siдn(SKpb
E , (LRootpb , LRootcur ));

Output(LRootpb , LRootcur , σ , PKEpb , PK
E
tee );
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Figure 8: Performance of Aquareum for native payments.
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Figure 9: Performance of Aquareum for ERC20 smart contract calls.

the current block by O, and thus getting the same version and
state of L in both E and O. Note that any adversarial effect of this
unprotected call is eliminated by the checks made after the former
two unprotected calls. When all passed blocks are processed, E
signs the version transition pair ⟨LRootpb ,LRootcur ⟩ and returns it
toO, together with the new public keys of E.O creates a blockchain
transaction that calls the function ReplaceEnc() of Swith data from
E passed in the arguments. In ReplaceEnc(), S first verifies whether
the signature of the transaction was made by O to avoid MiTM
attacks on this functionality. Then, S calls its function PostLRoot()
with the signed version transition pair in the arguments. Upon the
success, the current root hash of L is updated and S replaces the
stored E’s PKs by PKs passed in parameters. Finally, E informs Cs
by an event containing new PKs of E, and Cs perform the remote
attestation of proдE using the new key PKEtee and the attestation
service. We refer the reader to Algorithm 4 in Appendix for the
relevant pseudo-code of O.

5 IMPLEMENTATION
We have made a proof-of-concept implementation of Aquareum,
where we utilized Intel SGX and C++ for instantiation of E, while S
was built on top of Ethereum and Solidity. Although Aquareum can
be integrated with various VMs running within E, we selected EVM
since it provides a Turing-complete execution environment and it
is widely adopted in the community of decentralized applications.
In detail, we utilized OpenEnclave SDK [38] and a minimalistic
EVM, called eEVM [35]. However, eEVM is designed with the stan-
dard C++ map for storing the full state of L, which lacks efficient
integrity-oriented operations. Moreover, eEVM assumes the unlim-
ited size of E for storing the full state, while the size of E in SGX is
constrained to ∼100 MB. This might work with enabled swapping
but the performance of E would be significantly deteriorated with
a large full state. Due to these limitations, we replaced eEVM’s full
state handling by Merkle-Patricia Trie from Aleth [16], which we
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Figure 10: Costs for resolution of censored transactions and queries.

customized to support operations with the partial state. O and C
were also implemented in C++.

Our implementation enables the creation and interaction of sim-
ple accounts as well as the deployment and execution of smart con-
tracts written in Solidity.We verified the code of S by static/dynamic
analysis tools Mythril [10], Slither [44], and ContractGuard [20];
none of them detected any vulnerabilities. The source code of our
implementation will be made available upon publication of our
work.

5.1 Performance Evaluation
All our experiments were performed on commodity laptop with
Intel i7-10510U CPU supporting SGX v1, and they were aimed at
reproducing realistic conditions – i.e., they included all operations
and verifications described in Section 4, such as verification of re-
coverable ECDSA signatures, aggregation of transactions byMerkle
tree, integrity verification of partial state, etc. We evaluated the
performance of Aquareum in terms of transaction throughput per
second, where we distinguished transactions with native payments
(see Figure 8) and transactions with ERC20 smart contract calls
(see Figure 9). All measurements were repeated 100 times, and we
depict the mean and standard deviation in the graphs.

5.1.1 A Size of the Full State. The performance of Aquareum
is dependent on a size of data that is copied fromO to E upon call of
Exec(). The most significant portion of the copied data is a partial
state, which depends on the height of the MPT storing the full
state. Therefore, we repeated our measurements with two different
full states, one containing 1k accounts and another one containing
10k accounts. In the case of native payments, the full state with
10k accounts caused a decrease of throughput by 7.8%-12.1% (with
enabled TB) in contrast to the full state with 1k accounts. In the
case of smart contract calls, the performance deterioration was in
the range 2.8%-8.4% (with enabled TB).
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5.1.2 Block Size & Turbo Boost. In each experiment, we var-
ied the block size in terms of the number of transactions aggregated
in the block. Initially, we performed measurements with enabled
Turbo Boost (see Figure 8a and Figure 9a), where we witnessed a
high throughput and its high variability. For smart contract calls
(see Figure 9a), the throughput increased with the size of the block
modified from 1 to 1000 by 45.7% and 38.7% for a full state with
1k and 10k accounts, respectively. However, in the case of native
payments the improvement was only 4.3% and 2.8%, while the
throughput was not increased monotonically with the block size.

Therefore, we experimentally disabled Turbo Boost (see Fig-
ure 8b) and observed the monotonic increase of throughput with
increased block size, where the improvement achieved was 11.41%
and 12.26% for a full state with 1k and 10k accounts, respectively.
For completeness, we also disabled Trubo Boost in the case of smart
contract calls (see Figure 9b), where the performance improvement
was 20.9% and 26.7% for both full states under consideration.

5.2 Analysis of Costs
Besides the operational cost resulting from running the centralized
infrastructure, Aquareum imposes costs for interaction with the
public blockchain with S deployed. The deployment cost of S is
1.51M of gas and the cost of most frequent operation – syncing L
with S (i.e., PostLRoot()) – is 33k of gas, which is only 33% higher
than the cost of a standard Ethereum transaction.7 For example, if
L is synced with S every 5 minutes, O’s monthly expenses for this
operation would be 285M of gas, while in the case of syncing every
minute, monthly expenses would be 1, 425M of gas.8

5.2.1 CensorshipResolution. Ourmechanism for censorship
resolution imposes costs on Cs submitting requests as well as for O
resolving these requests. The cost of submitting a censored request
is mainly dependent on the size of the request/response andwhether
S keeps data of a request/response in the storage (i.e., an expensive
option) or whether it just emits an asynchronous event with the
data (i.e., a cheap option). We measured the costs of both options
and the results are depicted in Figure 10. Nevertheless, for practical
usage, only the option with event emitting is feasible (see solid lines
in Figure 10).

Figure 10a and Figure 10b depict the resolution of a censored
transaction, which is more expensive forC than forO, who resolves
each censored transaction with constant cost 49k of gas (see Fig-
ure 10b). On the other hand, the resolution of censored queries is
more expensive for O since she has to deliver a response with data
to S (see Figure 10d), while C submits only a short query, e.g., get a
transaction (see Figure 10c).

6 SECURITY ANALYSIS AND DISCUSSION
In this section, we demonstrate resilience of Aquareum against
adversarial actions that the malicious operator A can perform to
violate the desired properties (see Section 3.2).

Theorem 6.1. (Correctness)A is unable to modify the full state of
L in a way that does not respect the semantics of VM deployed in E.

7This cost is low since we leverage the native signature scheme of the blockchain Σpb .
8Representing $305 and $1525 as of May 2020, assuming standard gas price of 5 GWEI.

Justification. The update of the L’s state is performed exclu-
sively in E. Since E contains trusted code that is publicly known
and remotely attested by Cs, A cannot tamper with this code. □

Theorem 6.2. (Consistency) A is unable to extend L while modi-
fying the past records of L.

Justification. All extensions of L are performed within trusted
code of E, while utilizing the history tree [12] as a tamper evident
data structure, which enables us to make only such incremental
extensions of L that are consistent with L’s past. □

Theorem 6.3. (Verifiability) A is unable to unnoticeably modify
or delete a transaction tx that was previously inserted to L using ΠN ,
if sync with S was executed anytime afterward.

Justification. Since tx was correctly executed (Theorem 6.1)
as a part of the block bi in a trusted code of E, E produced a signed
version transition pair {h(Li−1),h(Li )}E of L from the version i − 1
to the new version i that corresponds to Lwith bi included.A could
either sync Lwith S immediately afterbi was appended or she could
do itn versions later. In the first case,A published {h(Li−1),h(Li )}E
to S, which updated its current version of L to i by storingh(Li ) into
LRootpb . In the second case, n blocks were appended to L, obtaining
its (i + n)th version. E executed all transactions from versions (i +
1), . . . , (i + n) of L, while preserving correctness (Theorem 6.1) and
consistency (Theorem 6.2). Then E generated a version transition
pair {h(Li−1),h(Li+n )}E and A posted it to S, where the current
version of L was updated to i + n by storing h(Li+n ) into LRootpb .
When any C requests tx and its proofs from A with regard to
publicly visible LRootpb , she might obtain a modified tx ′ with a
valid membership proof πmem

hdri
of the block bi but an invalid Merkle

proof πmk
tx ′ , which cannot be forged. □

In the case of tx deletion, A provides C with the tampered full
block b ′i (maliciously excluding tx ) whose membership proof πmem

hdr ′i
is invalid – it cannot be forged. □

Theorem 6.4. (Non-Equivocation) Assuming L synced with S: A
is unable to provide two distinct Cs with two distinct valid views on L.

Justification. Since L is regularly synced with publicly visible
S, and S stores only a single current version of L (i.e., LRootpb ), all
Cs share the same view on L. □

Theorem 6.5. (Censorship Evidence) A is unable to censor any
request (transaction or query) from C while staying unnoticeable.

Justification. If C’s request is censored, C asks for a resolu-
tion of the request through public S.A observing the request might
either ignore it and leave the proof of censoring at S or she might
submit the request to E and obtain an enclave signed proof wit-
nessing that a request was processed – this proof is submitted to S,
whereby publicly resolving the request. □

6.1 Other Properties and Implications
6.1.1 Privacy VS Performance. Aquareum provides privacy

of data submitted to S during the censorship resolution since the
requests and responses are encrypted. However, Aquareum does not
provide privacy against O who has the read access to L. Although
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Aquareum could be designed with the support of full privacy, a
disadvantage of such an approach would be the performance drop
caused by the decryption of requested data from L upon every C’s
read query, requiring a call of E. In contrast, with partial-privacy,
O is able to respond queries of Cs without touching E.

6.1.2 Access Control at S. Cs interact with S only through
functions for submission of censored requests. Nevertheless, access
to these functions must be regulated through an access control
mechanism in order to avoid exhaustion (i.e., DoS) of this func-
tionality by external entities. This can be performed with a simple
access control requiring Cs to provide access tickets when calling
the functions of S. An access ticket could be provisioned by C upon
registration at O, and it could contain PK

pb
C

with a time expiration
of the subscription, signed by E. Whenever C initiates a censored
request, verification of an access ticket would be made by S, due to
which DoS of this functionality would not be possible.

6.1.3 Security of TEE. Aquareum assumes that its TEE plat-
form is secure. However, recent research showed that this might
not be the case in practical implementations of TEE, such as SGX
that was vulnerable to memory corruption attacks [4] as well as
side channel attacks [5, 48]. A number of software-based defense
and mitigation techniques have been proposed [5, 7, 19, 42, 43] and
some vulnerabilities were patched by Intel at the hardware level [25].
Nevertheless, we note that Aquareum is TEE-agnostic thus can be
integrated with other TEEs such as ARM TrustZone or RISC-V
architectures (using Keystone-enclave [15] or Sanctum [11]).

6.1.4 Time to Finality. Many blockchain platforms suffer from
accidental forks, which temporarily create parallel inconsistent
blockchain views. To mitigate this phenomenon, it is recommended
to wait a certain number of block confirmations after a given block
is created, considering it irreversible. This waiting time (a.k.a., time
to finality) influences the non-equivocation property of Aquareum,
and Aquareum inherits it from the underlying blockchain plat-
form. Most blockchains have a long time to finality, e.g., ∼3mins
in Bitcoin [37], ∼3mins in Ethereum [49], ∼2mins in Cardano [26].
However, some blockchains have a short time to finality, e.g., Hon-
eyBadgerBFT [36], Algorand [18], and StrongChain [45]. The se-
lection of the underlying blockchain platform (or the protocol of
the consensus layer [24]) is dependent on the requirements of the
particular use case that Aquareum is applied for.

7 RELATEDWORK
Due to their importance and potential applications, centralized
ledgers, under different names (like logs, notaries, timestamp ser-
vices, etc.), were extensively investigated in the literature.

Append-Only Designs. The first line of research is around au-
thenticated append-only data structures. Haber and Stornetta [22]
proposed a hash chain associated with transactions, proving their
order. Subsequently, their work was improved [3] by aggregat-
ing transactions in a Merkle tree, allowing more efficient proofs
and updates. However, these constructions still require O(n) mes-
sages to prove that one version of the ledger is an extension of
another. Crosby and Wallach [12] introduced append-only logs
withO(logn)-long incremental and membership proofs. Certificate

Transparency (CT) [29] deploys this data structure to create a public
append-only log of digital certificates supporting efficient mem-
bership and extension proofs, but with inefficient exclusion proofs.
The idea of CT’s publicly verifiable logs was then extended to
other applications, like revocation transparency [28], binary trans-
parency [17], or key transparency [33]. The CT’s base construction
was further improved by systems combining an append-onlyMerkle
tree with an ordered Merkle tree [27, 41] aiming to implement a
variant of an authenticated append-only dictionary. Besides making
all certificates visible and append-only, these constructions use a
constructed key:value mapping to prove e.g., that a certificate is re-
voked, or that a given domain has a certain list of certificates. These
systems provide more powerful properties than CT, but unfortu-
nately, they have inefficientO(n) proofs in verifying both properties
of their logs at the same time (i.e., append-only ledger with the
correct key:value mapping). A construction of append-only dictio-
naries with succinct proofs was recently proposed [46]. Despite
achieving the desired properties, this construction relies on stronger
cryptographic assumptions. Moreover, the scheme has efficiency
bottlenecks as proving time grows with the data and as of today,
it is impractical even for low transaction throughputs. The system
also requires a trusted setup which may be unacceptable for many
applications (like public ledgers). Finally, schemes of this class are
designed for use cases specific to key:value databases, unable to
handle smart contracts as of today.

Non-Equivocation Designs. Although the above systems try
to minimize trust in the operator of a ledger and aim at public veri-
fiability by deploying cryptographic constructions, they require an
out of band mechanism to provide non-equivocation. One family
of solutions detecting equivocations are gossip protocols, where
users exchange their ledger views in order to find any inconsis-
tencies [9, 13]. A disadvantage of these solutions is that they are
primarily detective, unable to effectively prevent equivocation at-
tacks. Moreover, these solutions are usually underspecified, and we
are not aware of any system of this class deployed for this use case.

Another approach for providing the non-equivocation of a ledger
was proposed by introducing multiple auditing nodes [2, 27] run-
ning a consensus protocol. Mitigations of this class, like the one
proposed in Aquareum, include systems built on top of a blockchain
platform (providing non-equivocation by design). An advantage
of those solutions is that they are as strong as the underlying
blockchain platform and with some latency (i.e., minutes) can pre-
vent operator equivocations. Catena [47] proposes a system where
a centralized log proves its non-equivocation by posting a sequence
of integrity preserving transactions in the Bitcoin blockchain for
its updates. However, it requires clients to obtain all Catena trans-
actions and their number is linear with the number of log updates.
PDFS [21] reduces this overhead (to constant) by a smart contract
that validates consistency with the past by incremental update of
the ledger using the history tree data structure (similarly, as in
Aquareum); however, it does not guarantee the correct execution.

Decentralized Designs with TEE. Several systems combine
TEE with blockchains, mostly with the intention to improve the
lacking properties of blockchains like confidentiality or through-
put bottlenecks. The most related work includes Teechain [30],
a system where Bitcoin transactions can be executed off-chain
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in TEE enclaves. By relying on properties provided by TEE, the
scheme can support secure, efficient, and scalable Bitcoin trans-
fers. Another system is Ekiden [8], which offloads smart contract
execution to dedicated TEE-supported parties. These parties can ex-
ecute smart contract transactions efficiently and privately and since
they are agnostic to the blockchain consensus protocol the trans-
action throughput can be scaled horizontally. A similar approach
is taken by Das et al. [14] who propose FastKitten. In contrast to
the previous work, the authors focus on backward compatibility,
choosing Bitcoin as the blockchain platform and enhancing it with
Turing-complete smart contracts (Bitcoin natively supports only
simple smart contracts). In FastKitten, smart contracts are executed
off-chain within TEE of the operator. The focus of FastKitten is the
execution of multi-round smart contracts within the set of parties
who interact with the operator. FastKitten supports native coins of
the underlying blockchain due to SPV verification of coin locking
transactions embedded into TEE. Custos [39] focuses on a detection
of tampering with system logs and it utilizes TEE for the logger and
decentralized auditors. However, auditors must regularly perform
audit challenges to detect tampering, which is expensive and time
consuming. In contrast, Aquareum provides instant efficient proofs
of data genuineness or tampering upon request of the data.

