
Multimedia Data Distribution and
Processing

in IP Networks

Eva Hladká

}w��������
��
������������� !"#$%&'()+,-./012345<yA|

Submitted for the habilitation at
The Faculty of Informatics, Masaryk University

Brno, 2007

Except where otherwise indicated, this thesis is my own original work.

Eva Hladká
Brno, August 2007

ACKNOWLEDGMENTS

My thanks go first and foremost to my husband, Luděk Matyska for support and
hinterland for my work, for help and trust in my work.

I would also like to thank my colleagues and bachelor, master, and doctoral
students in the Advanced networking technologies laboratory. They have helped
me to create a very lively collaborative team. Namely thanks go to Jiří Denemark,
Miloš Liška, Tomáš Rebok and Michal Procházka.

I extend a special vote of thanks to Petr Holub who collaborated most time
on the partial steps on this way and was my-right hand man in all my endeavors
connected with this work.

I would also like to acknowledge David Antoš especially for help on formal
face of this thesis.

Finally, I would like to thank everybody using our Active Elements and the
whole multimedia processing environment, thus inspiring its further develop-
ment.

A more formal acknowledgment goes to the Masaryk University and its Fac-
ulty of Informatics, which provided me with the space and environment in which
I can meet people and play with my ideas without any obstacles. Finally, I grate-
fully acknowledge CESNET, for supporting me through the Research plan “Opti-
cal Network of National Research and Its New Applications” (MŠM 6383917201)
and Masaryk University for supporting me through the Research plan “Paral-
lel and Distributed Systems” (MŠM 0021622419). The openVPN solution was
inspired by my work within the EU Ithanet project (RI-2004-026539), whose sup-
port is also appreciated.

E. H.

Contents

Contents iv

Abstract 1

1 Introduction 2

2 Active Elements Evolution 8

3 Scalability 15
3.1 AE Networks . 15
3.2 Distributed Active Element . 17

4 Applications 20
4.1 Videoconferencing support [13] . 20
4.2 Advanced Videoconferencing Support [Appendix D] 21
4.3 Video streams composition [14] . 22
4.4 Stereoscopic video [Appendix F] . 22
4.5 Stream transcoding [16] . 23
4.6 Collaboration in Adverse Networking Environments. 24
4.7 HD Video Distribution [Appendix H], [Appendix M] 25
4.8 Conclusions . 25

5 Conclusions and Future Work 26

Bibliography 27

Appendices 30

A Eva Hladká and Zdeněk Salvet
Active Network Architecture: Distributed computer or transport medium
In First International Conference on Networking, ICN 2001, Colmar, France, July
2001. Proceedings. Lecture Notes in Computer Science 2093, Springer-Verlag Berlin,
2001. pp. 612–620, 8 p. LNCS 2094. ISSN 0302-9743. 31

B Eva Hladká, Petr Holub and Jiří Denemark
User Empowered Virtual Multicast for Multimedia Distribution

CONTENTS v

In The Third International Conference on Networking, ICN 2004, Gosier, Guade-
loupe, French Caribbean, March 2004. Proceedings. 2004. pp. 338–343. ISBN 0-86341-
325-0. 40

C Eva Hladká, Petr Holub and Jiří Denemark
User Empowered Programmable Network Support for collaborative Environment
In Universal Multiservice Networks: Third European Conference, ECUMN 2004,
Porto, Portugal, October 25-27, 2004. Proceedings. Lecture Notes in Computer Sci-
ence 3262, Heidelberg: Springer-Verlag Berlin, 2004. 10 p. ISSN 0302-9743. 47

D Eva Hladká and Jiří Denemark
Communication Support as the User Tool
In 4th International Conference on Emerging e-learning Technologies and Applica-
tions, ICETA’2005. Košice, Slovakia, September 2005. Proceedings. elfa s. r. o., 2005.
pp. 283–288, 6 p. ISBN 80-8086-016-6. 58

E Petr Holub, Eva Hladká and Luděk Matyska
Scalability and Robustness of Virtual Multicast for Synchronous Multimedia Dis-
tribution
In 4th International Conference on Networking, ICN 2005, Reunion Island, France,
April 2005. Proceedings. Lecture Notes in Computer Science 3421, Heidelberg:
Springer Berlin, 2005. 8 p. ISSN 0302-9743. 65

F Eva Hladká, Miloš Liška and Tomáš Rebok
Stereoscopic Video over IP Networks
In The First International Conference on Systems and Networks Communications,
ICNS 2005. Papeete, Tahiti, October 2005. Proceedings. Institute of Electrical and
Electronics Engineers, 6 p. ISBN D-7695-2450-8. 74

G Petr Holub, Eva Hladká, Jiří Denemark, and Tomáš Rebok
Active Elements for High-Definition Data Distribution
In 13th International Conference on Telecommunications, ICT’2006, Funchal,
Madeira, May 2006. Proceedings. University of Aveiro, Portugal, 2006. 4 p. ISBN
972-98368-4-1. 81

H Petr Holub, Luděk Matyska, Miloš Liška, Lukáš Hejtmánek, Jiří Denemark, Tomáš
Rebok, Andrei Hutanu, Ravi Paruchuri, Jan Radil and Eva Hladká
High definition multimedia for multiparty low-latency interactive communication
Future Generation Computer Systems, Amsterdam, The Netherlands: Elsevier Sci-
ence, 22, 8, pp. 856–861, 6 p. ISSN 0167-739X. 2006. 86

I Tomáš Rebok, Petr Holub and Eva Hladká
Quality of Service oriented Active Router Design
Microelectronics, Electronics and Electronic technologies, Hypermedia and GRID
Systems, MIPRO 2006, Opatija, Croatia, May 2006. Proceedings. Croatian Society
for Information and Communication Technology, Electronics and Microelectronics,
2006. 6 p. ISBN 953-233-018-6. 93

CONTENTS vi

J Petr Holub and Eva Hladká
Distributed Active Element for High-Performance Data Distribution
IFIP International Conference on Network and Parallel Computing, NPC 2006, Tokio,
Japan, October 2006. Proceedings. pp. 27–36, 10 p. 100

K Petr Holub, Eva Hladká, Michal Procházka and Miloš Liška
Secure and Pervasive Collaborative Platform for Medical Applications
From Genes to Personalized HealthCare: Grid solutions for the Life Sciences, Health-
Grid 2007, Geneva, Switzerland, April 2007. Proceedings. Health Technology and
Informatics, Amsterdam, The Netherlands: IOS Press, 126, pp. 229–238, 10 p. ISSN
0926-9630. 2007. 111

L Petr Holub and Eva Hladká
Distributed Active Element in 10 Gbps Network
In 13th International Conference on Telecommunications, ICT 2007, Penang,
Malaysia, May 2007. Proceedings. IEEE/MICC, 2007. pp. 1-6, 6 p. ISBN 1-4244-
1094-0. 120

M Luděk Matyska, Eva Hladká, and Petr Holub
Virtual Classroom with a Time Shift
8th International Conference on Information Technology Based Higher Education
and Training. Kumamoto, Japan, July 2007. Proceedings. Kumamoto University,
2007. 6 p. 127

Printed June 13, 2008 at 11:23

Abstract

Given the importance of synchronous multimedia transmissions for collaborative environ-
ments, this thesis contains results of research on the concept of the user-empowered virtual
overlay networks for synchronous multi-point distribution of high-bandwidth data. The key
element for building these virtual networks is the Active Element (AE), which can be run as
a stand-alone application for small collaborative environments, a network of AEs for larger
groups, or even as a distributed AE on a tightly coupled cluster for handling streams with
extreme bandwidth requirements. We describe models and architectures of these systems
and demonstrate their performance using advanced collaborative applications. In addition
to simple data distribution, we demonstrate how the AEs and the whole virtual networks
can be used for data processing to support groups of unequal participants, subgrouping,
and other special purposes.

Chapter 1

Introduction

Contemporary Internet is becoming a multipurpose transmission medium, used for multi-
tude of applications, served previously by dedicated independent infrastructures. The abil-
ity of the Internet to facilitate collaboration leads to widespread use of various videoconfer-
encing and more advanced collaborative environments. As a result, synchronous multime-
dia transmissions have become more common. Various communication patterns emerged:
from many-to-many low-bandwidth streams for large scale collaboration over slow links
to few-to-few extreme-bandwidth streams as seen in collaboration based on high-definition
(HD) [Appendix H], [15] or even post-HD video [22]. These applications require Internet to
become more active, the classical passive transmission service is no longer sufficient.

Multimedia streams are processed within the network, allowing e.g., to establish a col-
laborating group where most members are connected to the high-bandwidth network links
while a minority has rather limited connection. If the network is capable to process—
compress, down-sample, etc.—the data at the appropriate nodes (where the high and low
throughput lines meet), the communication quality should not be reduced to the lowest
common throughput denominator. The network must be capable of supporting complex
communication patterns and must be able to process data internally. Robustness and failure
resilience is another area, where more support at the network level is expected. While classi-
cal transport protocols like TCP support reliable data transmission, they are not appropriate
for synchronous multimedia environment, where delays are unacceptable. It may be unde-
sirable to wait for a timeout and then ask for a datagram retransmission, the network and
applications themselves must be able to detect and immediately mitigate any data corrup-
tion or loss. Up to now, new requirements were served by different infrastructures tailored
for a specific purpose. Nowadays, we need to merge them together in a network that uses
packet transmission as its basis protocol—to do this successfully, new models, approaches,
and techniques are necessary.

Computer networks are usually modeled as graphs—the nodes being network elements
and attached computers and edges representing individual links. The model can easily be
extended to multigraphs, which allow multiple line to connect any individual nodes. Al-
though most computer networks are bi-directional, working a semi-duplex or full duplex
regime, orientation can be added for explicit description of direction of flows (multiple edges
used to represent the bi-directionality). As another step, we can add labels to the edges, rep-
resenting some important properties like throughput or latency of each link. Labels on nodes
can denote their properties, like different capabilities, latency of passing (bridging) data be-

1. INTRODUCTION 3

tween edges of the node (the internal latency), size of internal buffers, etc. We can also speak
about internal network, which is a part of the graph without any leaf node. It is also easy to
identify end—i.e., leaf—elements.

Such a model is appropriate to study most usual flow patterns in contemporary com-
puter networks, namely the send–receiver one. In this case, we have one node sending and
exactly one node receiving a particular data flow. The basic network problem is finding
a route between the communicating nodes, additional constraint is to guarantee available
bandwidth and eventually other properties like overall latency or jitter. The route is usually
the one composed from the smallest number of edges—the so called shortest path—but in
some case any path could fit—this is the case, e.g., in the interdomain routing. The mech-
anism for creating a route can work on a flow basis—we speak about connection oriented
networks—or on a datagram basis—the case of IP network. In the later case stability of the
route is becoming additional important parameter that could influence the behavior of the
whole flow (e.g., there is no reordering of datagrams within a flow in the connection oriented
networks). Each path has one sending, one receiving, and zero or several internal nodes that
are responsible for forwarding data.

However, as the networks were exposed to larger number of more sophisticated appli-
cations, more complex communicating patters emerged. The first one is a multicast, with
still one sender but multitude of receivers. A simple extension is a communicating mesh,
where every member of such a communicating group (the multicast group) could become
a sender. Yet more complex communication patterns are seen in the peer to peer networks,
where we may have multiple partially overlaid multicast groups communicating in parallel,
it may use flooding, different cases of wave communication patterns, etc.

All the more complex communication patterns can still be expressed in our simple graph
model using the sender–receiver paradigm. Multicast can be modeled by a set of sender to
receiveri flows, but to express it correctly some kind of coordination (synchronicity) must be
added to the model (data delivery to all receivers is expected to happen at the same time).
Also, even in networks with unlimited bandwidth the simultaneous sending of all streams
by just one element stress it above the optimal level (reducing efficiency of the communica-
tion scenario).

To deal with such complex communicating patterns more effectively, we have to extend
our routing algorithm to find not paths, but whole subgraphs of the original graph. Flows
going through such subgraph are more efficient than collection of individual send–receiver
flows. The subgraphs represent overlay networks, that are specialized to transfer the particular
flow pattern in the most efficient way.

When mapped back to the underlying network, the subgraphs extend the requirements
on the internal path nodes. Simple forwarding (taking data from one link and sending them
to another) is no longer sufficient, data must be duplicated and further processed to fit the
communicating subgraph (overlay network) requirements. At the theoretical level this is
just a simple extension, but propagating it back to the network proved to be very difficult, if
not impossible work.

As an example, let’s briefly discuss the IP multicast. It has been established as a family
of protocols at the beginning of 80s in the last century. IP multicast is based on a family of
multicast routing protocols (how to create the appropriate subgraph of the network) and its
implementation requires support at each network element both for routing and also for mul-
ticast forwarding. The IP multicast includes nodes that do datagram duplication—they must
be able to forward incoming data to two or even more output links. IP multicast does not

1. INTRODUCTION 4

guarantee delivery of datagrams, does not provide any feedback to sender, it is in fact very
simple extended forwarding scheme. All vendors of routers officially support multicast, yet
it is not available on large parts of the Internet and the situation is not expected to change
in the future. Although simple, multicast still can interfere with the basic sender–receiver
communication patterns, imposes more load on routers (duplication is more complicated
than simple forwarding) and the multicast routing protocols can introduce instability into
the basic routing. As the result, multicast may not work properly or could be switched off
by network administrators if they suspect it to be the cause of a problem they have with the
network1 [5, 8, 6, 7].

If the IP multicast situation is far from satisfactory, what we can anticipate with more
complex extensions, where data have to be not only transmitted but also processed during
transmission?

We must change the paradigm—instead of expecting the underlying network to provide
all the advanced functionality and increasing complexity above sustainable levels, more iso-
lation and independent deployment of support for complex communication (and data process-
ing) patterns is the possible answer. The isolation is provided by the overlay networks, that
take care of all the new functionality by themselves. The independence of deployment is
achieved through the user empowered approach. The overlay networks are constructed and
managed (often just temporarily) by their own users, without any need for specific support
from network and its administrators.

Several years ago we started to build a network environment based on the user-empow-
ered approach for transport and processing data in IP networks. We used the concept of
active networks and designed and developed an Active Element—a programmable network
node designed for synchronous data distribution and processing, configurable without ad-
ministrator’s right—and used it as the basic building block for construction of complex com-
munication patterns.

The initial phase of our research was influenced by the network-centric view. We de-
signed an active router [Appendix A], an extension of the classical router that allows users
to define their own processing over individual data streams. The active network paradigm
which introduced the active network elements, opened also the door to more user oriented
approach. The active routers (and similar active network elements) are expected to be setup
and operated by system administrators, with users “only” injecting smaller or larger pro-
grams to process their data within the network. Although the concept of active networks has
been proved to provide the new functionality necessary to fulfill new requirements of data
transmission and processing within the network, the whole idea collided with the conserva-
tive approach of network vendors and administrators. As the multicast experience demon-
strated, it is very difficult to introduce new properties as they can interact in unpredictable
way with the simpler, previously introduced protocols. Also, security concerns could not be
overemphasized. A network programmable by end users is ripe for being taken completely
by a hacker; this risk seen too high to be outweighted by the potential of new features.

1To further illustrate this problem, we have performed a quick survey of Internet2 Bigvideo group mailing list
archive (https://mail.internet2.edu/wws/arc/bigvideo/). This list was in operation from May 2003
to May 2006. It focused on education and problem solving for users of high-end video technologies in advanced
academical networks like the one operated by Internet2. The list was not limited to Internet2 community and
there was a significant international contribution. As a majority of the advanced video tools use multicast, 212
of total 625 messages, i.e., 34% was spent on multicast testing and debugging.

1. INTRODUCTION 5

At the same time as the active networks were developed, another paradigm that proved
the value in giving control to end users2 emerged—the peer to peer networks. They com-
pletely abandon the network-centric view, implementing in fact many already available net-
work protocols once again, providing complete orthogonality (and independence) on the un-
derlying network. The peer to peer networks are classical overlay networks, taking as granted
only limited number of very simple properties of the underlying network and providing all
the higher level functionality—searching, routing, etc.—by themselves.

However, the complete independence on the underlying network leads to inefficiency.
The classical peer to peer networks could place their nodes only on the periphery of the
network, where the users’ stations are connected. The data distribution pattern required by
the content (which the peer to peer network understood) may fit very poorly into the actual
underlying network topology, overloading some lines while leaving other unused. Also, re-
liability of the peer to peer network is usually based on an overwhelming redundancy, when
the same data are distributed, processed, and stored by many nodes—again a clear contra-
diction to the network-centric approach where the efficiency (the cost of the infrastructure)
is one of the ruling paradigms.

We can see that the network-centric approach is highly efficient, but very slow in adopt-
ing new features and rather unfriendly to users. On the other hand, pure user-centric overlay
approach, as represented by basic peer to peer networks is very inefficient (consuming more
resources than needed in the optimal case), but it is able to introduce new features fast and
can provide exactly the services the users are looking for. Another reason for that huge suc-
cess is also their single purpose—the peer to peer networks are not trying to solve all the
users’ requirements, they focus on one service or just a small set of similar interconnected
services.

Is it possible to take the positive from both approaches and leave out their negatives?
Several years ago we decided to try this combination, moving from the network-centric to
the user-centric approach, but not abandoning the network orientation completely. We ex-
tended the active router model to fit into the user-centric paradigm. The original active
router and its implementation was based on Unix operating system and exploited both the
kernel and user components. Its installation and deployment thus required system admin-
istrator’s privileges that ordinary user may not have. As the next step, we completely re-
designed the active router to become Active Element (AE), working in the user space of any
operating system only. We obtained a fully user controlled element, that can be installed on
any machine user has access to, without any specific privileges (e.g., on a server that is more
strategically placed within the network than end user desktop machine). However, the AE
design still followed basic network-centric pattern, being an evolutionary successor of active
router, and thus became a keystone for the distribution and processing infrastructure, not a
node in a peer to peer network. We still differentiate between an infrastructure and clients,
but we put both into users’ hands.

The user controlled Active Element is a very strong and flexible component to build dif-
ferent distribution schemes. We started with an infrastructure for virtual multicast. We used
this infrastructure to study properties of the serial communication schema for group syn-
chronous communication instead of the parallel communication model of the native multi-
cast. While we had clearly demonstrated its advantages, especially in the area of security
and reliability, the limited scalability remained the major disadvantage and it became our

2Should we be worried by the similarity to the All power to people paradigm?

1. INTRODUCTION 6

natural next research target. Instead of using just a single AE to do all the processing and
distribution, we designed a network of AEs with distinct control and data planes. This sepa-
ration allowed us to use the peer to peer principles at the control plane, taking advantage of
the properties of peer to peer networks like robustness and very high scalability. The inher-
ent low efficiency of peer to peer networks does not play significant role, as the amount of
control data is always limited. The result is an easily configurable and fault tolerant network
of AEs with a reasonably high throughput capabilities.

However, the scalability is not one dimensional issue. While the network of AEs ad-
dressed the scalability in terms of number of clients supported, very high quality video (e.g.,
that used in the cinema theaters) generates so huge amount of data that may not be pro-
cessed by a single AE. Therefore, we extended our work on scalability to increase the AE
processing capacity through their internal parallelization. The parallelized AE runs on a
cluster with fast internal interconnect and is capable of processing in near real time even
10 Gbps data stream.

All this research and development would not be complete without an actual deployment.
Putting the AEs and their networks into production use provided a very valuable continuous
feedback on their design while experimentally testing their properties. The AEs were used
to build an infrastructure for collaborative environment used by several geographically dis-
tributed groups of researchers. Requirements from these groups initiated further research
into support of advanced communication and collaboration features like moderating or sub-
grouping. The AEs started to play a role of directly controlled user tool to support these
advanced properties. This confirmed the strength of the general concept of user empowered
building blocks for data processing and distribution networks.

In another environment we used the idea of overlay network with AEs capable to pro-
vide new functionality for the stereoscopic video streams synchronization. A simple soft-
ware implementation running on commodity hardware is able to synchronize two streams of
stereoscopic digital video (DV, 25 Mbps) format successfully even when the original streams
are highly de-synchronized. The penalty of the synchronization is increased latency, as the
“faster” stream must wait for data in the slower stream, plus some processing latency is
added to the final perceived delay. While this delay may be problematic in interactive im-
plementation, we demonstrated that the AE-based synchronization element can be easily
used for synchronized unidirectional stereoscopic streaming to multiple end users even in
highly adverse and desynchronizing network conditions [Appendix F]. While the stereo-
scopic streaming may not be too common, this concept is usable for synchronization of stereo
or multichannel (e.g., 5.1) audio streams or for synchronization of separately sent audio and
video streams.

The real strength of the AEs and the whole concept of controllable overlay networks is
demonstrated in the multi-point High Definition (HD) video distribution. If the HD video
is to be used for a synchronous collaborative environment, uncompressed streams must be
sent over the network. However, the required throughput of 1.5 Gbps per each stream was
too high to be sent reliably over a native multicast in heterogeneous network over multiple
administrative domains (even if it was available). The optimized AEs are able to replicate
even such high demanding streams in near real time and were used to build infrastructure
that supported one of the world first multipoint videoconferences using uncompressed HD
video [Appendix H]. Later, improved AEs grouped into a network became key infrastruc-
ture for a virtual classroom that ran full semester and connected 6 sites on two continents

1. INTRODUCTION 7

[Appendix M]. The Active Element network processed up to 18 Gbps bi-directional band-
width, fully confirming the usability of the AE design.

In this thesis, we put together approaches published previously as separate papers, thus
creating a new complex view of this field that generates new ideas and enables new applica-
tions. The simplest solution to user-empowered data distribution and processing is a central
AE described briefly in Chapter 2. AE is a programmable modular active element, that can
be run in the network easily without requiring any administrative privileges. The AE dis-
tributes and optionally also processes the incoming data, which allows for unique per-user
processing capabilities—something that is impossible to do with traditional data distribution
schemes like multicast. As any centralized solution, it has its advantages and shortcomings:
while it is easy to setup and deploy, it has limited robustness and scalability, both with re-
spect to number of streams and the bandwidth of a single stream. When more clients are
collaborating or when higher robustness is needed, the AEs may be deployed as static or
dynamic self-organizing AE networks shown in Chapter 3. This field has been studied thor-
oughly from the data distribution efficiency and robustness point of view by many groups
previously [8] and the most relevant body of work is also referenced in Chapter 3. Our view
here is, however, more general, focusing not only on mere multicast-like data distribution,
but also on the possibilities enabled by additional data processing, operation in adverse net-
working environments, self-organization, etc. Another step forward needs to be taken when
bandwidth of a single stream exceeds capacity of any single AE in the AE network. Utiliz-
ing properties of real-time multimedia applications and data distribution protocols, we have
designed a distributed AE (described in Section 3.2) that can be deployed on tightly cou-
pled clusters—but this solution becomes very complex when not only the data distribution
but also data processing is required. We demonstrate applications which have been built
on top of these technologies for synchronous data distribution and processing in Chapter 4.
The thesis is concluded with a discussion of directions for future research in Chapter 5. The
original work this thesis is based upon is collected in the Appendices A to M.

Chapter 2

Active Elements Evolution

Active Element (AE) plays a key role in our design. Its purpose is to process (multimedia)
data and to forward them either to a next AE or to the target system. In classical networks,
the router is an equivalent of an AE. To demonstrate the evolution of our understanding of
AE role and architecture, let us start with a simple model of a classical router as shown in
Figure 2.11.

A packet enters the router at one of its interfaces. It is stored in a shared buffer pool and
all operations on it are performed “in place”, supporting thus the zero-copy architecture.
Packets are filtered and classified, and if they pass these steps their next-hop address is set.
In the final stage, the packets enter the queue manager which puts them in an appropriate
queue at the corresponding output port and through some interface the packets leave the
router. The packet processing is controlled by the router management. In case of multicast
router, the packets are also copied and put in several output queues, with appropriate next-
hop addresses.

The responsibility for packet forwarding—in the sense of selecting the appropriate inter-
face/port (queue)—lies with the routing protocols. Although the most important part in the
classical router model, our model does not reveal details of the base network routing as this
part is not directly influenced by the extensions leading to the model of an AE. AEs are used
to develop overlay networks, which do not modify the base network routing but define new
protocols on top of them.

The classical router does only very limited packet processing—usually only few items in
the packet header (like TTL) and the next-hop address are changed, not the actual payload—
and user has no direct influence on the router behavior. With the development of network
services, new functionality was needed, leading to the development of the active network
concept. Active networks were introduced to provide more flexibility—network with ac-
tive routing and switching elements can be seen as a special type of distributed computing
facility [23, 20], that enables completely new network usage paradigms. We started to be in-
terested in active network principles as part of our work in the collaborative environments
and their network support. The active networks promised to provide support for the real
time transmission of the audio and video streams together with the possibility of processing

1The PC router was developed at MU, in collaboration with INRIA in early 90s. Although its architecture
and performance has never been published, it became the most used network element in the early stages of
the Masaryk University network backbone (and it was also widely used as part of the Brno Academic Computer
Network till late nineties of the last century) due to its low cost and very high flexibility that allowed to introduce
new routing protocols as they became available.

2. ACTIVE ELEMENTS EVOLUTION 9

FIGURE 2.1: Model of general router

these streams directly within the network. Also, active networks dealt with the Quality of
service (QoS) within IP networks, another requirement of the real time multimedia trans-
mission.

The collaborative environments we developed needed rather sophisticated networks,
combining complex QoS requirements, multicast distribution and content-specific process-
ing. The best effort content-neutral approach of IP networks was insufficient and IP net-
works lack real QoS support—the available approaches like RSVP or DiffServ limited QoS
parameters to raw bandwidth and transmission latency. There was no support for more
structure- or content-oriented features like multi-priority packet drop and hierarchical data
streams, for example.

As the first step, we extended the classical router model with active processing of data
streams. Results of this work were published in [Appendix A] and the corresponding en-
hanced active router model is depicted in Figure 2.2.

The architecture of programmable (active) router kept all the classical router functionality
and enhanced it with the possibility to process user programs. The user provided active
programs can either be transmitted within each packet, or preloaded before the data packets
belonging to a particular stream or fixed in the active router. We opted for the second option,
with the program to be sent before the data. As a result, two phases can be distinguished:

2. ACTIVE ELEMENTS EVOLUTION 10

FIGURE 2.2: Model of active router

the first process controls the session establishment and management while the actual user
data processing belongs to the second process. The first process has a role of a control plane,
loading the user functions into all routers along the path between the data stream source
and its destination. While the functions are usually preloaded before or during the actual
connection setup, the model allows for on demand loading of additional user functions if a
new requirement arises (this is taken care of by the active element control plane).

Comparing both Figures 2.1 and 2.2 we can clearly see new added components. Active
packet processing is organized into sessions, with new router components added to manage
the sessions inside a router.

Incoming packets are again stored in a shared buffer pool and classified. Non-active
packets (i.e., packets that do not belong to any data stream recognized by the control plane
nor recognized as control plane packets themselves) are processed in exactly the same way as
in classical routers. However, if an active packet is recognized, it is processed according to its
type—control plane or data stream. The control plane packets are responsible for connection
and active program control, the latter are processed by the active programs.

When a control plane packet arrives, its content is processed by the session management
module. This module is responsible for security checks (using information from the security
and accounting module) and also checks whether the active router does have sufficient re-
sources to run the active program and to process the user data. If the checks are affirmative,

2. ACTIVE ELEMENTS EVOLUTION 11

the connection request is accepted, the next-hop active router is notified and the control es-
tablishment packets are sent to the next hop. When all the routers between the source and
destination confirm the session establishment, the user data can be sent. These packets—the
so called active packets—are marked (with a label defined during the path establishment pro-
cess) and as such recognized by the packet classifier of each active router on the path. The
active packets are processed by corresponding packets programs, loaded as part of the path
(and session) initialization. The processing consumes some resources (CPU, memory, . . .)
and the resource utilization is continuously monitored by the appropriate module.

The active elements keep state information, which may lead to an overload situation,
when not enough resources are available to fulfill new path establishment request. In such
a situation, the new session establishment request may be refused, or currently running
session programs may be asked to release some of already allocated resources. If the session
establishment is refused, the previous active element (the last one that accepted the session
establishment) can contact a different new active element to search for an alternative path.

The active network in fact creates an overlay network over the underlying conventional
network that is expected to use “dumb” but fast elements for data transmission without
any unnecessary features. In such a network, active elements are placed in key locations
only, where special functionality is needed (typically near bottleneck lines, at the ingress
and egress of the fast network core, on gateways between different networking technolo-
gies, or at important flow fork points). The active router model extends the “dumb” router
functionality with a family of new protocols. These protocols relate to extensions of the ac-
tive packet processing—network connectivity management and program initialization and
processing.

Five years later we returned to the active router model when we started to work on
enhanced QoS treatment. The classical QoS approaches deal with certain parameters like
priority and queuing strategy on individual data flows. However, active routers introduce
new complexity level. As user programs run on the shared active router, new parameters like
processor time, amount of available memory, processor scheduling strategy are becoming
relevant and they must be guaranteed, too. We proposed a QoS-enabled VM-based active
router architecture that supports extended set of QoS related parameters [Appendix I] and
provides strict isolation of user processes.