8 CONCLUSION
In this paper, we proposed Aquareum, a framework for central-
ized ledgers, which provides verifiability, non-equivocation, and
censorship evidence. To achieve these properties, we leveraged a
combination of TEE and public blockchain with support for Turing-
complete smart contracts. We showed that Aquareum is deployable
with the current tools and is able to process over 450 transactions
per second on a commodity PC, while accounting for the overhead
of all verifications and updates.
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A APPENDIX
A.1 Examples of Censored Queries
While in Section 4.5 and Figure 7 we omit the details about the data
that a query might fetch, here we describe two examples.

Get Transaction. In the first example, a query fetches the trans-
action tx identified by idtx that is part of the block identified
by idblk .9 Upon notification from S about unresolved request, O
fetches the full block with ID equal to idblk ,10 computes its mem-
bership proof πmem

hdr in the version #(LRootpb ) of L, and calls the
function SiдnQryTx() of E (see Algorithm 6) with these data in
the arguments. E verifies πmem

hdr and search for tx with idtx in the
passed block. If tx is found, E signs encrypted tx and the positive
status of the query. On the other hand, if tx is not found in the block,
E signs the negative query status and empty data. The signature,
the status, and encrypted tx are passed to S, where the censorship
of query is finished.

Get Account State. In the second example, a query fetches an
account state as identified by idas from the most recent version
#(LRootcur ) of L. When O is notified by S about an unresolved re-
quest, O retrieves as from MPT trie storing the full global state of L,
computes itsMPT proof πmpt

as ,11 and calls the function SiдnQryAS()
of E (see Algorithm 6) with these data in the arguments. E verifies
π
mpt
as with regards to #(LRootcur ), and if it is a positive MPT proof,
E signs the encrypted as and a positive status of the query. In con-
trary, if πmpt

as is a negative MPT proof, E signs the negative query

9To verify whether the block with idblk exists, we check idblk ≤ #(LRootpb ).
10Note that a full block is required to pass into E since Merkle tree (aggregating
transactions) does not support exclusion proofs, and thus all transactions of the block
need to be compared.
11If as is not found, πmpt

as serves as a negative proof of as .

Algorithm 4: The program proдO of service operator O
▷ Variables and functions of O:

PK tee
E , PKpb

E : public keys of enclave E (under Σtee & Σpb ),
PKO, SKO : keypair of operator O (under Σpb ),
proдE, proдS : program of enclave/smart contract,
txsu : cache of unprocessed TXs,
blks#p : counter of processed blocks, not synced with PB yet,
τvm, τpb : time of the last flush to enclave/PB,
statecur ←⊥: current full global state of VM,
censT xs ← []: cache of posted censored TXs to S,
L ← []: data of L (not synced with PB),
LRootpb : the last root of L flushed to PB,
LRootcur : the current root of L (not flushed to PB),
σlast : a signature of the last version transition pair signed by E,

▷ Declaration of types and constants:
Block {hdr, txs, rcps };
FL#vm, FL#pb : # of txs/blocks for flushing to enclave/PB,
FLτvm, FLτpb : timeout for flushing to enclave/PB,

▷ Declaration of functions:
function Init ()

PK tee
E , PKpb

E ← proдE .Init ();
proдS .Init (PKpb

E , PK tee
E , PKO);

functionUponRecvTx (tx )
assert accessControl(tx );
txsu .add(tx );
if |txsu | = FL#vm ∨ now () − FLτvm ≥ τvm then

π incnext , LRoottmp ← next IncProof ();
LRootpb , LRootcur , ∂stnew , hdr, rcps, txser , σlast ←
proдE .Exec(txsu , ∂statecur , π incnext , LRoottmp );

statecur .update(∂stnew );
L.add(Block(hdr , txsu \ txser , rcps ));
txsu ← []; blks#p ← blks#p + 1 ;

▷ Sync with S on public blockchain
if blks#p = FL#pb ∨ now () − FLτpb ≥ τpb then

proдS .PostLRoot (LRootpb , LRootcur , σlast );
proдE .F lush();
r esolveCensT xs();
blks#p ← 0 ;

function next IncProof ()
LRoottmp ← L.add (Block(⊥, [], []));
π incnext ← L.IncProof (LRootcur , LRoottmp ) ;
L.deleteLastBlock ();
return π incnext , LRoottmp ; ▷ It serves as an incr. proof template for E.

function RestoreFailedEnc()
hdrsync ← L[#(LRootpb ) − 1].hdr ;
blksunsync ← L[#(LRootpb ) : -1] ;
L.r estore(#(LRootpb )); ▷ Restore all data to the target version.
LRootA, LRootB, σ , PKEpb , PK

E
tee ←

proдE .ReInit (LRootpb , blksunsync , hdrsync );
assert LRootcur = LRootA ; ▷ E and O run VM into the same point.
proдS .ReplaceEnc(PKEpb , PKEtee , LRootA, LRootB, σ );

status and the empty data. The signature, status, and encrypted as
are passed to S, where the censorship of the query is completed.
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Algorithm 5: Censorship resolution in O (part of proдO)
functionUponPostedCensTX (etx, idxr eq )

tx ← proдE .Decrypt (etx );
censT xs .add ({tx, etx, idxr eq });
UponRecvTx (tx ); ▷ Delay response until the current block is finished.

functionUponPostedCensQry(equery, idxr eq )
qry ← parse(proдE .Decrypt (equery));
if READ_TX = qry .type then

blk ← дetBlockById (qry .idblk );
πmem
hdr ← L.MemProof (blk .hdr .ID, LRootpb );

σ , status, edata ← proдE .SiдnQryTx (equery, blk, πmem
hdr );

else if READ_AS = qry .type then
as ← statecur .дet (qry .idas );
πmpt
as ← L.MptProof (qry .idas ); ▷ Inclusion/exclusion proof.

σ , status, edata ← proдE .SiдnQryAS (equery, as, πmpt
as );

proдS .ResolveCensQry(idxr eq, status, edata, σ );
function r esolveCensT xs ()

for {ct : censT xs } do
blk ← дetBlockOf T x (h(ct .tx ), L);
πmem
hdr ← L.MemProof (blk .hdr .ID, LRootpb );

πmk
tx ← MkProof (ct .tx, blk .txs);

σ , status ← proдE .SiдnT x (ct .etx, πmk
tx , blk .hdr, πmem

hdr );
proдS .ResolveCensT x (ct .idxr eq, status, σ );

censT xs ← [];

Algorithm 6: Censorship resolution in E (part of proдE).
function Decrypt (edata) public

data ← Σpb .Decrypt (SKpb
E , edata);

Output(data);

function SiдnT x (etx, πmk
tx , hdr, πmem

hdr ) public
▷ Resolution of a censored write tx.

tx ← Σpb .Decrypt (SKpb
E , etx );

if ERROR = parse(tx ) then
status = PARSING_ERROR;

else if ERROR = Σpb .V er if y((tx .σ , tx .PKpb
C
), tx ) then

status = SIGNATURE_ERROR;
else

▷ Verify proofs binding TX to header and header to L.
assert πmk

tx .Verify(tx, hdr .txsRoot );
assert πmem

hdr .Verify(hdr .ID, hdr, LRootpb );
status ← INCLUDED;

▷ TX was processed, so E can issue a proof.
σ ← Σpb .siдn(SKpb

E , (h(etx ), status));
Output(σ , status );

function SiдnQryTx (equery, blk, πmem
hdr ) public

▷ Resolution of a censored read tx query.
. . . , idtx , idblk , PK

pb
C
← parse(Decrypt (equery));

if idblk > #(LRootpb ) then
status ← BLK_NOT_FOUND, edata ←⊥;

else
assert πmem

hdr .Verify(blk .hdr .ID, blk .hdr, LRootpb );
assert VerifyBlock(blk); ▷ Full check of block consistency.
tx ← findTx(idtx , blk .txs);
if ⊥ = tx then

status ← TX_NOT_FOUND, edata ←⊥;
else

status ← OK, edata ← Σpb .Encrypt (PKpb
C

, tx );

σ ← Σpb .siдn(SKpb
E , (h(equery), status, edata));

Output(σ , status , edata);
function SiдnQryAS (equery, as, πmpt

as ) public
▷ Resolution of a censored read account state query.

. . . , idas , PK
pb
C
← parse(Decrypt (equery));

if ⊥ = as then
assert πmpt

as .V er if yN eд(idas , LRootcur );
status ← NOT_FOUND, edata ←⊥;

else
assert πmpt

as .V er if y(idas , LRootcur );
status ← OK, edata ← Σpb .Encrypt (PKpb

C
, as);

σ ← Σpb .siдn(SKpb
E , (h(equery), status, h(edata)));

Output(σ , status , edata);
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ABSTRACT
The adoption of decentralized, tamper-proof ledger systems is
paving the way for new applications and opportunities in different
contexts. While most research aims to improve their scalability,
privacy, and governance issues, interoperability has received less
attention. Executing transactions across various blockchains is no-
tably instrumental in unlocking the potential of novel applications,
particularly in the financial sector, where their potential would oth-
erwise be significantly diminished. Therefore, interoperable ledgers
are crucial to ensure the expansion and further adoption of such a
technology in various contexts.

In this paper, we present a protocol that uses a combination of
trusted execution environment (TEE) and blockchains to enable
interoperability over independent semi-centralized CBDC ledgers,
guaranteeing the atomicity of inter-bank transfers. Our interoper-
ability protocol uses a custom adaptation of atomic swap protocol
and is executed by any pair of CBDC instances to realize a one-
way transfer. It ensures features such as atomicity, verifiability,
correctness, censorship resistance, and privacy while offering high
scalability in terms of the number of CBDC instances. Our approach
enables to possible deployment scenarios that can be combined:
(1) CBDC instances represent central banks of multiple countries,
and (2) CBDC instances represent the set of retail banks and a
paramount central bank of a single country. We provide a detailed
description of our protocol as well as an extensive analysis of its
benefits, features, and security.

In this WIP paper, we made a proof-of-concept implementation
and made a partial evaluation, while the more extensive evaluation
will be made in our future work.

KEYWORDS
Blockchain, Interoperability, Central BankDigital Currency (CBDC),
Trusted Execution Environment, Cross-chain Protocol, Privacy,
Censorship.

1 INTRODUCTION
Blockchain technology is becoming the backbone of a myriad of
applications since it provides features such as decentralization, im-
mutability, availability, and transparency. More recently, along with
the increasing adoption and maturity of such a technology [1], cen-
tral banks all over the world are accelerating the process of Central
Bank Digital Currency (CBDC) development [71]. CBDC has re-
ceived increasing attention in the past few years. More than 85%
of central banks are actively researching the potential for CBDCs,
and according to BIS survey [11] conducted in 2021 central banks
covering 20% of the world’s population are likely to launch retail
CBDCs before 2025. Some of the reasons behind this new paradigm

are the digitization of the economy, the level of development of the
financial sector, and a strong decline in the use of cash [57].

Despite the generalized will to improve the worldwide financial
system by utilizing blockchain technology [27] in centralized en-
vironments, there is still a road ahead for the realization of fast
secure blockchain payment systems. Nevertheless, some features
are essential to enable financial solutions to reach an operational
level, making interoperability a crucial requirement in this context.
Note that a few cross-chain solutions and protocols [7, 43, 71] that
leverage the necessary level of interoperability for execution of
inter-bank financial transactions have been proposed in the lit-
erature. In this regard, technologies such as Trusted Execution
Environments (TEE) in a potential combination with blockchains
can efficiently enforce the required security and privacy levels of
centralized environments of banks, and thus provide a high level
of trustworthiness for the end users.

Motivation. CBDC legislation and adoption goes in hand with
privacy and security concerns. The centralized nature of banks
implies that transactions are recorded in private ledgers managed
by banks, contrary to the very nature of public decentralized cryp-
tocurrencies. While this may prevent some potential malicious
scenarios, users are forced into trusting a single authority and its
corresponding regulations. Aiming at increasing decentralization
and trust, several authors have proposed the use of TEE to leverage
verifiable protocols enabling interoperability of multiple centralized
isolated environments [41, 69].

While achieving blockchain interoperability is challenging re-
gardless of its flavor (i.e., between centralized, decentralized or
hybrid blockchain structures) additional features such as scalability,
confidentiality, and censorship resistance are necessary to guar-
antee for practical scenarios. Digital Euro Association released on
October 2022 the CBDC manifesto [26], in which they highlight
important features of CBDC, such as strong value proposition for
the end users, the highest degree of privacy, and interoperability.
Our work is inline with this manifesto and adheres to its features
while it provides even additional features that are interesting for the
users and the whole ecosystem assuming that the CBDC-equipped
bank might potentially be an untrusted entity.

Contributions. In this paper, we present a practical blockchain
interoperability protocol that integrates such features. On top of
the above mentioned features, to the best of our knowledge, our
work represents the first TEE-based interoperable CBDC approach
that provides the proof-of-censorship. Our main contributions are
summarized as follows:
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(1) We specify requirements for an instance of CBDC that
is controlled by a single bank1 and forms an isolated en-
vironment. These requirements include high processing
performance, transparent token issuance, correctness of
intra-bank transfers, immutability of historical data, non-
equivocation, privacy, and the indisputable proofs of cen-
sorship.

(2) We investigate state-of-the-art approaches applicable for
a CBDC instance assuming our requirements and identify
the most convenient one, Aquareum [33], that we further
base on. The Aquareum-based CBDC ledger ensures im-
mutability, non-equivocation, privacy, and the indisputable
proofs of transaction censorship by utilizing a permission-
less blockchain (e.g., Ethereum). Next, by using TEE (e.g.,
Intel SGX), it ensures the correctness of any transaction
execution.

(3) Our main contribution resides in a design and implementa-
tion of a protocol resolving interoperability over multiple
instances of semi-centralized CBDC, which guarantees the
atomicity of inter-bank transfers.

(4) We provide a security analysis, to prove the the properties
of our approach.

Organization. The remainder of the article is organized as fol-
lows. In Section 2, we provide a background on blockchain, atomic
swap, and trusted computing. We define the problem in Section 3,
where we describe the attacker model and required features of a
single CBDC instance as well as the environment of multiple inter-
operable CBDC instances. Section 4 provides a description of the
proposed interoperability protocol and its deployment scenarios.
Next, the implementation details of the designed protocol and its
partial evaluation are described in Section 5. We make a security
analysis of our approach in Section 6. Section 7 reviews the state of
the art of CBDC approaches and TEE-based blockchain solutions.
Section 8 discusses the benefits and limitations of our approach.
We conclude the paper in Section 9 with some final remarks.

2 BACKGROUND
This section provides the reader with the essential context needed
to understand the topics that will be discussed in this article.

2.1 Blockchain
Blockchain is a tamper-resistant data structure, in which data
records (i.e., blocks) are linked using a cryptographic hash function,
and each new block has to be agreed upon by participants (a.k.a.,
miners) running a consensus protocol (i.e., consensus nodes). Each
block may contain data records representing orders that transfer
tokens, application codes written in a platform-supported language,
and the execution orders of such application codes. These appli-
cation codes are referred to as smart contracts, and they encode
arbitrary processing logic written in a supported language of a
smart contract platform. Interactions between clients and the smart
contract platform are based on messages called transactions.

1As we will see it can be a central bank or even a retail bank, depending on the
deployment scenario described in Section 4.2.1. Therefore, depending on the scenario,
we well use the term CBDC instance even for a retail bank.

2.2 Trusted Execution Environment
Trusted Execution Environment (TEE) is a hardware-based compo-
nent that enables secure (remote) execution [65] of a pre-defined
code (i.e., enclave) in an isolated environment. TEE uses crypto-
graphic primitives and hardware-embedded secrets that protect
data confidentiality and the integrity of computations. In particular,
the adversary model of TEE involves the operating system (OS) that
may compromise user-space applications but not TEE-protected
applications. An enclave process cannot execute system calls but
can read and write memory outside the enclave. Thus isolated exe-
cution in TEE may be viewed as an ideal model in which a process
is guaranteed to be executed correctly with ideal confidentiality,
while it might run on a potentially malicious OS.

Intel SGX. While there exist multiple instances of TEE, in the
context of this work we will focus on Intel SGX (Software Guard
Extensions) [3, 32, 47]. Intel SGX allows a local process or a remote
system to securely communicate with the enclave as well as execute
verification of the integrity of the enclave’s code. When an enclave
is created, the CPU outputs a report of its initial state, also referred
to as a measurement, which is signed by the private key of TEE and
encrypted by a public key of Intel Attestation Service (IAS). The
hardware-protected signature serves as the proof that the measured
code is running in an SGX-protected enclave, while the encryption
by IAS public key ensures that the SGX-equipped CPU is genuine
and was manufactured by Intel. This proof is also known as a quote
or attestation, and it can be verified by a local process or by a remote
system. The enclave-provided public key can be used by a verifier
to establish a secure remote channel with the enclave or to verify
the signature during the attestation.

2.3 CBDC
CBDC is often defined as a digital liability backed and issued by a
central bank that is widely available to the general public. CBDC
encompasses many potential benefits such as efficiency and re-
siliency, flexible monetary policies, and enables enhanced control
of tax evasion and money laundering [38]. However, regulations,
privacy and identity management issues, as well as design vulner-
abilities are potential risks that are shared with cryptocurrencies.
Many blockchain-based CBDC projects rely on using some sort of
stable coins adapting permissioned blockchains due to their scal-
ability and the capability to establish specific privacy policies, as
compared to public blockchains [61, 71]. Therefore, the level of de-
centralization and coin volatility are two main differences between
blockchain-based CBDCs and common cryptocurrencies. These
CBDCs are often based on permissioned blockchain projects such
as Corda [14], variants of Hyperledger [34], and Quorum [29].

CDBC solutions are often designed as multi-layer projects [36].
Wholesale CBDC targets communication of financial institutions
and inter-bank settlements. Retail CBDC includes accessibility to
the general public or their customers.

2.4 Atomic Swap
A basic atomic swap assumes two parties A and B owning crypto-
tokens in two different blockchains. A and B wish to execute cross-
chain exchange atomically and thus achieve a fairness property,
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i.e., either both of the parties receive the agreed amount of crypto-
tokens or neither of them. First, this process involves an agreement
on the amount and exchange rate, and second, the execution of the
exchange itself.

In a centralized scenario [49], the approach is to utilize a trusted
third party for the execution of the exchange. In contrast to the
centralized scenario, blockchains allow us to execute such an ex-
change without a requirement of the trusted party. The atomic
swap protocol [10] enables conditional redemption of the funds in
the first blockchain to B upon revealing of the hash pre-image (i.e.,
secret) that redeems the funds on the second blockchain to A. The
atomic swap protocol is based on two Hashed Time-Lock Contracts
(HTLC) that are deployed by both parties in both blockchains.

Although HTLCs can be implemented by Turing-incomplete
smart contracts with support for hash-locks and time-locks, for
clarity, we provide a description assuming Turing-complete smart
contracts, requiring four transactions:

(1) A chooses a random string 𝑥 (i.e., a secret) and computes
its hash ℎ(𝑥). Using ℎ(𝑥), A deploys 𝐻𝑇𝐿𝐶A on the first
blockchain and sends the agreed amount to it, which later
enables anybody to do a conditional transfer of that amount
to B upon calling a particular method of 𝐻𝑇𝐿𝐶A with 𝑥 =
ℎ(𝑥) as an argument (i.e., hash-lock). Moreover, A defines a
time-lock, which, when expired, allows A to recover funds
into her address by calling a dedicated method: this is to
prevent aborting of the protocol by another party.

(2) When B notices that 𝐻𝑇𝐿𝐶A has been already deployed,
she deploys 𝐻𝑇𝐿𝐶B on the second blockchain and sends
the agreed amount there, enabling a conditional transfer
of that amount to A upon revealing the correct pre-image
of ℎ(𝑥) (ℎ(𝑥) is visible from already deployed 𝐻𝑇𝐿𝐶A). B
also defines a time-lock in 𝐻𝑇𝐿𝐶B to handle abortion by A.

(3) Once A notices deployed 𝐻𝑇𝐿𝐶B, she calls a method of
𝐻𝑇𝐿𝐶B with revealed 𝑥 , and in turn, she obtains the funds
on the second blockchain.

(4) Once B notices that 𝑥 was revealed by A on the second
blockchain, she calls a method of 𝐻𝑇𝐿𝐶A with 𝑥 as an
argument, and in turn, she obtains the funds on the first
blockchain.

If any of the parties aborts, the counter-party waits until the time-
lock expires and redeems the funds.

2.5 Merkle Tree
A Merkle tree [48] is a data structure based on the binary tree in
which each leaf node contains a hash of a single data block, while
each non-leaf node contains a hash of its concatenated children.
Hence, the root node provides a tamper-evident integrity snapshot
of the tree contents. A Merkle tree enables efficient membership
verification (with logarithmic time/space complexity) using the
Merkle proof. To enable a membership verification of element 𝑥𝑖 in
the list 𝑋 , the Merkle tree supports the following operations:
MkRoot(X) → Root: an aggregation of all elements of the list 𝑋

by a Merkle tree, providing a single value 𝑅𝑜𝑜𝑡 .
MkProof (xi,X) → 𝜋mk: a Merkle proof generation for the 𝑖th ele-

ment 𝑥𝑖 present in the list of all elements 𝑋 .

𝜋mk .Verify(xi,Root) → {T, F}: verification of the Merkle proof
𝜋𝑚𝑘 , witnessing that 𝑥𝑖 is included in the list 𝑋 that is
aggregated by the Merkle tree with the root hash 𝑅𝑜𝑜𝑡 .

2.6 History Tree
A Merkle tree has been primarily used for proving membership.
However, Crosby and Wallach [22] extended its application for
an append-only tamper-evident log, named a history tree. In his-
tory tree, leaf nodes are added in an append-only fashion while it
enables to produce incremental proofs witnessing that arbitrary
two versions of the tree are consistent. The history tree brings a
versioned computation of hashes over the Merkle tree, enabling
to prove that different versions (i.e., commitments) of a log, with
distinct root hashes, make consistent claims about the past. The
history tree 𝐿 supports the following operations:

L.add(x) → Cj: appending of the record 𝑥 to 𝐿, returning a new
commitment 𝐶 𝑗 that represents the most recent value of
the root hash of the history tree.

L.IncProof (Ci,Cj) → 𝜋 inc: an incremental proof generation between
two commitments 𝐶𝑖 and 𝐶 𝑗 , where 𝑖 ≤ 𝑗 .

L.MemProof (i,Cj) → 𝜋mem: a membership proof generation for 𝑥𝑖
from the commitment 𝐶 𝑗 , where 𝑖 ≤ 𝑗 .

𝜋 inc .Verify(Ci,Cj) → {T, F}: verification of the incremental proof
𝜋𝑖𝑛𝑐 , witnessing that the commitment𝐶 𝑗 contains the same
history of records 𝑥𝑘 , 𝑘 ∈ {0, . . . , 𝑖} as the commitment 𝐶𝑖 ,
where 𝑖 ≤ 𝑗 .

𝜋mem .Verify(i, xi,Cj) → {T, F}: verification of themembership proof
𝜋𝑚𝑒𝑚 , witnessing that 𝑥𝑖 is the 𝑖th record in the 𝑗 th version
of 𝐿, fixed by the commitment 𝐶 𝑗 , 𝑖 ≤ 𝑗 .

𝜋 inc .ReduceRoot() → Cj: a reduction of the commitment 𝐶 𝑗 from
the incremental proof 𝜋𝑖𝑛𝑐 that was generated by 𝐿.𝐼𝑛𝑐-
𝑃𝑟𝑜𝑜 𝑓 (𝐶𝑖 ,𝐶 𝑗 ).

2.7 Aquareum
Aquareum [33] is a centralized ledger that is based on a combination
of a trusted execution environment (TEE) with a public blockchain
platform (see our other submission with ID #83). It provides a pub-
licly verifiable non-equivocating censorship-evident private ledger.
Aquareum is integrated with a Turing-complete virtual machine
(instantiated by eEVM [50]), allowing arbitrary transaction process-
ing logic, such as transfers or client-specified smart contracts. In
other words, Aquareum provides most of the blockchain features
while being lightweight and cheap in contrast to them. Neverthe-
less, Aquareum does not provide extremely high availability (such
as blockchains) due to its centralized nature, which is, however,
common and acceptable for the environment of CBDC.

The overview of Aquareum is depicted in Figure 1 (where parts
in red are our modifications and are irrelevant for the current de-
scription). In Aquareum, clients Cs submit transactions to operator
O (1), who executes them in protected TEE enclave E (4) upon
fetching a few data of the ledger 𝐿 with the partial state containing
only concerned accounts (2). E outputs updated state of affected
client accounts with execution receipts and a version transition pair
of 𝐿 (5) that is periodically submitted to the smart contract S de-
ployed on a public blockchain (7). S verifies E’s signature and the
consistency of the previous version of 𝐿 with S’s local snapshot (8)
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Figure 1: Architecture of Aquareum with our modifications in red.

before updating the snapshot to a new version. Note that snapshot
is represented by the root hash (i.e., 𝐿𝑅𝑜𝑜𝑡 ) of the history tree of 𝐿.

3 PROBLEM DEFINITION
Our goal is to propose a CBDC approach that respects the features
proposed in DEA manifesto [26] released in 2022, while on top
of it, we assume other features that might bring more benefits
and guarantees. First, we start with a specification of the desired
features related to a single instance of CBDC that we assume is
operated by a single entity (further a bank or its operator) that
maintains its ledger. Later, we describe desired features related
to multiple instances of CBDC that co-exist in the ecosystem of
wholesale and/or retail CBDC.2 In both cases, we assume that a
central bank might not be a trusted entity. All features that respect
this assumption are marked with asterisk ∗ and are considered as
requirements for such an attacker model.

3.1 Single Instance of CBDC
When assuming a basic building block of CBDC – a single bank’s
CBDC working in an isolated environment from the other banks –
we specify the desired features of CBDC as follows:
Correctness of Operation Execution∗: The clients who are in-

volved in a monetary operation (such as a transfer) should
be guaranteed with a correct execution of their operation.

Integrity∗: The effect of all executed operations made over the
client accounts should be irreversible, and no “quiet” tam-
pering of the data by a bank should be possible. Also, no
conflicting transactions can be (executed and) stored by the
CBDC instance in its ledger.

Verifiability∗: This feature extends integrity and enables the clients
of CBDC to obtain easily verifiable evidence that the ledger
they interact with is internally correct and consistent. In
particular, it means that none of the previously inserted
transactions was neither modified nor deleted.

Non-Equivocation∗: From the perspective of the client’s secu-
rity, the bank should not be able to present at least two

2Note that we will propose two deployment scenarios (see Section 4.2.1), one for
the wholesale environment and the second one for the retail environment of multiple
retail banks interacting with a single central bank.

inconsistent views on its ledger to (at least) two distinct
clients who would accept such views as valid.

Censorship Evidence∗: The bank should not be able to censor
a client’s request without leaving any public audit trails
proving the censorship occurrence.

Transparent Token Issuance∗: Every CBDC-issued token should
be publicly visible (and thus audit-able) to ensure that a
bank is not secretly creating token value “out-of-nothing,”
and thus causing uncontrolled inflation. The transparency
also holds for burning of existing tokens.

High Performance: A CBDC instance should be capable of pro-
cessing a huge number of transactions per second since it is
intended for daily usage by thousands to millions of people.

Privacy: All transfers between clients as well as information about
the clients of CBDC should remain private for the public and
all other clients that are not involved in particular transfers.
However, a bank can access this kind of information and
potentially provide it to legal bodies, if requested.

3.2 Multiple Instances of CBDC
In the case of multiple CBDC instances that can co-exist in a com-
mon environment, we extend the features described in the previous
listing by features that are all requirements:
Interoperability∗: As a necessary prerequisite for co-existence

of multiple CBDC instances, we require them to be mu-
tually interoperable, which means that tokens issued by
one bank can be transferred to any other bank. For simplic-
ity, we assume that all the CBDC instances are using the
unit token of the same value within its ecosystem.3 At the
hearth of interoperability lies atomicity of supported oper-
ations. Atomic interoperability, however, requires means
for accountable coping with censorship and recovery from
stalling. We specify these features in the following.
Atomicity∗: Any operation (e.g., transfer) between two

interoperable CBDC instances must be either executed
completely or not executed at all. As a consequence,
no new tokens can be created out-of-nothing and no
tokens can be lost in an inter-bank operation. Note
that even if this would be possible, the state of both in-
volved instances of CBDCwould remain internally con-
sistent; therefore, consistency of particular instances
(Section 3.1) is not a sufficient feature to ensure atom-
icity within multiple interoperable CBDC instances.
This requirement is especially important due to trust-
less assumption about particular banks, who might
act in their benefits even for the cost of imposing the
extreme inflation to the whole system.4

Inter-CBDC Censorship Evidence∗: Havingmultiple in-
stances of CBDC enables a different way of censor-
ship, where one CBDC (and its clients) might be cen-
sored within some inter-CBDC operation with another

3On the other hand, conversions of disparate CBDC-backed tokens would be
possible by following trusted oracles or oracle networks.

4For example, if atomicity is not enforced, one bank might send the tokens to
another bank, while not decreasing its supply due to pretended operation abortion.
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CBDC instance, precluding them to finish the oper-
ation. Therefore, there should exist a means how to
accountably detect this kind of censorship as well.

Inter-CBDC Censorship Recovery∗: If the permanent
censorship happens and is indisputably proven, it must
not impact other instances of CBDC, including the
ones that the inter-CBDC operations are undergo-
ing. Therefore, the interoperable CBDC environment
should provide a means to recover from inter-CBDC
censorship of unfinished operations.

Identity Management of CBDC Instances∗: Since we assume
that CBDC instances are trustless, in theory, there might
emerge a fake CBDC instance, pretentding to act as a valid
one. To avoid this kind of situation, it is important for the
ecosystem of wholesale CBDC to manage identities of par-
ticular valid CBDC instances in a secure manner.

3.3 Adversary Model
The attacker can be represented by the operator of a bank or the
client of a bank, and their intention is to break functionalities that
are provided by the features described above. Next, we assume that
the adversary cannot undermine the cryptographic primitives used,
the blockchain platform, and the TEE platform deployed.

4 PROPOSED CBDC APPROACH
We propose a holistic approach for the ecosystem of wholesale
and/or retail CBDC, which aims at meeting the features described
in Section 3. To accomplish these features, we leverage interesting
properties stemming from a combination of a public blockchain
(with smart contract platform) and TEE. Such a combination was
proposed for various purposes in related work (see Section 7), out
of which the use case of generic centralized ledger Aquareum [33]
is most convenient to build on. Therefore, we utilize Aquareum
as a building block for a single instance of CBDC, and we make a
few CBDC-specific modifications to it, enhancing its transparency
and functionality. Our modifications are outlined in Figure 1 by red
color, while the details of them (especially changes in programs of
smart contract and enclave) will be described in this section. First,
we start by a description of a single CBDC instance and then we
extend it to a fully interoperable environment consisting of multiple
CBDC instances.

Note that in this paper, we focus solely on the transfer of tokens
operation within the context of CBDC interoperability. However,
our approach could be extended to different operations, involving
inter-CBDC smart contract invocations. Also, note that to distin-
guish between smart contracts on a public blockchains and smart
contracts running in TEE, we will denote latter asmicro contracts
(or 𝜇-contracts). Similarly, we denote transactions sent to TEE as
micro transactions (or 𝜇-transactions) and blocks created in the
ledger of CBDC instance asmicro blocks (or 𝜇-blocks).