The generic modular architecture of active router, developed earlier, provided a very
good basis for extensions to support complex QoS treatment. In addition, we slightly mod-
ified the original scheme to introduce use of virtual machines (VM) inside the QoS-enabled
active router. With the virtual machines, user are able to upload not only their active pro-
grams into existing operating system environment, but they can upload whole virtual ma-
chine with its operating system. This way, the user’s data are processed by programs run-
ning within their own environment, that includes also a specific operating system and its
libraries. The virtual machine based architecture ensures strict separation of individual en-
vironments and user programs processing the data, but also allows for efficient scheduling
of resources. The resources—CPU, memory, storage subsystem space and access, etc.—are
allocated to virtual machines and controlled at this granularity level.

The architecture of our VM-ready active router is shown in Figure 2.3. The virtual ma-
chine architecture works with a Hypervisor (virtual machine monitor, VMM) which controls
directly the hardware and provides the basic virtualized environment for the user’s virtual
machines. In Xen [2], that is the virtualization environment we use, the VMM is driven
by Dom0. Dom0 is the “overseeing” virtual machine which is responsible for creation and

2. ACTIVE ELEMENTS EVOLUTION 12

destroying all user virtual machines—DomUs. In this environment, we had once again to
decide which functionality will be shared and which is to be run inside a user virtual ma-
chine environment. In our design, the VMM (Dom0) keeps the shared buffer pool and is
responsible for the low level interaction with hardware (e.g., interaction with network inter-
faces, the queue manager, and the packet scheduler) and is also responsible for the packet
filtering and classification. The Dom0 is also responsible for the session management, in-
cluding the resource management, security and accounting (more details on the resource
management module and the virtual machine/active program scheduler module are given
in [Appendix I]). This design keeps the most demanding packet processing—the filtering
and classification—outside the overhead of virtualized network interfaces, that still have
much lower performance than the physical interfaces themselves2.

FIGURE 2.3: VM-ready active router architecture

The virtual machines managed by the session management module could be either fixed,
providing functionality given by system administrator, or they can be user-loadable. A typ-
ical example of the fixed virtual machine is a virtual machine providing classical routing as
shown in Figure 2.3. It is also the example of an optional module, as the AR can run with-

2While the performance of virtualized network interfaces is improving, with many groups working on new
highly efficient design, the proposed architecture is still valid, as the low level packet processing is shared by all
virtual machines.

2. ACTIVE ELEMENTS EVOLUTION 13

out the classical routing if only “active” traffic passes through the AR, i.e., if it works in a
dedicated overlay network. Users can upload a full virtual machine—including operation
system and specific libraries—or they can use provided virtual machines to upload only an
active program.

The VM-extended router provides a predictable and guaranteed access for active ses-
sions to system resources. The shared part—the packet classification, filtering, and the
management of interfaces and the buffer pool—has rather well understood resource re-
quirements. Also, the resources needed to manage the whole active router and its virtual
machines and to take care of security (implemented in Dom0) can be kept under strict con-
trol. The least predictable part— active programs provided by users—is encapsulated in
virtual machines and the resource management is able to control distribution of CPU and
memory to them in rather straightforward way. Users are not limited in the complexity
of their active programs—they can upload full user-defined virtual machines—while the
system keeps these programs well encapsulated. This architecture provides the ability for
services to evolve seamlessly without changing the underlying model.

In parallel to the development of the VM-extended active router model (and in fact a little
bit earlier) we started to accentuate the user empowered paradigm as the best way to give
users the flexibility they are looking for without compromising the simplicity of the basic
underlying network. The active router model has been modified to become Active Element
(AE), which began as a laboratory experiment and evolved to an important component of a
production collaborative environments.

Consistent application of the user empowered paradigm on active router architecture
demanded crucial change in the architecture—leaving the kernel space. As a consequence
of this major step, other changes had to be included in the final AE design.

AE [Appendix B] is a programmable element designed for synchronous data distribution
and processing while minimizing the latency of the distribution. The word “reflector” is
also being used in this context, while it only refers to data distribution capabilities. Since
our approach is far more general and close to the idea of active networks, we have decided
to use the Active Element name. The architecture of the AE is flexible enough to support
implementation of different features while leaving space for easy extensions. It runs entirely
in the user-space and thus it works without requiring administrative privileges on the host
computer, adhering to the user-empowered principle.

The architecture of an Active Element is depicted in the Figure 2.4. The main difference
from the active router architecture is the consistent transfer of all parts to the user space.
Network interfaces are changed to become the network listeners. Network interface is a
hardware part of the router and we usually expect two or more interfaces on any one router.
Network listener of an AE is a process and there may be many more network listeners than
there are physical network interfaces. Shared buffer pool was replaced by a more general
model of shared memory. Input for AE are not only listeners but also Message interface
modules—special types of listeners for control communications [4]. As in the active router
model, we have a session management module with the same function in the AE. Packet
programs and session programs are transformed into packet processors and session man-
agement, but at the higher level of abstraction, the functionality remains the same. The
module for accounting and resource limit checking is missing in AE. This is due to the fact
that AR is shared by many users in the same time, but the AE is expected to be used by just
one user (or few cooperating users) which can take care of eventual congestion by himself—

2. ACTIVE ELEMENTS EVOLUTION 14

FIGURE 2.4: Active Element architecture

this is one of the advantages of user empowered approach, as some complex processing (like
the resource accounting and limiting) are no more needed.

In this chapter the major steps of the Active Element development were described. With
the AE, we have a modular architecture fulfilling requirements for processing and replica-
tion of data. While being a part of the infrastructure, the AE is fully end user controlled
and provides a means to process data directly within the network. Still, it is a centralized
solution which limits the number of clients, bandwidth of data going through it and the
available processing power. In the next chapter, we will describe how these shortcomings
are overcome, while keeping the full power of the AE in the hands of end users.

Chapter 3

Scalability

Despite the value of the AE, its usefulness is limited by scalability constraints when deployed
as single centralized element. In this chapter, we describe our approach to the following
two scalability aspects: (a) scalability with respect to number of clients and streams and (b)
scalability with respect to processing requirements of an individual streams. Both of these
can be handled by distributing the AE in certain ways. The first problem occurs when the
AE is to serve a large number of clients or streams—we have solved this problem using
AE networks described in Section 3.1. The second aspect becomes crucial when processing
requirements of a data stream exceed processing capacity of any single instance of AE and
thus the network of AEs is not a viable solution (or at least not per se). In order to overcome
this limitation, the AE architecture has been extended to work in tightly coupled distributed
environment by parallelizing the processing of an individual stream. This form of AE has
been called distributed AE and is further described in Section 3.2.

There is also an additional aspect associated with either way of distributing the AE: ro-
bustness with respect to failure of AE nodes. This can be automatically handled by the
concept of AE networks, that can re-route the traffic and redistribute the clients among the
AEs as discussed in [Appendix E]. The problem is also mitigated by taking advantage of
the user-empowerment: when the community of communicating users notices robustness-
related problems, new AEs can be easily started by the members of the user community as
needed.

3.1 AE Networks

The limitations of the communication model based on a single AE are clearly visible. The
central communication model does not scale well and the number of potential clients is
rather limited, with the actual numbers depending on amount of data being transmitted per
stream. We lifted this limitation by transforming the concept of the single user-empowered
AE into a user-empowered network of AEs in [Appendix C], [Appendix E], [Appendix G].
Individual AEs are interconnected by tunnels, thus creating an overlay network that bal-
ances its load to achieve high scalability.

When designing the concept of the AE network, we decided to use the out-of-band ap-
proach to separate transmission of control information through the control plane from the
actual data transmission using data plane. This allowed us to optimize both planes indepen-
dently given their different goals. The control plane must provide maximum robustness,

3. SCALABILITY 16

even at the cost of lower performance—control messages, that are relatively seldom com-
pared to the actual data being distributed, must be delivered as reliably as possible via the
control plane. On the other side, the data plane has to be optimized for maximum transmis-
sion performance and minimal latency, leaving the control plane with the role of reacting to
any communication problems that may occur.

The control plane is responsible for management of the AE network. It provides monitor-
ing and failure detection, reconstruction of the network after a node or link failure. Putting
these requirements together, we have opted for a peer-to-peer (P2P) architecture for the con-
trol plane as it exhibits very high resilience, keeps the network connected even in case of
failures, and retains the user-empowered property.

For the data plane, we do not incorporate any fixed static model; instead we rely on the
information provided by the control plane to dynamically build the data distribution pattern
based on supplied model rules. The changes in the AE architecture to support the extended
model of AE network can be seen in Fig. 3.1.

FIGURE 3.1: Architecture of Active Element with Network Management and
Network Information Service modules.

The AE network support is implemented via two modules dynamically linked to the AE:
the Network Management and the Network Information Service modules. The Network
Information Service gathers and publishes information about the specific AE (e.g., available
network and processing capacity), about the network of AEs, about properties important
for synchronous multimedia distribution (e.g., pairwise one-way delay, RTT, estimated link

3. SCALABILITY 17

capacity), and also information on content groups (content and formats it is available in)
distributed by the network. The Network Management takes care of building and managing
the network of AEs, joining new content groups, leaving old ones, and reorganizing the
network in case of link or node failure.

The data distribution plane is designed using loadable plug-ins to enable incorporating
various distribution models. A number of suitable models has been proposed and studied
previously by several independent groups in the past, most of which fall into one of the two
categories: (1) mesh first distribution models, and (2) tree first models. These models can
easily be incorporated into the AE implementation.

Prototype implementation of the AE networks with P2P control plane based on JXTA-C1

has been demonstrated in [19] and [Appendix G]. A few simple optimizations to default
JXTA settings improved the performance significantly for synchronous applications: with
a limited number of nodes in the network (which is highly realistic in this case as size of
truly interactive collaborative group is always limited) where down-time minimization is
a key parameter, more aggressive communication and monitoring are acceptable despite
increasing communication overhead.

The AE network is also designed to facilitate communication in adverse networking en-
vironments, i.e., environments where the network communication is obstructed by firewalls,
network address translators (NATs) and various types of proxy servers. The data may be
tunneled over TCP instead of usual UDP and it may even mimic HTTP traffic to tunnel the
data over HTTP proxy. The AE may also be augmented by employing a VPN [Appendix K]
such as OpenVPN2, which boosts pervasivity, as it allows even tunneling through HTTP
and SOCKS proxy servers. VPN also enables deployment of strong authentication and very
secure data encryption protocols. Similar approaches have also been described in [1]. The
solution that integrates these features directly into AE modules [21, 3] has significant ad-
vantages despite having a more demanding implementation: it allows for dynamic failure
recovery properties in case of AE node failure or network link failure, as the client may au-
tomatically migrate to another AE node that is still available in the AE network and that is
reachable for the client.

User-Empowered Aspects of AE Networks When distributing the AE architecture, the
level of user-empowerment may be affected. The AE network has been designed with this
approach in mind and the individual users can run the AEs for the network without any
limitations and without requiring administrative privileges. The AE network support for
the adverse networking environments makes it useful even in environments where other
real-time communication tools fail because of unwillingness of network administrators to
change configuration of the network to enable them. Thus the AE networks are at least as
user-empowered as the centralized AE solution.

3.2 Distributed Active Element

Another scalability issue regarding both single AE and AE networks is scalability with re-
spect to the bandwidth and/or processing requirements of each individual data stream. In

1http://www.jxta.org/
2http://openvpn.net/

3. SCALABILITY 18

order to improve this, we have parallelized the architecture of the actual AE node and de-
signed a distributed AE ([Appendix J] and [Appendix L]). It is intended to be run on tightly
coupled distributed systems with low latency network interconnection (e.g., commodity PC
clusters with low-latency interconnection of Infiniband or Myrinet type). The low latency
communication infrastructure is used for the control plane, while the external interfaces are
used for the data plane. Given current convergence of high-bandwidth and low-latency net-
work interfaces (e.g., Myrinet 10 Gigabit Ethernet), these two interconnects may technically
converge, but conceptually we need to think about these separately in a way similar to AE
networks.

The distributed AE splits a single stream into multiple sub-streams, which are processed
in parallel. The distributed AE architecture comprises thee major modules as shown in
Fig. 3.2: (a) distribution unit that takes care of ingress data distribution, (b) parallel AE units
that do the actual data processing, and (c) aggregation unit that aggregates the resulting data
onto egress network line(s). The parallel AE units are extended versions of standalone AE
that support information exchange among the parallel units (e.g., state synchronization for
data processing). The aggregation unit is a new module incorporating distributed version of
packet scheduler/sender while the distribution unit is a completely new component.

5.2. OPERATION IN STATIC ENVIRONMENT 33

Definition 5.4 (Ideal distributed AE) The ideal AE has processing capacity equal or higher
than stream bandwidth and it has an input queue size of qAE

i . All the parallel units of the
ideal AE have the same parameters and performance and the total bandwidth of the traffic
is divided into streams with the same parameters. The ideal AE introduces no losses, nor
data corruption, nor data reordering in the data stream. 2

buffer
unit

aggregatingAE
unit

buffer
input

distribution
output

AEAE aggregating

buffer
input

FIGURE 5.2: Model of the ideal distributed AE with ideal aggregation unit.

5.2.1 Ingress Distribution
The ingress data distribution takes care of distributing incoming data across different paths
inside the distributed AE. For the ideal distributed AE, it is suitable to use simple round-
robin distribution as all the parallel AE units are equivalent in their performance.

Definition 5.5 (Ideal distribution unit) The ideal distribution unit distributes packets in
round-robin fashion. In each round, it distributes n packets, one to each of the parallel
units. The distribution unit marks round number into each packet. 2

Such an ideal distribution might not be suitable in the following cases:

• When parallel AE units are of unequal performance. In this case, load balancing
described below is useful.

• When data stream packets are not independent and the processing needs to have all
the inter-dependent packets through the same path. This might be for example when
some data processing is done and some state inside the AE needs to be created and
maintained.

In this case, the packet distribution needs to follow the packet inter-dependencies.
When distribution unit is implemented as a part of sending application (e. g. user-
space library encapsulating UDP sendto() function), it is possible to utilize knowl-
edge of data directly and distribute it correspondingly. If the distribution unit is
implemented as separate stand-alone network unit, the application can mark groups

FIGURE 3.2: Model of the distributed AE.

Since data of a single stream are processed in parallel, there is a high probability of in-
troducing packet reordering. The basic idea behind distributed AE utilizes the fact, that
most of the synchronous multimedia applications use non-guaranteed data transport like
UDP and thus they need to adapt to some packet reordering. However, significant data re-
ordering may either not be adapted upon or it may result in latency increase as substantial
buffering is necessary to order the packets back. Therefore we have introduced the Fast Cir-
culating Token (FCT) protocol which limits packet reordering. Theoretical study based on
buffer sizes in the underlying infrastructure has shown upper bound on the reordering that
is significantly better compared to best-effort egress aggregation without any synchroniza-
tion protocol. The receiving application can adapt its buffer size to this upper bound. On

3. SCALABILITY 19

custom hardware, the FCT protocol can be modified to provide no packet reordering at all
(called Exact Order Sending in [Appendix L]).

The distributed AE with the FCT protocol has been prototyped using MPI and Myrinet
low-latency interconnection. The experimental evaluation has been done using 10GE sender
and receiver, while parallel nodes used GE interfaces for data plane and Myrinet-2000 net-
work was used for the low-latency control plane communication. Packet distribution was
implemented as user-space UDP library and the aggregation was performed by a commod-
ity switch. The measurements revealed the distributed AE comprising of just 6 parallel
nodes is capable of completely saturating sender machine (because the used 10GE card had
its experimental performance limits at about 5 Gbps). The measurement series used up to 8
parallel units and it turns out that the experimental results with the FCT protocol are signifi-
cantly better than the theoretical worst-case estimates and an order of magnitude better than
the same distributed AE without FCT (more details can be found in [Appendix L]).

This approach is very different from general purpose load distribution systems like LACP
IEEE 802.3ad protocol, which have to avoid the packet reordering and therefore a single data
stream is processed sequentially3.

The distributed AE can also be incorporated into an AE network using the same ap-
proach described in the previous chapter. However, since it runs on more elaborate infras-
tructure, the setup is more complex than for a single AE and thus the system has worse
fail-over behavior compared to the network of simple AEs. Another complication of the dis-
tributed AE is in the processing of the passing data, which requires development of parallel
programming paradigms similar to MIT StreamIt [24]. The processing may follow one of
two possible approaches: (1) a context is maintained within one parallel unit only (requires
either that (1a) all the data that need the same context are only processed within one par-
allel unit, or (1b) per-packet processing without a context), or (2) the context is maintained
within a subset of parallel nodes using the low-latency interconnection of the cluster. These
approaches establish a whole new field ideal for future research.

User-Empowered Aspects of Distributed AE As the tightly coupled distributed environ-
ments are usually hard to set up in a user empowered way, the distributed AE is less user-
empowered solution. However, processing capacity of individual AEs raises along with
increase of processing capabilities of commodity hardware systems. This effect can be even
observed in history of our publications, where AEs running on year 2004 hardware were
capable of producing up to Gigabit of traffic [13], while the year 2005 hardware enabled
producing up to 5 Gigabits as shown in [Appendix H]. AEs running on current generation
hardware go even beyond that, getting close to fully saturating 10 Gigabit Ethernet. Thus
user-empowered AEs and their networks are sufficient for vast majority of purposes and the
distributed AEs are limited to advanced scenarios (e.g., distributing uncompressed 4K video
at 6 Gbps per stream) where users are also administrators of their systems anyway.

3This is done by using data flow identifiers hash to assign each data flow to a specific link of the of the
aggregated link group. Thus each single data flow must not exceed capacity of the single link.

Chapter 4

Applications

The evolution of an Active Element and a scalable solution for data replication and process-
ing was described in the last section. All steps of the evolution were closely connected and
inspired by practical applications. In this chapter, we will present some interesting appli-
cations, which we will use also to demonstrate the basic performance features of AEs. As
the AEs evolved to suit various applications and they run on various architectures, the mea-
sured performance cannot be directly compared. Therefore, the performance measurements
presented in this sections should be taken as a guide for understanding of the concepts and
limitations of AE performance, not as an exhaustive enumeration of all performance aspects
of the different AEs.

4.1 Videoconferencing support [13]

Videoconferencing support was historically the first application of AEs. Instead of using na-
tive multicast, we used AEs to distribute data streams. We combined them with the MBone
Tools [26] as client applications. The work is in detail described in my PhD thesis [13].
The main result was a demonstration that a native multicast (i.e., parallel) communication
schema can be replaced by a serial communication (a star with AE in its center) without any
negative effect on the user’s perception of the quality of communication. Also, the video-
conferencing support initiated further evolution of AEs and their features. We started with
a simple UDP packet reflector [12] and gradually we incorporated management capabilities
(e.g., user authentication and authorization) and extended the packet reflector into a full
user controlled Active Element. The tests with various types of AEs had shown that the
conveniently designed modular architecture of the AE has the same or at least very similar
performance and quality of service parameters like delay, jitter, and packet loss as the orig-
inal packet reflector and, even more importantly, as the multicast communication scheme.
These experiments confirmed the usability of AEs for synchronous communication. The
whole system for multimedia communication based on AE data distribution is described
in [13].

4. APPLICATIONS 21

4.2 Advanced Videoconferencing Support [Appendix D]

Later on, we demonstrated that Active Element is flexible enough to be used as a basic
communication element for complex communication patterns. For several years we studied
people’s behavior during collaborative meetings and videoconferences. One specific feature
which is missing in videoconferencing systems is support for creating smaller communicat-
ing groups, i.e., to allow users to speak with a subset of actual members of the whole com-
munication group. In larger groups, the moderation of discussion is also necessary. Users
with low to medium capacity connection often applied for optimization of data transfers.
Another frequently requested feature was support for actual videoconference recording and
playback.

In groups of eight or more participants, moderating is an essential capability for efficient
communication [9]. We introduced the moderation feature as a special processing module
within the AE. According to moderator’s request the module decides which RTP and RTCP
packets may pass through the AE from a particular person and which packets are discarded.
Headers of RTP and RTCP packets sent by a person who was given the “floor” are altered
in such a way that the packets from people chosen by a moderator to talk sequentially, form
a single data stream regardless of the particular speaker [Appendix D].

When people meet to discuss some important issue, they often need to discuss it within
a small subgroup in parallel with the discussion in the whole group (e.g., to communicate
a common strategy). In such a situation, it is important to keep others from eavesdropping
such a private discussion. In real world, the subgroup either moves away or uses whisper-
ing. Both of these solutions have certain disadvantages—people which are physically close
to the whispering group are still able to overhear at least some parts of the discussion while
when moved away, the subgroup members can not continue to participate in the primary
discussion. Moreover, the members of the subgroup can be identified. To be integrated into
a videoconferencing system, this functionality must be supported directly by the communi-
cation layer. Otherwise, the only way of satisfying the need for creating isolated subgroup
is to create a stand-alone group, but this is the equivalent of moving away. Moreover, par-
ticipants who want to create such a subgroup have to be physically isolated. By adding
support for subgrouping into a communication layer, all disadvantages of non-distributed
collaboration environment may be bypassed by separating a subgroup from the rest of a
whole group by a “semi-permeable wall.” Thus, private communication among members
of a subgroup cannot be overheard by other people while a discussion outside the subgroup
is still distributed to all (including subgroup members) participants. Naturally, this solution
expects each participant to be isolated from every other one (e.g., heaving its own head-
set). Implementation of subgrouping within our AE-based communication architecture was
quite straightforward as it does not require any new data processing facility. The module
designed to support subgrouping just alters a list of clients each packet is sent to. A decision
which clients should be removed from distribution list is based on a particular user’s—the
subgroup moderator—request specifying all members of a subgroup. Current design of the
module uses IP addresses as users’ identifier but it can be easily extended to support more
advanced authorization approach (e.g., using the same mechanism as the moderating mod-
ule for distributed AE architecture). More details on subgrouping support can be found
in [Appendix D].

4. APPLICATIONS 22

4.3 Video streams composition [14]

Video stream composition was the first application of the data processing capabilities of the
AE and it was a direct reaction to user’s need. In a large-scale group collaboration, too
many windows may need to be supported at client sites (this is e.g., a typical scenario for
AccessGrid1). Clients may not have sufficient processing power or desktop space to render
them all. In such cases, it may be advantageous to down-sample the video streams and
compose several of them into a single stream directly on the AE. The same technique is
implemented in MCUs for H.323/SIP, but it was unavailable for MBone Tools. The first
version of video compositor [14] has been adapted to fit into the modular AE architecture as
a processor. This processor is based on the VIC tool [18] and thus it supports exactly the same
set of video formats. The result of stream composition is shown in Fig. 4.1. Up to four video
streams can be composed into one output stream. Input video formats are auto-detected, the
processor is able to work with different layouts simultaneously. The output video format is
configurable by the end user.

FIGURE 4.1: Example of video stream composition at AE using VIC video clients.

4.4 Stereoscopic video [Appendix F]

Another challenging application was a support for stereoscopic video streams. The main
requirement is synchronization of the two video data streams. We interpret synchronization

1http://www.accessgrid.org/

4. APPLICATIONS 23

as a special type of data processing and implemented it as such in the AE. We have created
an Active Element with a module for stream synchronization [Appendix F].

The stereoscopic video stream is composed of two streams, each providing data for one
eye. These two streams are either fully computer generated or the can be captured by two
cameras in appropriate position to each other. Independent of whether the video streams are
sent over the network separately or as a single merged network stream, the video streams
have to be synchronized. The synchronization must be very precise, otherwise the stereo-
scopic perception of non–static scene is distorted (and watching it may have very bad phys-
iological consequences). If we distribute the stereoscopic video to several sites, the synchro-
nization is best done directly within the network. As the synchronization is just a special
case of data processing, we used a synchronizing AE module that keeps multiple RTP packet
streams synchronized, providing timely and in-order delivery to connected clients.

RTP packets include relative time-stamping information which may differ both in time
base and time increment for different source streams coming even from several applications
running on a simple client computer. Conversion between relative time and absolute time
is performed using information sent in RTCP packet that are sent with lower frequency for
each stream. RTCP packets contain both relative time-stamp and absolute time-stamp in
NTP format. Therefore, after receiving two RTCP packets it is possible to calculate both
relative time base and increment. If source machines have their clocks synchronized e.g., us-
ing NTP protocol it is also possible to synchronize streams coming from different machines.
Since UDP packets provide no guarantees in terms of delivery, it is necessary to perform two
steps when synchronizing: reorder or discard out-of-order packets and match time informa-
tion for packets in different streams to send packets to clients synchronously. It is necessary
to understand that due to the packet processing, the latency of transmission increases. This
is not desirable for interactive applications like videoconferencing where even small laten-
cies in order of a few hundreds of milliseconds might induce communication problems (e.g.,
when one person tries to interrupt the other to express his/her opinion).

The experimental evaluation of this approach is also published in [Appendix F]. The AE
internal delay in synchronization mode was around 68 ms and if the streams are not desyn-
chronized for more than 20 ms, this delay is not increased. However, if the inter-stream
delay increases, it has a very negative effect on the total latency, with the worst case oc-
curring when the inter-stream delay is around 100–200 ms. When increased above 200 ms,
the absolute and especially the relative penalty decreases, as the AE has enough time to
process both streams practically independently. For very high inter-stream delay the final
penalty is around 10 % of the inter-stream delay, which is probably acceptable overhead for
fully software-based synchronization. All the output streams are fully synchronized and the
results demonstrate that the synchronization is practically absolute.

4.5 Stream transcoding [16]

Stream transcoding is a typical application of processing power of AE. For live video stream
distribution from several lecturing halls at the Masaryk University, a transcoding processor
for the video and audio streams has been implemented as an AE module [16]. It uses Video–
LAN Client2 (VLC) as the actual transcoding back-end, thus giving us a large variety of
supported formats for both input and output. The transcoding module communicates with

2http://www.videolan.org

4. APPLICATIONS 24

the VLC in three ways: the source data is delivered using Unix standard I/O, the transcoded
data is received from VLC using a local UDP socket in order to receive the data appropriately
packetized, while a local telnet interface is used for control of the VLC.

For the specific application of live lecture distribution, two types of video stream sources
are used: an MPEG-2 hardware encoder such as Teracue ENC-100 or a regular MPEG-4
streaming PC with video capture card and VLC installed. In both cases the video streams
are generated as a standard MPEG Transport Streams (MPEG-TS) at 2 Mbps and sent via
unicast to the AE for further processing. The original data is also available to the students
either using unicast or multicast from the AE, or they can watch transcoded video from the
gateway AE. Students then use VLC again for rendering the streams at their computers. This
allows to provide students connected to high-speed networks with the maximum quality
video, while students with slower networks (e.g., in dormitories) are also supported and
may participate in the class using transcoded streams with a lower bitrate. Depending on
the settings, the transcoding can consume a considerable amount of processing power and
therefore the transcoding AE has significantly lower distribution capacity. As a result it is set
up at the beginning of the low bandwidth link working as a gateway or bridge only, while
another AE is used to actually distribute the transcoded data at large.

In order to evaluate efficiency and scalability of this solution, a series of performance and
latency measurements with variety of transcoding settings was performed. The results show
that conservatively set transcoding AE scales well for the number of connected clients. More-
over, the transcoding imposes a constant load on the AE. Under the circumstances described
in [16], up to 700 clients was saturated with the transcoded stream. The latency introduced
to the transcoded stream is caused by the VideoLAN client used for the transcoding. When
compared with it, the latency introduced by the AE itself is negligible. The conclusion taken
from the latency measurements is that there is a considerable amount of buffering done in
the VideoLAN client and thus the transcoding AE based on the VLC module is suitable for
unidirectional video distribution but not for interactive videoconferencing.

4.6 Collaboration in Adverse Networking Environments and Se-
cure Collaboration [Appendix K]

The real-time communication for healthcare purposes is unique because of two classes of
related requirements: (i) security and (ii) ability to operate even in heavily protected net-
working environments. The security is necessary as specialists often need to discuss very
sensitive patients’ data. Because of the security requirements, the healthcare institutions are
usually trying to implement the most restrictive networking environments. It is not uncom-
mon to find internal hospital network shielded by a firewall, hidden behind a NAT, opened
only for HTTP traffic, which has to pass through two tiers of proxies. However, even the
specialists from this hospital need to communicate with their colleagues. The AE approach
combined with VPNs has been successfully deployed for several healthcare related projects
[Appendix K] and we were able to include even the hospitals with the most restricted access
mentioned above.

In order to evaluate influence of incorporation of OpenVPN into the collaborative plat-
form, we have measured a number of parameters critical for real-time multimedia com-
munication using different VPN modes. The measurement testbed comprised one client
and one VPN server, interconnected with high-speed backbone network link with capacity

4. APPLICATIONS 25

above 1 Gbps spanning about 250 km. The results of measurements are in detail described
in [Appendix K]. To conclude, UDP based VPN is very safe and has minimum impact on
the traffic. CPU requirements slightly increase for the UDP based VPN compared to the TCP
based VPN, due to the application-level packet loss recovery and congestion control, which
is marginally less CPU efficient compared to the kernel-based TCP implementation. TCP-
based VPNs also perform very well provided they are on a low-latency network with very
low packet loss, so that congestion control algorithm doesn’t influence the data flow signif-
icantly. However, TCP based VPN is inappropriate on networks with higher packet loss. If
the HTTP proxy is of good performance, it has minimum impact on the performance, too.