4.1 A CBDC Instance
Alike in Aquareum, the primary entity of each CBDC instance is
its operator O (i.e., a bank), who is responsible for (1) maintaining
the ledger 𝐿, (2) running the TEE enclave E, (3) synchronization of
the 𝐿’s snapshot to a public blockchain with smart contract IPSC

(Integrity Preserving Smart Contract), (4) resolving censorship
requests, and (5) a communication with clients Cs.

4.1.1 Token Issuance. On top of Aquareum’s S, our IPSC con-
tains snapshotting of the total issued tokens 𝑡𝑖 by the current CBDC
instance and the total supply 𝑡𝑠 available at the instance for the
purpose of transparency in token issuance (and potentially even
burning). Therefore, we extend the E-signed version transition pair
periodically submitted to IPSC by these two fields that are relayed
to IPSC upon snapshotting 𝐿 (see red text in Figure 1). Notice that
𝑡𝑖 = 𝑡𝑠 in the case of a single instance since the environment of the
instance is isolated.

An Inflation Bound. Although snapshotting the total tokens in
circulation is useful for the transparency of token issuance,Omight
still hyper-inflate the CBDC instance. Therefore, we require O to
guarantee a maximal inflation rate 𝑖𝑟 per year, which can be en-
forced by IPSC as well as E since the code of both is publicly visible
and attestable. The 𝑖𝑟 should be adjusted to a constant value byO at
the initialization of IPSC and verified every time the new version
of 𝐿 is posted to IPSC; in the case of not meeting the constrain,
the new version would not be accepted at IPSC. However, another
possible option is that the majority vote of Cs can change 𝑖𝑟 even
after initialization. Besides, E also enforces 𝑖𝑟 on 𝑡𝑖 and does not
allow O to issue yearly more tokens than defined by 𝑖𝑟 . Neverthe-
less, we put the inflation rate logic also into IPSC for the purpose
of transparency.

4.1.2 Initialization. First,Ewith program𝑝𝑟𝑜𝑔E (see Algorithm 5
of Appendix) generates and stores two key pairs, one under Σ𝑝𝑏
(i.e., 𝑆𝐾𝑝𝑏

E
, 𝑃𝐾𝑝𝑏

E
) and one under Σ𝑡𝑒𝑒 (i.e., 𝑆𝐾𝑡𝑒𝑒

E
, 𝑃𝐾𝑡𝑒𝑒

E
). Then,

O generates one key pair under Σ𝑝𝑏 (i.e., 𝑆𝐾𝑝𝑏
O

, 𝑃𝐾𝑝𝑏
O

), which is
then used as the sender of a transaction deploying IPSC with pro-
gram 𝑝𝑟𝑜𝑔IPSC (see Algorithm 6 of Appendix) at public blockchain
with parameters 𝑃𝐾𝑝𝑏

E
, 𝑃𝐾𝑡𝑒𝑒

E
, 𝑃𝐾𝑝𝑏

O
, 𝑡𝑖 , and 𝑖𝑟 . Then, IPSC stores

the keys in parameters, sets the initial version of 𝐿 by putting
𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ←⊥, and sets the initial total issued tokens and the total
supply, both to 𝑡𝑖 .5

Client Registration. A client C registers with O, who performs
know your customer (KYC) checks and submits her public key
𝑃𝐾C

𝑝𝑏
to E. Then, E outputs an execution receipt about the suc-

cessful registration of C as well as her access ticket 𝑡C that will
serve for potential communication with IPSC and its purpose is
to avoid spamming IPSC by invalid requests. In detail, 𝑡C is the
E-signed tuple that contains 𝑃𝐾C

𝑝𝑏
and optionally other fields such

as the account expiration timestamp. Next, C verifies whether her
registration (proved by the receipt) was already snapshotted by O
at IPSC.

4.1.3 Normal Operation. Cs send 𝜇-transactions (writing to 𝐿)
and queries (reading from 𝐿) to O, who validates them and re-
lays them to E, which processes them within its virtual machine
(Aquareum uses eEVM [50]). Therefore, 𝐿 and its state are modified

5Among these parameters, a constructor of IPSC also accepts the indication
whether an instance is allowed to issue tokens. This is, however, implicit for the single
instance, while restrictions are reasonable in the case of multiple instances.
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Figure 2: Overview of our CBDC architecture supporting interoperability among multiple CBDC instances (i.e., banks). The schema depicts two
instances, where each of them has its own centralized ledger 𝐿 modified in a secure way through TEE of E, while its integrity is ensured by periodic
integrity snapshots to the integrity preserving smart contract (IPSC) in a public blockchain 𝑃𝐵. Each CBDC instance is registered in the identity
management smart contract IMSC of a public blockchain, serving as a global registry of bank instances. A client who makes an inter-bank
transfer communicates with her bank and the counter-party bank utilizing interoperability micro contracts (IOMC), running in the TEE. Any
censored request of a client is resolved by IPSC of a particular bank and can be initiated by its client or a counter-party client.

in a trusted code of E, creating a new version of 𝐿, which is repre-
sented by the root hash 𝐿𝑅𝑜𝑜𝑡 of the history tree. Note that program
𝑝𝑟𝑜𝑔E is public and can be remotely attested by Cs (or anybody).
O is responsible for a periodic synchronization of the most recent
root hash 𝐿𝑅𝑜𝑜𝑡𝑐𝑢𝑟 (i.e., snapshotting the current version of 𝐿 )
to IPSC, running on a public blockchain 𝑃𝐵. Besides, Cs use this
smart contract to resolve censored transactions and queries, while
preserving the privacy of data.

4.1.4 Censorship Resolution. O might potentially censor some
write transactions or read queries of C𝑠 . However, these can be
resolved by Aquareum’s mechanism as follows. If C’s 𝜇-transaction
𝜇-tx is censored by O, C first creates 𝑃𝐾𝑡𝑒𝑒

E
-encrypted 𝜇-𝑒𝑡𝑥 (to

ensure privacy in 𝑃𝐵), and then she creates and signs a transaction
containing C′𝑠 access ticket 𝑡C and 𝜇-𝑒𝑡𝑥 . C sends this transaction
to IPSC, which verifies 𝑡C and stores 𝜇-𝑒𝑡𝑥 , which is now visible to
O and the public. Therefore,Omight relay 𝜇-𝑒𝑡𝑥 to E for processing
and then provide E-signed execution receipt to IPSC that publicly
resolves this censorship request. On the other hand, if O were not
to do it, IPSC would contain an indisputable proof of censorship
by O on a client C.

4.2 Multiple CBDC Instances
The conceptual model of our interoperable CBDC architecture is
depicted in Figure 2. It consists of multiple CBDC instances (i.e.,
at least two), whose C𝑠 communicate in three different ways: (1)
directly with each other, (2) in the instance-to-instance fashion
through the infrastructure of their O as well as counterpart’s O,
(3) through 𝑃𝐵 with IPSC of both Os and a global registry IMSC
managing identities of instances.

For simplified description, in the following we assume the trans-
fer operation where a local CBDC instance in Figure 2 is A (i.e.,
the sender of tokens) and the external one is B (i.e., the receiver

of tokens). To ensure interoperability, we require a communica-
tion channel of local clients C𝑠𝐴 to external clients C𝑠𝐵 (the green
arrow), the local operator O𝐴 (the black arrow), and the external
operatorO𝐵 (the black dashed arrow). In our interoperability proto-
col Π𝑇 (described later in Section 4.3), external C𝑠𝐵 use the channel
with the local operator O𝐴 only for obtaining incremental proofs
of 𝐿𝐴’s history tree to verify inclusion of some 𝜇-transactions in
𝐿𝐴 . However, there might arise a situation in which O𝐴 might
censor such queries, therefore, we need to address it by another
communication channel – i.e., the public blockchain 𝑃𝐵.

Censorship of External Clients. We allow external clients C𝑠𝐵
to use the same means of censorship resolution as internal clients of
a single CBDC instance (see Section 4.1.4). To request a resolution
of a censored query, the external C𝐵 uses the access ticket 𝑡C𝐵 at
IPSC𝐴 , which is issued by E𝐴 in the first phase of Π𝑇 .

Identification of Client Accounts. To uniquely identify C’s ac-
count at a particular CBDC instance, first it is necessary to specify
the globally unique identifier of the CBDC instance. The best candi-
date is the blockchain address of the IPSC in 𝑃𝐵 since it is publicly
visible and unique in 𝑃𝐵 (and we denote it by IPSC). Then, the iden-
tification of C’s relevant account is a pair C𝐼𝐷 = {𝑃𝐾C

𝑝𝑏
| | IPSC}.

Note that C might use the same 𝑃𝐾C
𝑝𝑏

for the registration at multi-
ple CBDC instances (i.e., equivalent of having accounts in multiple
banks); however, to preserve better privacy, making linkage of C’s
instances more difficult, we recommend C𝑠 to have dedicated key
pair for each instance.

4.2.1 Identity Management of CBDC Instances. To manage
identities of all CBDC instances in the system, we need a global
registry of their identifiers – IPSC addresses. For this purpose, we
use the IdentityManagement Smart Contract (IMSC) deployed in
𝑃𝐵 (see program 𝑝𝑟𝑜𝑔IMSC in Algorithm 1). We propose IMSC to be
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managed in either decentralized or centralized fashion, depending
on the deployment scenario described below.

Deployment scenarios
Decentralized Scheme. In the decentralized scheme, the enroll-
ment of a new CBDC instance must be approved by a majority
vote of the already existing instances. This might be convenient for
interconnecting central banks from various countries/regions.

The enrollment requires creating a request entry at IMSC (i.e.,
𝑛𝑒𝑤 𝐽𝑜𝑖𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ()) by a new instance specifying the address of its
IPSC𝑛𝑒𝑤 and 𝑃𝐾O𝑛𝑒𝑤𝑃𝐵 . Then, the request has to be approved by vot-
ing of existing instances. Prior to voting (i.e.,𝑎𝑝𝑝𝑟𝑜𝑣𝑒 𝐽𝑜𝑖𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ()),
the existing instances should first verify a new instance by certain
legal processes as well as by technical means: do the remote attesta-
tion of 𝑝𝑟𝑜𝑔E𝑛𝑒𝑤 , verify the inflation rate 𝑖𝑟 and the initial value of
total issued tokens 𝑡𝑖 in IPSC, etc. Removing of the existing instance
also requires the majority of all instances, who should verify legal
conditions prior to voting.

Centralized Scheme. So far, we were assuming that CBDC in-
stances are equal, which might be convenient for interconnection
of central banks from different countries. However, from the single-
country point-of-view, there usually exist only one central bank,
which might not be interested in decentralization of its compe-
tences (e.g., issuing tokens, setting inflation rate) among multiple
commercial banks. We respect this and enable our approach to
be utilized for such a use case, while the necessary changes are
made to IMSC𝑐 (see Algorithm 2), allowing to have only one CBDC
authority that can add or delete instances of (commercial) banks,
upon their verification (as outlined above). The new instances can
be adjusted even with token issuance capability and constraints on
inflation, which is enforced within the code of E as well as IPSC.

4.2.2 Token Issuance. Withmultiple CBDC instances,Cs and the
public can obtain the total value of issued tokens in the ecosystem
of CBDC and compare it to the total value of token supply of all
instances. Nevertheless, assuming only two instances A and B, the
value of 𝑡𝑠 snapshotted by IPSC𝐴 might not reflect the recently
executed transfers to instance B that might have already made
the snapshot of its actual 𝐿𝐵 version to IPSC𝐵 , accounting for the
transfers. As a consequence, given a set of instances, the value
of the aggregated 𝑡𝑠 should always be greater or equal than the
corresponding sum of 𝑡𝑖 :

𝑡𝐴𝑖 + 𝑡𝐵𝑖 ≤ 𝑡𝐴𝑠 + 𝑡𝐵𝑠 . (1)
We can generalize it for 𝑁 instances known by IMSC as follows:∑︁

∀𝑋 ∈ IMSC
𝑡𝑋𝑖 ≤

∑︁
∀𝑋 ∈ IMSC

𝑡𝑋𝑠 . (2)

4.2.3 Inflation Rate. In contrast to a single CBDC instance, mul-
tiple independent instances must provide certain guarantees about
inflation not only to their clients, but also to each other. For this
purpose, the parameter inflation rate 𝑖𝑟 is adjusted to a constant
value in the initialization of IPSC and checked before the instance
is approved at IMSC.

If one would like to enable the update of 𝑖𝑟 at CBDC instances, a
majority vote at IMSC on a new value could be utilized (or just the
vote of authority in the case of centralized scenario). Nevertheless,

Algorithm 1: 𝑝𝑟𝑜𝑔IMSC
𝑑

of decentralized IMSC
⊲ Declaration of types and variables:
𝑚𝑠𝑔: a current transaction that called IMSC,
struct InstanceInfo {

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 : 𝑃𝐾𝑃𝐵
O

of the instance’s O,
𝑖𝑠𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 : admission status of the instance,
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑠 ← [] : Os who have approved the instance creation (or deletion),

}
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [ ]: a mapping of IPSC to InstanceInfo,

⊲ Declaration of functions:
function 𝐼𝑛𝑖𝑡 (IPSC𝑠 [ ],O𝑠 [ ]) public ⊲ Initial instances are implicitly approved.

assert |IPSC𝑠 | = |O𝑠 | ;
for 𝑖 ← 0; 𝑖 ≤ |O𝑠 |; 𝑖 ← 𝑖 + 1 do

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑠 [𝑖 ] ] ← InstanceInfo(O𝑠 [𝑖 ],𝑇𝑟𝑢𝑒, [ ] ) ;

function 𝑛𝑒𝑤𝐽 𝑜𝑖𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (IPSC) public
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC] = ⊥; ⊲ The instance must not exist yet.
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC] ← InstanceInfo(𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟, 𝐹𝑎𝑙𝑠𝑒, [ ] ) ;

function 𝑎𝑝𝑝𝑟𝑜𝑣𝑒 𝐽 𝑜𝑖𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (IPSC𝑚𝑦 , IPSC𝑛𝑒𝑤 ) public
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑚𝑦 ] .𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 =𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ; ⊲ Sender’s check.
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑚𝑦 ] .𝑖𝑠𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 ; ⊲ The sending O has valid instance.
assert !𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑛𝑒𝑤 ] .𝑖𝑠𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 ; ⊲ The new instance is not approved.
𝑟 ← 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑛𝑒𝑤 ];
𝑟 .𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑠 [𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ] ← 𝑇𝑟𝑢𝑒 ; ⊲ The sender acknowledges the request.
if |𝑟 .𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑠 | > ⌊ |𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 |/2⌋ then

𝑟 .𝑖𝑠𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ; ⊲ Majority vote applies.
𝑟 .𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑠 ← []; ⊲ Switch this field for a potential deletion.

function 𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝐷𝑒𝑙𝑒𝑡𝑒(IPSC𝑚𝑦 , IPSC𝑑𝑒𝑙 ) public
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑚𝑦 ] .𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 =𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ; ⊲ Sender’s check.
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑚𝑦 ] .𝑖𝑠𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 ; ⊲ The sending O has valid instance.
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑑𝑒𝑙 ] .𝑖𝑠𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 ; ⊲ An instance to delete must be
approved.

𝑟 ← 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑑𝑒𝑙 ];
𝑟 .𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑠 [𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ] ← 𝑇𝑟𝑢𝑒 ; ⊲ The sender acknowledges the request.
if |𝑟 .𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙𝑠 | > ⌊ |𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 |/2⌋ then

delete 𝑟 ;

Algorithm 2: 𝑝𝑟𝑜𝑔IMSC𝑐 of centralized IMSC
⊲ Declaration of types and variables:
𝑚𝑠𝑔: a current transaction that called IMSC,
𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦: IPSC of the authority bank,
𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦O : 𝑃𝐾O

𝑝𝑏
of O at authority bank,

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [ ]: a mapping of IPSC to 𝑃𝐾𝑃𝐵
O

,
⊲ Declaration of functions:
function 𝐼𝑛𝑖𝑡 (IPSC) public ⊲ Initial instances are implicitly approved.

𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦O ←𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ;
𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 ← IPSC;

function 𝑎𝑑𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(IPSC𝑛𝑒𝑤 , O𝑛𝑒𝑤 ) public
assert𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 = 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦O ; ⊲ Only the authority can add instances.
assert 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑛𝑒𝑤 ] = ⊥; ⊲ The instance must not exist yet.
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑛𝑒𝑤 ] ← O𝑛𝑒𝑤 ;

function 𝑑𝑒𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(IPSC𝑑𝑒𝑙 ) public
assert𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 = 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦O ; ⊲ Only the authority can delete instances.
delete 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [IPSC𝑑𝑒𝑙 ];

to support even fairer properties, Cs of a particular instance might
vote on the value of 𝑖𝑟 upon its acceptance by IOMC and before it
is propagated to IPSC of an instance. Then, based on the new value
of IPSC.𝑖𝑟 , E.𝑖𝑟 can be adjusted as well (i.e., upon the validation by
the light client of E). However, the application of such a mechanism
might depend on the use case, and we state it only as a possible
option that can be enabled in our approach.

4.2.4 Interoperability. The interoperability logic itself is pro-
vided by our protocol Π𝑇 that utilizes InterOperabilityMicro Con-
tracts IOMC𝑆 and IOMC𝑅 , which serve for sending and receiving
tokens, respectively. Therefore, in the context of E-isolated environ-
ment these 𝜇-contracts allow to mint and burn tokens, reflecting
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Algorithm 3: 𝑝𝑟𝑜𝑔IOMC
𝑆 of sending IOMC𝑆

⊲ Declaration of types and variables:
E, ⊲ The reference to E𝐴 of sending party.
𝑚𝑠𝑔, ⊲ The current 𝜇-transaction that called IOMC𝑆 .
struct LockedTransfer {

𝑠𝑒𝑛𝑑𝑒𝑟 , ⊲ Sending client C𝐴 .
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , ⊲ Receiving client C𝐵 .
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 IPSC, ⊲ The IPSC contract address of the receiver’s instance.
𝑎𝑚𝑜𝑢𝑛𝑡 , ⊲ Amount of tokens sent.
ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘 , ⊲ Hash of the secret of the sending C𝐴 .
𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑘 , ⊲ A timestamp defining the end of validity of the transfer.
𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 , ⊲ Indicates whether the transfer has been completed.
𝑖𝑠𝑅𝑒𝑣𝑒𝑟𝑡𝑒𝑑 , ⊲ Indicates whether the transfer has been canceled.

},
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 ← [], ⊲ Initiated outgoing transfers (i.e., LockedTransfer).
const 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝐻𝑇𝐿𝐶 ← 24ℎ, ⊲ Set the time lock for e.g., 24 hours.

⊲ Declaration of functions:
function 𝑠𝑒𝑛𝑑𝐼𝑛𝑖𝑡 (𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 IPSC, ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘) public payable

assert𝑚𝑠𝑔.𝑣𝑎𝑙𝑢𝑒 > 0; ⊲ Checks the amount of tokens.
𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑘 ← 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝.𝑛𝑜𝑤 ( ) + 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝐻𝑇𝐿𝐶 ;
𝑡 ← LockedTransfer(𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 IPSC,
𝑚𝑠𝑔.𝑣𝑎𝑙𝑢𝑒 , ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘, 𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑘, 𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒 ) ; ⊲ A new receiving transfer.

𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡 ) ;
Output (”𝑠𝑒𝑛𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑”, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ← |𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 | − 1) ) ;

function 𝑠𝑒𝑛𝑑𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡, 𝑒𝑥𝑡𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷) public
assert 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ] ≠⊥; ⊲ Check the existence of locked transfer.
𝑡 ← 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ];
assert 𝑡 .ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘 = ℎ (𝑠𝑒𝑐𝑟𝑒𝑡 ) ; ⊲ Check the secret.
assert !𝑡 .𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ∧ !𝑡 .𝑖𝑠𝑅𝑒𝑣𝑒𝑟𝑡𝑒𝑑 ; ⊲ Test if the transfer is still pending.
𝑡 .𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
burn t.amount; ⊲ Burn tokens.
E.𝑡𝑠 ← E.𝑡𝑠 − 𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡 ; ⊲ Decrease the total supply of the instance.
Output (”𝑠𝑒𝑛𝑑𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑”, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷, 𝑒𝑥𝑡𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷, 𝑡 .𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,
𝑡 .𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 IPSC, 𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡 ) ;

function 𝑠𝑒𝑛𝑑𝑅𝑒𝑣𝑒𝑟𝑡 (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷) public
assert 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ] ≠⊥; ⊲ Check the existence of locked transfer.
𝑡 ← 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ];
assert !𝑡 .𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ∧ !𝑡 .𝑖𝑠𝑅𝑒𝑣𝑒𝑟𝑡𝑒𝑑 ; ⊲ Test the transfer is still pending.
assert 𝑡 .𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑘 ≤ 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝.𝑛𝑜𝑤 ( ) ; ⊲ Check the HTLC expiration.
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡, 𝑡 .𝑠𝑒𝑛𝑑𝑒𝑟 ) ; ⊲ Returning tokens back to the sender.
𝑡 .𝑖𝑠𝑅𝑒𝑣𝑒𝑟𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
Output(”𝑠𝑒𝑛𝑑𝑅𝑒𝑣𝑒𝑟𝑡𝑒𝑑”, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ) ;

the changes in 𝑡𝑠 after sending or receiving tokens between CBDC
instances. Both 𝜇-contracts are deployed in E by each O as soon as
the instance is created, while E records their addresses that can be
obtained and attested by Cs. We briefly review these contracts in
the following, and we will demonstrate their usage in Section 4.3.

The Sending IOMC𝑆 . The sending IOMC𝑆 (see Algorithm 3) is
based on Hash Time LoCks (HTLC), thus upon initialization of
transfer by ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘 provided by C𝐴 (i.e., ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘 ← ℎ(𝑠𝑒𝑐𝑟𝑒𝑡))
and calling 𝑠𝑒𝑛𝑑𝐼𝑛𝑖𝑡 (ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘, . . .), IOMC𝑆 locks transferred to-
kens for the timeout required to complete the transfer by 𝑠𝑒𝑛𝑑-
𝐶𝑜𝑚𝑚𝑖𝑡 (𝑠𝑒𝑐𝑟𝑒𝑡, . . .). If tokens are not successfully transferred to
the recipient of the external instance during the timeout, they can
be recovered by the sender (i.e., 𝑠𝑒𝑛𝑑𝑅𝑒𝑣𝑒𝑟𝑡 ()).6 If tokens were sent
successfully from C𝐴 to C𝐵 , then instance A burns them within
𝑠𝑒𝑛𝑑𝐶𝑜𝑚𝑚𝑖𝑡 () of IOMC𝑆 and deducts them from 𝑡𝑠 . Note that de-
ducting 𝑡𝑠 is a special operation that cannot be executed within
standard 𝜇-contracts, but IOMC contracts are exceptions and can
access some variables of E.

The Receiving IOMC𝑅 . The receiving IOMC𝑅 (see Algorithm 4)
is based on Hashlocks (referred to as HLC) and works pairwise with
sending IOMC𝑆 to facilitate four phases of our interoperable trans-
fer protocol Π𝑇 (described below). After calling IOMCS .𝑠𝑒𝑛𝑑𝐼𝑛𝑖𝑡 (),

6Note that setting a short timeout might prevent the completion of the protocol.

Algorithm 4: 𝑝𝑟𝑜𝑔IOMC
𝑅 of receiving IOMC𝑅

⊲ Declaration of types and variables:
E, ⊲ The reference to E𝐵 of receiving party.
struct LockedTransfer {

𝑠𝑒𝑛𝑑𝑒𝑟 , ⊲ Sending client C𝐴 .
𝑠𝑒𝑛𝑑𝑒𝑟 IPSC, ⊲ The IPSC contract address of the sender’s instance.
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , ⊲ Receiving client C𝐵 .
𝑎𝑚𝑜𝑢𝑛𝑡 , ⊲ Amount of transferred tokens.
ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘 , ⊲ Hash of the secret of the sending C𝐴 .
𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 , ⊲ Indicates whether the transfer has been completed.

},
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 ← [], ⊲ Initiated incoming transfers (i.e., LockedTransfer).

⊲ Declaration of functions:
function 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐼𝑛𝑖𝑡 (𝑠𝑒𝑛𝑑𝑒𝑟, 𝑠𝑒𝑛𝑑𝑒𝑟 IPSC, ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘, 𝑎𝑚𝑜𝑢𝑛𝑡 ) public

assert 𝑎𝑚𝑜𝑢𝑛𝑡 > 0;
𝑡 ← LockedTransfer(𝑠𝑒𝑛𝑑𝑒𝑟, 𝑠𝑒𝑛𝑑𝑒𝑟 IPSC,𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟, 𝑎𝑚𝑜𝑢𝑛𝑡,

ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘, 𝐹𝑎𝑙𝑠𝑒 ) ; ⊲ Make a new receiving transfer entry.
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡 ) ;
Output(”𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑”, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ← |𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 | − 1) ;

function 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡 ) public
assert 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ] ≠ ⊥; ⊲ Check the existence of transfer entry.
𝑡 ← 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 [𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ];
assert 𝑡 .ℎ𝑎𝑠ℎ𝑙𝑜𝑐𝑘 = ℎ (𝑠𝑒𝑐𝑟𝑒𝑡 ) ; ⊲ Check the secret.
assert !𝑡 .𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ; ⊲ Check whether the transfer is pending.
E.𝑚𝑖𝑛𝑡 (𝑡ℎ𝑖𝑠, 𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡 ) ; ⊲ Call E to mint tokens on IOMC𝑅 .
E.𝑡𝑠 ← E.𝑡𝑠 + 𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡 ; ⊲ Increase the total supply of the instance.
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝑡 .𝑎𝑚𝑜𝑢𝑛𝑡, 𝑡 .𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ) ; ⊲ Credit tokens to the recipient.
𝑡 .𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
Output(”𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑”, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝐷 ) ;

incoming initiated transfer is recorded at IOMC𝑅 by 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐼𝑛𝑖𝑡 (ℎ𝑎𝑠ℎ-
𝑙𝑜𝑐𝑘, . . .). Similarly, after executing token deduction at instance
A (i.e., IOMCS .𝑠𝑒𝑛𝑑𝐶𝑜𝑚𝑚𝑖𝑡 (𝑠𝑒𝑐𝑟𝑒𝑡, . . .)), incoming transfer is exe-
cuted at IOMC𝑅 by 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑚𝑚𝑖𝑡 (𝑠𝑒𝑐𝑟𝑒𝑡, . . .) that mints tokens
to C𝐵 and increases 𝑡𝑠 . Similar to IOMC𝑆 , minting tokens and in-
creasing 𝑡𝑠 are special operations requiring access to E, which is
exceptional for IOMC. The overview of Π𝑇 is depicted in Figure 3.

4.3 Interoperable Transfer Protocol ΠT

In this section we outline our instance-to-instance interoperable
transfer protocol Π𝑇 for inter-CBDC transfer operation, which
is inspired by the atomic swap protocol (see Section 2.4), but in
contrast to the exchange-oriented approach of atomic swap, Π𝑇
focuses only on one-way atomic transfer between instances of the
custodial environment of CBDC, where four parties are involved
in each transfer – a sending C𝐴 and O𝐴 versus a receiving C𝐵 and
O𝐵 . The goal of Π𝑇 is to eliminate any dishonest behavior by C𝑠 or
Os that would incur token duplication or the loss of tokens.

Instance A
sender

New HTLC.
Locks outgoing assets, 
Creates a secret and 

calculate its hash.

Instance B
receiver

1.

2.

The enclave validates the transaction from
Step 3. New funds are created and
credited to the receiver's account.

The enclave validates the transaction from
Step 2. Reveals the secret,

burns the sent funds.

New HLC together with hash value 
from Step 1 and information about 
the amount of the received funds.

4.

3.

Figure 3: Overview of the protocol Π𝑇 , consisting of 4 phases.
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To executeΠ𝑇 it is necessary to inter-connectEs of two instances
involved in a transfer. However, E does not allow direct commu-
nication with the outside world, and therefore it is necessary to
use an intermediary. One solution is to involve Os but they might
be overwhelmed with other activities, updating the ledger by ex-
ecuting 𝜇-transactions, and moreover, they might not have direct
incentives to execute inter-CBDC transfers. Therefore, we argue
that in contrast to the above option, involving C𝑠 as intermediaries
has two advantages: (1) elimination of the synchronous communi-
cation overhead on Os and (2) enabling Cs to have a transparent
view about the status of the transfer and take action if required. In
the following, we describe phases of Π𝑇 in detail (see also Figure 4).

Phase 1 – Client C𝐴 Initiates the Protocol
The client C𝐴 creates a 𝜇-tx1 with the amount being sent, which
invokes the sendInit() of IOMC𝐴 with arguments containing the
address of the external client C𝐵 , the address of IPSC𝐵 (denoted as
S𝐵 in Figure 4 for brevity), and the hash of the secret that is created
by C𝐴 . C𝐴 sends signed 𝜇-tx1 to O𝐴 who forwards it to the E𝐴 .
Before executing the 𝜇-tx1, E𝐴 ensures that the external recipient
(i.e., C𝐵 ) has the access ticket already issued and valid, enabling her
to post censorship resolution requests to IPSC𝐴 (if needed). The
access ticket should be valid for at least the entire period defined
by the HTLC of IOMC𝐴 . In the next step, a 𝜇-tx1 is executed by
E𝐴 , creating a new transfer record with 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝑑 in IOMC𝐴 .
During the execution, C𝐴’s tokens are transferred (and thus locked)
to the IOMC𝐴’s address. C𝐴 waits until the new version of 𝐿𝐴 is
snapshotted to IPSC𝐴 , and then obtains 𝐿𝑅𝑜𝑜𝑡𝐴 from it. Then C𝐴
asks O𝐴 for the execution receipt 𝑟𝑐𝑝1 of 𝜇-tx1 that also contains
a set of proofs (𝜋𝑚𝑒𝑚

ℎ𝑑𝑟
, 𝜋𝑚𝑘𝑟𝑐𝑝1 ) and the header of the 𝜇-block that

includes 𝜇-tx1. In detail, 𝜋𝑚𝑒𝑚
ℎ𝑑𝑟

is the inclusion proof of the 𝜇-block
b in the current version of 𝐿𝐴; 𝜋𝑚𝑘𝑟𝑐𝑝1 is the Merkle proof proving
that 𝑟𝑐𝑝1 is included in b (while 𝑟𝑐𝑝1 proves that 𝜇-tx1 was executed
correctly). The mentioned proofs and the receipt are provided to
C𝐵 , who verifies that 𝜇-tx1 was executed and included in the 𝐿𝐴’s
version that is already snapshotted to IPSC𝐴 , thus irreversible (see
below).

Phase 2 – C𝐵 Initiates Receive
First, C𝐵 validates an access ticket to IPSC𝐴 using the enclave E𝐴’s
public key accessible in that smart contract. Next, C𝐵 obtains the
root hash 𝐿𝑅𝑜𝑜𝑡𝐴

𝑝𝑏
of 𝐿𝐴 to ensure that C𝐵 ’s received state has

been already published in IPSC𝐴 , and thus contains 𝜇-tx1. After
obtaining 𝐿𝑅𝑜𝑜𝑡𝐴

𝑝𝑏
, C𝐵 forwards it along with the root 𝐿𝑅𝑜𝑜𝑡𝐴 ob-

tained from C𝐴 to O𝐴 , who creates an incremental proof 𝜋𝑖𝑛𝑐 of
⟨𝐿𝑅𝑜𝑜𝑡𝐴, 𝐿𝑅𝑜𝑜𝑡𝐴

𝑝𝑏
⟩. Once the proof 𝜋𝑖𝑛𝑐 has been obtained and val-

idated, the protocol can proceed to validate the remaining proofs
sent by the client C𝐴 along with verifying that the receiving ad-
dress belongs to C𝐵 . Next, C𝐵 creates 𝜇-𝑡𝑥2, invoking the method
receiveInit() with the arguments: the address of C𝐴 obtained
from 𝜇-𝑡𝑥1,7 the address IPSC𝐴 .𝑎𝑑𝑑𝑟 of C𝐴’s instance, the hash
value of the secret, and the amount of crypto-tokens being sent.
C𝐵 sends 𝜇-𝑡𝑥2 to O𝐵 , who forwards it to E𝐵 for processing. Dur-
ing processing of 𝜇-𝑡𝑥2, E𝐵 determines whether the external client

7Note that we assume that the address is extractable from the signature.