When evaluating the performance of this solution subjectively, the media streams are fine
and the overall quality is very good. Another important feature that was developed in this
field is efficient aggregation of individual media streams—not only the video streams as dis-
cussed above—as some of the institutions, especially in developing countries, have only very
limited Internet connection capacity. The aggregation, when combined with downsampling,
can support multi-party communication even in such restricted environments (e.g., the to-
tal capacity of the link connecting academic network of Cyprus to Greece is only 10 Mbps,
leaving very limited bandwidth for the videoconference communication).

4.7 HD Video Distribution [Appendix H], [Appendix M]

The AEs have been used routinely by different groups for collaboration, mostly with MBone
Tools3, DVTS4, and uncompressed HD video based on UltraGrid [Appendix H]. A re-
cent demonstration of uncompressed HD video with bandwidth usage of 1.5 Gbps per data
stream at SuperComputing’06 conference5 used a network with 3 optimized HD AEs in
StarLight (Chicago, USA) and achieved sustained aggregated data rate of 18 Gbps with-
out any packet loss. As an alternative setup, we have also used a combination of an AE
with multiplication on optical layer (optical multicast), which is, however, far from user-
empowered as it requires both direct access to the Layer 1 network and installation of spe-
cialized hardware directly into the network. The high-performance static AE network has
also been used in production for uncompressed HD video distribution for a distributed class
on high-performance computing taught by prof. Sterling at Louisiana State University [17].
In this case, dedicated λ-circuits spanning 5 institutions across the USA and one in the Czech
Republic were used. A static configuration was the most appropriate as the circuit topology
was statically configured. The 1.5 Gbps streams were distributed up to 5 locations and the
schema of topology and other details are in [Appendix M].

4.8 Conclusions

This chapter covers several examples of the AE deployment to support experimental as well
as production applications. The application expose different aspects of the AE properties
and together clearly demonstrate the usability of the AE (both the concept and the indi-
vidual implementations) as a general building element for network support of synchronous
multimedia application.

3http://www-mice.cs.ucl.ac.uk/multimedia/software/
4http://www.sfc.wide.ad.jp/DVTS/
5https://sitola.fi.muni.cz/igrid/index.php/SuperComputing_2006

Chapter 5

Conclusions and Future Work

This thesis presents our approach to the problem of efficient synchronous data distribution
and processing in contemporary networks. The proposed solution is built around the Active
Element, a basic building block based on concepts of overlay networks and the user-empowered
approach. The active element is a general framework, that could be tailored to support dif-
ferent environments, data stream patterns and configurations. The AE can be used as a
single central entity, offering full end user programmability and control. If more robust, fail-
ure resilient, and scalable solution is needed, the AEs could be combined into a network,
with a peer to peer control plane and dynamic data plane. A distributed AE, running on a
dedicated cluster, provides enough computing power to process, in the real time, even the
most demanding data streams. The single and distributed AEs, as well as their networks,
are deployed and controlled directly by the end users, who can also provide programs for
processing individual data streams. This user oriented deployment allows to build AEs and
their networks in an ad hoc manner, as an overlay network best suited to particular end
user’s needs. Unlike in the peer to peer networks, the AEs are still part of the network in-
frastructure, but controlled by end users. The user controlled infrastructure approach is well
suited to serve as a distribution and processing backbone of many applications that either
need some level of (end user) control (e.g., corporate networks) or that push the network
distribution capacity to the edge (and could not sustain the very high overhead and inherent
inefficiency of the peer to peer networks).

To demonstrate the flexibility and potential of the AE framework, we used it to support
several different applications, as also reflected in this thesis. The high flexibility of the AE
has been demonstrated by many groups that use it as a distribution element for their routine
videoconferences. The AE framework flexibility allowed to use AE for simple collaboration
with low level audio and video quality, but also provided a distribution element for an un-
compressed HD videoconferences with extreme bandwidth requirements. AEs were used
to support scientific visualization combined with the real time steering of simulations. AEs
succeeded in the data streaming, transcoding video on demand, as needed by the client’s
appliances.

As the best performance and efficiency is achieved when the AEs are placed in the strate-
gic nodes of the underlying physical network, we have permanent AE servers at several
GigaPoPs (Point of Presence) of the Czech academic backbone CESNET2 (in Prague, Pilsen,
Liberec, and Brno). We also already succeeded in having AEs permanently installed in
the most important exchange point of the global optical network—at StarLight in Chicago

5. CONCLUSIONS AND FUTURE WORK 27

(USA). We plan to install AEs in other locations, too, including the most important Euro-
pean exchange point in Amsterdam. This way, we are becoming able to provide a physical
infrastructure for global experiments with the data distribution and processing capabilities
of AEs. Using virtualization, this testbed will be available also for other interested parties.

Despite the already demonstrated practical utility of the AE framework, many theoreti-
cal and practical questions remain unanswered. In the future, we would like to continue our
research in several areas, including further development of the Active element as a process-
ing entity, extending the “intelligence” of the network of AEs, improving the data processing
capacity of the distributed AE.

At a single AE level, we work on extension of the quality of service to the multi-level
QoS approach that will allow strict separation both at the user and data levels. This will be
based on the already introduced virtualized AE, providing more extensive support for pro-
grammability at the full virtual machine level. More work will be focused on better schedul-
ing strategies, making sure the guaranteed data processing properties (speed, latency, jitter,
etc.) are really met within a shared AE.

We need much more “intelligent” behavior of the network of AEs. Signaling protocols
for better diagnostics must be developed, providing accurate information about failures and
bottlenecks both for the AE network and its users. An open issue is a mapping of the over-
lay AE network onto the physical network and its nodes. Not only the initial distribution of
AEs, but especially a reaction on failures and transient and permanent link and node break
downs is a vital property of the AE network. We need to study languages for the static and
dynamic description of the network topology and its state and to combine these with the AE
network self-organizing properties. Also, the extent of the fully automatic self-organization
(as currently developed for, e.g., Skype or VRVS successor EVO (Enabling Virtual Organiza-
tions [11]) compared to the user’s power to organize the network directly must be studied,
as the extremes (full user control and fully automatic control) are not optimal. This work
could also benefit from the recent research at the area of network coding [10, 25].

Appropriate programming paradigms suitable for the distributed AE must be studied.
A potentially interesting approach has been proposed in the MIT StreamIt system [24], that
enables efficient parallelization of stream processing based on sent data structures and pro-
cessing dependencies. Providing a suitable paradigm and a language to use it, end users
will be able to describe the properties of transmitted data streams in a way that will allow
(semi-)automatic parallelization at the distributed AE.

Further research in the security implications of the whole AE framework will be also
necessary to better understand potential threats. We plan to exploit the user empowered
paradigm to include users directly as part of the security threat mitigation (better diag-
nostics, new authentication and authorization schemes providing an intuitive environment,
etc.).

And naturally, we will continue to support the use of AEs in different applications, as
this deployment provides the most important feedback for further research.

Bibliography

[1] L. Alchaal, V. Roca, and M. Habert: “Offering a multicast delivery service in a pro-
grammable secure IP VPN environment.” In Networked Group Communication, Fourth
International COST264 Workshop, NGC 2002, Boston, MA, USA, October 23-25, 2002, Pro-
ceedings, pages 5–10. ACM, 2002.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield: “Xen and the Art of Virtualization.” In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pages 164–177, New York,
NY, USA, 2003. ACM Press. ISBN 1-58113-757-5.

[3] T. Bouček: Kryptografické zabezpečení videokonferencí (Securing videoconferences using cryp-
tography). Master’s thesis, Military Academy of Brno, Czech Republic, 2002.

[4] J. Denemark, P. Holub, and E. Hladká: RAP – reflector administration protocol. Technical
Report 9/2003, CESNET, 2003. http://www.cesnet.cz/doc/techzpravy/.

[5] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen: “Deployment issues for
the IP multicast service and architecture,” IEEE Network, 14(1):78–88, 2000.

[6] F. Dressler: “Availability analysis in large scale multicast networks.” In 15th IASTED
International Conference on Parallel and Distributed Computing and Systems (PDCS2003),
volume I, pages 399–403, November 2003.

[7] F. Dressler: Monitoring of Multicast Networks for Time-Synchronous Communication. Ph.d.
thesis, University of Erlangen-Nuremberg, May 2003. http://www7.informatik.
uni-erlangen.de/~dressler/publications/dissertation.pdf.

[8] A. El-Sayed, V. Roca, and L. Mathy: “A survey of proposals for an alternative group
communication service,” IEEE Network, 17(1):46–51, January/February 2003.

[9] D. R. Forsyth: Group Dynamics. Wadsworth Publishing Company, 3rd edition, 1999.

[10] C. Fragouli, J.-Y. L. Boudec, and J. Widmer: “Network coding: an instant primer,” SIG-
COMM Comput. Commun. Rev., 36(1):63–68, 2006, ISSN 0146-4833.

[11] P. Galvez: “From VRVS to EVO (Enabling Virtual Organizations).” In TERENA Net-
working Conference 2006, Catania, Italy, May 2006.

[12] J. Highfield: UDP packet reflector hacks – RTP unicast mirror rum. http://spirit.
lboro.ac.uk/mug/mug.html.

BIBLIOGRAPHY 29

[13] E. Hladká: User Empovered Collaborative Environment: Active Network Support. PhD thesis,
Faculty of Informatics, Masaryk University Brno, Czech Republic, 2004.

[14] V. Holer: Slučování videostreamů (Videostream Merging). Bachelor Thesis, Faculty of In-
formatics, Masaryk University Brno, Brno, Czech Republic, 2003.

[15] J. Jo, W. Hong, S. Lee, D. Kim, J. Kim, and O. Byeon: “Interactive 3D HD video transport
for e-science collaboration over UCLP-enabled GLORIAD lightpath,” Future Generation
Computer Systems, 22(8):884–891, 2006, ISSN 0167-739X.

[16] M. Liška and J. Denemark: Real-time transcoding and scalable data distribution for video
streaming. Technical Report 30/2006, CESNET, Praha, Czech Republic, 2006. http:
//www.cesnet.cz/doc/techzpravy/2006/rum-streaming/.

[17] L. Matyska, P. Holub, and E. Hladká: “Collaborative framework for distributed dis-
tance learning.” In Proceedings of the 4th High-End Visualization Workshop, pages 40–45,
Obergurgl, Tyrol, Austria, 2007. ISBN 978-3-86541-216-4.

[18] S. McCanne and V. Jacobson: “vic: A flexible framework for packet video.” In Proceed-
ings of ACM Multimedia’95, pages 511–512, San Francisco, CA, USA, November 1995.

[19] M. Procházka, P. Holub, and E. Hladká: “Active element network with p2p control
plane.” In Proceedings IWSOS 2006, volume 4124 of Lecture Notes in Computer Science,
pages 257–257. Springer-Verlag Heidelberg, 2006, ISBN 3-540-37658-5.

[20] K. Psounis: “Active networks: Applications, security, safety and architectures,” IEEE
Communication Surveys, 1999.

[21] Z. Salvet: Enhanced UDP packet reflector for unfriendly environments. Technical Report
16/2001, CESNET, Praha, Czech Republic, 2001. http://www.cesnet.cz/doc/
techzpravy/2001/16/.

[22] T. Shimizu, D. Shirai, H. Takahashi, T. Murooka, K. Obana, Y. Tonomura, T. Inoue, T. Ya-
maguchi, T. Fujii, N. Ohta, S. Ono, T. Aoyama, L. Herr, N. van Osdol, X. Wang, M. D.
Brown, T. A. DeFanti, R. Feld, J. Balser, S. Morris, T. Henthorn, G. Dawe, P. Otto, and
L. Smarr: “International real-time streaming of 4K digital cinema,” Future Generation
Computer Systems, 22(8):929–939, October 2006, ISSN 0167-739X.

[23] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, G. J. Minden, and D. J. Wetherall: “A
survey of active network research,” IEEE Communications, 35(1):80–86, January 1997.

[24] W. Thies, M. Karczmarek, and S. Amarasinghe: “Streamit: A language for streaming
applications.” In Proceedings of the 11th International Conference on Compiler Construction,
volume 2304 of Lecture Notes in Computer Science, pages 179–196, Grenoble, France, 2002.
Springer-Verlag Heidelberg, ISBN 3-540-43369-4.

[25] R. W. Yeung, S. y Li, and N. Cai: Network Coding Theory (Foundations and Trends(R) in
Communications and Information Theory). Now Publishers Inc., Hanover, MA, USA, 2006,
ISBN 1933019247.

[26] MBone tools. http://www-mice.cs.ucl.ac.uk/multimedia/software/.

Appendices

Appendix A

Active Network Architecture:
Distributed computer or transport
medium

by Eva Hladká and Zdeněk Salvet

In First International Conference on Networking, ICN 2001, Colmar, France, July 2001. Pro-
ceedings. Lecture Notes in Computer Science 2093, Springer-Verlag Berlin, 2001. pp. 612–
620, 8 p. LNCS 2094. ISSN 0302-9743.

An Active Network Architecture: Distributed

computer or transport medium

Eva Hladká1 and Zdeněk Salvet2

1 Faculty of Informatics
eva@fi.muni.cz

2 Institute of Computer Science,
Masaryk University, 602 00 Brno,

and also CESNET, z.s.p.o., Prague
Czech Republic

salvet@ics.muni.cz

Abstract. Future computer networks must be more flexible and faster
then today. Active network paradigm is the way how to add flexibility to
networks. During the last five years, several active network architecture
models were presented. A new one, based on model of active nodes is
presented here. The key features of this architecture are the separation of
session or connection management functions from the bulk data packet
processing functions and associated session management protocol that
facilitates user control over active network processing. This architecture
is designed to be sufficiently general to accommodate and build on top of
any packet-based networking technology. The description of the model is
followed by brief of prototype implementation using PC-class computers
with NetBSD operating system.

1 Introduction

Introduction of new innovative Internet applications sometimes demands special
network services which are very difficult or impossible to provide in efficient
manner using contemporary standard networks behaving as a passive transport
medium. Some of such new complex services may be naturally supported by
adding various levels of user programmability to the routing elements inside the
network (routers, switches, optical cross-connect systems, etc.). In the last few
years, several of such programmable network architectures are being developed,
commonly called “active networks”.

Active networks were introduced in order to provide more flexibility within
the network itself— network with active routing and switching elements can
be seen as a special type of distributed computing facility [1], [2]. Like other
types of distributed computing facilities (or even more so), this may pose a
lot of problems to solve, depending on type of services supplied to (end-)user.
These problems range from need of high-level authentication, authorization, and
accounting schemes and policies usable with multiple administrative domains
through task scheduling and resource allocation, reservation, and management

A

to lower-level performance, scalability, and device management issues. Also, in
some cases confidentiality, non-repudiability or other special security services
may be required. While not all these concerns are applicable to all active network
architectures and service levels that may be supported, it is important to make
sure they have been addressed before real-world deployment of active network.

Active networks provide excellent development environment for new network
protocols. Our interest in active networks stems from this ability, combined
with the interest in the real time transmissions of the audio and video streams
and the associated requirements for quality of service (QoS). We find currently
available technologies insufficient for use in situations where more sophisticated
QoS management is needed. In typical IP networks, best-effort approach is used,
and even best available implementations of RSVP and ATM protocols are limited
to raw bandwidth and transmission delay management only. There is no support
for more structure- or content-oriented features like, for example, multi-priority
packet drop and hierarchical data streams. (Moreover, ATM is still and may
remain too expensive for connecting ordinary end-user machines.) We try to
construct AN architecture, which will help us not only to develop new network
protocols tailored to new applications, but also gives us possibility to implement
new QoS capabilities.

We have developed an active network architecture using the concept of ac-
tive nodes and we are working on the implementation of this architecture using
software routers based on the NetBSD (UNIX) open-source operating system.
The main features of our active network model and its (prototype) implemen-
tation are influenced by the desire for support of novel QoS-oriented features
that we plan to implement using the new active network model and its first
implementation.

2 The New Active Network Model

The proposed active network architecture uses “active node” approach to ac-
tive networking and concept of “sessions” similar to connections in connection-
oriented networks or sessions in RSVP protocol.

Structure of an active node (router) plays a key role in our model. It is a
network element which is able to accept user-supplied programs and to execute
them. The processing of user code consists of two separate (communicating)
processes. The first one controls the session establishment and management. It
has the role of control plane in active router processing and includes (initial or
later) load of user functions onto the routers along the path between source and
destination address or addresses and execution of bookkeeping functions. The
second part of user code, initiated by the first one, forms the central part of the
data packet processing itself.

An active session consists of state information in active routers that controls
handling of traffic among communicating endpoints. The most important part
of an active session is the set of running instances of user code session programs.
They manage other parts of state, i.e. spawning per-packet processing code, set-

A

ting input packet filters and classifiers and configuration of output queues, using
the active node programming interface (API). The session itself can be controlled
(created, spread to new active nodes, modified by setting various parameters,
partially or fully destroyed) in response to user requests but also from the in-
side — by session programs. An active session can be managed either remotely
using session management protocol or locally using management API of active
node management software. In the typical scenario, user application communi-
cates with first-hop active router using the session management protocol and
starts the first instance of appropriate session program with desired parameters.
The session program then computes some additional (next-hop) active nodes
that should take part in active processing, starts new instances of session pro-
gram on them and programs per-packet processing functions. The whole process
repeats with any new active nodes used. If any failure occurs during session
setup, crankback technique can be used to find alternative paths in network.
The location of first-hop active router (set of routers) may be either included
in the end user configuration data (manual configuration, DHCP data, etc.) or
determined by lower-layer specific active router discovery protocol. The software
running on the active node consists of four sets of programs:

– session programs that are supposed to take care of establishing connections
to other active nodes, computing routing information, negotiation of QoS
parameters and other functions related to user-defined session management.
They are supplied by user or other active node during session establishment
along with parameters and can be stopped or changed later during session
lifetime.

– programs performing per-packet processing (forwarding, replication, polic-
ing, packet scheduling, etc.). These are supplied by user or other active node
during session establishment as parameters or embedded parts of session
programs. Session program can manipulate them and configure their rela-
tionships with standard packet processing modules (packet filters, queues,
routing tables, output schedulers, device interface drivers).

– basic system software which implements session establishment and manage-
ment protocol, basic execution environment for programs using native code,
task management and basic resource management, security infrastructure
(authentication and authorization policies), local session management API
and facilities for device management by network administrator. This software
can be changed only with administrative privileges.

– pluggable modules for optional system software extensions, e. g.

• address/protocol families (the architecture is independent of lower net-
working layers)

• authentication, authorization, and accounting protocols
• program interpreters and runtime support (e. g. interpreters for inter-

preted languages, runtime linker, JIT compilers, module that downloads
given URL for execution, etc.)

The model is designed as general as possible in order not to be restricted by
the architecture in later development and deployment stages. All extensible

A

information elements in session establishment and management protocol are
designed with tagged polymorphic types. These modules can be downloaded
by system software on demand from the code repository defined by the ad-
ministrator or managed with device management facilities. IPv4 and IPv6
protocol families and C language binding will be supported by the prototype
implementation.

The proposed active network architecture uses a connection-oriented (state
keeping) approach. Obviously, this approach is more prone to scalability prob-
lems than capsule or “fixed function set” schemes but we believe that only small
fraction of all data streams in typical network will require special QoS features
or other algorithms running on active nodes, so the amount of state informa-
tion which must be kept within the network elements will be almost always
sufficiently low and not exceeding the processing and memory capacity of the
active nodes. In overload situation, new session establishment request can be
simply refused, currently running session programs can be asked to release some
of already allocated resources, or alternative (possibly suboptimal in other situ-
ations) paths in active network can be searched. Second, our active network is
meant as overlay network on more conventional network that may use “dumb”
but fast elements for data transmission only (these are located especially in the
core of the network) and the active elements will be placed only in key spots of
the network where special features are needed (typically near bottleneck links,
at the ingress and egress of the fast core, and on gateways between different
networking technologies).

Using our session establishment and management protocol, it is possible to
request change in parameters in atomic way (something that many signalling
protocols cannot do without tearing down the running connection and trying
to reestablishing it with new parameters) and negotiate permissible values of
parameters (unnecessary trials and errors can be avoided in algorithms that are
adaptable to various environmental conditions). The active nature of sessions
have some other pleasant consequences:

– In case of failure or overload of some element (even not active element itself
but some “dumb” router or physical link in between), connections may be
re-established or rerouted automatically without any end user or network
administrator intervention and without the need to implement these actions
in performance-critical packet processing code.

– The session parameters can be changed dynamically by end users— such a
change of parameters is processed in the similar way as the initial establish-
ment of the session.

The active router model extends the “dumb” router functionality through a
family of new protocols. The protocols can be divided to two groups relating to
two phases of the active packet processing— protocols for network connectivity
and program loading and those for processing loaded programs. Security of this
active network model is based on authentication and authorization protocols not
described in this paper and security properties of other used protocols.

A

One of our primary goals was to develop a general network protocol which
would allow us to use existing network protocols or their modifications at the
presentation and application layers. To achieve that, active node code may be
authorized to process not only packets from active networking aware applications
but also data sent by selected “legacy” applications. In such a case, separate
application has to initiate the session with active node that resides on path used
by application data and use appropriate input packet filter to capture the desired
packet flow.

In session management protocol, the program is defined in generic way—
only by code type, code length, and the program code itself. This allows differ-
ent types of programs (e.g. compiled C or interpreted Java) to be run on the
same active router. Due to split between session management and per-packet
processing functions, it is possible to use different languages for these functions.
Typical use of this feature would probably include running optimized native
code in performance-critical per-packet program and implementing rest of code
in convenient scripting language. Different performance characteristics of differ-
ent types of code should be taken in account when calculating processing resource
limits (CPU, memory, etc.), but this is an open issue in our architecture and
subject to further research.

2.1 Data Plane

The actual processing of active data packets is done by program, which is (or
whose identification is) supplied to the session program as part of its parameters.
The session program is responsible for allocating necessary resources and setting
parameters of per-packet tasks (either supplied by user or determined from the
present active network state) and calling the active node API to start it up.
The per-packet program is executed in a loop, this loop is permanent while the
session is alive.

The active program registers active packets filter — e. g. the IP source and
destination addresses, and the port number or precomputed flow label value —
for this particular active connection and relies on the active router which sends
all such packets to the active program loop. The packets are processed (e.g.
modified, deleted, duplicated, . . .) and than sent to appropriate active router
port or ports (e.g. in case of multicast-like data). The fairness between different
active programs running on the same active router is guaranteed by the active
router core, which uses on one side the authorization data and on the other the
statistics which are collected for each individual active program (CPU, memory
consumption, etc.). The active programs are scheduled with respect to already
consumed resources and to the actual resources they are authorized to use. In
such a way the order of processing of data packets of different active connections
is not strictly dependent on packet arrival order, but it is controlled by active
program scheduler.

A

3 Implementation

We are working on implementation of the architecture described above using soft-
ware routers based on the NetBSD (UNIX) operating system and off-the-shelf
IBM PC-compatible hardware. Such routers are widely used in our metropolitan
area network and they represent a general programmable platform suitable for
implementation of novel network architectures and protocols. In addition to our
previous experience, another reason to choose the NetBSD operating system was
its well designed infrastructure for creating alternative OS personalities (emu-
lations) which enables us to create (relatively easily) an execution environment
where native binary (e.g. compiled C or C++) active programs can be securely
executed.

While this operating system environment influences decisions about com-
puter languages for implementation and the use of particular system functions,
the active network model is not restricted in any way to this environment (i.e.
the NetBSD based PC routers) and is implementable in any general enough
computing environment.

Adapting a PC router to an active router means to introduce new features on
the kernel and user levels. The most important components of our active router
architecture are depicted in the Fig. 1. On the user level, the authentication
and authorization module must be added, together with the full environment
for the session and packet processing programs including parts of the resource
management and statistics collection.

On the kernel level, it is necessary to create restricted execution interface for
secure execution of native binary active programs, to add more general interface
to packet classification code (standard part of PC router) which recognizes data
packets of active connections, and also to add some changes to support more
fine-grained scheduling for active programs.

Our implementation uses the C language to implement both the user and
kernel level modifications and extensions of the PC router. While this means
that the implementation will take more time then using high level approach with
Java or similar programming environment (the implementation times compared
in [4] are 3 years against 6 months), the result should be much more efficient.
We believe that highly efficient implementation is necessary if we are to show
the advantages of active networks.

4 Related work

During the relatively short history of active networks research, several models or
network architectures have been developed. These models can be divided to two
basic groups based on means by which user code is supplied to programmable
elements of the active network. The first group places the code of active program
inside the data packet that will be processed by the program (“active packet”
or “capsule”). The other approach (“active nodes”) uses other ways of program
distribution, e.g. preloading of fixed function sets active nodes, on-demand pro-
gram downloading, distributed caching of programs, etc. For example, typical

A

Fig. 1. Active Router Architecture

data flow

JVM JVM

ne
tw

or
k

in
te

rf
ac

es

packet
classifier

queue manager

packet scheduler

classical
routing

shared
buffer pool

active
program
scheduler

accounting
&resource

limit checking

KERNEL

USER

API

session
management session prog.

session prog.

packet prog.
(native)(native)

packet prog.

pluggable
module

library manager

resource management

security & accounting

router management

control information

representatives of the first group are Smart packets project [7], ANTS [8], and
PAN [9]; representatives of the second group are SwitchWare [5] or Pronto [6]
systems. Both these two architectures have specific advantages and could be
combined in one model.

Pronto is quite similar to our implementation of active node operating system
support, in fact it could serve as alternative base for implementation of the
architecture presented. The most important difference is lack of support for
untrusted binary code execution in Pronto (user code interfaces with C++ class
library).

The SwitchWare architecture also has some features in common with the
model we proposed, e.g. support for multiple programming languages for user
code. On the other hand, in SwitchWare, active packets always carry code in
addition to data and this code cannot be completely preloaded on active node,
unless it is defined as extension of active router.

5 Conclusion

The active network protocol design and its implementation within PC routers
was motivated by the work in the area of quality of services for multicast, and
voice and video applications in connectionless networks [3]. The active network
technology looks promising for solving these and related problems and it also

A

provides convenient environment for research, where different QoS and/or mul-
ticast protocols can be implemented and tested.

6 Acknowledgements

The authors would like to thank Luděk Matyska for support of our work, proof
reading this text and stimulating discussion about the quality of services in
computer networks now and in the future.

The work was supported by the CESNET Research intent MSM000000001,
and one of the authors (EH) also acknowledge support from Universities devel-
opment fund grant No:0430/2001.

References

1. D.L. Tennehouse, J.M. Smith, G.M.W. Sincoskie, D. J. Wetherall and G. J.
Minden. A survey of active network research. IEEE Communications Magazine 35,
1997.

2. K. Psounis. Active networks: Applications, security, safety and architectures. IEEE
Communication Surveys, 1999.

3. D. J. Wetherall et.al. Introducing New Internet Services: Why and How. IEEE
Network, May/June 1998.

4. J. P. Gelas, L. Lefevre. TAMANOIR: A High Performance Active Network

Framework. Workshop on Active Middleware Services 2000 at the Ninth IEEE
International Symposium on High Performance Distributed Computing,
Pittsburgh, Pennsylvania, USA, August 2000.

5. D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj Kakkar,
Angelos D. Keromytis, Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles, and
Jonathan M. Smith. The SwitchWare Active Network Architecture. IEEE Network
Special Issue on Active and Controllable Networks, vol. 12 no. 3, pp. 29–36.

6. G. Hjálmtýsson. The Pronto Platform: A Flexible Toolkit for Programming

Networks using a Commodity Operating System. In IEEE OPENARCH 2000,
March 2000.

7. Schwartz, Beverly I., W. Zhou, A. W. Jackson, W. T. Strayer, D. Rockwell, and C.
Partridge. Smart Packets for Active Networks. Proceedings of InfoComm, New
York, 1999.

8. D. J. Wetherall, J. V. Guttag and D. L. Tennehouse. ANTS: A Toolkit for

Building and Dynamically Deploying Network Protocols. In IEEE OPENARCH’98,
April 1998.

9. E.L. Nygren, S.J. Garland and M.F. Kaashoek. PAN: A High–Performance Active

Network Node Supporting Multiple Mobile Code Systems. In IEEE
OPENARCH’99, March 1999.

A

Appendix B

User Empowered Virtual Multicast for
Multimedia Distribution

by Eva Hladká, Petr Holub and Jiří Denemark

In The Third International Conference on Networking, ICN 2004, Gosier, Guadeloupe, French
Caribbean, March 2004. Proceedings. 2004. pp. 338–343. ISBN 0-86341-325-0.

User Empowered Virtual Multicast for Multimedia
Communication

Eva Hladká
Laboratory of Advanced Network Technologies

Faculty of Informatics,
Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic
Email: eva@fi.muni.cz Phone: +420 549 493 535

Petr Holub
Faculty of Informatics and

Institute of Computer Science
Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic
Email: hopet@ics.muni.cz Phone: +420 549 493 944

Jiřı́ Denemark
Labor. of Advanced Network Technologies

Faculty of Informatics,
Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic
Email: jirka@ics.muni.cz

Abstract— We introduce concept of user empowered UDP
packet reflectors to create virtual multicasting environment as
an overlay on top of current unicast networks. The virtual mul-
ticast is used as a bottom layer for secure and efficient collab-
orative environments. The end-users’ ability to fully control
this environment—in a way similar to peer to peer networks—
is the primary advantage of our approach. Other interesting
features that are possible only in virtual multicast environment
are also discussed in this paper.