(from its point of view – i.e., C𝐴) has an access ticket issued with a
sufficiently long validity period; if not, one is created. Subsequently,
E𝐵 creates a new record in IOMC𝐵 with 𝑒𝑥𝑡𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝑑 . Afterward,
C𝐵 retrieves the 𝐿𝑅𝑜𝑜𝑡𝐵 from 𝐿𝐵 and requests the execution receipt
𝑟𝑐𝑝2 from O𝐵 , acknowledging that the 𝜇-𝑡𝑥2 has been executed. Fi-
nally, C𝐵 sends a message C𝐴 with 𝜇-𝑡𝑥2 and cryptographic proofs
𝜋𝑚𝑒𝑚
ℎ𝑑𝑟

, 𝜋𝑚𝑘𝑟𝑐𝑝2 , the execution receipt of 𝜇-𝑡𝑥2, the block header 𝑏 in
which the 𝜇-𝑡𝑥2 was included, 𝐿𝑅𝑜𝑜𝑡𝐵 (i.e., the root value of 𝐿𝐵
after 𝜇-𝑡𝑥2 was executed), and the valid client access ticket for C𝐴 .

Phase 3 – Confirmation of Transfer by C𝐴
First, C𝐴 validates the received access ticket to IPSC𝐵 . Next, C𝐴
obtains the snapshotted root hash 𝐿𝑅𝑜𝑜𝑡𝐵

𝑝𝑏
of 𝐿𝐵 from IPSC𝐵 . As

in the previous phases, it is necessary to verify that the version
of 𝐿𝐵 that includes 𝜇-𝑡𝑥2 is represented by 𝐿𝑅𝑜𝑜𝑡𝐵

𝑝𝑏
(thus is irre-

versible). Next, both root hashes (𝐿𝑅𝑜𝑜𝑡𝐵 and 𝐿𝑅𝑜𝑜𝑡𝐵
𝑝𝑏
) are sent to

the external operator O𝐵 , which produces the incremental proof
𝜋𝑖𝑛𝑐 from them. Next, C𝐴 creates 𝜇-𝑡𝑥3 that consists of invoking
the sendCommit() method at E𝐴 with the arguments containing
the published secret (i.e., 𝑝𝑟𝑒𝑖𝑚𝑎𝑔𝑒) and the record identifier of the
transfer at local instance (i.e., 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝑑) as well as the external one
(i.e., 𝑒𝑥𝑡𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝑑). Along with the invocation of sendCommit(),
𝜇-𝑡𝑥3 also wraps 𝜋𝑖𝑛𝑐 with its versions (𝐿𝑅𝑜𝑜𝑡𝐵

𝑝𝑏
and 𝐿𝑅𝑜𝑜𝑡𝐵 ), 𝜇-

𝑡𝑥2, its execution receipt 𝑟𝑐𝑝2 with its Merkle proof 𝜋𝑚𝑘𝑟𝑐𝑝2 , 𝑏.ℎ𝑑𝑟 –
the header of the block that included 𝜇-𝑡𝑥2, and its membership
proof 𝜋𝑚𝑒𝑚

ℎ𝑑𝑟
of 𝐿𝐵 . Next, C𝐴 sends 𝜇-𝑡𝑥3 to E𝐴 through O𝐴 . During

the execution of 𝜇-𝑡𝑥3, E𝐴 validates the provided proofs and the
equality of transfer IDs from both sides of the protocol. Note that
to verify 𝜋𝑚𝑒𝑚

ℎ𝑑𝑟
, E𝐴 uses its light client to 𝐿𝐵 . E𝐴 then validates

whether C𝐴’s provided secret corresponds to the hashlock recorded
in the 1st phase of the protocol, and if so, it burns the sent balance
of the transfer.

Next, C𝐴 waits until the new version of 𝐿𝐴 is snapshotted to
IPSC𝐴 , and then obtains 𝐿𝑅𝑜𝑜𝑡𝐴 from it. Then C𝐴 asks O𝐴 for the
execution receipt 𝑟𝑐𝑝3 of 𝜇-tx3 that also contains a set of proofs
(𝜋𝑚𝑒𝑚
ℎ𝑑𝑟

, 𝜋𝑚𝑘𝑟𝑐𝑝3 ) and the header of the 𝜇-block that includes 𝜇-tx3. The
proofs have the same interpretation as in the end of the 1st phase.
The mentioned proofs and the receipt are provided to C𝐵 , who
verifies that 𝜇-tx1 was executed and included in the 𝐿𝐴’s version
that is already snapshotted to IPSC𝐴 , thus irreversible.

Phase 4 – Acceptance of Tokens by C𝐵
After receiving a message from client C𝐴 , the client C𝐵 obtains
𝐿𝑅𝑜𝑜𝑡𝐴

𝑝𝑏
from IPSC𝐴 and then requests the incremental proof be-

tween versions ⟨𝐿𝑅𝑜𝑜𝑡𝐴, 𝐿𝑅𝑜𝑜𝑡𝐴
𝑝𝑏
⟩ fromO𝐴 . Then,C𝐵 creates 𝜇-𝑡𝑥4

invoking the receiveClaim() function at E𝐵 with 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐼𝑑 and
the disclosed secret by C𝐴 as the arguments. Moreover, 𝜇-𝑡𝑥4 con-
tains remaining items received from C𝐴 . Then, 𝜇-𝑡𝑥4 is sent to O𝐵 ,
who forwards it to E𝐵 . During the execution of 𝜇-𝑡𝑥4, E𝐵 verifies
the provided proofs, the equality of transfer IDs from both sides of
the protocol, the amount being sent, and the receiver of the transfer
(i.e., C𝐵 || IPSC𝐵 ). Note that to verify 𝜋𝑚𝑒𝑚ℎ𝑑𝑟

, E𝐵 uses its light client
to 𝐿𝐴 . E𝐴 then validates whether C𝐴’s provided secret corresponds
to the hashlock recorded in the 2nd phase of the protocol, and if so,
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it mints the sent balance of the transfer on the receiver’s account
C𝐵 . Finally, C𝐵 verifies that 𝜇-𝑡𝑥4 was snapshotted at IPSC𝐵 , thus
is irreversible. In detail, first C𝐵 obtains 𝐿𝑅𝑜𝑜𝑡𝐵

𝑝𝑏
from IPSC𝐵 and

then asksO𝐵 to provide her with the execution receipt 𝑟𝑐𝑝4 of 𝜇-𝑡𝑥4
in the version of 𝐿𝐵 that is equal or newer than 𝐿𝑅𝑜𝑜𝑡𝐵

𝑝𝑏
. Then, C𝐵

verifies 𝑟𝑐𝑝4, which completes the protocol.

5 IMPLEMENTATION & EVALUATION
The work is built on a proof-of-concept implementation of the de-
centralized smart contract platform Aquareum in C++ and Intel
SGX technology for enclave instantiation. The IPSC contract on the
public blockchain is constructed using the Solidity programming
language and is prepared for deployment on the Ethereum network.
The enclave employs the OpenEnclave SDK development tool,8,
which is compatible with several TEE technologies and OS systems.
Aquareum incorporates the Ethereum virtual machine – EVM, in
its stripped-down, minimalist version eEVM.9

5.0.1 Implementation Details. The C++ written client application
enables the clients to execute internal and external (i.e., between
two instance) transfer operations as well as invoking internal and
external functions of micro contracts. The operator component is
represented by the C++ written server implemented as a concurrent
non-blocking application that processes messages from clients. So
far, the PoC of the server enables to process three types of messages:
transaction execution, client registration, query for IOMC contract
addresses.

5.1 Evaluation
We used Ganache10 and Truffle,11 to develop IOMC, IPSC, and
IMSC contracts. In addition, using the Pexpect12 tool, we tested
the intercommunication of the implemented components and vali-
dated the correctness of the implemented interoperability protocol.
The tool enabled the parallel execution and control of numerous
programs (in this case, multiple Aquareum instances and client
programs) to check the correctness of the expected output.

The computational cost of executing the operations defined in
IOMC and IMSC𝑋 contracts is presented in Table 1, Table 2, and
Table 3.13 We optimized our implementation to minimize the stor-
age requirements of smart contract platform. On the other hand,
it is important to highlight that IOMC𝑋 𝜇-contracts are executed
on a private ledger corresponding to the instance of CBDC, where
the cost of gas is minimal or negligible as compared to a public
blockchain. Other experiments are the subject of our future work.

6 SECURITY ANALYSIS
In this section, we analyze our approach in terms of security-
oriented features and requirements specified in Section 3. In par-
ticular, we focus on resilience analysis of our approach against

8https://openenclave.io/sdk/
9Microsoft’s Enclave EVM is available at https://github.com/microsoft/eEVM.
10https://github.com/trufflesuite/ganache-cli
11https://github.com/trufflesuite/truffle
12https://github.com/pexpect/pexpect
13Note that we do not provide the gas measurements for IPSC since these are

almost the same as in Aquareum [33].

Function con
str
uct
or

sen
dIn
itia
lize

sen
dC
om
mi
t

sen
dR
eve
rt

Deployment 901 509 160 698 64 629 60 923
Execution 653 689 134 498 42 717 39 523

Table 1: The cost of deployment and invocation of functions in the
sending IOMC𝑆 𝜇-contract in gas units (CBDC private ledger).
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Deployment 716 330 139 218 61 245 23 168
Execution 509 366 112 762 39 653 1 896

Table 2: The cost of deployment and invocation of functions in the
receiving IOMC𝑅 𝜇-contract in units of gas (CBDC private ledger).
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Deployment 830 074 48 629 69 642 0
Execution 567 838 25 949 45 554 0

Table 3: The invocation cost of functions in IMSC smart contract in
units of gas (Ethereum public blockchain).

adversarial actions that the malicious CBDC instance (i.e., its op-
erator O) or malicious client (i.e., C) can perform to violate the
security requirements.

6.1 Single Instance of CBDC
Theorem 1. (Correctness of Operation Execution) O is unable to

modify the full state of 𝐿 in a way that does not respect the semantics
of VM deployed in E of CBDC instance.

Justification. The update of the 𝐿’s state is performed exclu-
sively in E. Since E contains trusted code that is publicly known
and remotely attested by Cs, O cannot tamper with this code. □

Theorem 2. (Integrity) O is unable to modify the past records of
𝐿, and no conflicting transactions can be stored in 𝐿.

Justification. All extensions of 𝐿 are performed within trusted
code of E (see Theorem 1), while utilizing the history tree [22] as a
tamper evident data structure, which enables us to make only such
incremental extensions of 𝐿 that are consistent with 𝐿’s past. □

Theorem 3. (Verifiability) O is unable to unnoticeably modify or
delete a transaction 𝑡𝑥 that was previously inserted to 𝐿, if sync with
IPSC was executed anytime afterward.

Justification. Since 𝑡𝑥 was correctly executed (Theorem 1) as
a part of the block 𝑏𝑖 in a trusted code of E, E produced a signed
version transition pair {ℎ(𝐿𝑖−1), ℎ(𝐿𝑖 ), 𝑡𝑖 , 𝑡𝑠 }E of 𝐿 from the version
𝑖 − 1 to the new version 𝑖 that corresponds to 𝐿 with 𝑏𝑖 included. O
could either sync 𝐿 with IPSC immediately after 𝑏𝑖 was appended
or she could do it 𝑛 versions later. In the first case, O published



Ivan Homoliak,† Martin Perešíni,† Patrik Holop,† Jakub Handzuš,† Fran Casino∗

{ℎ(𝐿𝑖−1), ℎ(𝐿𝑖 ), 𝑡𝑖 , 𝑡𝑠 }E to IPSC, which updated its current version
of 𝐿 to 𝑖 by storing ℎ(𝐿𝑖 ) into IPSC.𝐿𝑅𝑜𝑜𝑡𝑝𝑏 . In the second case,
𝑛 blocks were appended to 𝐿, obtaining its (𝑖 + 𝑛)th version. E
executed all transactions from versions (𝑖 +1), . . . , (𝑖 +𝑛) of 𝐿, while
preserving correctness (Theorem 1) and integrity (Theorem 2). Then
E generated a version transition pair {ℎ(𝐿𝑖−1), ℎ(𝐿𝑖+𝑛), 𝑡𝑖 , 𝑡𝑠 }E and
O posted it to IPSC, where the current version of 𝐿 was updated to
𝑖+𝑛 by storingℎ(𝐿𝑖+𝑛) into IPSC.𝐿𝑅𝑜𝑜𝑡𝑝𝑏 . When any C requests 𝑡𝑥
and its proofs from O with regard to publicly visible IPSC.𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ,
she might obtain a modified 𝑡𝑥 ′ with a valid membership proof
𝜋𝑚𝑒𝑚
ℎ𝑑𝑟𝑖

of the block𝑏𝑖 but an invalidMerkle proof 𝜋𝑚𝑘𝑡𝑥 ′ , which cannot
be forged. □ In the case of 𝑡𝑥 deletion, O provides C
with the tampered full block 𝑏′𝑖 (maliciously excluding 𝑡𝑥) whose
membership proof 𝜋𝑚𝑒𝑚

ℎ𝑑𝑟 ′𝑖
is invalid – it cannot be forged. □

Theorem 4. (Non-Equivocation) Assuming 𝐿 synced with IPSC:
O is unable to provide two distinct Cs with two distinct valid views
on 𝐿.

Justification. Since 𝐿 is periodically synced with publicly ac-
cessible IPSC, and IPSC stores only a single current version of 𝐿
(i.e., IPSC.𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ), all C𝑠 share the same view on 𝐿. □

Theorem 5. (Censorship Evidence) O is unable to censor any
request (transaction or query) from C while staying unnoticeable.

Justification. If C’s request is censored by CBDC’s operator
O, C can ask for a resolution of the request through public IPSC.
O observing the request might either ignore it and leave the indis-
putable proof of censorship at IPSC or she might submit the request
to E and obtain an enclave-signed proof witnessing that a request
was processed (hence have not remained censored) – this proof is
submitted to IPSC, whereby publicly resolving the request. □

Theorem 6. (Privacy) C is unable to obtain plain text of 𝜇-tran-
sactions of other Cs even during the censorship resolution.

Justification. 𝜇-transactions are sent to O in TLS-encrypted
messages. In the case of censorship resolution, submitted 𝜇-transac-
tions byC to public IPSC are encrypted byE’s public key 𝑃𝐾𝑡𝑒𝑒

E
. □

Theorem 7. (Transparent Token Issuance) O is unable to issue or
burn any tokens without leaving a publicly visible evidence.

Justification. All issued tokens of CBDC are publicly visible
at IPSC since each transaction posting a new version transition pair
also contains E-signed information about the current total issued
tokens 𝑡𝑖 and total supply of the instance 𝑡𝑠 ,14 while 𝑡𝑖 was updated
within the trusted code of E. The information about 𝑡𝑖 is updated
at IPSC along with the new version of 𝐿. Note that the history of
changes in total issued tokens 𝑡𝑖 can be parsed from all transactions
updating version of 𝐿 published by O to 𝑃𝐵. □

14Note that in the case of single CBDC instance 𝑡𝑖 = 𝑡𝑠

6.2 Multiple Instances of CBDC
In the following, we assume two CBDC instances A and B.

Theorem 8. (Atomic Interoperability I) Neither O𝐴 (operating
𝐴) nor O𝐵 (operating 𝐵) is unable to steal any tokens during the
inter-bank CBDC transfer.