Index Terms— virtual multicast, UDP packet reflector, user
empowered approach, modular architecture

I. INTRODUCTION

Multicast is the “natural” solution for a group commu-
nication [1]. Multicast communication can be character-
ized by the following statement: “The same data are trans-
ferred at most once on any particular link”. This implies
large (“infinity”) scalability, but imposes non-trivial require-
ments on the network as all the network nodes must support
it in a consistent way. Despite continuous effort only very
small fraction of places on Internet have reliable native mul-
ticast connectivity. While the radio, television, and other
mostly one-way broadcasting systems are practically impos-
sible to be deployed on large scale without native multicast
support, the collaborative environment usually connects bi-
directionally few places only and “infinity” scalability is not
such pressing issue. The communicating groups have usu-
ally at most 20 sites connected while larger groups need very
precise orchestration and moderation. All the practically
used multicast protocols have also other disadvantages: it
is near to impossible to take care of quality of service re-
quirements for the whole multicast group, it is very difficult

This research is supported by a research intent “High Speed Research
Network and its New Applications” (MSM000000001).

to provide secured environment without a shared key, and
there is no easy support for accounting.

These problems may be overcome through multicast con-
nectivity simulation, where active nodes have a role of re-
flectors (“mirrors”), that replicate all traffic passing through
them in a controlled way. In such environment multicast
videoconferencing clients can be used with ease while keep-
ing the advantages of unicast point-to-point communica-
tion lines—thus creating virtual multicast environment (this
technology is used e. g. in VRVS [2] or AccessGrid [3]).
The reflectors can even transform the incoming traffic and
can be directly controlled by the end users. These mirrors
play a role of multicast join-points, allowing clients to con-
nect (and drop out) without any undesired influence on the
rest of the group.

We propose reflector architecture based on active router
architecture [4]. This architecture can be used for creation of
ad hoc overlay networks, where both mirrors and the over-
lay network creation is administered directly by end users.
The behavior of each individual mirror can be independently
controlled, including the security environment. The secu-
rity context may be individualized for each client, using any
authentication scheme, including PKI, Kerberos or shared
keys. While reflector technology is only partially scalable it
is the most efficient infrastructure for groups with no more
than tens of clients. The main advantage is flexibility, user
empowered-ness, and independence on any specific network
features except for simple unicast routing. All the “advanced
features” are provided by higher, user controlled layer. Any
user group can start its own mirror and only unicast con-
nectivity is required from any client to the mirror. Two or
more mirrors may be combined to provide a true overlay
network. While data routing and replicating are the basic
functions, many more services can be provided within this

B

framework. Varying demands of different users’ groups and
even specific demands of individual users within a group
can be handled by specific extensions (modules) to the basic
mirror program in the active network framework. Few ex-
amples of already implemented features are: full logging
and data recording, data encryption and decryption, syn-
chronization of streams, authentication, authorization and
accounting, and stream traffic shaping.

II. REFLECTOR ARCHITECTURE

The design of a reflector must be flexible enough to al-
low implementation of required features and leaving space
for easy extensions for new features. This leads to a design
that is very similar to our active router architecture [4] mod-
ified to work entirely within the user space. Users without
administrator privileges are thus able to run reflector on any
machine they have access to. The reflector architecture is
shown in Fig. 1.

A. Data routing and processing

Data routing and processing part of the reflector com-
prises network listeners, shared memory, packet classi-
fier, processor scheduler, number of processors, and packet
scheduler/sender.

Network listeners are bound to one UDP port each. When
packet arrives to the listener it places the packet into shared
memory and adds reference to a to-be-processed queue. The
packet classifier then reads packets from that queue and de-
termines a path of the data through the processor modules. It
also checks with routing AAA module whether packet is al-
lowed or not (in the later case it simply drops that packet and
creates event that can be possibly logged). Zero-copy pro-
cessing is used in all simple processors (packet filters), min-
imizing processing overhead (and thus packet delay). Only
the most complex modules may require processing that is
impossible without use of packet copies.

The session management module follows the processors
and fills the distribution list of the target addresses. The fill-
ing step can be omitted if data passed through a special pro-
cessor that filled the distribution list structure and marked
data attribute appropriately (this allows client-specific pro-
cessing). Processor can also poll session management mod-
ule to obtain up to date list of clients for specified session.
Session management module also takes care of adding new
clients to the session as well as removing inactive (stale)
clients. When new client sends packets for the first time,
session management module adds client to the distribution
list (data from forbidden client has already been dropped by
packet classifier). Information about the last activity of a
client is also maintained by the session module and is used
for pruning stale clients periodically. Even when distribu-
tion list is not filled by the session management module,
packets must pass through it to allow addition of new clients
and removal of stale ones.

When the packet targets are determined by the router pro-
cessor a reference to the packet is put into the to-be-sent

queue. Then the packet scheduler/sender picks up packets
from that queue, schedules them for transmission, and fi-
nally sends them to the network. Per client packet schedul-
ing can also be used for e. g. client specific traffic shaping.

The processor scheduler is not only responsible for the
processors scheduling but it also takes care of start-up and
(possibly forced) shutdown of processors which can be con-
trolled via administrative interface of the reflector. It checks
resource limits with routing AAA module while scheduling
and provides back some statistics for accounting purposes.

B. Administrative part of the reflector

Communication with the reflector from the administrative
point of view is provided using messaging interfaces, man-
agement module, and administrative AAA module of the re-
flector. Commands for the management module are written
in a specific message language.

Messaging interface is generic entity, which can be in-
stantiated as e. g. RPC, SOAP over HTTP, plain HTTP in-
terface with SSL/TLS or GSI support, or simple TCP con-
nection bound to loop-back interface of the machine running
the reflector. Each of these interfaces unwraps the message
if necessary and passes it to the management module.

Management module checks validity of the message and
its authenticity and authorization status, querying the admin-
istrative AAA module, which is also responsible for the pro-
cessing of accounting information of the accepted messages.
Availability of sufficient resources to process accepted mes-
sage is checked with resource management module and the
message is passed to the appropriate module(s) afterwards.
Completion status is returned back to the management mod-
ule, which notifies the administrative AAA module to close
the accounting. If a failure occurs, its description is stored
via the administrative AAA module, an error that can be
logged is generated, and an error message is simultaneously
sent back the client via messaging interface the client is con-
nected to.

The same mechanism can be used for logging purposes.
One or more messaging interfaces may be opened with
the LOGGING flag set and such messaging interfaces re-
ceive all events created within the reflector via the manage-
ment module. The way how to receive logging information
through some messaging interface, which doesn’t have the
LOGGING flag set, is to send a request asking for logging
information via this interface.

A message language for communication with the man-
agement module is called Reflector Administration Protocol
(RAP) [5]. It is a text-based request/response protocol that
uses US-ASCII character set. Lines are delimited by char-
acter pair CR and LF (0x13 and 0x10). Protocol message
can be either user’s request to the reflector or response of
the reflector to the user. One request can be followed by
multiple responses. Protocol is designed as soft-state, i. e.
connection is closed after certain period of client inactivity.
Keep-alive messages have to be sent if the client wants to
maintain connection and has no requests to send.

B

packet
classifier

processor
scheduler

routing
AAA

session
management

resource management

Reflector Kernel

administrative AAA

management

session
management

packet
processor

Processor 1

session
management

packet
processor

Processor n

shared

memory

network
listener 1

network
listener n

packet scheduler

/sender

messaging
interface 1

messaging
interface n

data flow control information

Fig. 1. Reflector Architecture

Each message comprises message headers and message
body. In case of request, the headers contain

• specification of method (that is an actual command for
the reflector) and method specific headers

• target module reference (RAP contains a module ad-
dressing schema enabling to pass requests to specific
modules),

• protocol version identification, length of the message
body, possible request to process the request in block-
ing manner, and other auxiliary information

Message body contains method specific information if
needed. Methods (or commands) can be divided into two
groups: general reflector methods and extending module
specific methods. Group of general methods covers methods
for requesting various information on status of the reflector
and its modules (either in interactive way or in form of sub-
scription for logging information), commands for manipu-
lating both routing and administrative access control lists
as well as administrative user database, and commands for
controlling modules (starting, stopping, and restarting mod-
ules).

There are several response classes used by reflector to re-
ply to client’s request: 100 (for informational and logging
messages), 200 (for successful completion of user request
with message body containing actual response data), 400
(for client request errors), and 500 (for server-side error).

Complete definition of RAP version 1.0 including formal

definition using ABNF [6], detailed protocol description,
and example communication using RAP can be found in [5].

III. ADVANCED REFLECTOR FEATURES

The basic function of the reflector is retransmission of
received data to one or more listeners. This can be easily
extended to support other useful functions. The reflector
replicates all the traffic coming through specified port to all
the clients connected to that port. Clients do not interact
in advance—they just connect to the reflector to automati-
cally receive all the traffic sent to the reflector and also all
the client traffic is automatically distributed by the reflec-
tor. The reflector security (per port or per client) policy may
change this behavior and forbid some clients from listening
or sending data.

a) Tunneling and scalability: The scalability of the
reflector based communication can be increased using tun-
neling between the reflectors. Possible tunnel configurations
are:

• full-mesh tunneling – Each reflector has addresses of its
peers and sends data received from directly connected
clients to all the peer reflectors and accepts data from
all the peer reflectors and distributes it to all directly
connected clients. This is the least efficient way with
respect to scalability but has the simplest setup.

• static tunneling – Routing among reflectors is done by
manually pre-configured static way. Such tunneling is

B

used for MultiSession Bridge in AccessGrid[7]. This
can be efficient for long-lived network of reflectors
with infrequent changes. It is not suitable for networks
created in ad hoc mode. When properly managed, this
is the most efficient configuration.

• dynamic tunneling and routing – Mimics the behav-
ior of routers and may use very specific routing al-
gorithms (even multi-criteria). The simpler configura-
tions may use distance vector routing algorithms used
in mrouted (on the MBone) or even algorithms from
peer-to-peer networks might be used (e. g. an algorithm
developed in Pastry project [8]). This option is the most
suitable for ad hoc networks of reflectors and may be
the most efficient for dynamic environments.

Both static and dynamic configurations are suitable for net-
works with some low bandwidth or high latency lines since
they can be configured to bypass such links.

b) Logging: Following events are examples of events
generated within the reflector either as a result of data trans-
mission or reacting to managerial decisions: start-up and
shutdown of the reflector, beginning and end of data trans-
mission, start and stop of data recording, users’ login and
log-off times and login failures, non-authenticated requests
to join a group, program errors. These events are sent to
all the messaging interfaces subscribed for logging informa-
tion, which store them into disk files or pass them on e. g.
the system syslog interface or to some external monitor-
ing tools.

c) Stream transcoding: A specific module can act as
a multimedia stream transcoder. This is usually used when
some client is connected via the low bandwidth link. As
the transcoding consumes rather lot of processing power, a
specific reflector—the gateway—may be set up at the be-
ginning of the low bandwidth link and connected to the
nearest reflector using the tunneling capability and thus en-
ables clients connected via low bandwidth links to partici-
pate without influencing clients connected using fast links.

Another situation in which the transcoding feature is use-
ful is when media stream is produced and transferred in for-
mat that is not acceptable for the some client(s).

d) Video stream composition: In some circumstances,
like different quality of links used by participants, large
groups resulting in too many windows at client sites, in-
sufficient processing power at client sites to decode large
number of simultaneous streams etc., it may be advanta-
geous to down-sample video streams and compose several
of them into one stream directly on the reflector (provided
it has sufficient memory and processing power). The first
version of such a processor is described in [9] and it has
already been adapted to fit into the new architecture. This
processor is based on the vic tool and support exactly the
same set of video formats. Up to four video streams can be
composed into one output stream. Input video formats are
auto-detected, the processor is able to work with different
formats simultaneously. The output video format is config-
urable by the end user.

e) Recording: The centralized data recording facility
has many advantages over much simpler features of most
videoconferencing clients. It may be a trusted neutral agent
(no local editing of content), it can guarantee to store all data
actually transmitted (in contrast to local client which may
experience some local data loss), it may be more efficient
(just one copy of the data is created), and it provides record-
ing capabilities independent of whether the client software
has recording capabilities or not. The recording processor
within the reflector is controlled by end-users, stored data
can be easily used to re-play the communication. Storage of
all the data transmitted allows a synchronized re-play of not
only audio or video but also of shared workspace modifica-
tions, too.

f) Synchronization: Several independent UDP
streams may be synchronized using the appropriate proces-
sor. It inspects timestamps and delays or reorders packets
within a specified time windows so the resulting outbound
streams are fully synchronized. It uses timestamps in
RTP packets and is able to work with independent time
references (“zero time”) and increments for each stream
(even different streams from the same source computer can
use different time references [10], [11]). The information
needed for converting between real (absolute) time and
relative RTP time is taken from RTCP packets. This
requires sending computers to have their real time clocks
synchronized e. g. using NTP protocol.

This synchronization feature can be used e. g. to send 3D
video in two streams for each eye separately synchronously
over best effort network. Such transmission allows to use
more demanding video processing compared to sending it
in one stream since the processing can be distributed among
two or even more machines provided they have their real
time synchronized properly.

A preliminary implementation, which uses dedicated re-
flector lacking our new modular architecture, has been de-
scribed in [12].

g) Traffic Shaping: The traffic shaping processor sup-
ports among other: bandwidth limiting, delaying, deliberate
packet loss, and packet duplication (on the same stream).
The last two features are used usually for debugging pur-
poses or for simulation non-ideal network conditions. De-
laying is used to increase fairness among videoconferencing
partners in unfair conditions (where one or more partners
have substantially larger delays).

h) Raw Data Dumping: While events from manage-
ment module are stored via the logging interfaces, the re-
flector supports also raw data dumps of all incoming packets
(including those rejected for authentication or authorization
reasons). The reflector, running in the user space, does not
rely on the tcpdump (requiring root privileges) and in the
dumping mode it simply copies all data on inbound inter-
faces into a file for later analysis.

IV. SECURITY IN CONTEXT OF THE REFLECTOR

The reflector is a program started by an ordinary user—
who thus becomes primary reflector administrator—and it

B

runs under his or her identity. As this user grants some priv-
ileges to partners within the group, the reflector must pro-
tect user from malicious behavior of third parties. This is
done via authentication and authorization mechanisms that
are part of the administrative AAA module. In various sce-
narios (e. g. military or bioinformatics) the actual data com-
municated among partners must be protected as well.

All the administration is done via secure messaging chan-
nels (e. g. SSL/TLS secured HTTP). User can authenticate
using login and password or via some authentication cre-
dential (e. g. Kerberos ticket or X.509 certificate). The au-
thorization is done using ACL (access control list) and is
performed per command (similar to the TACACS authoriza-
tion mechanism). The reflector administrator creates the first
ACLs and also specifies (during compile-time and reflec-
tor startup) which authentication mechanisms will be sup-
ported.

i) Basic end-user security: Simple client authoriza-
tion is based on IP address restrictions. Appropriate “ac-
cept” and “deny” ACL records contain IP addresses or sub-
nets (defined as an IP addresses with associated netmasks).
The decision is taken by the routing AAA module, rejected
packets are dropped and appropriate event is generated. This
decision precedes the session management phase to elimi-
nate work that would be otherwise discarded. However, ses-
sion management must be informed about changes in ACLs
to be able to discard forbidden clients immediately.

Restrictions based on user names are done indirectly—a
user connects via secure messaging channel and adds his/her
IP address into the list of accepted IP addresses. In such
scenario it is also possible to employ soft-state mechanism
when certain IP address or address range is accepted over
limited period of time only. The user is responsible to renew
the authorization in regular intervals.

j) Strong end-user security: Areas like military and
medicine require strong security support. This issue was
studied in [13] and there is a solution currently available for
the reflector.

The secure reflector consists of four parts: initialization,
authentication, communication, client disconnection. The
initialization phase processes the input parameters, initial-
izes cryptography subsystem and waits for client to connect.

In authentication phase client and server set up secure
channel using RSA secured TCP connection. The client
authentication is then based on user login and password.
When accepted, the secure connection is maintained during
the whole conference as it is used for session tear-down and
optionally for redistribution of keys if temporal re-keying is
enabled.

In communication phase reflector forwards data en-
crypted using symmetric AES cipher using key exchanged
during authentication phase with clients.

In the final client disconnection phase client asks for end
of session and is removed from the list of allowed clients by
the server. Disconnection phase can also be initiated by the
server when it shuts down.

Client side is realized by specialized local reflector which

client tools (e. g. vic or rat) connect to1. This local re-
flector processes the authentication, exchanges session keys
with the reflector (each client/server pair has its own session
key) and is responsible for data encryption and decryption
using these session keys.

k) Use of reflectors in adverse networking environ-
ments: Firewalls are spread in many places and are the
administrative solution to protect LANs and their resources
from malicious users and accidents. This protection has
a negative side effect since it means barrier to free net-
work communication and makes difficulties when deploying
applications relying on user empowered paradigm in case
when the firewall is not controlled by the end user. It is usu-
ally difficult to achieve reconfiguration of firewall for com-
munication on unusual ports. Another problem that often
goes hand in hand with firewalls is network address trans-
lation (NAT). It usually doesn’t work for TCP connection
initiated from outside of inner network and for UDP traffic
directed inside, the latter of which is a serious problem for
virtual collaborative environments that rely on bidirectional
UDP traffic for multimedia content.

A possible solution for reflector based communication
may work without touching firewall configuration at all and
it may also solve problems with NAT. First, we need to use
two reflectors—one inside the zone protected by firewall
and/or NAT and the second one outside. Reflectors need to
have special processor that performs encapsulation of pack-
ets to pretend that they belong to some well known protocol
that is passed through by most of the firewalls (HTTP being
a good example). Our experiences show that this scenario
can be deployed quite successfully2 [14]. Such scenario
works fine unless both clients are hidden in different net-
works performing NAT. In such case they need some reflec-
tor on outer public network that forms a kind of rendezvous
point toward which both communicating clients point the
tunnels of their local reflectors. Otherwise it may be impos-
sible to address each other directly.

The client reflector is the one, which initiates the TCP
connection with the desired address and port number of
main reflector because of possible NAT, while the main re-
flector outside of the firewall waits and accepts the incom-
ing TCP connections. RTP packets are sent through the TCP
connection with minimal additional header prepended. The
header consists of two 4 byte numbers, one carries the RTP
packet length and the other is a flag distinguishing RTP data
packets from RTCP packets.

V. FUTURE WORK

The work we are targeting now is to implement all de-
scribed features to the reflector. For the future we plan to

1Some of client MBone tools require a small modification to be able to
connect to the reflector running locally as they bind on the same port they
are connecting to obviously resulting in conflict in such setup.

2The packet reflector modified for communication through firewall was
tested successfully with voice communication in challenging environment
(two wireless LAN hops and application layer firewall) between ICN’01
conference in Colmar, France, and Masaryk University in Brno, Czech Re-
public.

B

continue to support pilot user groups to get stimulating re-
actions and new ideas as this reflector has always been de-
veloped for group communication of real groups of users
and lots of features are based on their demands. The most
active are Czech group participating in EU DataGrid (EDG)
project and IPv6 working group of the Czech research net-
work.

For the more remote future we think about integrating
our reflector into Open Grid Services Architecture frame-
work [15] to enable integration with new generation of col-
laborative Grid environments (e. g. AccessGrid version 2.x
[3]). Such integration requires incorporation of Grid service
interfaces and Grid security mechanisms into our reflector.

As already mentioned in the section on tunneling between
reflectors, another interesting direction of reflector devel-
opment is implementation of self-organizing and automatic
discovery capabilities stemming from ideas of peer-to-peer
networking either in pure or hybrid or super-peer mode [8],
[16]. This will enable reflectors to create overlay networks
that can sustain even partial network disintegration without
completely breaking overlay network as it allows the net-
works of reflectors in the remaining network clouds to work
autonomously.

Furthermore we are considering extension of traffic shap-
ing features and congestion control and development of
more advanced data transformation processors.

VI. ACKNOWLEDGMENT

The authors would like to give credits to Assoc. Prof.
Luděk Matyska for supporting our work, proof reading this
paper, and for stimulating discussions.

REFERENCES

[1] R. Wittmann and M. Zitterbart, Multicast communication: proto-
cols, programming, and applications, Morgan Kaufmann Publishers,
1999.

[2] P. Galvez, G. Denis, and H. Newman, “Networking, Videoconferenc-
ing and Collaborative Environments,” in Proceedings of CHEP’98,
Chicago, September 1998.

[3] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and
T. Udeshi, “Access Grid: Immersive Group-to-Group Collaborative
Visualization,” in Proceedings of Immersive Projection Technology,
Ames, Iowa, 2000.

[4] E. Hladk á and Z. Salvet, “An Active Network Architecture: Dis-
tributed Computer or Transport Medium,” in Proceedings of ICN
2001, Berlin, 2001, vol. LNCS 2094, Springer-Verlag.

[5] J. Denemark, P. Holub, and E. Hladk á, “RAP - Reflector Administra-
tion Protocol,” Tech. Rep. 9/2003, CESNET, 2003.

[6] D. Ed. Crocker and P. Overell, “Augmented BNF for Syntax Specifi-
cations: ABNF,” RFC 2234, November 1997.

[7] G. A. Roediger, “The Multi-Session Bridge,” http://www.hep.
net/chep98/PDF/230.pdf.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, 2001, pp. 329–350.

[9] V. Holer, “Videostram Merging,” Bc. Thesis FI MU, 2003.
[10] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A

Transport Protocol for Real-Time Applications,” RFC 1889, January
1996, Obsoleted by RFC 3550.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications,” RFC 3550, July
2003.

[12] T. Rebok and P. Holub, “Synchronizing RTP Packet Reflector,” Tech.
Rep. 7/2001, CESNET, 2003.

[13] Tom áš Bouček, “Kryptografick é zabezpečen ı́ videokonferenc ı́,” M.S.
thesis, Military academy Brno, 2002.

[14] Z. Salvet, “Enhanced UDP packet reflector for unfriendly environ-
ments,” Tech. Rep. 16/2001, CESNET, 2001.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration,” Open Grid Service Infrastructure WG, Global Grid
Forum, June 2002.

[16] B. Yang and H. Garcia-Molina, “Designing a super-peer network,”
IEEE International Conference on Data Engineering, 2003.

B

Appendix C

User Empowered Programmable
Network Support for collaborative
Environment

by Eva Hladká, Petr Holub and Jiří Denemark

In Universal Multiservice Networks: Third European Conference, ECUMN 2004, Porto, Por-
tugal, October 25-27, 2004. Proceedings. Lecture Notes in Computer Science 3262, Heidel-
berg: Springer-Verlag Berlin, 2004. 10 p. ISSN 0302-9743.

User-Empowered Programmable Network

Support for Collaborative Environment

Eva Hladká1, Petr Holub1,2, and Jǐŕı Denemark1

1 Faculty of Informatics
2 Institute of Computer Science,

Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
eva@fi.muni.cz, hopet@ics.muni.cz, xdenemar@fi.muni.cz

Abstract. We introduce a user-empowered UDP packet reflector to cre-
ate virtual multicasting environments as an overlay on top of current
unicast networks. The end-users’ ability to fully control this environ-
ment by a specific communication protocol is the main advantage of
our approach. Serializing the parallel communication schema for group
communication allows us to introduce special features that are possible
in unicast communication only. Similar to working with programmable
routers, users can submit their own modules, which can be linked into
the reflector and perform user-specific operations (filtering, transcoding
etc.). The reflector is the basic element of the overlay network support
for the user-empowered group communication in collaborative environ-
ments.

1 Introduction and Theoretical Background

In the current world, people are looking for systems supporting easy-to-use and
inexpensive activities like video-seminars, tele- and video-consulting, and virtual
meetings, which are specific forms of a virtual collaborative environment [1]. This
paper focuses on both building a theoretical framework and creating a practical
implementation of a network support system for communication among smaller
groups of participants (up to 20 sites, usually bellow 10) that can be fully con-
trolled by the participants themselves. The system is intended to be simple to use
and yet flexible, capable of reacting to pre-defined as well as dynamic events such
as changes in number and location of participants, network conditions (band-
width, delay, security), etc.

Two basic principles are being adopted in a complementary way when trans-
ferring data over the networks: connection oriented and packet oriented ap-
proaches. Both approaches reached widespread use in different environments
and nowadays we see a lot of effort dedicated to their convergence. This is also
dictated by new applications and their requirements of scalability on one hand
and transport quality control on the other hand. The packet based networks with
rather “dumb” active elements targeted for only one function—data routing—
won the field of high-speed networks, while sacrificing most of the control features
needed for advanced applications. A quality of service is offered on a statistical

C

basis only (e. g. using DiffServ approach) and the users usually have no way of
influencing or at least monitoring the transport of “their” data over the net-
work. As reaction to these problems, we are developing a novel approach based
on following cornerstones:

– Active elements within the network, programmable directly or at least in-
directly by the users and their applications. These serve as the underlying
technology for implementing the higher layers [2].

– Overlay networks as a framework for introducing specific services within the
packet oriented network. The overlay networks allow minimizing the neces-
sary overhead for advanced services without limiting their complexity [3].

– User empowered approach as a way to put the control plane into the hands of
end users. The users can set up and tear down services, control and monitor
their behavior while the services are well isolated so as to avoid any unwanted
influence on other users.

The reflector is built as a special active node within a network, with full
control by the user who uses it for group communication. The active router was
modified to serve as the user controllable (user empowered) multimedia data
reflector. The active node is implemented as a specific service within an ordi-
nary computer. Fulfilling the requirement of full user control means overworking
the active router and moving its functionality into the user space without any
changes on the kernel level. This special implementation of an active router in
user space was created and became the basic element for the overlay network for
group communication.

2 Reflector

The reflector is a network element that replicates and optionally processes in-
coming data usually in the form of UDP datagrams and distributes this data to
its clients in sequential manner using unicast communication only. If the data
is sent to all listening clients, the number of data copies is equal to the number
of clients. Our reflector is designed as a user-controlled modular programmable
router, which can optionally be linked to special processing modules in run-time.
The reflector runs entirely in user-space of the underlying operating system and
thus it works without the need for administrative privileges on the host com-
puter. The reflector architecture comprising the administrative part and data
routing and the processing part is shown in Fig. 1.

The data processing and replication works as follows: the entry points of the
reflector are network listener modules which are bound to one UDP port each.
The received packet is placed into the shared memory and the listener adds a
reference to a “to-be-processed” queue. A packet classifier reads the packets from
this queue, checks with a routing AAA module whether the packet is allowed or
not and determines a path through processor modules for each packet. After the
processing, the data is distributed to clients by a packet scheduler/sender module
according to a distribution list obtained from a session management module. The

C

packet
classifier

processor
scheduler

routing
AAA

session
management

resource management

Reflector Kernel

administrative AAA

management

session
management

packet
processor

Processor 1

session
management

packet
processor

Processor n

shared

memory

network
listener 1

network
listener n

packet scheduler

/sender

messaging
interface 1

messaging
interface n

data flow control information

Fig. 1. Architecture of the reflector.

number of copies of the data inside the reflector is minimized in order to boost
performance; for simple scenarios the reflector works in the zero-copy mode.

The session management module is responsible for maintaining the distribu-
tion lists for each group, for adding new clients (usually after the client starts to
send data), and removing inactive (dormant) clients. Simple client authorization
is based on IP address restrictions. The access control list contains an “accept”
or “deny” rule for each IP address or subnet record. The decision is made by the
routing AAA module, rejected packets are dropped and an appropriate event is
generated and can be logged if requested.

The administrative part of the reflector can be accessed via secure messaging
channels such as HTTP with SSL/TLS encrypted transport or SOAP with GSI
support3. The user can authenticate using various authentication procedures,
e. g. combination of login and password, Kerberos ticket, or X.509 certificate.
Authorization uses access control lists (ACLs) and is performed on per-command
basis. Authentication, authorization, and accounting for the administrative part
of the reflector is provided by an administrative AAA module. The actual reflec-
tor control is provided by a management module, which accepts commands in a
specific messaging language, the Reflector Administration Protocol (RAP) [4].

3 Basic transport used for secure web services in Grid environments.
http://www.doesciencegrid.org/Grid/projects/soap/

C

All the events that occur in the reflector (users joining or leaving the reflector,
exceptions etc.) can be logged for further inspection.

The data received by the reflector are replicated and sent back to all the
connected clients and thus the limiting outbound traffic on the reflector grows
with n(n− 1) where n is the number of active (sending) clients. The scalability
issue arises obviously which can be mitigated by creating networks of reflectors
with tunnels connecting them (see Sec. 3.1). The network can be built in either
a static way (pre-configured) or dynamic way (e. g. using distance-vector routing
algorithms or some more efficient routing algorithms from peer-to-peer networks
like Pastry [5]). Reflector networks can also be used for building overlay networks
that are more resilient to network outages than the underlying network [3].