Justification. Atomic interoperability is ensured in our ap-
proach by adaptation of atomic swap protocol for all inter-bank
transfers, which enables us to preserve the wholesale environment
of CBDC in a consistent state (respecting Equation 2). In detail,
the transferred tokens from CBDC instance 𝐴 to instance 𝐵 are
not credited to 𝐵 until 𝐴 does not provide the indisputable proof
that tokens were deducted from a relevant 𝐴’s account. This proof
confirms irreversible inclusion of 𝑡𝑥3 (i.e., E𝐴 .𝑠𝑒𝑛𝑑𝐶𝑜𝑚𝑚𝑖𝑡 () that
deducts account of 𝐴’s client) in 𝐴’s ledger and it is verified in 4th
stage of our protocol by the trusted code of E𝐵 .

In the case that O𝐴 would like to present 𝐵 with integrity snap-
shot of 𝐿𝐴 that was not synced to IPSC𝐴 yet, B will not accept it
since the 4th phase of our protocol requires O𝐵 to fetch the recent
IPSC𝐴 .𝐿𝑅𝑜𝑜𝑡𝑝𝑏 and verify its consistency with A-provided 𝐿𝑅𝑜𝑜𝑡
as well as inclusion proof in 𝑃𝐵; all executed/verified within trusted
code of E𝐵 . □

Theorem 9. (Atomic Interoperability II) Colluding clients C𝐴 and
C𝐵 of two CBDC instances cannot steal any tokens form the system
during the transfer operation of our protocol.

Justification. If the first two phases of our protocol have been
executed, C𝐴 might potentially reveal the 𝑝𝑟𝑒𝑖𝑚𝑎𝑔𝑒 to C𝐵 without
running the 3rd phase with the intention to credit the tokens at 𝐵
while deduction at 𝐴 had not been executed yet. However, this is
prevented since the trusted code of E𝐵 verifies that the deduction
was performed at𝐴 before crediting the tokens to C𝐵 – as described
in Theorem 8. □

Theorem 10. (Inter-CBDC Censorship Evidence) O𝐴 is unable to
unnoticeably censor any request (transaction or query) from C𝐵 .

Justification. IfC𝐵 ’s request is censored byO𝐴 ,C𝐵 can ask for
a resolution of the request through public IPSC𝐴 since C𝐵 already
has the access ticket to instance 𝐴. The access ticket is signed
by E𝐴 and thus can be verified at IPSC𝐴 . Hence, the censorship
resolution/evidence is the same as in Theorem 5 of a single CBDC
instance. □

Theorem 11. (Inter-CBDC Censorship Recovery) A permanent
inter-CBDC censorship by O𝐴 does not cause an inconsistent state
or permanently frozen funds of undergoing transfer operations at
any other CBDC instance – all initiated and not finished transfer
operations can be recovered from.

Justification. If O𝐴 were to censor C𝐵 in the 2nd phase of our
protocol, no changes at ledger 𝐿𝐵 would be made. If O𝐴 were to
censor C𝐵 in the 4th phase of our protocol, 𝐿𝐵 would contain an
initiated transfer entry, which has not any impact on the consistency
of the ledger since it does not contain any locked tokens. □

If O𝐵 were to censor C𝐴 in the 3rd phase of our protocol, 𝐴 would
contain some frozen funds of the initiated transfer. However, these
funds can be recovered back to C𝐴 upon a recovery call of E𝐴 after



CBDC-AquaSphere: Interoperable Central Bank Digital Currency Built on Trusted Computing and Blockchain

a recovery timeout has passed. Note that after tokens of C𝐴 have
been recovered and synced to IPSC𝐴 in 𝑃𝐵, it is not possible to
finish the 4th stage of our protocol since it requires providing the
proof that tokens were deducted at 𝐴 and such a proof cannot be
constructed anymore. The same holds in the situation where the
sync to IPSC𝐴 at 𝑃𝐵 has not been made yet – after recovery of
tokens, E𝐴 does not allow to deduct the same tokens due to its
correct execution (see Theorem 1). □

Theorem 12. (Identity Management of CBDC Instances I) A new
(potentially fake) CBDC instance cannot enter the ecosystem of whole-
sale CBDC upon its decision.

Justification. To extend the list of valid CBDC instances (stored
in IMSC contract), the majority vote of all existing CBDC instances
must be achieved through public voting on IMSC. □

Theorem 13. (Identity Management of CBDC Instances II) Any
CBDC instance (that e.g., does not respect certain rules for issuance of
tokens) might be removed from the ecosystem of CBDC by majority
vote.

Justification. A publicly visible voting about removal of a
CBDC instance from the ecosystem is realized by IMSC contract
that resides in 𝑃𝐵, while each existing instance has a single vote. □

6.3 Security of TEE
We assume that its TEE platform employed is secure. However,
previous research indicated that this might not be the case in
practical implementations of TEE, such as SGX that was vulner-
able to memory corruption attacks [8] as well as side channel at-
tacks [13, 45, 54, 67]. A number of software-based defense and miti-
gation techniques have been proposed [13, 18, 31, 60, 62] and some
vulnerabilities were patched by Intel at the hardware level [35].
Nevertheless, we note that our approach is TEE-agnostic thus can
be integrated with other TEEs such as ARM TrustZone or RISC-V
architectures (using Keystone-enclave [28] or Sanctum [21]).

Another class of SGX vulnerabilities was presented by Cloosters
et al. [20] and involved incorrect application designs enabling ar-
bitrary reads and writes of protected memory. Since the authors
did not provide public with their tool (and moreover it does not
support Open-enclave SDK), we did manual inspection of our code
and did not find any of the concerned vulnerabilities. Another
work was done by Borrello et al. [12] and involves more serious
micro-architectural flaws in chip design. Intel has already released
microcode and SGX SDK updates to fix the issue.

6.4 Public Blockchain & Finality
Many blockchain platforms suffer from accidental forks (i.e., availa-
bility-favored blockchains in terms of CAP theorem), which tem-
porarily create parallel inconsistent blockchain views. To mitigate
this phenomenon, it is recommended to wait a certain number of
block confirmations after a given block is created before consider-
ing it irreversible with overwhelming probability. This waiting time
(a.k.a., time to finality) influences the non-equivocation property of
our approach, inheriting it from the underlying blockchain platform.
Most availability-favored blockchains have a long time to finality,
e.g., ∼3mins in Bitcoin [56], ∼3mins in Ethereum [? ], ∼2mins in

Cardano [37]. However, consistency-favored blockchains in terms
of the CAP theorem have a short time to finality, e.g., HoneyBad-
gerBFT [51], Algorand [30], Hyperledger Besu [34]. The selection
of the underlying blockchain platform should respect low time to
finality in the critical environment of CBDC, and thus employ a
consistency-favored public blockchain.

7 RELATEDWORK
In this section, we first review various approaches to interoperabil-
ity and CBDC. Moreover, since our protocol is designed using a
combination of TEE and the blockchain, we revise the most relevant
solutions and stress the novelty of our approach, which combines
several unique features.

7.1 Blockchain Interoperability
Cross-chain interoperability is one of the most desirable yet chal-
lenging features to be designed and developed in blockchains, af-
fecting the impact and usability of the solution [6, 52, 58, 69].

Cross-chain communication protocols define the process of syn-
chronization between different chains of the same blockchain, e.g.,
by the use of sidechains. Additionally, cross-blockchain communica-
tion protocols, such as Interledger Protocol [63], allow interaction
of different blockchains. While the cross-chain solutions can be
employed by the native constructs such as atomic swap, the cross-
blockchain protocols require adoption of the solution. Blockchain
interoperability solutions can be categorized into three groups ac-
cording to the principle they are based on and the type of chains
that are supported [6].

Public connectors. Public connectors are a set of approaches
that focuses on cryptocurrency systems and their transactions.
This includes the sidechains, relays, notary schemes, and hash time
locks [24, 52, 55].

Blockchain of blockchains. Blockchain of blockchains focuses
on application specific-solutions. The example is Polkadot [6, 15] –
a network for cross-blockchain interoperability. In Polkadot net-
work, multiple parallelized globally-coherent chains (parachains)
are connected via bridges that represent a specific type of parachain.
Bridges also serve as a gateway for communication with external
networks, such as Bitcoin.

Hybrid Connectors. Hybrid solutions create an abstraction
layer over the blockchain ecosystem and provide a unified API
for interaction between blockchain and applications [46]. Examples
are trusted relays or blockchain migrators. The interoperability re-
quires validators present in both the source and target blockchains.
The validators collect cross-chain transactions and ensure that they
are delivered [68].

The proposed solution in this paper contain a custom one-way
atomic swap protocol that utilizes hash time lock contracts. Such
swaps are settled on public blockchain 𝑃𝐵. It is also expected that
𝑃𝐵 used for the synchronization of clients and CBDC instances de-
ploys a single blockchain technology. The usability of the proposed
solution targets the financial institutions such as banks, leveraging
its potential use in CBDC projects. The protocol does not specify
a middleware layer providing API or the use of gateway chains.
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Therefore, it can be categorized as a public connector that augments
and combines the features provided by individual solutions in the
same category.

7.2 CBDC Projects
While most CBDC projects are still in their early stages, some
well-known proposals are reaching maturity level [71]. For in-
stance, Project Jasper [17] was one of the initial prototypes for
inter-bank payments using blockchain technology. Project Ubin
[53] appeared with the aim of clearing and settling of payments
and securities efficiently by using several blockchain technologies
and smart contracts. Project E-krona [4] was designed, among oth-
ers, to enable fast transactions between domestic and cross-border
entities. Stella [39] is another well-known project that uses permis-
sioned blockchain technology to enable cross border operations as
well as confidentiality protection. The mBridge project [9] (initially
named Inthanon-LionRock) prototype is built by ConsenSys on Hy-
perledger Besu. The prototype encompasses several jurisdictions
and aims at creating a cross-border payment infrastructure that
improves on key pain points, including high cost, low speed, and
operational complexities. Finally, Project Khokha [64] was designed
for efficient, confidential inter-bank transactions.

Despite the maturity of some projects, research on CBDC tech-
nology is still in its infancy. In addition, the road to creating a
native interoperable protocol that can be used regardless of the
underlying blockchain technology still requires further exploration
and is one of the main objectives of this article. Compared to other
CBDC projects, our approach is the first protocol combining TEE
and blockchain to bring interesting security and privacy features,
accompanied by external interoperability. In detail, our protocol
guarantees a set of features such as integrity, non-equivocation
(i.e., we provide snapshots to public blockchain to avoid reverts and
forks of the local CBDC ledgers), correctness (i.e., the EVM is exe-
cuted in an enclave which can be remotely attested), and censorship
evidence. Since the designed protocol addresses inter-bank commu-
nication and payment settlements, it can be potentially integrated
as a part of the above-mentioned wholesale CBDC projects. The
advantages of the retail CBDC approach towards individual clients
are also preserved by the privacy support, censorship evidence and
mitigation of malicious approach described in Section 6. The gen-
eral approach is also invariant towards token differences introduced
by different projects with regard to the public blockchain.

7.3 Combining Blockchain and TEE
The combination of Trusted Execution Environment (TEE) tech-
nologies and blockchain has gained increased attention in the past
few years. Hybridchain [70] is an architecture for confidentiality-
preserving in permissioned blockchain. Such architecture extends
the enclave memory of TEE that allows blockchain applications
running in TEE to securely store transaction records outside of TEE.
Ekiden [19] is a blockchain-agnostic solution that offloads smart
contract execution to TEE enclaves. Teechain [44] focuses on the
Bitcoin network and enables the secure execution of transactions
in TEE, enhancing the scalability of the network. Fastkitten enables
extended functionality in the Bitcoin network by using Turing-
complete smart contracts executed via TEE-enabled operators [23].

However, solutions combining interoperability with TEE-based
blockchains are still in their infancy. Only a few authors have ex-
plored this such as Bellavista et al. [7], and Lan et al. [43], which
are the works most similar to ours. More concretely, Bellavista
et al. [7] explore the use of a relay scheme based on TEE to pro-
vide blockchain interoperability in the context of collaborative
manufacturing and supply chains. Lan et al. [43] aim to preserve
confidentiality in interoperable cross-chain platforms and propose
a protocol to ensure privacy-preserving communications among
them. Nevertheless, our approach is the first one designing a func-
tional protocol for interoperable CBDC, considering features such
as the ones mentioned in Section 3.

8 DISCUSSION
As seen in Section 7, this is the first blockchain TEE-based interop-
erable protocol that operates in the context of CBDC. However, our
protocol allows modifications if additional requirements were to be
fulfilled (i.e., considering the ones defined in Section 3). The latter
enables a certain degree of dynamism when adapting the protocol
to specific application contexts.

Following the interest of countries in CBDC [5], research on
CBDCs and their potential challenges has also been receiving in-
creasing attention in the last years (i.e., the number of contributions
has been doubling yearly since 2020 according to Scopus, using
the query TITLE-ABS-KEY ( ( ( central AND bank AND digital
AND currency ) OR CBDC ) AND challenges ). While a profound
analysis of state of the art is out of the scope of this paper, we
found that authors typically follow two strategies to discuss CBDC
and its challenges, namely considering a local perspective (i.e., at
a jurisdiction or national level) and adopting a global challenge
abstraction. Overall, we considered the most recent reviews and
surveys analyzing CBDC and its challenges [2, 16, 40, 59] and other
grey literature, such as the Digital Euro Association [25], or the US
federal reserve [66], to extract the challenges and represent them
according to a high-level hierarchical abstraction. Since one of the
aims of our proposal is to provide solutions to as many challenges as
possible, we describe, for each challenge, the benefits and features
that our proposal provides in Table 4.

9 CONCLUSION
Although the controversy surrounding the coexistence of privacy
and CBDC [42], the latter promises a series of benefits, such as
transaction efficiency (e.g., by reducing costs and decreasing its fi-
nality at the national or international level) and countering financial
crime. Moreover, CBDC complements current financial services by
offering broader opportunities. Nevertheless, the corresponding reg-
ulations should carefully manage these new opportunities, ensuring
they do not restrict citizens’ rights. Note that novel functionalities
enforced in financial transactions, such as token expiration dates,
negative interest rates for token holders (i.e., in an attempt to stim-
ulate the economy in recession periods) or tokens whose validity
is tied to a specific subset of goods (e.g., enforcing that part of the
salary is spent on energy or healthcare), could either be applied for
the sustainability of the society or state control in the context of
authoritarian regimes.
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Topic Main concerns Our proposal’s contribution

Technology The design, implementation and maintenance of CBDC’s as well
as their scalability, resiliency and compatibility with the current
financial structure.

Our system is scalable and compatible with current financial system

Monetary Policy Monetary policy transmission, including interest rates, the value
of money, or other tools, should not be hindered by CBDC.

Our system relies on smart contracts to enforce specific policies if required,
such as token expiration or token usability.

Financial Stability The potentially disrupting impact of CBDC on the existing fi-
nancial system could create new financial vulnerabilities, uncon-
trolled disintermediation or illicit activities.

The use of blockchain and the policies translated into the system should
be audited and verified. Our system is compatible with the latter and other
policies in the above layers.

Legal Framework The legal framework for CBDC needs to comply with existing
laws and regulations, including consumer protection, anti-money
laundering, and countering the financing of terrorism.

The system is compatible with auditability layers compliant with current legal
and regulations

Interoperability Ensuring interoperability by guaranteeing that CBDCs are com-
patible with other countries monetary policies and promoting
cross-border cooperation and standardisation.

Our protocol is interoperable by design and ensures the system remains in
monetary equilibrium since no new tokens are created. The potential use of
oracles enables further operations with different currencies beyond current
ones, promoting cross-border cooperation and additional capabilities.

Security and Privacy CBDC needs to ensure robustness to prevent cyberattacks and
unauthorised access to data by guaranteeing privacy-preserving
mechanisms of transactions and personal information.

Our proposal is robust and preserves the privacy of transactions since all the
transactions are encrypted. We provide various security properties, such as
atomicity, verifiability, integrity, non-equivocation, correctness of execution,
censorship evidence, and others.

User Adoption and In-
clusion

CBDCswill need to provide access to banking services to different
populations. Users will require a behaviour change, acceptance
and trust.

The use of our system is transparent to other layers, so it does not introduce
any burden. TEE technologies enable trustable platforms, and our protocol
allows verifiable censorship resolution.