2.1 Advanced Reflector Scenarios

Because of the data replication for each individual client, it is possible to imple-
ment per-user processing which is impossible to do with multicast. The modu-
larity of the reflector allows users to add and configure specific functionality in
run-time. Examples of per-user processing are shown below:

– Multimedia data transcoding. Data processing modules can convert data be-
tween different formats (e. g. re-compress data from the DV format to the
H.261 format). The reflector can be thus used as a gateway allowing clients
with limited support of compression formats or insufficient network or pro-
cessing capacity to join videoconference without forcing the rest of the com-
municating group to use low-quality or low-bandwidth multimedia formats.

– Video image composition. Composing several video images into a single im-
age can be useful for a collaborative environment with a large number of
participants in which there is not sufficient processing or display capacity to
provide full video windows from all the clients simultaneously.

– Synchronization. When using parallel media streams encapsulated in RTP
protocol, it is possible to synchronize such streams [6]. RTP packets contain
relative time-stamps that can be converted to absolute local time on the
sending machine by utilizing both relative and absolute time-stamps sent in
complementary RTCP packets. When the synchronized streams originate on
different computers, it is necessary to synchronize time on these computers,
e. g. using NTP protocol.

By connecting reflectors with different functionality, it is possible to create an
overlay network allowing users to connect to reflectors according to their needs.

Reflectors can be used for building strongly secured communication and col-
laboration environments. In the secured scenario each client must maintain a
secured reliable connection to the reflector (usually an SSL encrypted TCP con-
nection) that is used to exchange encryption keys between the client and the
reflector. UDP datagrams are then sent encrypted from the client to the reflec-
tor, processed, and distributed to other clients encrypted again. Such reflectors
however, requires modified MBone Tools to work with [7]. The reflector can also

C

be used in an adverse networking environment restricted by firewalls and NAT
deployment since it is possible to tunnel UDP data between reflectors through a
TCP connection using some well-known ports that are enabled on the firewall [8].

3 Performance Evaluation of a Prototype Implementation

The reflector described above has been implemented and its performance has
been evaluated in order to verify its usability. The testbed environment com-
prised three powerful machines used as a traffic generator (gerard), a reflec-
tor (test4), and a receiver (brand). The machines were connected via the HP
ProCurve 6108 gigabit Ethernet switch. More detailed information on configu-
ration of these machines is shown in Tab. 1.

Table 1. Overview of configurations of the testbed machines.

test4 brand gerard

brand – DELL PowerEdge DELL PowerEdge
model – 1600 SC 1600 SC
processor 2× Intel Xeon 2× Intel Xeon 2× Intel Xeon

2.80 GHz 2.80 GHz 2.80 GHz
memory 1024 MB 1024 MB 1024 MB
NIC Intel 82545EM Broadcom BCM5701 Intel PRO/1000

64 bit/66 MHz 64 bit/100 MHz 32 bit/66 MHz
operating system Linux FreeBSD FreeBSD

2.4.23 5.2-RELEASE 5.2-RELEASE

To evaluate the performance, clients sending 30Mbps stream each were used
thus emulating multimedia clients utilizing DV [9] video format sent in RTP
packets over the IP network [10]. During the experiment the number of active
(both sending and receiving) clients was increased and there was a single passive
(listening only) client used as a measuring probe. The results summarized in
Fig. 2 show that the system is usable for communication of up to five active
clients working with very high quality video. For clients with lower bandwidth
utilization, the number of clients that can get connected grows n ∝ 1/b where n is
the maximum number of connected clients and b is the bandwidth used. It is also
obvious from the results that the reflector is capable of fully saturating a gigabit
Ethernet network link with limits imposed by the hardware and operating system
used. The problem of scalability can be further tackled by building networks of
reflectors (Sec. 3.1).

We have also evaluated the maximum forwarding throughput of the reflector
which proves to be more demanding compared to common replication. This
corresponds to the fact that more data is transmitted over the PCI bus compared
to the replication mode. The results summarized in Fig. 3 show that it is possible
to forward approximately 450Mbps without significant packet loss.

C

1 2 3 4 5 6 7
Clients

0

5

10

15

20

25

30

35

40

R
ec

ei
ve

d
 P

ac
ke

t
L

o
ss

 [
%

]

29.913
118.9 270.6 479.9 755.1 916.0 916.4

Measured Aggregate Outbound Traffic [Mbps]

1 2 3 4 5 6 7
Clients

0

100

200

300

400

500

600

700

800

900

1000

U
ti

liz
ed

 B
an

d
w

id
th

 [
M

b
p

s]

received data per client
aggregate bandwidth
from the reflector
theoretical dependence
saturation of GE

Fig. 2. Reflector prototype performance evaluation for 30 Mbps clients.

0 100 200 300 400 500 600 700 800 900 1000
Sent Bandwidth [Mbps]

0

5

10

15

20

25

30

35

R
ec

ei
ve

d
 P

ac
ke

t
L

o
ss

 [
%

]

Fig. 3. Raw forwarding performance of the reflector.

3.1 Scalability Implications

As already mentioned in the Sec. 2 and 3, the scalability of the reflector-based
communication environment can be further improved by creating networks of
the reflectors connected via tunnels. The simplest model, which can also be
used as the worst case estimate, is a complete graph in which each reflector
communicates directly with all the remaining reflectors as shown in Fig. 4a. We
call such model full mesh tunneling.

Let’s assume a mesh of the reflectors in which each reflector has either nr or
nr−1 clients resulting in the most balanced population of reflectors with clients.
It is possible to show that the number of inbound streams on each reflector is

in = n, (1)

where n is the total number of clients. The number of outbound streams for
reflector with nr clients is

outnr
= nr(m + n− 2), (2)

C

where m is the total number of reflectors in the mesh. The ratio of outbound
traffic for the reflectors with nr and nr − 1 clients is

outnr−1

outnr

=
nr − 1

nr

. (3)

Taking into account that nr = d n

m
e and the number of streams on a single

stand-alone reflector is outs = n(n − 1), it is possible to show that the ratio
between the limiting outbound traffic for the reflector participating in the mesh
of reflectors outnr

and a stand-alone reflector outs is

outnr

outs

≈
m + n− 2

m(n− 1)
. (4)

As illustrated in Fig. 4b for meshes with varying numbers of the reflectors, it
is possible to increase the number of clients sending 30Mbps to 15 when a mesh
of 12 reflectors with gigabit network link is used.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Clients

0

100

200

300

400

500

600

700

800

900

1000

S
en

t
B

an
d

w
id

th
 [

M
b

p
s]

m=1
m=2
m=4
m=8
m=12
saturation of GE

(a) (b)

Fig. 4. (a) Full mesh reflector tunneling model. (b) Dependence of the number of
30 Mbps clients on the number of reflectors in the mesh.

4 End-User Applications

The reflector, capable of processing and distribution general purpose UDP pack-
ets, is able to support variety of end-user collaborative applications. Specific
end-user requirements can be served by different versions, distinguished by spe-
cific processing capabilities (modules). Routinely, we use reflectors in connection
with the vic, rat, and wbd tools from the MBone Tools package [11].

C

Different user groups used this environment during the last 3 years mostly
for videoconferencing purposes, in very heterogeneous network conditions. While
some groups enjoy rather homogeneous network environment, where all clients
are connected through 100Mbps network and the backbone runs on 1Gbps and
above speed, the reflector-based videoconferencing system is also regularly used
in an environment where some clients are connected via cable TV. Even the
network latency can be accommodated—we support a user group where most
members are located in the Czech Republic (with clients both on high speed
academic network and on a cable TV one) and one client connects via cable TV
from Seattle (Washington, USA). Such an environment is rather hostile to the
native MBone while reflector based data distribution works without problems.
Another experimentally confirmed advantage is simultaneous support of different
versions of MBone tools—again very problematic with native multicast.

As current high-quality videoconferencing tools tend to utilize high quality
and high-bandwidth multimedia streams, we have also successfully tested the
reflector with the DV over IP transmission tools from the DVTS project. We
re-implemented the xdwshow tool (to overcome some problems encountered in
its official implementation) and we have versions for PAL and NTSC formats
under the Linux and FreeBSD operating systems. Our implementation uses ro-
bust thread architecture, where individual threads are used to input data from
network, render them and display the resulting picture. This new implementa-
tion also support communication with reflector [12]. We plan to use this high
quality video environment for teaching purposes, e.g. real time transmission from
a neurological operation. Also, such high quality video streams can be used for
the 3D video, using also the synchronization feature of the reflector.

5 Conclusion

The reflector is an active programmable network node providing all the necessary
support for group communication in unicast networks. Our solution can simulate
the multicast connectivity transparently, so the multicast clients can be used
with ease, while keeping the advantages of unicast point-to-point communication
lines. The reflectors function as multicast rendezvous points, allowing clients to
connect and leave without any undesired influence on the rest of the group.
The startup and shutdown of reflectors is a part of active network programming
and as such it is fully user controlled. Users are also free to connect reflectors
together in an ad hoc way and to specify behavior of each individual reflector,
including possible security requirements and QoS parameters. A more general
contribution is the method introducing new services into a network. The user
empowered overlay network can be built a local scope (where needed), using only
the features actually needed and within a limited time frame only. The network
in this case is not overloaded by new protocols etc. and remains simple, robust,
and fast.

While individual reflectors do not scale well and are able to support groups of
tens of clients at most, their mesh is scalable enough to support a sufficient num-

C

ber of clients. Interesting direction of reflector development is the implementation
of self-organizing and automatic discovery capabilities stemming from ideas of
peer-to-peer networking. We will consider either the pure, hybrid or super-peer
modes to define the best model for the reflectors self organization. The reflectors
will be able to create overlay networks that can sustain even partial network
disintegration without completely breaking overlay network.

As the reflectors can create the overlay networks, the reflector based solution
does not depend on any specific functionality of the underlying network. All
the advanced features are provided by higher user-controlled layers. Any group
needing to collaborate can start its own reflector(s) and a unicast connectivity is
the only required network capability from any client to the reflector. While the
data routing and the data replication are automatically provided, user-specific
services can be added as extensions (modules) to the reflector.

The future work will include control through grid service interfaces, as speci-
fied by an Open Grid Services Architecture framework [13]. This will enable easy
integration with both next-generation collaborative Grid environments (e. g. Ac-
cessGrid version 2.x [14]) and with an optical network control plane, purposely
built using the web/grid service approach. Thus the reflector will be able to
cooperate easily with either the underlying network or other collaborative envi-
ronment frameworks. The next direction in future work is concerned in develop-
ment of user administration of reflector’s data processing capabilities. Possible
example of this administration is moderating data streams and creating com-
munication environment for sub-group discussion inside the videoconferencing
groups and fully moderated discussion like teaching in virtual classroom.

6 Acknowledgements

This research has been kindly supported by a research project “High Speed
Research Network and its New Applications” (MŠM000000001) and “Optical
Network of National Research and Its New Applications” (MŠM 6383917201).
The authors would like to thank to Tomáš Rebok for helping with the imple-
mentation of performance evaluation tools.

References

1. Chin Jr., G., Myers, J., Hoyt, D.: Social networks in the virtual science laboratory.
Communications of the ACM 45 (2002)

2. Psounis, K.: Active networks: Applications, security, safety and architectures.
IEEE Communication Surveys (1999)

3. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: 18th ACM Symp. on Operating Systems Princpiles (SOSP), Banff,
Canada (2001)

4. Denemark, J., Holub, P., Hladká, E.: RAP – Reflector Administration Protocol.
Technical Report 9/2003, CESNET (2003)

C

5. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001) 329–
350

6. Rebok, T., Holub, P.: Synchronizing RTP Packet Reflector. Technical Report
7/2003, CESNET (2003)

7. Bouček, T.: Kryptografické zabezpečeńı videokonferenćı. Master’s thesis, Military
Academy Brno (2002) Czech only.

8. Salvet, Z.: Enhanced UDP packet reflector for unfriendly environments. Technical
Report 16/2001, CESNET (2001)

9. Internation Electrotechnical Commission: IEC 61834: Recording – Helical-scan
digital video cassette recording system using 6,35 mm magnetic tape for consumer
use (525-60, 625-50, 1125-60 and 1250-50 systems). (1998, 1999, 2001) Parts 1–10,
http://www.iec.ch.

10. Ogawa, A., Kobayashi, K., Sugiura, K., Nakamura, O., Murai, J.: Design and
implementation of DV based video over RTP. In: Packet Video Workshop 200.
(2000) http://www.sfc.wide.ad.jp/DVTS/pv2000/index.html.

11. Hladká, E., Holub, P., Denemark, J.: Teleconferencing support for small groups.
In: Terena Networking Conference ’02, TERENA (2002) http://www.terena.nl/

tnc2002/proceedings.html.
12. Hladká, E., Holub, P., Lǐska, M.: Modular communication reflector with dv trans-

mission. In: VRS’04, PASNET (2004) Czech only.
13. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG, Global Grid Forum (2002)

14. Childers, L., Disz, T., Olson, R., Papka, M.E., Stevens, R., Udeshi, T.: Access grid:
Immersive group-to-group collaborative visualization. In: Proceedings of Immersive
Projection Technology, Ames, Iowa (2000)

C

Appendix D

Communication Support as the User
Tool

by Eva Hladká and Jiří Denemark

In 4th International Conference on Emerging e-learning Technologies and Applications, ICE-
TA’2005. Košice, Slovakia, September 2005. Proceedings. elfa s. r. o., 2005. pp. 283–288, 6 p.
ISBN 80-8086-016-6.

Communication Support as the User Tool

Eva Hladká
Faculty of Informatics

Masaryk University Brno
Czech Republic
eva@fi.muni.cz

Jiří Denemark
Faculty of Informatics

Masaryk University Brno
Czech Republic

jirka@ics.muni.cz

Abstract

Besides the network support, collaborative
environments generally comprise of an administration
portal and user tools. User empowered replication units
called active elements provide the last building block for
the fully user controlled collaborative environment,
adding user control over the necessary network
properties. We developed a user empowered packet
reflector whose directly controlled features are described
here. Users may control the collaborative environment
by means of setting up the reflector through a web
interface and controlling does not depend on other
videoconferencing tools. The major high-level features
supported are recording, moderating, and subgrouping.

1. Introduction

Various systems and technologies for
videoconferencing and more generally for collaborative
environment have been developed in the last 20 years.
Common feature of these technologies was a separation
in two parts: user tools controlled by end users and
network support for multipoint data distribution.
Multipoint data distribution can be based on native
multicast (parallel communication schema), on a
hardware or software replicating and distributing element
called—reflector—(serial distribution schema), or on a
combination of both approaches. While multicast is the
most efficient approach which scales very well, its
reliability and robustness are not sufficient. The reflector
solution is independent of advanced network services but
does not scale easily. Typical examples of
videoconferencing collaborative systems are:

• Mbone,
• H.323,
• ISABEL.

In case of Mbone videoconferencing systems
(including various types of videoconferencing systems
like AccessGrid Point [1] and VRVS [2]), Mbone end-
user application programs are used with a combination of
native multicast, unicast bridges to multicast cloud on
places where multicast is not available or on software
reflectors. H.323 videoconferencing systems (MS
Netmeeting, hardware clients) are using hardware or
recently also software MCU (Multipoint Connection
Unit). MCU does not scale well, for large
videoconferences it is necessary to create a network of
MCUs. ISABEL [3] creates its own data distribution
infrastructure of reflectors and this infrastructure is able
to optimize data flows during the session.

Native multicast is an advanced network service and is
fully independent of users. Even network administrators
have only limited chance to change the otherwise
automatic multicast behavior. Network bridges to
multicast cloud are in users hands but their role is only
bridging to multicast-enabled part of the network without
any user controlled features. Hardware MCU is from the
user’s point of view similar to multicast being part of the
network infrastructure. The software reflector is the most
flexible from this point of view.

After several years long experience with various
videoconferencing systems, we learnt that creating an
infrastructure for group communication fully controlled
by users and overlaying the basic network is the
necessary next step in development of communication
infrastructure.

Let us discuss reasons for creating an overlay network
infrastructure. The network is heterogeneous in many
parameters and demands on network infrastructure of
communicating groups are heterogeneous, too. General
solutions pose great demands on network infrastructure
and usually can satisfy only part of users’ demands. If,
instead of general solution for everybody, we could create
a tailored infrastructure for each case, covering specific
users’ demands, this plethora of overlay networks limited

D

both in time and span could cover user demands in a
much better way.

During the last years, the architecture of an active
element fully controlled by the user has been created,
implemented and used [4, 5, 6]. The goal of this paper is
to show this element not only as a tool for creating
overlay network for multipoint data distribution but in the
role of user application tool that allows direct data
transfer control during the videoconferences. This is the
basic requirement to implement an environment that
reflects situation encountered in direct human
communication.

2. Active Element

Active element is a multiplication data unit. Its
architecture is based on active router architecture
described in [4] which has been modified to work entirely
within the user space. Active element functionality is
divided into two parts:

• data routing and processing,
• administration of the active element.

Data routing and processing is in detail described in [5,
6] and is not discussed in this paper. The second part—
AE administration—is the main part for user to be able to
use the active element directly as a user tool.

2.1. Administrative part of the AE

Communication with the reflector from the
administrative point of view is provided using messaging
interfaces, management module, and administrative AAA
module of the reflector.

Messaging interface is a generic entity which can be
instantiated as RPC, SOAP, HTTP interface with
SSL/TLS support, for example, or as a simple TCP
connection limited to the loopback interface of the
machine running the reflector. Each of these interfaces
unwraps the message if necessary and passes it to the
management module.

The administrative protocol called RAP (Reflector
Administration Protocol, [7]) has been defined for
administrative communication with reflector modules
using messaging interfaces.

An individual RAP parser is run for each
administrative session. The parser uses callback functions
registered by the module the parser is run from to read
input data from the messaging interface. The parser then
performs a request syntax validation and hands over each
valid request to the management module.

Messaging interface architecture and its connections to
the management module are illustrated in Figure 1.

Figure 1. Message interface schema

The management module checks the validity of the
message and its authenticity and authorization status,
querying the administrative AAA module, which is also
responsible for the processing of accounting information
of accepted messages. The availability of sufficient
resources to process accepted messages is checked with
the resource management module and afterwards the
message is passed to the appropriate module(s). The
completion status is returned back to the management
module, which notifies the administrative AAA module to
close the accounting. If a failure occurs, its description is
stored via the administrative AAA module and is sent
back to the client via the client’s messaging interface.

The same mechanism can be used for logging
purposes. A command to invoke sending logging
information can be issued using the messaging interface.
One or more messaging interfaces may also be opened
with the LOGGING flag set which causes the interface to
request the reflector to send all logging information
automatically. Messaging interfaces such as the reflector
syslog interface can be used—it logs information
without user intervention. Messaging interfaces receive
events created within the reflector via the management
module.

2.2. AE administration protocol

The protocol RAP is designed as soft-state, i.e., the
connection is closed after a certain period of client
inactivity. Keep-alive messages have to be sent if the
client wants to maintain connection and does not have
any requests to send.

The protocol uses request-response schema: each
request is followed by one or more responses. If some
messaging interface has LOGGING flag set it will send a
request to obtain logging information according to the
reflector startup configuration (e.g., such messaging
interface can provide syslog interface).

The protocol also contains a module identification to
be able to deliver requests to selected modules only.

RAP is designed to be easily extensible without the
need for changing its specification. Any reflector’s
module can specify its own RAP requests controlling
specific behaviour of a particular module. By sending
requests to modules providing a special functionality, a

D

user is able to control all additional features of the active
element.

3. Active Element Features

The basic information about the AE we described is
sufficient to demonstrate that various functions can be
designed and implemented. In unity with the focus of this
paper, three functions which transform the AE into the
collaborative user tool will be described in detail.

3.1. Recording

Some videoconferencing tools support recording, so
that the data sent/received can be stored locally (by a
client) for later inspection or replay. However, not all
tools support this activity, and sometimes it may be
beneficial to have a single storage point that records all
the data transmitted during a session. The centralized data
recording facility has many advantages over much
simpler features of most videoconferencing clients. It may
be a trusted neutral agent (no local editing of content), it
can guarantee to store all data actually transmitted (in
contrast to a local client which may experience some local
data loss) and it may be more efficient (just one copy of
the data is created).

The recording module within the reflector is controlled
by end users and it may be used to recording or replaying
the whole communication independently of users’ tools.
The fact that data generated by all tools used for a
communication are stored in a single place allows a
synchronized replay of all streams.

3.2. Moderating

In parallel collaboration within a group of people,
group members perform activities in parallel while trying
to coordinate these activities at the same time. This type
of collaboration is usually quite difficult and complex, as
people must coordinate their actions on the same subject.
It is the interaction among group members that
determines the outcome of a particular collaboration. A
whole area of psychological science—group dynamics—
is dedicated to this problem [8].

With an increased number of group members weighted
interactivity of all members decreases and at some point
efficiency of collaboration can be increased only by
appointing somebody to administer the communication.
Also the multi-directionality of communication among
members decreases and from some point a one-way
communication prevails.

For example, two persons are working on the same
text. They are sitting opposite each other and speaking
about the subject. Their communication is bidirectional

and equal. When a third person joins the group,
communication triangle is created and the work continues
with three people in a similar pattern. It will be the same
case with four, five, six, and seven persons, even when
this is accompanied with the growing problems associated
with multi-directional communication. Increasing
complexity of such a communication is illustrated in
Figure 2.

Figure 2. Multi-directional communication

schema

However, for eight or more persons in a non-
moderated group (i.e. all members are equal and have the
same position within a group), the efficiency of
communication is dramatically reduced. So with a
growing number of participants, one (or very small
number) of them must become moderators of the
communication and one-way communication begins to
dominate when one person speaks and others mostly
listen. It becomes the moderator’s decision who will
speak next. A communication model with a moderator is
shown in Figure 3.

Figure 3. Moderated communication

For non-virtual moderated collaboration environment
when all persons are present at the same place, the
efficiency of communication relies on all listening people
being quiet and not disturbing. On the other hand,
collaboration in a distributed group of people connected
with network lines has an important advantage—the
moderator can enforce her/his decision by cutting data
from all persons except for the one who was given the
floor. In this section, we will focus on a communication
support for moderated communication within a

D

distributed groups and how a user (as a moderator) can
control the communication layer.

The possibility to give the floor and cut off other
streams is important mainly for large groups of people
with members who are not involved in the
communication enough to keep attention and be quiet.
Such a situation happens e.g. in education—not all
students are interested in all lectures and they could
disturb others if the teacher (moderator) did not have an
option to restrict data transfer.

Also groups which require high quality
communication accompanied by high transmission
bandwidth utilization may benefit from moderating as
group members (except for moderator) have to receive
only a limited number of data streams. Besides, the
number of streams is constant and independent of a
number of group members. Still, the network line from
moderator to a reflector may easily become a bottleneck
of a whole environment. To eliminate such constriction a
transcoding feature [6] of the reflector can be configured
leaving only the selected stream intact and transcoding all
other streams (mostly used for floor requests) into a lower
quality. Thus, each participant (including the moderator)
receives only one full-quality stream.

The moderating feature is provided by a special
processing module of the reflector. According to
moderator’s requests, the module decides which RTP and
RTCP packets may pass through the reflector to a
particular person without being changed, which of them
have to be changed or replaced, and which packets are
discarded. Headers of RTP and RTCP packets sent by a
person who was given the floor are altered in such a way
that the packets seem to be sent by an additional virtual
member of a communicating group. Thus, all data packets
from people sequentially chosen by a moderator to talk
form a single data stream regardless of a particular
speaker.

By now, speakers are distinguished by their IP address
which prevents distributed reflectors to be used for better
scalability. In the near future, the module will be
extended to use SSRC field of RTP header and canonical
name of a source (CNAME item of RTPC packets)
[rfc3550] as a unique identifier of each participant
independently of a machine from which a reflector
receives data packets.

3.3. Subgrouping

In common life when people meet to cooperate, they
often (and especially in large groups of people) need to
discuss some details of a topic within an isolated group
(subgroup) so that other participants cannot overhear such
discussion. We use either whispering or move to another
place. Both of these solutions may have their

disadvantages—persons which are physically close to the
whispering group are still able to overhear at least some
parts of the communication while the second solution
requires people to actually move and once they are
moved, they cannot hear the rest of the group any more.

Such functionality have to be supported directly by a
communication layer otherwise the only way of satisfying
the need for creating isolated subgroup is to create stand-
alone group which is the equivalent of changing place.
Besides, participants who want to create a subgroup have
to be physically isolated. By adding support for
subgrouping into a communication layer, all
disadvantages of non-distributed collaboration
environment may be bypassed by separating a subgroup
from the rest of a whole group by a “semi-permeable
wall“. Thus, private communication among members of a
subgroup cannot be overheard by other people while a
discussion outside the subgroup is still distributed to all
(including subgroup members) participants.
Communication schema within a group with private
subgroup is illustrated in Figure 4.

Figure 4. Subgrouping

Implementation of subgrouping for our reflector-based
communication architecture is quite straightforward as it
does not require any data processing. The module
designed to support subgrouping just alters a list of
clients each packet is to be send to. A decision which
clients should be removed from distribution list is based
on user request specifying all members of a subgroup.
Current design of the module uses IP addresses as users’
identifier and it will be changed in the same way as
moderating module for distributed reflector architecture.

4. User Interface

To provide a user interface, we associated the web
server with the reflector. This association allows us to

D

create an end-user interface as well as an administrator
interface for the reflector without introducing any new
unexpected functionality for the end user to learn. Also,
the availability of web browsers for practically all
computer and operating systems platforms contributed to
our choice of this technology to open higher level access
to the reflector and its functionality.

The web portal that is currently being developed is
composed of two major parts—informational and
administrative. The informational part is publicly
accessible and it is used to advertise information about
the reflector and current as well as planned conferences.
Access to the administrative part is authenticated by login
name and a password and uses SSL for securing the
communication.

The administrative part serves to manage conferences
and reflectors (although each user does not need to use
more than one reflector) allowing a user to start and stop
her/his reflector as well as perform such complex tasks as
moderating the conference or creating a private subgroup.

The web interface can be used to control both local
and remote reflectors. Local reflector is started directly
through the web interface and is running on the same
host. A user can set up one local reflector at most.
Obviously, remote reflector is running on any host and it
is user’s responsibility to start the reflector and set it up
so that the web interface can communicate with it. In
contrast to local reflector, each user can control any
number of remote reflectors. Thus, even reflectors
running on host with no web server can still be controlled
comfortably using the web interface.

5. Videoconferencing with AE

The processing and distribution of UDP packets which
is at the core of the active element provides support for
variety of end-user collaborative applications. We use the
active element based reflectors routinely with client tools
like vic, rat, and wbd from Mbone tools package. The
user interface of the reflector gives direct control over the
data processing to the end user’s hands.

As current high-quality videoconferencing tools tend
to utilize high-quality and high-bandwidth multimedia
streams, we have also successfully tested the reflector
with the DV over IP transmission tools from the DVTS
project [11].

6. Conclusions

We decided to provide group data distribution needed
for collaborative environments through the serial
communication schema. This schema is enabled by the
technology of active networks. The active element based
on active nodes fully under end users’ control allow to

design and implement new functions that are used and
controlled by users during the actual data transmission.
Three such functions

• recording,
• moderating,
• subgrouping

are described in details. The actual reflector control is
made available through the web portal, which also
support planning the collaborative events and play the
controlling and informational role. The active element
became a new type of user tool with functions under
direct users’ control. This setup empowers users with the
capability to create the synchronous communication
environments as realistic as possible.

These three features were inspired by users’ demands
and were created for concrete users’ groups. Of course it
is possible to create other functions and modular
architecture of reflector is flexible enough to allow for
their easy implementation.

It is evident that active element does not scale well. In
related paper this problem was studied and a solution
provided [10]. Thanks to active element’s modular
architecture it is possible to create overlay networks from
AE with no worse scalability and more robust then
multicast solution. However, having more than one AE,
we added possibility to change the AEs network
dynamically during the collaborative session. Taking into
account that each AE has its administrator, it leads to a
necessity to define correct form of user-controlled
functions to make them able to cooperate. This is one of
the future goals of development of AE.

7. Acknowledgement

This research is supported by a research intent
“Optical Network of National Research and Its New
Applications” (MŠM 6383917201). We would also like
to thank to Assoc. Prof. Luděk Matyska for stimulating
discussions on virtual human communication and for
proof reading this text.

8. References

[1] AccessGrid. http://www.accessgrid.org/
[2] Virtual Rooms VideoConferencing System (VRVS).
http://www.vrvs.org/
[3] ISABEL. http://isabel.dit.upm.es/
[4] E. Hladká, Z. Salvet. An Active Network Architecture:
Distributed Computer or Transport Medium. Heidelberg:
Springer-Verlag Berlin, 2001. LNCS 2094.
[5] E. Hladká, P. Holub, and J. Denemark. User Empowered
Virtual Multicast for Multimedia Communication. In ICN’2004
Conference Proceedings. March 2004.
[6] E. Hladká, P. Holub, and J. Denemark. User-Empowered
Programmable Network Support for Collaborative

D

Environment. In Universal Multiservice Networks: Third
European Conference, ECUMN 2004. Springer-Verlag
Heidelberg. October 2004. Pages 367–376.
[7] J. Denemark, P. Holub, and E. Hladká. RAP—Reflector
Administration Protocol. Technical report. CESNET z. s. p. o.,
2003. 32 pages. 9/2003.
[8] D. R. Forsyth. Group Dynamics. Wadsworth Publishing
Company, 3rd edition, 1999.
[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC
3550. June 2003.
[10] P. Holub, E. Hladká, and L. Matyska. Scalability and
Robustness of Virtual Multicast for Synchronous Multimedia
Distribution. In Networking—–ICN 2005: 4th International
Conference on Networking
[11] E. Hladká, M. Liška, and T. Rebok. Stereo video over IP
network. Proceedings of International Conference on
Networking and Services 2005. Accepted paper.

D

Appendix E

Scalability and Robustness of Virtual
Multicast for Synchronous
Multimedia Distribution

by Petr Holub, Eva Hladká and Luděk Matyska

In 4th International Conference on Networking, ICN 2005, Reunion Island, France, April
2005. Proceedings. Lecture Notes in Computer Science 3421, Heidelberg: Springer Berlin,
2005. 8 p. ISSN 0302-9743.

Scalability and Robustness of Virtual Multicast

for Synchronous Multimedia Distribution

Petr Holub1,2, Eva Hladká1, and Luděk Matyska1,2

1 Faculty of Informatics
2 Institute of Computer Science,

Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
hopet@ics.muni.cz, eva@fi.muni.cz, ludek@ics.muni.cz

Abstract. A simple UDP packet reflector for virtual multicast multime-
dia transfer is extended to form a distributed system of active elements
that solves the scalability problem of otherwise centralistic approach. The
robustness of such virtual multicast delivery system is also discussed and
shown to be better than the native multicast can offer. The maximum
latency, important for multimedia transfer and related to the number
of hops through the network of active elements, can be kept bounded.
Possible support for synchronized multi-stream transfer is also discussed.

1 Introduction

A virtual multicasting environment, based on an active network element called
“reflector” [1] has been successfully used for user-empowered synchronous mul-
timedia distribution across wide area networks. While quite robust replacement
for native, but not reliable multicast used for videoconferencing and virtual
collaborative environment for small groups, its wider deployment is limited by
scalability issues. This is especially important when high-bandwidth multimedia
formats like Digital Video are used, when processing and/or network capacity
of the reflector can easily be saturated.

A simple network of reflectors [2] is a robust solution minimizing additional
latency (number of hops within the network), but it still has rather limited scal-
ability. In this paper, we study scalable and robust synchronous multimedia dis-
tribution approaches with more efficient application-level distribution schemes.
The latency induced by the network is one of the most important parameters,
as the primary use is for the real-time collaborative environments. We use the
overlay network approach, where active elements operate on an application level
orthogonal to the basic network infrastructure. This approach supports stability
through components isolation, reducing complex and often unpredictable inter-
actions of components across network layers.

2 Synchronous Multimedia Distribution Networks

Real-time virtual collaboration needs a synchronous multimedia distribution net-
work that operates at high capacity and low latency. Such a network can be

E

composed of interconnected service elements—so called active elements (AEs).
They are a generalization of the user-empowered programmable reflector [1].

The reflector is a programmable network element that replicates and op-
tionally processes incoming data usually in the form of UDP datagrams, using
unicast communication only. If the data is sent to all the listening clients, the
number of data copies is equal to the number of the clients, and the limiting
outbound traffic grows with n(n− 1), where n is the number of sending clients.
The reflector has been designed and implemented as a user-controlled modular
programmable router, which can optionally be linked with special processing
modules in run-time. It runs entirely in user-space and thus it works without
need for administrative privileges on the host computer.

The AEs add networking capability, i. e. inter-element communication, and
also capability to distribute its modules over a tightly coupled cluster. Only the
networking capability is important for scalable environments discussed in this
paper.

Local service disruption—element outages or link breaks—are common events
in large distributed systems like wide area networks and the maximum robustness
needs to be naturally incorporated into the design of the synchronous distribu-
tion networks. While the maximum robustness is needed for network organiza-
tion based on out-of-band control messages, in our case based on user empowered
peer to peer networks (P2P) approach described in Sections 3.1 and 5, the ac-
tual content distribution needs carefully balanced solution between robustness
and performance as discussed in Section 4. The content distribution models are
based on the idea that even sophisticated, redundant, and computationally de-
manding approaches can be employed for smaller groups (of users, links, network
elements, . . .), as opposed to simpler algorithms necessary for large distributed
systems (such as the global Internet). A specialized routing algorithm based on
similar ideas has been shown, e. g. as part of the RON approach [3].

3 Active Element with Network Management

Capabilities

As already mentioned in Sec. 2, the AE is the extended reflector with the capabil-
ity to create network of active elements to deploy scalable distribution scenarios.
The network management is implemented via two modules dynamically linked
to the AE in the run-time: Network Management (NM) and Network Informa-
tion Service (NIS). The NM takes care of building and managing the network
of AEs, joining new content groups and leaving old ones, and reorganizing the
network in case of link failure.

The NIS serves multiple purposes. It gathers and publishes information about
the specific AE (e. g. available network and processing capacity), about the net-
work of AEs, about properties important for synchronous multimedia distri-
bution (e. g. pairwise one-way delay, RTT, estimated link capacity). Further,
it takes care of information on content and available formats distributed by the

E

network. It can also provide information about special capabilities of the specific
AE, such as multimedia transcoding capability.

The NM and NIS modules can communicate with the AE administrator
using administrative modules of the AE kernel. This provides authentication,
authorization, and accounting features built into the AE anyway and it can also
use Reflector Administration Protocol (RAP) [4] enriched by commands specific
for NM and NIS. The NM communicates with the Session Management module
in the AE kernel to modify packet distribution lists according to participation
of the AE in selected content/format groups.

3.1 Organization of AE Networks

For the out-of-band control messages, the AE network uses self-organizing prin-
ciples already successfully implemented in common peer to peer network frame-
works [5],[6], namely for AE discovery, available services and content discovery,
topology maintenance, and also for control channel management. The P2P ap-
proach satisfies requirements on both robustness and user-empowered approach
and its lower efficiency has no significant impact as it routes administrative data
only.

The AE discovery procedure provides capability to find other AEs to create
or join the network. The static discovery relies on a set of predefined IP addresses
of other AEs, while the dynamic discovery uses either broadcasting or multicas-
ting capabilities of underlying networks to discover AE neighborhood. Topology
maintenance (especially broadcast of link state information), exchange of in-
formation from NIS modules, content distribution group joins and keep-alives,
client migration requests, and other similar services also use the P2P message
passing operations of AEs.

3.2 Re-balancing and Fail-Over Operations

The topology and use pattern of any network changes rather frequently, and
these changes must be reflected in the overlay network, too. We consider two
basic scenarios: (1) re-balancing is scheduled due to either use pattern change or
introduction of new links and/or nodes, i. e. there is no link or AE failure, and
(2) a reaction to a sudden failure.

In the first scenario, the infrastructure re-balances to a new topology and
then switches to sending data over it. Since it is possible to send data simul-
taneously over both old and new topology for very short period of time (what
might result in short term infrastructure overloading) and either the last re-
flector on the path or the application itself discards the duplicate data, clients
observe seamless migration and are subject to no delay and/or packet loss due
to the topology switch. This scenario also applies when a client migrates to other
reflector because of insufficient perceived quality of data stream.

On the contrary, a sudden failure in the second scenario is likely to result
in packet loss (for unreliable transmission like UDP) or delay (for reliable pro-
tocols like TCP), unless the network distribution model has some permanent

E

redundancy built in. While multicast doesn’t have such a permanent redun-
dancy property, the client perceives loss/delay until a new route between the
source and the client is found. Also in the overlay network of AE without per-
manent redundancy, the client needs to discover and connect to new AE. This
process can be sped up when client uses cached data about other AEs (from the
initial discovery or as a result of regular updated of the topology). For some ap-
plications, this approach may not be sufficiently fast and permanent redundancy
must be applied: the client is continuously connected to at least two AEs and
discards the redundant data. When one AE fails, the client immediately tries
to restore the degree of redundancy by connecting to another AE. The same
redundancy model is employed for data distribution inside the network of AEs,
so that re-balancing has no adverse effect on the connected clients.

The probability of failure of a particular link or AE is rather small, despite
high frequence of failures in global view of large networks. Thus the two fold
redundancy (k = 2) might be sufficient for majority of applications, with possi-
bility to increase (k > 2) for the most demanding applications.

4 Distribution Models

4.1 Multicast Schemes

In an ideal case, the multicast organization of the data distribution is the most
efficient scheme to distribute data to multiple clients. However, it is very difficult
for a user to place AEs into the physical network topology in such a way that
no data will pass through any physical link twice. The only exception may be
when AE network is implemented as a network of active routers, but this goes
against the user-empowered approach we support. Thus the multicast paradigm
is only an upper-limit on efficiency of the distribution.

There are two basic approaches to build multicast distribution tree: source-
based tree also known as shortest path tree (SPT) and shared tree. Regarding
the synchronous character of multimedia data distribution, the SPT with re-
verse path forwarding (RPT) has two major advantages: it minimizes latency
compared to shared tree where the data is sent through rendezvous point and
it provides shortest paths between the source and the receivers (advantage for
large volume of data transmission).

To build SPTs, it is necessary to have underlying unicast routing information.
This information can be maintained very efficiently by RON [3]. As an addition
to fast convergence in case of network link failure, it is possible to define policy
to select the shortest path not based on hop count, but based on path round
trip time or even one way propagation delay if available.

Fail-Over Operation Standard operation when the link failure occurs is to
build a new SPT as described above. If even the convergence speed of RON
is not acceptable, there is another possible strategy to minimize delay due to
SPT reconstruction. It is possible to compute multiple SPTs at the same time,

E

170 180 190 200 210 220 230
time [s]

0

5

10

15

20

25

30

re
ce

iv
ed

 p
ac

ke
ts

 p
er

 s
ec

on
d

Fig. 1. Recovery time for with backup SPT (solid line) and without it (dashed line)
simulated using cnet-based network simulator.

choose single SPT for data distribution and keep the remaining SPTs for fail-
over operation. For permanent redundancy scenario, more than one SPT can be
used simultaneously and duplicate data will be discarded by client applications.
In full graph, there are n2−n links between the AEs. For a small number of AEs,
alternative SPTs can be computed that don’t use one selected link at a time. If
that particular link fails, the alternative SPT can be immediately switched on.
For larger number of AEs where number of links is too large, it is possible to
compute bn/2c possible SPTs with disjunct set of links. When using SPTs or
shared trees (ST) with backup based on disjunct sets of links, it is necessary to
ensure that not all links from one AE are used in one SPT/ST, since the AE
would become isolated in backup SPT/ST. When backup SPT/ST is available,
the network recovery is limited just by broadcast speed to announce switching
to a new SPT/ST, but when there is no backup, the alternative SPT/ST must
be computed first (Fig. 1). During the normal operation, all these SPTs are
monitored for their usability and when link fails in the current SPT, the original
SPT can be swapped for another working SPT if at least one other usable SPT
is available.

4.2 2D Full Mesh

The simplest model with higher redundance, serving also as the worst case es-
timate in terms of scalability, is a complete graph in which each AE communi-
cates directly with all the remaining AEs. This 2D full-mesh tunneling model
was studied and described in detail in [2]

Let’s assume a 2D full mesh of reflectors, each populated with nr clients.
The limiting traffic in this mesh is again the outbound traffic on the AE which
scales as out = n2

rm + nr(m − 2).

Fail-Over Operation When a link or whole AE drops out in the full mesh,
the accident only influences data distribution from/to the clients connected to
that AE. In case of link failure inside the AE mesh, the client is requested to

E

migrate to an alternative AE. In case that AE itself fails the client initiates
migration on its own. Alternative AEs should be selected randomly to distribute
load increase more evenly and the load increase will be d nr

m−1
e. When even this

migration delay is not acceptable, it is possible for a client to be permanently
connected to an alternative AE and just switch the communication. For even
more demanding applications, the client can use more than one AE for sending
in parallel.

Although this model seems to be fairly trivial and not that interesting, it has
two basic advantages: first, the model is robust and failure of one node influences
only data from/to the clients connected to that AE. Second, it introduces only
minimal latency because the data flows over two AEs at most. Next we will
examine another model that has the same latency and robustness properties but
that scales better.

4.3 3D Layered-Mesh Network

The layered mesh model creates k layers, in which data from a single AE are only
distributed. That means each client is connected to one layer for both sending
and receiving (sending only if nr = 1; in other cases the client needs to receive
data from remaining nr − 1 clients of the AE used for sending) and to all other
layers for receiving only. Each layer comprises 2D full mesh of m AEs. For the
sake of simplicity, we first assume that k = m and each AE has nr clients, thus
nr = n

m = n
k .

In this scenario, the number of inbound streams is in = nr. Number of
outbound streams is outs/r = n2

r + nr(m − 2) if the sending client is connected
to this particular AE, and outr = n2

r when only receiving clients are connected.
This model is problematic because of increasing the number of AEs used.

However it seems to be the last model that doesn’t introduce intermediate hops
and thus keeps hop-count at minimum.

Intermediate AEs Let’s create q-nary tree used for distributing data from
AE with sending clients to m − 1 AEs with listening clients. When building
q-nary tree with λ intermediate layers λ = logq(m− 1)− 1, the total number of

intermediate AEs is L =
∑λ

p=1
qp = m−1−q

q−1
.

Flows in this type of network are as follows: outs/r = nr(nr − 1) + qnr for
outer AE with sending clients connected, outr = n2

r for outer AE with only
receiving clients, and out i = qnr for inner intermediate AEs. For all types of
AEs, the number of inbound flows is nr.

There are however two disadvantages of this model:

– The number of hops inside the mesh of AEs increases by λ compared to the
plain 3D mesh model.

– Compared to the plain 3D model, the number of the intermediate AEs fur-
ther increases to mtot = mk + Lk. For m = k, it becomes mtot = m(m + L).

Nevertheless, this model provides the same redundancy while improving scala-
bility compared to the simple 2D mesh.

E

Fail-Over Operation Each of the mesh layers monitors its connectivity. When
some layer disintegrates and becomes discontinuous, the information is broad-
casted throughout the layer and to its clients. The clients that used that layer for
sending are requested to migrate to randomly chosen layer from the remaining
k−1 layers and the listening-only clients simply disconnect from this layer. Such
behavior increases load on the remaining k − 1 layers but as the clients choose
the new layer randomly, the load increases in roughly uniform way by d nr

k−1
e.

5 Content Organization

The multimedia content can be encoded in many different formats, that suit
specific needs or capabilities of the network and the listening clients. In some
cases (e. g. MPEG-4 formats) the highest quality format can be decomposed
into N different layers (groups) that are sent over network independently. When
native multicast is used, the client subscribes for the first M ∈ 〈1; N〉 groups
only, thus controlling the quality reduction of received content. With native
multicast, there is no easy way to prioritize and synchronize the streams, which
may lead to unexpected loss of quality (if data in the first layer are lost, the
other layers may render useless).

As AEs support also multimedia transcoding (capable of being active gate-

ways), an extended approach can be used. The format decomposition or even
transcoding to completely different format may be performed by an AE, provid-
ing a flexible on demand service–the transcoding occurs only if really needed by
some client. Also, the AEs are capable of synchronizing individual streams—they
“understand” the decomposition and may re-synchronize individual streams. In
case of severe overload, the higher (less important) stream layers are dropped
first (again, AEs know the hierarchy), so the transmission quality is minimally
affected.

To formalize our approach, we have designed three layer hierarchy:

– content groups—the highest level, an aggregation of several contents; it can
be for instance a videoconferencing group (e. g. video and audio streams of
individual videoconference participants)

– content—intermediate level, a content (a video stream, format independent)
– format—the lowest level, format definition.

Each multimedia stream in the network is then characterized by (content

group, content, format) triplet which creates one record in the SPT tree.
The available formats for each content create an oriented graph where the root
is the source format and the child nodes define the formats created from their
parents. A client can choose the best suitable format, or different formats for
different contents within one content group (e. g. a lecturer’s stream with the
highest quality).

The information about available content groups, content, and available for-
mats is published via NIS on AEs and is distributed and shared across the
network of AEs.

E

6 Related Work

There are a few known applications for synchronous distribution of multime-
dia data over IP networks. Probably the most important ones are cascading of
H.323 multi-point connection units (MCUs) and Virtual Room Videoconferenc-
ing System (VRVS). The networks of H.323 MCUs are based on a static pre-
configured topology and they don’t offer user-empowered approach. The VRVS
is only provided as a service and the users’ traffic is managed by VRVS admin-
istrators. Also, although the VRVS team reports some move in favor of more
elaborate and dynamic network of reflectors, we believe that creating flexible
user-empowered multimedia network is more suited for open systems without
centralized administration.

7 Conclusions

In this paper the models for the virtual multicast scalability were introduced with
discussion of robustness and fail over capabilities of the proposed solutions. We
have implemented a prototype of Active Element suitable for simple networking
scenarios for Linux and FreeBSD operating systems and the models have also
been verified using network simulator. The AE network organization support is
being implemented based on JXTA 2.0 P2P framework. The full application-level
multicast data distribution with multicast subgroups as described in Secs. 4.1
and 5 is under development.

8 Acknowledgment

This research is supported by a research intent “Optical Network of National
Research and Its New Applications” (MŠM 6383917201). We would also like to
thank to Tomáš Rebok for helping with implementation of network simulations.

References

1. Hladká, E., Holub, P., Denemark, J.: User empowered virtual multicast for multi-
media communication. In: Proceedings of ICN2004. (2004)

2. Hladká, E., Holub, P., Denemark, J.: User empowered programmable network sup-
port for collaborative environment. In: ECUMN’04. Volume 3262/2004 of Lecture
Notes in Computer Science., Springer-Verlag Heidelberg (2004) 367 – 376

3. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: 18th ACM Symp. on Operating Systems Princpiles (SOSP), Banff,
Canada (2001)

4. Denemark, J., Holub, P., Hladká, E.: RAP – Reflector Administration Protocol.
Technical Report 9/2003, CESNET (2003)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001) 329–350

6. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: IEEE Interna-
tional Conference on Data Engineering. (2003) 25

E

Appendix F

Stereoscopic Video over IP Networks

by Eva Hladká, Miloš Liška and Tomáš Rebok

In The First International Conference on Systems and Networks Communications, ICNS
2005. Papeete, Tahiti, October 2005. Proceedings. Institute of Electrical and Electronics
Engineers, 6 p. ISBN D-7695-2450-8.

Stereoscopic Video over IP Networks

Eva Hladká1,2, Miloš Liška1, and Tomáš Rebok1

1 Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic
2 CESNET z. s. p. o., Zikova 4, 160 00 Praha 6, Czech Republic

E-mail: {eva,xliska,xrebok}@fi.muni.cz

Abstract

Transfers of high-quality multimedia content pose new

demands on capacity and services provided by the con-

temporary high-speed computer networks. Transfer of

stereoscopic video is a specific example, as it needs syn-

chronization between two separate data streams. We

have set up a stereoscopic video capture system and

studied synchronization of two separate Digital Video

format streams sent over packet networks. We have

adapted application tools to support the synchroniza-

tion and used an active element working as a synchro-

nizing UDP packet reflector to explicitly synchronize

the streams if they are desynchronized in the network.

We have experimentally studied the quality of achiev-

able synchronization and the relationship between the

amount of desynchronization and the additional latency

overhead posed by buffering of the data on the synchro-

nizing reflector. The results prove our assumption that

even high-quality DV streams can be successfully syn-

chronized using the simple packet reflector running on

common IA32-based computer.

1. Introduction

Multimedia transfers are becoming one of the most

important applications for current high-speed computer

networks. New services, that are being developed for

high-performance multimedia processing and transport,

are often used to create virtual collaborative environ-

ments, where people can interact regardless of geo-

graphical distance between them. Most of the con-

temporary collaborative environments work in 2D only,

meaning that the reality, which has three dimensions

(3D), is reduced to 2D picture with inevitable loss of

some information connected with the depth of the space.

To simulate 3D environment by stereoscopic image,

two streams must be transmitted over the network syn-

chronously, one for each eye. To provide natural per-

ception, the quality of individual streams must be rather

high and thus high-resolution image with low compres-

sion needs to be deployed resulting in high data rate.

Such requirements are satisfied e. g. by Digital Video

format. Transmission and synchronization of stereo-

scopic video streams in DV format over the high-speed

network are studied in this paper.

Processing of multimedia content usually comprises

three phases: acquisition, transport, and presentation.

The acquisition of stereoscopic video capture uses two

cameras that mimic two human eyes. The two resulting

streams need to be transmitted over the network and re-

ceived synchronously by the display system. However,

common computer networks can’t enforce directly this

kind of synchronization. One possibility is to synchro-

nize and multiplex data at the source and send both video

streams in one data (packet) stream. However, process-

ing both streams on a single machine might not be feasi-

ble depending on video format used for the transmission.

Our solution is thus to synchronize otherwise indepen-

dently transmitted streams at some point in the network

close to the display nodes, where suitable active element

is placed. For purpose of our evaluation, the general pur-

pose active element has been implemented using simple

synchronizing UDP packet reflector.

2. Digital Video

In order to create highly realistic and information-

rich environment, we have opted for using Digital Video

(DV) format as the basic video format for our ex-

periments with stereoscopic video. It provides very

good image quality (with limits given by PAL resolu-

tion) while having reasonable compression ratio (ap-

prox. 5:1), low latency compression and decompression

process based on I-frames only, and sustainable require-

ments on processing infrastructure.

The DV video transmission over IP networks

has been standardized and implemented by DVTS

project [1] for several operating systems (e.g. Linux,

FreeBSD, Windows 2000/XP, and MaxOS X). The

DVTS project originally included (i) IEEE-1394 kernel

F

driver for FreeBSD, (ii) dvsend for sending the DV

video captured from IEEE-1394 to the network as a RTP

stream, (iii) dvrecv for receiving the DV stream from

the network and saving it locally to the disk, and (iv)

dvplay for sending any DV data to the IEEE-1394 de-

vice. The tools produced by the DVTS project are stable

and mature with the exception of the xdvshow proto-

type tool for displaying video locally using X-Windows

interface. We have reimplemented the xdvshow tool,

as its functionality is crucial for high quality display of

stereoscopic video.

The original xdvshow implementation used just one

thread for all operations on the DV video. The mutual

exclusivity of the reading, decoding and displaying of

one video frame was handled by busy waiting. The

CPU consumption was unacceptably high, while CPU

was spending most of the time in the busy waiting loop.

The stereoscopic video display needs two DV streams

synchronously and that means it should be possible two

running instances of xdvshow at least on a single high-

end computer.

The multi-threaded implementation solves the busy

waiting problem sparing CPU time—this may be up to

50% of the total CPU time on modern CPUs. The multi-

threaded architecture also allows separation of the read-

ing process from decoding and displaying of the DV

video. The multi-threaded xdvshow implementation

uses three primary threads: One thread reads the DV

stream from selected input, the second one is used for

decoding of the stream and displaying the decoded video

data and the third one is used for decoding and playing

the audio part of the DV stream. There may be an addi-

tional thread used for interacting with the packet reflec-

tor, when it is the source of the DV stream. System of

semaphores is used to thread cooperation and mutual ex-

clusion for shared buffers’ access. The xdvshow uses

two shared buffers, one for DV video frames and the

other for corresponding audio frames.

3. DV over IP

RTP protocol [2] is the major real-time transmis-

sion protocol used for multimedia distribution in IP net-

works. RTP is non-reliable and non-guaranteed service

over the underlying UDP protocol. Also, QoS parame-

ters of the transmission are not guaranteed by the pro-

tocol and must be handled on the application level if

needed. The data transport by the RTP protocol is com-

plemented by the RTCP protocol that provides support

for delivery monitoring and also for control and identi-

fication functionality.

Standardization of DV over IP transmission using

RTP protocol has been introduced by K. Kobayashi et

al. in [3, 4]. A video frame in the DV format is divided

into several “DIF sequences.” A DIF sequence is com-

posed of 80-bytes long DIF blocks. A DIF block is a

primitive and atomic unit for all operations over the DV

stream. Each RTP packet starts with an RTP header and

no additional header is required for DV over IP trans-

mission. The atomic DIF blocks are placed directly after

the RTP packet header. It is possible to place any num-

ber of DIF blocks representing one distinct frame into

one packet. The DIF blocks belonging to the next frame

must be transmitted in a new RTP packet to facilitate

frame detection. Since the RTP payload contains an in-

tegral number of DIF blocks, the length of RTP payload

is divisible by 80.

The DV video transmission extensively uses Time-

stamp and Marker bit arrays in the RTP header. The

time when the first data in a particular frame has been

sent is stored in the timestamp array. All RTP packets in

one videoframe must have the same timestamp accord-

ing to the above mentioned standards. The timestamp

increment for 25 fps PAL and 29.97 fps NTSC video are

3600 and 3003 respectively. The marker bit, left for any

user-defined data by the RTP standard, is used to mark

the last packet of the frame. When such packet is re-

ceived, the whole frame can be immediately displayed,

instead of waiting for the next packet to recognize the

end of the frame. This mechanism reduces the total la-

tency. However, the detection of end of frame must not

rely on the marker bit presence only as the correspond-

ing packet may be lost, and the check on the timestamp

change in the RTP header must be always performed,

too.

It is possible to transport the audio and video data in

the same stream or separately. The choice must be done

once and forever for one stream. It is also reflected in

the dynamic Payload type and thus it must not change

until the end of the RTP session.

The DV format video uses bandwidth of 25 Mbps.

When audio data and header overhead is added, the

resulting stream uses approximately 30 Mbps per each

stream.

4. Stereoscopic Video

Nowadays, most of the video material transmitted

over the network depicts scenes in two dimensions only.

While human eye or better human brain is able to rec-

ognize quite lot of depth cues even in two dimensional

picture to create some idea of space, realistic percep-

tion can not be achieved without taking the human eye

anatomy into accounts. In real-world conditions, each

eye perceives independently under a little bit different

angle and the brain superimposes both images to get full

F

3D perception. This means we need to capture two in-

dependent video images for each eye to provide percep-

tion of the third dimension. The schematics of such a 3D

(stereo) video capture system is depicted in Fig. 1. The

theoretical model of such system is given in [5] and [6].

Figure 1. Setting up the cameras

To fulfill at least some of the preconditions, like the

distance of the camera lenses focal points should be the

same as the distance between human eyes focal points,

a suitable camera mount needs to be used. After ex-

perimenting with a simple solution suggested in [7], we

decided to use more sophisticated dual camera mount by

Apec called “Parallax Setting Device” (PSD), as shown

in Fig. 2.

Figure 2. Parallax setting device

Stereoscopic effect created by two cameras can be

optimized by proper setting of stereoscopic base and

convergence angle set between two cameras. PSD is ca-

pable of sliding and rotating cameras for setting stereo-

scopic base and convergence angle respectively. Device

allows perfect alignment of optical axes of the two cam-

eras along both vertical and horizontal directions.

5. Synchronization

Two cameras mean two independent video streams

are created and must be transferred over the network. To

remove any unwanted effects on human observer, both

streams need to be synchronized when displayed. Syn-

chronizing reflector solves this problem explicitly using

timestamps in RTP and RTCP packets. RTP packets

include relative time-stamping information which may

differ both in time base and time increment for streams

with different sources coming even from several appli-

cations running on one client computer. Conversion be-

tween relative time and absolute time can be performed

using information sent in RTCP packet that are sent with

much lower frequency for each stream. RTCP pack-

ets contain both relative time-stamp and absolute time-

stamp in NTP format. Therefore after receiving two

RTCP packets it is possible to calculate both relative

time base and increment. To synchronize streams com-

ing from two different machines, they must have their

clocks synchronized, e. g. using NTP protocol. Conver-

sion between “real” absolute time and relative RTP time

based on RTCP information is depicted in Fig. 3.

RTCP packet arrival

absolute time

relt = a abst + b

re
la

ti
v
e

ti
m

e

Figure 3. RTP time conversion

For the UDP stream, with no guarantee on delivery,

two steps are necessary for the actual synchronization:

(1) reorder and/or discard out-of-order packets and (2)

match the packets using the RTP/RTCP time informa-

tion from different streams.

The synchronization and packet reordering is not

without penalty. The overall latency increases, which is

not desirable for interactive applications like videocon-

ferencing. In such cases even small latency in order of

hundreds of milliseconds induces communication prob-

lems and disrupts the reality illusion (e. g., when one

person tries to interrupt the other one to express his/her

F

opinion).

In order to be able to synchronize RTP streams each

RTP packet must have its own timestamp. However,

for the DV transmission the timestamps are increased

once per a videoframe, which is not acceptable for fine-

grained synchronization. To provide synchronization

support on a per packet basis, we had to change the

protocol and to put individual timestamp into each RTP

packet with the DV payload.

6. Implementation

While it is possible to synchronize two independent

streams only at the point of delivery (before they are

displayed), we opted for a network support where the

streams are synchronized every time they are retransmit-

ted through a reflector. This solution not only reduces

the overall latency due to synchronization and possible

reordering, but also provides support to synchronize sev-

eral sites in one step.