Table 4: High-level abstraction of CBDC’s challenges and how our proposal contributes to them. In some cases, our proposal slightly interferes with
these challenges since many only apply to other CBDC ecosystem layers.

Given the above circumstances, we provide the design and imple-
mentation of the protocol that uses a custom adaptation of atomic
swap and is executed by any pair of CBDC instances to realize a
one-way transfer, resolving interoperability over multiple instances
of semi-centralized CBDC. Our protocol guarantees a series of
properties such as verifiability, atomicity of inter-bank transfers,
censorship resistance, and privacy. Our contributions result in a
step forward toward enriching the capabilities of CBDC and their
practical deployment.

Futureworkwill closer study token issuancemanagement through
protocol directives, perform more extensive evaluation, and pro-
pose interoperable execution of smart contracts between CBDC
instances.
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Algorithm 6: The program 𝑝𝑟𝑜𝑔IPSC of IPSC.
⊲ Declaration of types and constants:

CensInfo { 𝜇-𝑒𝑡𝑥, 𝜇-𝑒𝑞𝑢𝑒𝑟𝑦, 𝑠𝑡𝑎𝑡𝑢𝑠, 𝑒𝑑𝑎𝑡𝑎 },
𝑚𝑠𝑔: a current transaction that called IPSC,

⊲ Declaration of functions:
function 𝐼𝑛𝑖𝑡 (𝑃𝐾𝑝𝑏

E
, 𝑃𝐾𝑡𝑒𝑒

E
, 𝑃𝐾O, _𝑖𝑟 , [𝑖𝑎 ← T]) public

𝑃𝐾𝑡𝑒𝑒
E
[ ] .𝑎𝑑𝑑 (𝑃𝐾𝑡𝑒𝑒

E
) ; ⊲ PK of enclave E under Σ𝑡𝑒𝑒 .

𝑃𝐾
𝑝𝑏
E
[ ] .𝑎𝑑𝑑 (𝑃𝐾𝑝𝑏

E
) ; ⊲ PK of enclave E under Σ𝑝𝑏 .

𝑃𝐾
𝑝𝑏
O
← 𝑃𝐾O ; ⊲ PK of operator O under Σ𝑝𝑏 .

𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ←⊥; ⊲ The most recent root hash of 𝐿 synchronized with IPSC.
𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 ← []; ⊲ Request that Cs wants to resolve publicly.
𝑡𝑠 ← 0; ⊲ The total supply of the instance.
𝑡𝑖 ← 0; ⊲ The total issued tokens by the instance.
const 𝑖𝑠𝑠𝑢𝑒𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 ← 𝑖𝑎; ⊲ Token issuance capability of the instance.
const 𝑖𝑟 ← _𝑖𝑟 ; ⊲ Max. yearly inflation of the instance.
const 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝐴𝑡 ← 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ( ) ; ⊲ The timestamp of creation a CBDC instance.

function 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝐿𝑒𝑑𝑔𝑒𝑟 (𝑟𝑜𝑜𝑡𝐴, 𝑟𝑜𝑜𝑡𝐵 , _𝑡𝑖 , _𝑡𝑠 , 𝜎 ) public
⊲ Verify whether msg was signed by E.

assert Σ𝑝𝑏 .𝑣𝑒𝑟𝑖 𝑓 𝑦 ( (𝜎, 𝑃𝐾𝑝𝑏
E
[-1] ), (𝑟𝑜𝑜𝑡𝐴, 𝑟𝑜𝑜𝑡𝐵 , _𝑡𝑖 , _𝑡𝑠 ) ) ;

⊲ Snapshot issued tokens and total supply.
if 𝑖𝑠𝑠𝑢𝑒𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 then

assert __𝑚𝑒𝑒𝑡𝑠𝐼𝑛𝑓 𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 (_𝑡𝑖 ) ; ⊲ The code is trivial, and we omit it.
𝑡𝑖 ← _𝑡𝑖 ;

else
assert 𝑡𝑖 = _𝑡𝑖 ;

⊲ Verify whether a version transition extends the last one.
if 𝐿𝑅𝑜𝑜𝑡𝑝𝑏 = 𝑟𝑜𝑜𝑡𝐴 then

𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ← 𝑟𝑜𝑜𝑡𝐵 ; ⊲ Do a version transition of 𝐿.

function 𝑆𝑢𝑏𝑚𝑖𝑡𝐶𝑒𝑛𝑠𝑇𝑥 (𝜇-𝑒𝑡𝑥, 𝜎𝑚𝑠𝑔 ) public
⊲ Called by C in the case her 𝜇-tx is censored. C encrypts it by 𝑃𝐾𝑡𝑒𝑒

E
.

accessControl(𝜎𝑚𝑠𝑔,𝑚𝑠𝑔.𝑃𝐾
𝑝𝑏
C

);
𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 .add(CensInfo(𝜇-𝑒𝑡𝑥,⊥,⊥,⊥));

function 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝐶𝑒𝑛𝑠𝑇𝑥 (𝑖𝑑𝑥𝑟𝑒𝑞 , 𝑠𝑡𝑎𝑡𝑢𝑠, 𝜎) public
⊲ Called by O to prove that C’s 𝜇-tx was processed.

assert 𝑖𝑑𝑥𝑟𝑒𝑞 < |𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 | ;
𝑟 ← 𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 [𝑖𝑑𝑥𝑟𝑒𝑞 ];
assert Σ𝑝𝑏 .𝑣𝑒𝑟𝑖 𝑓 𝑦 ( (𝜎, 𝑃𝐾𝑝𝑏

E
[-1] ), (ℎ (𝑟 .𝜇-𝑒𝑡𝑥 ), 𝑠𝑡𝑎𝑡𝑢𝑠 ) ) ;

𝑟 .𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑡𝑎𝑡𝑢𝑠 ;
function 𝑆𝑢𝑏𝑚𝑖𝑡𝐶𝑒𝑛𝑠𝑄𝑟𝑦(𝜇-𝑒𝑞𝑢𝑒𝑟𝑦, 𝜎𝑚𝑠𝑔 ) public

⊲ Called by C in the case its read query is censored. C encrypts it by 𝑃𝐾𝑡𝑒𝑒
E

.

accessControl(𝑚𝑠𝑔, 𝜎𝑚𝑠𝑔,𝑚𝑠𝑔.𝑃𝐾
𝑝𝑏
C

);
𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 .add(CensInfo(⊥, 𝜇-𝑒𝑞𝑢𝑒𝑟𝑦,⊥,⊥));

function 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝐶𝑒𝑛𝑠𝑄𝑟𝑦 (𝑖𝑑𝑥𝑟𝑒𝑞 , 𝑠𝑡𝑎𝑡𝑢𝑠, 𝑒𝑑𝑎𝑡𝑎, 𝜎) public
⊲ Called by O as a response to the C’s censored read query.

assert 𝑖𝑑𝑥𝑟𝑒𝑞 < |𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 | ;
𝑟 ← 𝑐𝑒𝑛𝑠𝑅𝑒𝑞𝑠 [𝑖𝑑𝑥𝑟𝑒𝑞 ];
assert Σ𝑝𝑏 .𝑣𝑒𝑟𝑖 𝑓 𝑦 ( (𝜎, 𝑃𝐾𝑝𝑏

E
[-1] ), (ℎ (𝑟 .𝜇-𝑒𝑞𝑢𝑒𝑟𝑦), 𝑠𝑡𝑎𝑡𝑢𝑠,ℎ (𝑒𝑑𝑎𝑡𝑎) ) ) ;

𝑟 .{𝑒𝑑𝑎𝑡𝑎 ← 𝑒𝑑𝑎𝑡𝑎, 𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑡𝑎𝑡𝑢𝑠 };

function 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐸𝑛𝑐(𝑃𝐾𝑁𝑝𝑏
E
, 𝑃𝐾𝑁 𝑡𝑒𝑒

E
, 𝑟𝐴, 𝑟𝐵 , _𝑡𝑖 , _𝑡𝑠 , 𝜎, 𝜎𝑚𝑠𝑔 ) public

⊲ Called by O in the case of enclave failure.

assert Σ𝑝𝑏 .𝑣𝑒𝑟𝑖 𝑓 𝑦 ( (𝜎𝑚𝑠𝑔, 𝑃𝐾
𝑝𝑏
O
),𝑚𝑠𝑔) ; ⊲ Avoiding MiTM attack.

𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝐿𝑒𝑑𝑔𝑒𝑟 (𝑟𝐴, 𝑟𝐵 , _𝑡𝑖 , _𝑡𝑠 , 𝜎 ) ; ⊲ Do a version transition.
𝑃𝐾𝑡𝑒𝑒
E

.𝑎𝑑𝑑 (𝑃𝐾𝑁 𝑡𝑒𝑒
E
) ; ⊲ Upon change, C𝑠 make remote attestation.

𝑃𝐾
𝑝𝑏
E
.𝑎𝑑𝑑 (𝑃𝐾𝑁𝑝𝑏

E
) ;

Algorithm 5: The program 𝑝𝑟𝑜𝑔E of enclave E
⊲ Declaration of types and functions:

Header { 𝐼𝐷 , 𝑡𝑥𝑠𝑅𝑜𝑜𝑡 , 𝑟𝑐𝑝𝑅𝑜𝑜𝑡 , 𝑠𝑡𝑅𝑜𝑜𝑡 };
#(𝑟 ) → 𝑣: denotes the version 𝑣 of 𝐿 having 𝐿𝑅𝑜𝑜𝑡 = 𝑟 ,

⊲ Variables of TEE:
𝑆𝐾𝑡𝑒𝑒
E

, 𝑃𝐾𝑡𝑒𝑒
E

: keypair of E under Σ𝑡𝑒𝑒 ,

𝑆𝐾
𝑝𝑏
E
, 𝑃𝐾

𝑝𝑏
E

: keypair of E under Σ𝑝𝑏 ,
ℎ𝑑𝑟𝑙𝑎𝑠𝑡 ←⊥: the last header created by E,
𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ←⊥: the last root of 𝐿 flushed to PB’s IPSC,
𝐿𝑅𝑜𝑜𝑡𝑐𝑢𝑟 ←⊥: the root of 𝐿 ∪ 𝑏𝑙𝑘𝑠𝑝 (not flushed to PB),
𝐼𝐷𝑐𝑢𝑟 ← 1: the current version of 𝐿 (not flushed to PB),
𝐹𝐻𝑐𝑢𝑟 ← []: the frozen hashes cache of the current 𝐿’s history tree.

⊲ Declaration of functions:
function 𝐼𝑛𝑖𝑡 () public

(𝑆𝐾𝑝𝑏
E

, 𝑃𝐾𝑝𝑏
E

)← Σ𝑝𝑏 .𝐾𝑒𝑦𝑔𝑒𝑛 ( ) ;
(𝑆𝐾𝑡𝑒𝑒
E

, 𝑃𝐾𝑡𝑒𝑒
E

)← Σ𝑡𝑒𝑒 .𝐾𝑒𝑦𝑔𝑒𝑛 ( ) ;
Output(𝑃𝐾𝑡𝑒𝑒

E
, 𝑃𝐾

𝑝𝑏
E

);

function 𝐸𝑥𝑒𝑐(𝑡𝑥𝑠 [ ], 𝜕𝑠𝑡𝑜𝑙𝑑 ) public
assert 𝜕𝑠𝑡𝑜𝑙𝑑 .𝑟𝑜𝑜𝑡 = ℎ𝑑𝑟𝑙𝑎𝑠𝑡 .𝑠𝑡𝑅𝑜𝑜𝑡 ;
𝜕𝑠𝑡𝑛𝑒𝑤 , 𝑟𝑐𝑝𝑠, 𝑡𝑥𝑠𝑒𝑟 ← __𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑥𝑠 (𝑡𝑥𝑠, 𝜕𝑠𝑡𝑜𝑙𝑑 ) ;
𝜎 ← Σ𝑝𝑏 .𝑠𝑖𝑔𝑛 (𝑆𝐾𝑝𝑏

E
, (𝐿𝑅𝑜𝑜𝑡𝑝𝑏 , 𝐿𝑅𝑜𝑜𝑡𝑐𝑢𝑟 ) ) ;

Output(𝐿𝑅𝑜𝑜𝑡𝑝𝑏 , 𝐿𝑅𝑜𝑜𝑡𝑐𝑢𝑟 , 𝜕𝑠𝑡𝑛𝑒𝑤 , ℎ𝑑𝑟𝑙𝑎𝑠𝑡 , 𝑟𝑐𝑝𝑠 , 𝑡𝑥𝑠𝑒𝑟 , 𝜎 );

function 𝐹𝑙𝑢𝑠ℎ() public
𝐿𝑅𝑜𝑜𝑡𝑝𝑏 ← 𝐿𝑅𝑜𝑜𝑡𝑐𝑢𝑟 ; ⊲ Shift the version of 𝐿 synchronized with PB.

function __𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑥𝑠(𝑡𝑥𝑠 [ ], 𝜕𝑠𝑡𝑜𝑙𝑑 ) private
𝜕𝑠𝑡𝑛𝑒𝑤 , 𝑟𝑐𝑝𝑠 [ ], 𝑡𝑥𝑠𝑒𝑟 ← runVM(𝑡𝑥𝑠 , 𝜕𝑠𝑡𝑜𝑙𝑑 ); ⊲ Run 𝜇-𝑡𝑥𝑠 in VM.
𝑡𝑥𝑠 ← 𝑡𝑥𝑠 \ 𝑡𝑥𝑠𝑒𝑟 ; ⊲ Filter out parsing errors/wrong signatures.
ℎ𝑑𝑟 ← Header(𝐼𝐷𝑐𝑢𝑟 , 𝑀𝑘𝑅𝑜𝑜𝑡 (𝑡𝑥𝑠 ), 𝑀𝑘𝑅𝑜𝑜𝑡 (𝑟𝑐𝑝𝑠 ), 𝜕𝑠𝑡𝑛𝑒𝑤 .𝑟𝑜𝑜𝑡 ) ) ;
ℎ𝑑𝑟𝑙𝑎𝑠𝑡 ← ℎ𝑑𝑟 ;
𝐿𝑅𝑜𝑜𝑡𝑐𝑢𝑟 ← __𝑛𝑒𝑤𝐿𝑅𝑜𝑜𝑡 (ℎ𝑑𝑟 ) ;
𝐼𝐷𝑐𝑢𝑟 ← 𝐼𝐷𝑐𝑢𝑟 + 1;
return 𝜕𝑠𝑡𝑛𝑒𝑤 , 𝑟𝑐𝑝𝑠 , 𝑡𝑥𝑠𝑒𝑟 ;

function __𝑛𝑒𝑤𝐿𝑅𝑜𝑜𝑡 (ℎ𝑑𝑟 ) private
__𝑢𝑑𝑝𝑎𝑡𝑒𝐹𝐻 (ℎ (ℎ𝑑𝑟 ) ) ;
return 𝐹𝐻𝑐𝑢𝑟 .𝑅𝑒𝑑𝑢𝑐𝑒𝑅𝑜𝑜𝑡 ( ) ;

⊲ Since 𝐹𝐻𝑐𝑢𝑟 = 𝜋𝑖𝑛𝑐𝑛𝑒𝑥𝑡 , inc. proof. for 1 element commitment.

function __𝑢𝑝𝑑𝑎𝑡𝑒𝐹𝐻 (ℎ𝑑𝑟𝐻 ) private
𝐹𝐻𝑐𝑢𝑟 .𝑎𝑑𝑑 (ℎ𝑑𝑟𝐻 ) ;
𝑙 ← ⌊𝑙𝑜𝑔2 (𝐼𝐷𝑐𝑢𝑟 ) ⌋;
for 𝑖 ← 2; 𝑖 ≤ 2𝑙 ; 𝑖 ← 2𝑖 do

if 0 = 𝐼𝐷𝑐𝑢𝑟 mod 𝑖 then
𝐹𝐻𝑐𝑢𝑟 [-2] ← ℎ (𝐹𝐻𝑐𝑢𝑟 [-2] | | 𝐹𝐻𝑐𝑢𝑟 [-1] )
delete 𝐹𝐻𝑐𝑢𝑟 [-1]; ⊲ Remove the last element.
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