We have enhanced our reflector implementation [8]

to support synchronization of multiple reflected RTP

packet streams for synchronized, timely, and option-

ally also in-order delivery to the connected clients. The

reflector uses multi-threaded model in which several

threads are used as network listeners that place packets

coming from different streams into ordered buffers for

each stream. Then the sending thread takes packets out

of these queues and sends them to the connected clients

in synchronized way.

Data processing within the reflector called rum pro-

ceeds as follows. The reflector starts N separate threads,

where N is the number of ports placed as arguments.

The main thread is now used as sender and the N threads

are used as receiving listeners. Each receiving thread

initializes particular socket the reflector is listening to

(there are actually two sockets initialized for each RTP

session—one for RTP and other one for RTCP packets).

When RTP packet arrives to the listener thread, the

RTP header is extracted and parsed to obtain packet rel-

ative creation time, which is in turn converted into ab-

solute time. Then the packet is stored into time-sorted

buffer—oldest packets are on the top and wait to be sent.

Information on stored and dropped packets is kept for

statistical purposes.

After receiving an RTCP packet the data for conver-

sion between relative RTP time and absolute time is up-

dated, taking into account previous conversion data by

computing sliding average. We assume linear depen-

dence of relative and absolute time. If abrupt change oc-

curs program waits for at least three consecutive RTCP

packets carrying consistent time information to achieve

stability and avoid short time fluctuations.

The main function of sending thread is to send pack-

ets which are saved on top of all the buffers (doing that

synchronously if requested). It is also possible to spec-

ify that all the late arriving packets are dropped from the

buffers. Sending is performed using round robin method

for all buffers. Packets on the buffer top are sent to the

connected clients when their absolute time is smaller or

equals to absolute time of packets in other buffers. When

all buffers are empty, the sending process stops and re-

flector waits for incoming packets. If requested by the

user, it is possible to make the reflector stop for ran-

dom time period after the completion of each cycle (un-

til all buffers are full enough), reducing thus processor

load (and naturally increasing overall latency). This op-

tion is needed when the reflector is synchronizing low

bandwidth data because all buffers have to contain some

packets to perform correct synchronization.

7. Testbed and Measurements

The reflector implementation, as an implementation

of the network supported synchronization of the stereo-

scopic video streams, has been subjected to a series of

tests to evaluate its performance. The goal of these tests

was to confirm the synchronization capabilities of the

reflector and also to evaluate the additional latency in-

duced by the synchronization effort. DV format was

used for both video streams.

Figure 4. Reflector testbed

The evaluation testbed depicted in Fig. 4 was com-

posed of the following components:

Sender FreeBSD 5.4-RC4, CPU: VIA C3 (1200 MHz),

512 MB RAM

Bridge Dell 1600SC, FreeBSD 5.3-RELEASE-p8

with two network interfaces, CPU: Intel Xeon

(2800 MHz), 1 GB RAM

Reflector Linux 2.6.8-2-686-smp, CPU: 2× Intel Xeon

(3000 MHz), 4 GB RAM

Analyzer Linux 2.6.8-2-686-smp, CPU: 2× Intel Xeon

(3000 MHz), 4 GB RAM

F

Figure 5. Graph with delay 400 s without/with synchronization

Figure 6. Graph with delay 2000 s without/with synchronization

Display Dell Precision 530, Linux 2.4.27-smp, CPU:

2× Intel Xeon (2400 MHz), 1 GB RAM

Switch HP Procurve 6108

All the computers used Intel PRO/1000 MT network

interface cards, the network link capacity (available

bandwidth) has been always 1 Gbps. The testbed used

dedicated machines and links.

All measurements were done on two streams where

one stream has been sent without any delay and the other

has been delayed for a specified time using traffic shaper

available as a part of ipfw firewall in the FreeBSD ker-

nel. Both streams arrived to the reflector, has been syn-

chronized there and sent to the analyzer (and simultane-

ously also to the displaying device so we were able to

watch the effect also subjectively, but this evaluation is

not presented). To cover wide range of possible delays

in real production networks, we choose the following

delays: 0, 20, 40, 80, 100, 200, 400, 600, 800, 1000,

1500, 2000 and 5000 ms. The choice of measured de-

lays corresponds to the timing of individual fields and

frames in 25 fps PAL video. The measured total delay

after synchronization is presented in Tab. 1.

We see that the reflector internal delay is around

68 ms, which is only slightly increased if the inter-

stream delay is just 20 ms. However, with increased

inter-stream delay the total penalty sharply increases.

The worst cases are around 100 – 200 ms. With fur-

ther increase of inter-stream delay the absolute and es-

pecially the relative penalty decreases, as the reflector

has time to process both streams practically indepen-

dently. The final penalty for very high inter-stream delay

is around 10% of this delay, which is probably accept-

able overhead for fully software-based solution.

All the output streams has been fully synchronized.

To demonstrate it, we selected two measurements, with

F

Link Synchron.

delay [ms] delay [ms]

0 68.3

20 71.1

40 142

80 287

100 357

200 368

400 487

Link Synchron.

delay [ms] delay [ms]

600 642

800 901

1000 1130

1500 1690

2000 2240

5000 5550

Table 1. Link and synchronization delays

inter-stream delay of 400 and 2000 ms, depicted in

Figs. 5 and 6 respectively. All graphs show the re-

lationship between the receiving and sending time of

RTP packets. The graphs on the left side show both

streams without synchronization—we can see two sep-

arate streams (the smaller picture on the left side pro-

vides a zoomed view of the relationship). The graphs on

the right side show the resulting synchronized stream.

The linear-fit residual graphs show the difference be-

tween the actual time when a particular RTP packet has

been received by the target (the analyzer) and the ideal

time of its reception. Again, the results confirm that the

synchronization is practically absolute. The initial time

synchronization, which needs several RTCP packets, is

visible as the small nonlinearity at the beginning of the

measurements.

8. Conclusions

When stereoscopic video is sent over IP network in

two independent streams, they must be synchronized be-

fore the they are is displayed. If multiple sites are receiv-

ing the same stereoscopic video, the synchronization is

best done in the network, otherwise each site may be ex-

posed to different latency, unacceptable for interactive

applications.

The idea of overlay network with active elements ca-

pable of providing new functionality to computer net-

works has already been shown as a successful foun-

dation of controlled multicast transmission. The same

idea has been used for the stereoscopic video streams

synchronization. A simple software implementation

running on commodity hardware is able synchronize

the two streams in DV format successfully even when

the original streams are highly de-synchronized. The

penalty of the synchronization is increased latency, as

the “faster” stream must wait for data in the other

stream, plus some processing latency is added to the fi-

nal perceived delay. While this delay may be problem-

atic in interactive implementation, the reflector based

synchronization element can be easily used for synchro-

nized unidirectional stereoscopic streaming to multiple

end users even in highly adverse and desynchronizing

network conditions.

9. Acknowledgments

This research is supported by a research intent “Op-

tical Network of National Research and Its New Ap-

plications” (MŠM 6383917201) and a research in-

tent “Highly Parallel and Distributed Systems” (MŠM

00216224419). We would also like to thank to Petr

Holub for helping with methodology and interpretation

of measurements and Luděk Matyska for proof reading

this text.

References

[1] Akimichi Ogawa and Katsushi Kobayashi and Kazunori

Sugiura and Osamu Nakamura and Jun Muri. Design and

Implementation of DV based video over RTP. Novem-

ber 2004. http://www.sfc.wide.ad.jp/DVTS/

pv2000/index.html

[2] H. Schulzrinne and S. Casner and R. Frederick and V. Ja-

cobson. RFC3550–RTP: A Transport Protocol for Real-

Time Applications. July 2003. http:///www.zvon.

org/tmRFC/RFC3550/Output/index.html

[3] K. Kobayashi and A. Ogawa and S. Casner and C.

Bormann. RFC3189–RTP Payload Format for DV (IEC

61834) Video. January 2002. http://www.zvon.

org/tmRFC/RFC3189/Output/index.html

[4] K. Kobayashi and A. Ogawa and S. Casner and C. Bor-

mann. RFC3190–RTP Payload Format for 12-bit DAT Au-

dio and 20- and 24-bit Linear Sampled Audio. January

2002. http://www.zvon.org/tmRFC/RFC3190/

Output/index.html

[5] V. Griberg and G. Podnar and M. Siegel. Geometry

of binocular imaging. in Stereoscopic Displays and

Applications. February 1994. http://www.ri.cmu.

edu/pub_files/pub1/grinberg_v_s_1994_

1/grinberg_v_s_1994_1.pdf

[6] V. Griberg and G. Podnar and M. Siegel. Geometry of

binocular imaging II: The augmentedeye. in Stereo-

scopic Displays and Applications. February 1995.

http://www.ri.cmu.edu/pub_files/pub1/

grinberg_v_s_1995_1/grinberg_v_s_1995_

1.pdf

[7] Rhys Hawkins. Digital Stereo Video: display com-

pression and transmission. February 2002. http:

//escience.anu.edu.au/research/papers/

02_Rhys_Hawkins/thesis-small.pdf

[8] E. Hladká, P. Holub and J.Denemark. User Empow-

ered Virtual Multicast for Multimedia Communication. in

ICN’2004 Conference Proceedings. March 2004.

F

Appendix G

Active Elements for High-Definition
Data Distribution

by Petr Holub, Eva Hladká, Jiří Denemark, and Tomáš Rebok

In 13th International Conference on Telecommunications, ICT’2006, Funchal, Madeira, May
2006. Proceedings. University of Aveiro, Portugal, 2006. 4 p. ISBN 972-98368-4-1.

Active Elements for High-Definition Video
Distribution

Petr Holub∗, Eva Hladká†, Jiřı́ Denemark†, and Tomáš Rebok†
∗Institute of Computer Science and †Faculty of Informatics

Masaryk University in Brno
Botanická 68a, 602 00 Brno, Czech Rep.

Email: hopet@ics.muni.cz, eva@fi.muni.cz, jirka@ics.muni.cz, xrebok@fi.muni.cz

Abstract— Active Elements (AEs), an extension of user-
empowered programmable (active) routers, provide support for
multimedia distribution in collaborative environments. They can
be organized in distributed systems to mitigate the scalability
problem for very bandwidth and/or processing power demanding
distribution patterns. We present a prototype implementation
of Active Elements based on JXTA peer-to-peer framework. As
shown in this paper, the AEs are flexible enough to be used
for distributing high-definition uncompressed video, while also
providing additional processing possibilities when distributing
lower bandwidth streams like compressed HDV video streams.

I. INTRODUCTION

The general problem of synchronous (on-line or interactive)
processing lies in providing environment with as low latency
of processing and data distribution as possible. We are building
user-empowered network support for synchronous multi-point
data distribution, that is both scalable to support a large
number of clients and also robust with respect to outage
of network links and other elements inside the network.
This research extends our development of active router and
reflectors, providing a general Active Element concept based
on similar ideas and principles.

Distribution of multimedia data over IP network leads to
a multicast schema. However, as the native multicast solution
is not always reliable or even available, other distribution
schemes were developed following approach of multicast
virtualization. They are usually based on a central distribution
unit—a reflector, like the H.323 Multi-point Control Unit
(MCU)—that may be organized into a cascade (network) when
a higher number of clients needs to be supported. The cascade
of H.323 MCUs is usually statically configured and does
not offer a user-empowered approach. Another well known
example of multicast-like schema is the distribution used in the
Virtual Room Videoconferencing System (VRVS) [1]. This is
provided as a service and user data traffic is managed by VRVS
administrators. The successor of VRVS called Enabling Virtual
Organizations (EVO) [2]—is based on self-organization of
system of reflectors, again not empowering the end-user with
tools to change the distribution topology. There are also other
simpler UDP packet reflectors available like rcbridge [3], [4],
reflector [5], and Alkit Reflex [6].

The paper is organized as follows: Section II briefs Active
Elements (AEs) approach, Section III summarizes our collab-
orative tool based on high-definition (HD) video, Section IV

describes results of using AEs for uncompressed HD video
distribution while Section V deals with distribution and pro-
cessing of compressed HDV streams, and Section VI contains
concluding remarks and future work outline.

II. ACTIVE ELEMENTS

Real-time virtual collaboration needs a synchronous mul-
timedia distribution network that operates at high capacity
and low latency. Such a network can be composed of inter-
connected service elements—so called Active Elements (AEs)
[7]. They are a generalization of the user-empowered pro-
grammable reflector that is a programmable network element
replicating and optionally processing incoming data usually
in the form of UDP datagrams, using unicast communication
only. If the data is sent to all the listening clients, the number
of data copies is equal to the number of the clients, and the
limiting outbound traffic grows with n(n − 1), where n is
the number of sending clients. The reflector runs entirely in
user-space and thus it works without need for administrative
privileges on the host computer, which can be understood as
implementation of user-empowered principle.

The AEs add networking capability, i. e. inter-element com-
munication, and also capability to distribute its modules over
a tightly coupled cluster. Only the networking capability is
important for scalable environments discussed in this paper.
The network management is implemented via two modules
dynamically linked to the AE in run-time: Network Manage-
ment (NM) and Network Information Service (NIS) as shown
in Figure 1. The NM takes care of building and managing the
network of AEs, joining new content groups and leaving old
ones, and reorganizing the network in case of link failure. NIS
gathers and publishes information about the specific AE (e. g.
available network and processing capacity), about the network
of AEs, about properties important for synchronous multime-
dia distribution (e. g. pairwise one-way delay if available or
RTT otherwise, estimated link capacity), and also information
on content and available formats distributed by the network.

For the out-of-band control messages, the AE network uses
self-organizing principles already successfully implemented in
common peer to peer (P2P) network frameworks, namely for
AE discovery, available services and content discovery, topol-
ogy maintenance, and also for control channel management.
The P2P approach satisfies requirements on both robustness

G

Fig. 1. Architecture of Active Element with Network Management and
Network Information Service modules.

Kernel
Messaging
Modules

Processors

Network
Listeners

Packet
Scheduler/Sender

Shared Memory

Network Management Network Information Service

data flow control information

and user-empowered approach and its lower efficiency has
no significant negative impact as it routes administrative data
only. In prototype implementation, this has been implemented
using JXTA P2P substrate [8].

A. Re-balancing and Fail-Over Operations

The topology and use pattern of any network changes
rather frequently, and these changes must be reflected in the
overlay network, too. We consider two basic scenarios: (1)
re-balancing is scheduled due to either use pattern change or
introduction of new links and/or nodes, i. e. there is no link or
AE failure, and (2) a reaction to a sudden failure. In the first
scenario, the infrastructure re-balances to a new topology and
then switches to sending data over it. On the contrary, a sudden
failure in the second scenario is likely to result in packet loss
(for unreliable transmission like UDP) or delay (for reliable
protocols like TCP), unless the network distribution model
has some permanent redundancy built in. The probability of
failure of a particular link or AE is rather small, despite high
frequency of failures in global view of large networks. Thus
the two fold redundancy might be sufficient for majority of
applications, and the redundancy may be increased for the
most demanding applications.

B. Data Distribution in Network of AEs

Separation of control plane from data distribution plane
allows for modular implementation of distribution models with
different properties. We have studied a number of different
data distribution models for the AE network [7], which feature
different performance to robustness properties:

• 2D full mesh—the simplest model which features very
high robustness so that AE outage only influences the
clients that are directly connected; it also minimizes
number of hops inside the overlay network,

• 3D layered mesh—this model improves performance over
the 2D model while retaining the recovery behavior
and minimization of number of hops inside the overlay
network,

• 3D layered mesh with intermediate AEs—additional im-
provement over the 3D layered model, which can be seen
as a transition to spanning trees,

• redundant (minimum) spanning trees—the model which
allows maximum flexibility, efficient recovery from the
network outages, allows optimizing data distribution with
respect to saturation of lines; extension to multiple pre-
computed redundant spanning trees brings about capabil-
ity of very fast recovery.

III. HIGH-DEFINITION INTERACTIVE COLLABORATIVE
ENVIRONMENTS

A. Uncompressed High-Definition Video Transport

Enabled by current high-speed networks, high-definition
(HD) video transmissions have become an essential tool for
many applications. Providing truly interactive collaborative
environment is still very challenging, because it requires
severe limitations on processing to achieve acceptable level
of interactivity (ideally less than 100 ms) and thus use of
uncompressed video is the most convenient. That however
imposes high demands on underlying networking infrastruc-
ture especially for multi-point data distribution, as each video
stream has 1.5 Gbps. During 2005, we have developed and
successfully demonstrated a prototype of low latency multi-
site collaborative environment based on uncompressed HD-
SDI video according to the SMPTE 292M standard [9].

The whole system comprises two basic parts: client ap-
plications and network distribution and processing. We have
developed the client tools based on DVS Centaurus1, Chelsio
10 GE cards and UltraGrid software by Colin Perkins and
Ladan Gharai [10], extending it with full 1080i HD support
(1920×1080 resolution; previously only lower 720p resolution
was supported) and full software display [11] including field
de-interlace algorithm and color space down-sampling.

The network distribution requires some service for multi-
point distribution in order to supply data from each participant
to all the other participants. To remove dependency on native
multicast, we are relying on virtual multicast implemented
by the AEs. We have demonstrated it’s usability over 10 GE
networks where each AE was able to duplicate each 1.5 Gbps
stream on common dual-AMD64 PC from one partner to two
other partners.

B. HDV Compressed High-Definition Video Transport

HDV [12] is a proprietary MPEG-2 based compression
scheme developed by SONY and JVC that is transmitted in the
MPEG-TS envelope over the IEEE-1394 interface in a similar
way to the DV format for standard definition resolution.
The resolution of the video is 1440×1080, with 50 or 60

1http://www.dvs.de/english/products/oem/centaurus.
html

G

interlaced fields per second, 8-bit color space, 4:2:0 color
space sampling, and 60:1 inter-frame compression resulting in
approximately 25 Mbps video stream. We have implemented
a tool [13] for FreeBSD 5/6 to read HDV data sent over the
IEEE-1394 interface. The data are then rendered using the
VideoLAN Client (VLC) tool [14] and sent over the network
either using VLC or some other tools like netcat [15].
Because of the MPEG-2 format the HDV transmission suf-
fers from higher latency; end-to-end latency measured using
laboratory setup described above is as high as 1.9 s, leaving
this transport mostly for unidirectional applications like HD
streaming only.

IV. AES FOR UNCOMPRESSED HD DISTRIBUTION

A. Performance of AEs

We have made several tests to measure the performance of
the AE with respect to size of UDP packets used for video
transmission. As a testbed we have used two back-to-back
connected dual AMD64 computers with 10 GE Chelsio T110
LR NIC cards in 133 MHz PCI-X slots. The following three
software components were running on two computers:

• computer A: UDP packet generator providing a UDP
stream to computer B at a given bit rate consisting of
packets of a desired size,

• computer B: AE receiving the UDP stream from the
computer A and replicating it into the two equivalent
output streams which are sent back to the computer A,

• computer A: two packet analyzers running in parallel
capable of detecting lost and out-of-order packets and
average bit rate received from AE on the computer B;
each analyzer examines one stream.

Fig. 2. AE performance with respect to packet size.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Target bandwidth [Mbps]

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

R
ea

l b
an

dw
id

th
 [M

bp
s]

100B
1500B
3000B
8500B

Bandwidth

Performance measurement results of the AE are shown in
the Figure 2. Exact numbers describing some key points from
the graph are summarized in Table I: (a) gives maximum
bandwidth of a single stream with packet loss <0.01% with
respect to packet size in use, while (b) gives packet loss with

respect to bandwidth of a single stream given 8,500 B packet
size, which we have chosen as a standard for our uncom-
pressed HD application. The performance evaluation confirms
the necessity to use Jumbo Ethernet frames for the AE to
be able to replicate uncompressed HD-SDI video streams at
1.5 Gbps. Setting appropriate MTU on all the hosts and all over
the path is the only part that requires administrative privileges,
thus violating the user-empowered paradigm.

TABLE I
PERFORMANCE OF THE ACTIVE ELEMENT.

(a)
packet size max. bandwidth

[B] [Mbps]
100 100
500 300

1500 400
3000 800
6000 1700
9000 2000

(b)
bandwidth packet loss CPU load
[Mbps] [%] [%]
1800 0.0 52
1900 0.0 55
2000 0.0099 60
2100 0.037 76
2200 1.74 80
2300 7.07 84

B. Real-World Performance
The HD transport together with AE for data distribution has

been demonstrated during iGrid 2005 workshop [11] (CZ101
and US127 demos) and at SC 2005 conference. Because no
more than 3 sites were participating, there was no real need to
build the network of AEs. However, in order to demonstrate
feasibility of this approach, we have also built a 3D layered
mesh of AEs with one intermediate AE where AE cascading
was used for multiplicating one stream to one site in multiple
copies, so that one site saw one stream multiple times. Because
a single AE running on a high-end machine is unable to create
more than two copies of the data at 1.5 Gbps because of traffic
limitations on given hardware, a AE network is required for
supporting more than 3 sites, which is not very efficient.

We also had to solve a problem with bursty HD traffic,
which lead to loss of many packets due to the implicit thread
switching. The original AE implementation used two different
threads—one for the network listener and the second for
sender. With implicit thread switching, the listener thread
could have been stopped and the sender thread activated
regardless of whether more data were coming. The current
implementation gives explicit precedence to the listener which
yields its precedence to the sender only when no more data
are to be read. The only negative outcome we have observed
with this approach is higher CPU load on the AE.

V. AES FOR HDV DISTRIBUTION

The high processing capacity of the AE can be also used for
other purposes, e. g. for traffic shaping in case of very bursty

G

data distribution with otherwise only moderate bandwidth
requirements. We demonstrate this potential on the distribution
of bursty HD traffic in the HDV format.

The HDV stream is highly compressed, requiring only
25 Mbps bandwidth. However, the HDV data generated by
commonly used tools are very bursty, with peeks almost
20 times above the theoretical bandwidth requirements. Bursti-
ness is introduced by the sending application—either VLC
(Figure 3a) or even worse using netcat (Figure 3b).

Fig. 3. Bursty traffic produced by HDV transport with VLC (a) and netcat
(b). Traffic after smoothing by AE is shown in (c). Horizontal axes show time
and vertical axes show number of packets received at each time instant.

(a)

(b)

(c)

We have enabled a traffic smoothing module in the AE
for smoothing based on sliding average of the incoming
bandwidth. The resulting data flow is very smooth with no
bursts at all as shown in Figure 3c. The penalty for this is small
increase of transmission latency (depending on burst charac-
teristics and smoothing interval, ranging from tens to hundreds
milliseconds) because of packet buffering. The observable
advantage of having smooth data flows is the receiving VLC
being capable of rendering the stream with close to zero image
defects, which is impossible for bursty streams above 10 Mbps.

VI. CONCLUSION

In this paper the Active Element and networks of AEs
have been introduced to provide a flexible multi-point data
distribution environment. We have discussed the advantages
of this solution and we have described the processing power,
robustness and fail-over capabilities.

Further, the AEs were used to support a simple collabo-
rative environment based on the HD video transmission. The
flexibility of our approach has been demonstrated on using

the same elements (only with different configuration) for the
distribution of uncompressed HD video streams with 1.5 Gbps
stressing the data duplication capacity of the AEs, and for
the distribution of bursty HDV traffic, where the smoothing
extreme traffic bursts again shown processing capacity of the
AEs—in this case as traffic shapers. Though not very efficient,
we also demonstrated that AE network can support higher
number of clients even with the uncompressed HD streams.

The future work will be focused on supporting real multi-
point distribution of high speed multimedia streams. This is
required when a larger number of clients must be connected,
either because of higher number of participating sites or
because each site sends multiple HD video streams (e. g. vi-
sualization and videoconferencing, stereoscopic streams etc.).
We will also continue developing the concept of distributed AE
to provide scalable multi-point replication of high demanding
data.

ACKNOWLEDGMENT

This research is supported by a research intent “Optical
Network of National Research and Its New Applications”
(MŠM 6383917201). We would also like to thank to Michal
Procházka, Miloš Liška and Lukáš Hejtmánek for their help
with implementation of HD transport tools.

REFERENCES

[1] “Virtual Room Videoconferencing System (VRVS),” http://www.vrvs.
org/.

[2] P. Galvez, “From VRVS to EVO (Enabling Virtual Organizations),”
in TERENA Networking Conference 2006, Catania, Italy, May 2006,
Accepted.

[3] M. Buchhorn, “Designing a multi-channel-video campus delivery and
archive service,” in The 7th Annual SURA/ViDe Conference, Atlanta,
GA, USA, Mar. 2005.

[4] “rcbridge,” http://if.anu.edu.au/SW/rcbridge.html.
[5] O. Hodson, “UDP packet reflector/forwarder,” http://www.cs.ucl.ac.uk/

staff/s.bhatti/teaching/z02/reflector.html.
[6] “Alkit reflex,” http://w2.alkit.se/reflex/.
[7] P. Holub, E. Hladká, and L. Matyska, “Scalability and robustness of vir-

tual multicast for synchronous multimedia distribution,” in Networking -
ICN 2005: 4th International Conference on Networking, Reunion Island,
France, April 17-21, 2005, Proceedings, Part II, ser. Lecture Notes in
Computer Science, vol. 3421/2005. La Réunion, France: Springer-
Verlag Heidelberg, Apr. 2005, pp. 876–883.

[8] P. Holub and E. Hladká, “Ubiquitous user-empowered networks of active
elements,” in TERENA Networking Conference 2005, Poznań, Poland,
June 2005, p. 3.

[9] Society of Motion Picture and Television Engineers, “Bit-serial digital
interface for high-definition television systems,” SMPTE 292M-1998.

[10] C. Perkins, L. Gharai, T. Lehman, and A. Mankin, “Experiments with
delivery of HDTV over IP networks,” in 12th International Packet Video
Workshop, Pittsburgh, PA, USA, Apr. 2002.

[11] P. Holub, L. Matyska, M. Liška, L. Hejtmánek, J. Denemark, T. Rebok,
A. Hutanu, R. Paruchuri, J. Radil, and E. Hladká, “High-definition mul-
timedia for multiparty low-latency interactive communication,” Future
Generation Computer Systems, 2006, Accepted.

[12] “HDV information,” http://www.hdv-info.org/.
[13] P. Holub, “HDV capture for FreeBSD 5/6 operating system,”

http://sitola.fi.muni.cz/∼hopet/HDV/ and http://docs.freebsd.org/cgi/
getmsg.cgi?fetch=37672+0+archive/2005/freebsd-firewire/20050206.
freebsd-firewire.

[14] “VideoLAN Client (VLC),” http://www.videolan.org/.
[15] “netcat,” http://netcat.sourceforge.net/.

G

Appendix H

High definition multimedia for
multiparty low-latency interactive
communication

by Petr Holub, Luděk Matyska, Miloš Liška, Lukáš Hejtmánek, Jiří Denemark, Tomáš Rebok,
Andrei Hutanu, Ravi Paruchuri, Jan Radil and Eva Hladká

Future Generation Computer Systems, Amsterdam, The Netherlands: Elsevier Science, 22,
8, pp. 856–861, 6 p. ISSN 0167-739X. 2006.

H

H

H

H

H

H

Appendix I

Quality of Service oriented Active
Router Design

by Tomáš Rebok, Petr Holub and Eva Hladká

Microelectronics, Electronics and Electronic technologies, Hypermedia and GRID Systems,
MIPRO 2006, Opatija, Croatia, May 2006. Proceedings. Croatian Society for Information
and Communication Technology, Electronics and Microelectronics, 2006. 6 p. ISBN 953-233-
018-6.

Quality of Service Oriented Active Routers Design
Tomá̌s Rebok∗, Petr Holub‡, and Eva Hladḱa∗

∗Faculty of Informatics and‡Institute of Computer Science
Masaryk University

Botanicḱa 68a, 602 00 Brno
E-mail: xrebok@fi.muni.cz, hopet@ics.muni.cz, eva@fi.muni.cz

Abstract— The active network approach allows an individual
user to inject customized programs into the active nodes in the
network, usually called programmable/active routers, and thus
process data in the network as it passes through. When a pro-
grammable router is used in a multi-user network environment,
quality of service (QoS) for each passing stream needs to be
ensured. QoS approaches in common networks enforce certain
parameters (e.g., queuing strategy, priority) on the network flows.
However, this is not sufficient in active routers where users’
programs run on the routers and thus other parameters (e.g.
processor time, amount of memory) have to be guaranteed as
well. In this paper, we propose a QoS-enabled active router
architecture that supports extended understanding of QoS. We
also propose a virtual machine based router implementation for
strict isolation of user processes.

I. I NTRODUCTION

Contemporary computer networks behave as a passive trans-
port medium which delivers—or in case of best-effort service
tries to deliver—data sent from the sender to the receiver. The
whole transmission is done without any modification of the
passing user data by the internal network elements1. These
“dumb and fast” networks became mature product where only
speed is ever increased and there is no ambition except for
simple forwarding of the data. We believe that the future-
generation networks may be extended beyond that paradigm
and behave as an active transport medium, which processes
passing data based on data owners or data users requests.
Multimedia application processing (e.g., video transcoding)
and security services (data encryption over distrusted links,
etc.) are a few of possible services which could be provided.
The principle called “Active Networks” or “Programmable
Networks” is an attempt how to build such intelligent and
flexible network using current “dumb and fast” networks as
an overlay network.

We can consider a computer network as a system whose end
nodes provide computations up to the application level, while
inner elements (routers, switches, etc.) provide computations
up to the network level, and all nodes are connected via
passive links. While the elements may be programmable to
some extent, the control is always in the hands of network
administrators. The major difference in the active network is
that the elements inside the network are directly programmable
by users. Also, the nodes inside the active network can provide
computations up to the application level. These inner elements

1Not including firewalls, proxies, and similar elements, where an interven-
tion is on the one hand usually limited and on the other not user controllable.

are called active nodes, active routers, or programmable
routers (all three with rather identical meaning). Users and
applications have the possibility of running their own programs
inside the network using these active nodes as processing
elements.

An application of software programmable routers in multi-
user environment pose new challenges in the design of router
operating systems and especially in the design of resource
management system. Since more resources are shared among
the users of the active router—router CPU cycles, state storage
capacity, data storage together with traditional networking
components like packet queues on network interfaces. To
enable sharing of all these resources within the active node
by its users in a secure and effective manner, much more
complex Quality of Service (QoS) architecture needs to be
deployed, including sophisticated resource accounting and
resource scheduling algorithms that respects characteristics of
individual resources.

The main goal of this paper is to propose a QoS-enabled
active router (AR) architecture that supports complex QoS
guaranties as described above. In order to achieve reasonable
isolation among the users of the AR, the architecture is
designed to facilitate implementation based on virtual ma-
chines (VM) approach [1]. The paper is organized as follows:
Section II briefs previous work on a generic AR architecture,
regardless of QoS, and Section III describes modified VM-
based architecture suitable for QoS implementation. Proposed
QoS implementation is analyzed in Section IV. Related work
is summarized in Section V and concluding remarks and
proposals for future work are in Section VI.

II. GENERIC AN ARCHITECTURE

When considering the architecture of the active networks,
one possible classification criterion is the way active code is
delivered to the active routers [2]:

• Active nodes– The code of an active program is injected
into the active nodes separately from the data packets.
The code can be implemented either as built-in functions
or during the initial phase (the opening) of the data
transfer. The advantage of this architecture is that the
code is injected only once and thus its size is not limited
and not critical. A disadvantage lies in the necessity to
inject the code before data transmission which means
larger startup latency and lower flexibility as it is hard
to change the code during the actual data transmission.

I

• Active packets– Each data packet contains the program
code which is extracted on an active node and executed
on the data part of this packet. This approach is flexible
since individual data packets in one transmission can
be processed by different programs. The node needs
“only” to be able to extract the code and execute it. The
disadvantage is that even the limited extent of the code
tends to result in a large overhead for transmitted data.

• Active packets and active nodes– This combination of
both previous architectures allows the use of more com-
plex programs while remaining flexible enough. Usually a
program is transferred before the actual data transmission
occurs, but individual data packets contain some kind of
parameters or specific program commands. This supports
individualized packet processing without the limitations
of the active packet approach. However, the substantial
initial delay (latency) is not eliminated.

For our work we use a model of active node with loadable
functionality published in [3]. The proposed active network
architecture uses an “active node” approach to active network-
ing and the concept of “sessions” similar to connections in
connection-oriented networks or sessions in RSVP protocol.

The structure of an active node (router) plays a key role
in this model. The router is a network element which is able
to accept user-supplied programs and to execute them. The
processing of user code consists of two separate but com-
municating processes. The first process controls the session
establishment and management. It has the role of a control
plane in active router processing and includes a process of
loading user functions into the routers along the path between
the source and the destination. The functions may be either
pre-loaded (before or during the connection set up) or they
may be loaded on demand during the data transmission (if
a new requirement arises). Bookkeeping functions are also
provided by the control process. The second process performs
the data packet processing which includes executing the user
code.

AN model described in [3] has never been fully imple-
mented, but main ideas from this work were successfully used
for a model and implementation of user empowered UDP
packet reflectors to create virtual multicasting environment as
an overlay on top of current unicast networks [4]. It also
served as a basis for protocol research and development,
e.g., “Active Node Authentication Protocol (ANAP)” [5] and
“Active Router Transport Protocol (ARTP)” [6].

III. VM- READY AN ARCHITECTURE

Because of generic AR modular architecture, we have
extended the generic AR architecture to support the complex
QoS and also slightly modified the scheme in order to facilitate
implementation based on virtual machines. This approach en-
ables users not only to upload the active programs, which run
inside some virtual machine, but they are allowed to upload
the whole virtual machines with its operating system and let
their passing data being processed by their own operating
system running inside uploaded VM. VM approach ensures

strict separation of different virtual machines and also allows
efficient scheduling of resources to individual VMs, e.g., CPU,
memory, and storage subsystem access.

The architecture of our VM-ready active router is shown
in Figure 1. The bottom part is the VM-host layer where
the core of the proposed VM-ready router is located. The
core includes packet classifier, shared buffer pool, and packet
scheduler modules. The modules relevant to resource manage-
ment (resource management module and VM/AP scheduler
module) are described in more detail in Section IV. Packet
classifier module classifies all the incoming packets whether
they belong to any active session running on the router and
thus must be very efficient. It also extracts packets destined
to the session management module and sends them directly to
that module. The shared buffer pool module operates as the
buffer space where all the incoming packets are stored before
further processing and also all the outgoing packets before the
packet scheduler module sends them onto the network.

VM host

kr
o

wte
n

sec
afret

ni

packet classifier

queue manager
packet scheduler

API

VM/AP scheduler

AR/VM host
management

M
V

g
nit

u
or ciss

alc

1
M

V res
u

n
M

V res
u

resource mgmt

session mgmt

router mgmt

security &
accounting

communication
modules

shared buffer pool

control data

Fig. 1. VM-ready active router architecture

The VM-host management system is located in user space.
Besides the other functions it has to manage the whole router
functionality including uploading, starting and destroying of
the virtual machines, security functions, session accounting
and management. The virtual machines managed by the ses-
sion management module could be either fixed, providing
functionality given by system administrator, or user-loadable.
The example of the fixed virtual machine could be a virtual
machine providing classical routing as shown in Figure 1—it is
an example of optional module, as the AR can run without the
classical routing if only “active” traffic passes through the AR,
e.g., if it works in a dedicated overlay network. Besides that,
the one other fixed virtual machine could be started as an active
program execution environment where the active programs

I

uploaded by users are executed. This virtual machine serves
especially for backward compatibility with original generic
AR and this approach does not force users to upload the whole
virtual machine in the case where active program uploading
is sufficient.

The VM-ready AR architecture uses a connection-oriented
approach similar to the one used in active router proposed
in [3]. In terms of our active architecture, the connection is
also called“(active) session”, but each active session consists
of one or more active programs/virtual machines, one or
more network flows and potential QoS requirements. The
association of more VMs/active programs and network flows
into one session is very useful especially when creating active
programs working with more than one network streams (e.g.,
synchronization of two RTP streams when transmitting audio
and video streams separately).

Besides the other information, the session initiation request
encapsulated in an active packet contains minimal resource
requirements for given active session and the active router
decides, whether the requirements could be satisfied. If the
request could be satisfied, the session is established and all the
required resources are allocated and reserved to it. Otherwise
the request is refused.

Once the session is established with the required resources,
the data flow through the router could be briefly described
in the following way: when a packet arrives to a network
interface, the packet classifier module decides, whether the
incoming active packet belongs to the given AR or not, based
on information from the security and accounting module. If
the packet is accepted, depending on resource allocations and
actual scheduling algorithm, the classifier module forwards
packet to the proper VM running on the AR or the new
session establishment takes place. Depending on resource
management, the active packet is processed in the VM and
sent into the network through the shared buffer pool.

IV. QOS SUPPORT FORVM- READY ACTIVE ROUTER

As obvious from VM-enabled AR architecture described
above, there are the two main modules concerned with re-
source management: (1) resource management module and (2)
VM/active program scheduler. Indirectly, the session manage-
ment module also participates on this process.

Resource management module.This module implements
the crucial resource management scheme with the following
functionality:

• Possessing all the information about the resources in the
AR.

• Providing necessary information to the session manage-
ment module.

• Monitoring and adjusting the resources used by each
active session and sending notifications to the active ses-
sions through the session management module to inform
them about the actual resource status of the AR (e.g.,
how many resources are available and can be used or
how many resources are needed).

VM/active program scheduler module. This module
schedules the execution of the applications and the transmis-
sion of the packets to the next node. It implements scheduling
algorithms for different classes of resources to enforce the
active sessions allocations of the AR resources—for the addi-
tional information on scheduling algorithms, see Section IV-
B). Besides that, the accounting and resource limit checking
functions are also the part of this module:

• It checks whether the active sessions are permitted
to request given resources (e.g., when restricting the
amount of given resources from allocating by specified
users/sessions).

• It logs active sessions requests and replies from resource
management system about allocating given resources
(useful e.g., when active node resource utilization is paid).

A. Resource management system

Due to the structure of active sessions where each session
consists of one or more virtual machines (simply active
programs) and one or more network streams, the fine-grained
hierarchical design of resource allocations is very desirable.
I.e., when the session possesses allocated resources, it is
possible to split these resources held by the session in a way
the user of the given active session wants (Figure 2).

For resource allocation and scheduling purposes, asession
element(or just an element for short) denotes active stream
(“active” network flow), virtual machine, or active program.
When providing hierarchical resource management, all the
schedulers must know about required resources of each ele-
ment for a given active session. As said before, when creating a
new active session it must request overall amount of resources
wanted. If all the resources requested are available, the active
session is established and all the resources are allocated.
Since the active session holds an unique identifier of allocated
resources, the assigned identifier must be provided when
the session wants to work with a specific shared resource.
This identifier is also used when the active session wants
the resource management module to redistribute the allocated
resources to its element(s). In this case, the (master) identifier
is extended with element sub-identifier. When an element
of the active session wants to use a shared resource, the
master identifier or the extended identifier has to be provided
depending on whether the element wants to utilize the overall
amount of given resources available to the session or just the
amount of resources previously redistributed inside the active
session.

The resource management module thus provides mainly the
following functions:

• Create/Delete– Create allows creating a resource al-
location with given requirements and returns a key, a
unique identifier of given allocation.Deletetakes the key
as an input parameter and removes the corresponding
allocation. The allocation’s resource share is then returned
to the system.

• Bind/Unbind – Bind allows an active session to specify
the resource requirements of elements of the active ses-

I

Fig. 2. Hierarchical resource assignment.

sion. Then, the session (master) key is extended to be
able to unambiguously determine the active session and
its element, and returned.Unbind deletes such binding
inside the session.

• Modify – allows user to reconfigure a resource allocation
with a given key.

• Info – provides the information about allocated and free
resources in the system.

B. Schedulers

Scheduling algorithms are the most important part of the
whole resource management system in our active router
because they affect both overall performance and keep all
required resources in desired limits. Since resource charac-
teristics vary, scheduling algorithms must be designed in a
resource specific manner. For example, CPU context switching
is more expensive compared to switching between flows in
network scheduling [7]. Therefore, efficiency of CPU schedul-
ing improves if active programs can receive a minimum CPU
quantum before being preempted. Disk scheduling, unlike both
CPU and network, must consider request locations to limit
seek time and rotational latency overheads. Memory sched-
ulers, in order to match actual memory use, must estimate
the current working set of active programs. All the schedulers
must therefore examine relevant resource states (e.g. disk
state, whether it is spinning or parked) in addition to QoS
specifications.

The resource requirements are often related to the others.
For example, when requesting high network bandwidth while
having only a small amount of CPU time, it is not possible to
reach required bandwidth, because there is insufficient CPU
time to send all the packets. Thus the scheduling algorithm’s
design must be sophisticated enough to take such inter-
dependencies into the account.

For sake of conciseness, we do not delve into detailed
description of scheduling algorithms here, but we describe the

most important demands on each of the active router scheduler
focusing on CPU, network, memory and disk schedulers.

Because the quality of service assurance in active routers is
closely related to multimedia applications, the requirements on
the scheduling algorithms in our active router are very similar
to the requirements in multimedia operating systems [7].

1) CPU scheduler:The CPU scheduling algorithms are the
best-developed scheduling algorithms in current information
technology. Unfortunately, majority of proposed algorithms are
QoS-unaware and thus very huge research in this area should
be made.

Thanks to the hierarchical resource management system in
our active router architecture the hierarchical CPU scheduling
algorithm is desirable. The operating system thus partitions the
CPU bandwidth among more active sessions, and each active
session, in turn, partitions its allocations among its VMs or
active programs.

The other desirable features of CPU scheduling algorithms
are as follows:

• Admission criteria– the admission of a new active session
should not infringe the QoS guarantees given to currently
established and running active sessions. If so, necessary
steps need to be taken like re-negotiation or rejecting the
new active session.

• Real-time guarantees– the design of the CPU scheduling
algorithms must satisfy real-time constraints in terms of
ensuring guaranteed scheduling for each active program
within their jitter bounds, if any.

• Fairness criteria – it should be possible to schedule
all the types of active programs that are competing
for the CPU—if there is non-reserved CPU time, the
lower priority non-guaranteed applications should not be
completely starved out of CPU by higher priority tasks
corresponding to guaranteed services.

• Maintenance and policing criteria– policing criteria
requires to ensure that the deadline violating tasks do not

I

infringe the QoS guarantees of other tasks competing for
CPU resources. Mechanisms like software watchdog that
suspends an active program on deadline violations, are
means of ensuring service guarantees. The maintenance
criteria imply setting up re-negotiations or dropping fur-
ther requests in case of CPU overload condition.

• Throughput criteria– the scheduling policy should be
able to schedule as many active sessions as possible.

2) Network scheduler:Current network scheduling algo-
rithms are well-developed and only their adaptation to active
networks is necessary. The typical objective network scheduler
parameters are bandwidth, latency and jitter, and the common
criteria on network schedulers are following:

• Admission criteria– the scheduler must ensure that the
requested bandwidth plus the currently allocated band-
width does not exceed a threshold of the total available
bandwidth.

• Real-time guarantees– it must also ensure that the
network interface scheduling delays are bounded and
the enough buffer provisioning is done. The scheduling
algorithm must consider that the mechanisms like retrans-
missions may not be suitable for applications requiring
hard delay bounds.

• Fairness criteria– all types of applications should get a
fair share of network bandwidth.

• Maintenance and Policing criteria– Policy criteria should
ensure that the application do not take up more than
the network bandwidth that has been guaranteed by QoS
negotiation during active session setup.

3) Memory scheduler:The memory scheduling algorithms
must manage the whole memory subsystem using virtualiza-
tion mechanism and it must guarantee the required amount of
free memory to active sessions. Because of the virtualization
mechanism the appropriate allocation of free page frames
and redistributing released frames to other sessions are the
main jobs of the memory scheduler. The following are the
requirements on the memory schedulers in order to support
QoS:

• Admission criteria– new active session can be admitted
if and only if its memory buffer requirements plus the
current buffer allocations of other sessions do not exceed
the threshold of the total available memory.

• Real-time guarantees– during the run of given active
session some time-critical applications need the memory
access time to be minimal. With virtual memory, it
is important to have paging mechanisms that have an
acceptable upper bound on access latency.

• Fairness criteria– the memory scheduler must ensure the
minimal availability of memory buffers for all the active
sessions and their elements.

• Maintenance and Policing criteria– maintenance criteria
require setting up re-negotiations or dropping further
requests in case of a buffer shortage. Policy criteria may
require that the offending active session should be notified
for the re-negotiations or in the extreme case terminated.

4) Disk (I/O) scheduler:While a secondary data storage
is not a traditional router resource, it is very important for
the active router with QoS support. The disk scheduler may
support either the transfer bandwidth of given disk or the
amount of free disk space only or both. The requirements on
suitable disk scheduling algorithms could be summarized into
the following criteria:

• Admission criteria– the effective disk transfer bandwidth
is reduced due to seeking and latency overheads, which
are a function of the disk scheduling algorithm and the
disk request size. The admission criterion ensures that the
sum of the data rates of all the active sessions, including
the new one, do not exceed the effective disk transfer
bandwidth.

• Real-time guarantees– the scheduler must be able to
schedule the disk accesses for all admitted streams so as
to meet their data rate guarantees and the response time
for all the streams must be acceptable.

• Fairness criteria– provisioning may be done to ensure
that all types of active sessions get a fair share of disk
transfer bandwidth.

• Maintenance criteria– the scheduling algorithm has to
monitor the data rates being provided to real-time streams
with respect to the guarantees provided before; the QoS
re-negotiations must be provided in cases of shortfalls.

• Resource reservation– except the reservations of disk
bandwidth each active session requires at a minimum a
buffer for the consuming virtual machine (resp. active
program) and a buffer for the producing virtual machine
(active program). Thus, this amount of memory needs to
be reserved for each admitted stream.

V. RELATED WORK

In this section we brief the results of our work in the
context of related projects in the resource management and
QoS assurance in active networks research. We also notice
relevant projects whose ideas may be implemented in our AR
architecture.

An active node architecture with resource management [8]
is an attempt how to introduce the architecture with explicit
resource management system, which also provides an adapta-
tion among different applications. The node operating system
is based on the Janos project [9] developed at the university
of Utah. The Janos project is in comparison with our work
oriented to the execution of untrusted Java byte-code only and
thus has limited flexibility. As a part of this project the method
for the description of resource requirements from applications
using the resource vectors and resource vectors space were
introduced. We will explore the resource vector method in
more detail and assess its possible application to our router
architecture.

The CROSS project [10] is another attempt of introducing
the resource management system in software-programmable
router operating systems. This project was proposed by
David K. Y. Yau and Xiangjing Chen in 2001 and it uses
virtual machines as the active programs providing thus fixed

I

router functionality only, but higher security and efficiency,
because the CROSS system communicates directly with the
hardware layer.

Friendly virtual machines [11] devises techniques that en-
able multiple virtual machines to share underlying resources
on the same host both fairly and effectively. Instead of deploy-
ing complex resource management techniques in the hosting
infrastructure, an alternative approach of self-adaptation in the
virtual machines themselves was introduced based on feed-
back about resource usage and availability. Thus, the virtual
machines that adjust their demands for system resources, so
they are both efficiently and fairly allocated to competing
virtual machines, are very important idea for the resource
management subsystem in our router, where the principle of
Friendly virtual machines could be used for the “competing”
virtual machines with no explicit resource requirements.

QoS specification languages for distributed multimedia ap-
plications could be used for the description and negotiation
of QoS requirements of active sessions in our architecture.
Such languages were studied by Jingwen Jin and Klara Nahrst-
edt in [12]. They studied lots of languages including script
languages and XML-based markup languages. The languages
for the hierarchical resource requirements description probably
suitable for our router architecture were also studied.

VI. CONCLUSIONSAND FUTURE WORK

In this paper, we have proposed a virtual machine oriented
active router architecture and studied the resource require-
ments and QoS implementation. The typical scenario of hierar-
chical resource management system has been explored and the
requirements on the schedulers for such QoS-enabled active
router, concerning the CPU scheduler, network scheduler,
memory scheduler, and disk scheduler were also discussed.

The main feature of our router architecture is that it provides
a predictable and assured access for active sessions to system
resources. These resources can be subsequently redistributed
to multiple virtual machines, giving flexible choice and the
ability for services to seamlessly evolve.

Concerning the future challenges, the proposed router ar-
chitecture will be implemented based on Xen virtual machine
monitor [13]. Further we want to explore extending current ar-
chitecture into a distributed environment to be able to deal with
high-speed networks. In this case, all the resource schedulers,
the whole router, and session management systems must be
modified. For the efficiency purposes, another interesting topic
for our future work is the implementation of some parts of the
router architecture (especially the packet classifier module) in
hardware, e.g., based on FPGA-based programmable hardware
cards [14].

ACKNOWLEDGMENTS

This project has been supported by a research intent “Op-
tical Network of National Research and Its New Applica-
tions” (MŠM 6383917201), “Parallel and Distributed Sys-
tems” (MŠM 0021622419), and “Integrated Approach to Edu-
cation of PhD Students in the Area of Parallel and Distributed
Systems” (No. 102/05/H050).

REFERENCES

[1] J. E. Smith and R. Nair,Virtual Machines: Versatile Platforms for
Systems and Processes. Elsevier Inc., 2005.

[2] K. Psounis, “Active networks: Applications, security, safety and archi-
tectures,”IEEE Communication Surveys, 1999.

[3] E. Hladḱa and Z. Salvet, “An active network architecture: Distributed
computer or transport medium,” inNetworking – ICN 2001: First
International Conference Colmar, France, July 9-13, 2001, Proceedings,
Part II, ser. Lecture Notes in Computer Science, P. Lorenz, Ed., vol.
2094. Heidelberg: Springer-Verlag, Jan. 2001, pp. 612–619.

[4] E. Hladḱa, P. Holub, and J. Denemark, “An active network architecture:
Distributed computer or transport medium,” in3rd International Con-
ference on Networking (ICN’04), Gosier, Guadeloupe, Mar. 2004, pp.
338–343.

[5] J. Denemark, “Autentizace v aktivnı́ch śıtı́ch (authentication in active
networks),” Master’s thesis, Faculty of Informatics, Masaryk University
in Brno, Apr. 2003, czech only.

[6] T. Rebok, “Active router communication layer,” CESNET, Tech.
Rep. 11/2004, 2004. [Online]. Available: http://www.cesnet.cz/doc/
techzpravy/2004/artp-protocol/

[7] B. Ghose, V. Jain, and V. Gopal, “Characterizing qos-awareness in
multimedia operating systems,” 1999, http://computing.breinestorm.net/
qos+cpu+scheduling+criteria+admission/%.

[8] Y. Li and L. Wolf, “An active network node system with adaptive
resource management,” inInternational Conference on Telecommuni-
cations, June 2002.

[9] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: A java-oriented os for
active network nodes,” 2001. [Online]. Available: citeseer.ist.psu.edu/
652534.html

[10] D. K. Y. Yau and X. Chen, “Resource management in software
programmable router operating systems,”IEEE Journal on Selected
Areas in Communications, vol. 19, no. 3, Mar. 2001. [Online].
Available: http://citeseer.ist.psu.edu/324757.html

[11] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and R. West,
“Friendly virtual machines - leveraging a feedback-control model for
application adaptation.” [Online]. Available: citeseer.ist.psu.edu/article/
zhang04friendly.html

[12] J. Jin and K. Nahrstedt, “Qos specification languages for distributed
multimedia applications: A survey and taxonomy,”IEEE MultiMedia,
vol. 11, no. 3, pp. 74–87, 2004.

[13] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. B. m, and R. Neugebauer, “Xen and the Art of Virtualization,” in
Proceedings of the ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, USA, Oct. 2003.

[14] J. Novotńy, O. Fǔćık, and D. Antǒs, “Project of IPv6 Router with FPGA
Hardware Accelerator,” inField-Programmable Logic and Applications,
13th International Conference FPL 2003, P. Y. Cheung, G. A. Constan-
tinides, and J. T. de Sousa, Eds., vol. 2778. Springer Verlag, September
2003, pp. 964–967.

I

Appendix J

Distributed Active Element for
High-Performance Data Distribution

by Petr Holub and Eva Hladká

IFIP International Conference on Network and Parallel Computing, NPC 2006, Tokio, Japan,
October 2006. Proceedings. pp. 27–36, 10 p.

Distributed Active Element for High-Performance Data Distribution

Petr Holub1∗ Eva Hladká2†

1Institute of Computer Science
Masaryk University,

Botanická 68a, 602 00 Brno, Czech Republic
2Faculty of Informatics,

Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

1 Introduction

Requirement on multi-point data distribution in IP
networks assumes some distribution service, be it imple-
mented as a part of network native services (IP multicast)
or user-empowered solution (data reflectors). In our pre-
vious work, we have introduced user-empowered distribu-
tion networks based on Active Elements (AE) [1], which
scale well in terms of number of clients connected. It is
however not sufficient in terms of scalability with respect
to bandwidth of each single stream distributed, i. e. it
is not suitable for distributing streams whose bandwidth
exceeds capacity of each single AE [2].

In order to improves the scalability with respect to
the bandwidth of a stream, we propose a concept of dis-
tributed AE, suitable for implementing on computer clus-
ters with low-latency internal interconnection. Its archi-
tecture is based on parallelizing whole AE architecture
including listener and sender modules. which however
brings problems with packet reordering in sending part.
While packet reordering is largely unwanted for general
network element (e.g. router) behavior, as it severely
tampers performance especially of TCP-based applica-
tions, it is more acceptable for multimedia application
that rely on UDP protocol and thus need to handle po-
tential packet reordering anyway. Simple solution is a
design with all distributed modules except for sender
module—while this would help for computationally in-
tensive operations on the streams, it is of little use for
high-bandwidth streams. In this paper we show, that
even when having multiple sending modules with no ex-
plicit synchronization, the reordering introduced by the
distributed AE has an upper bound for real-time syn-
chronous applications under certain assumptions. It can
be further reduced by implementing proposed Fast Cir-
culating Token protocol.

Related work. Distribution of multimedia data over
IP network leads to a multicast schema. However, as the
native multicast solution is not always reliable or even
available, other distribution schemes were developed fol-
lowing approach of multicast virtualization. They are
usually based on a central distribution unit—a reflector—

∗hopet@ics.muni.cz
†eva@fi.muni.cz

like the H.323 MCUs or reflectors provided in the Vir-
tual Room Videoconferencing System (VRVS)1. The suc-
cessor of VRVS called Enabling Virtual Organizations
(EVO)[3] is based on self-organization of system of re-
flectors, again not empowering the end-user with tools
to change the distribution topology. Other simpler UDP
packet reflectors include rcbridge [4], reflector2, and Alkit
Reflex3.

Another area related to this paper is utilization of com-
puter clusters as either distributed routers or distributed
servers. Project Suez [5, 6] is a distributed router based
on commodity PC cluster with Myrinet interconnection
with each node of the cluster having one internal inter-
face to the Myrinet switch and optionally one or more
external interfaces. Suez uses a routing-table search al-
gorithm that exploits CPU cache for fast lookup by treat-
ing IP addresses directly as virtual addresses. Another
project which distributes processing load on active net-
work elements is Active Network Node [7] that relies on
specialized hardware. Software DSM project [8] attempts
to build efficient distributed memory for the closely cou-
pled clusters for using them as active routers. There is
yet another similar project called Cluster-based Active
Network Router [9]. However none of the above men-
tioned projects addresses finer than per-address network
load distribution and thus there is no need for solving
packet reordering issues.

There is a number of distributed servers based on em-
ploying computer clusters. Most distributed servers are
prototyped as web servers [10, 11, 12] for simplicity rea-
sons and because rather standard and straightforward
performance evaluation is available. For example, Car-
rera and Bianchini recently demonstrated cluster based
web server called PRESS [13] concentrating on demon-
strating advantages of user level communication like low
processor overhead, remote memory accesses, and zero-
copy transfers.

Paper organization. This paper is organized as fol-
lows. Section 2 discusses general architecture of the dis-
tributed AE and its behavior and the packet reordering

1http://www.vrvs.org/
2http://www.cs.ucl.ac.uk/staff/s.bhatti/teaching/z02/

reflector.html
3http://w2.alkit.se/reflex/

J

from the theoretical point of view. Prototype implemen-
tation is described and evaluated in Section 3. The pa-
per concludes with future work and concluding remarks
in Section 4.

2 Distributed Active Element

We are proposing the distributed AE based on archi-
tecture of AE described in [1] and it is partly determined
by requirement of implementability on existing tightly
coupled clusters with low latency interconnection. The
distributed AE implementation assumes the infrastruc-
ture as shown in Figure 1. The computing nodes form
a computer cluster with each node having two connec-
tions: (1) low-latency control connection used for inter-
nal communication and synchronization inside the dis-
tributed AE, and (2) data connection used for receiving
and sending the data. Low latency interconnection is
necessary since current common network interfaces like
Gigabit Ethernet provide large bandwidth, but latency of
the transmission is still in order of hundreds of µs, which
is not suitable for fast synchronization. Specialized low-
latency interconnects like Myrinet provide as low latency
as 6 µs, which is comparable to message passing between
threads on a single computer.

data link
optional
data link

low latency
interconnect

AE
parallel
nodes

low latency
interconnect

switch

data path
switch(es)

network (Internet)

Figure 1: Model infrastructure for implementing the dis-
tributed AE.

The incoming data needs to be first distributed across
the multiple parallel units of the distributed AE, pro-
cessed in these units, and finally aggregated and send
over the network to the listening clients. Thus the archi-
tecture comprises three major parts:

• Distribution unit takes care of ingress data flow
distribution over multiple parallel distributed AE
units. When the distribution unit is part of the
same L2 domain as parallel AE units, it may op-
erate on L2 addresses only (e. g. Ethernet ad-

dresses in operation similar to VRRP4 or CARP5

protocols), otherwise L3 (usually IP) addressing is
needed.

• Parallel AE unit is a complete instance of AE with
modified sender module to allow for possible syn-
chronization. It has the kernel with administrative
submodules, session management, processor sched-
ulers and AAA submodules. Data are received us-
ing network listener modules, stored into shared
memory (shared across the instance of the reflector
only, not across multiple AE unit instances), pro-
cessed by zero or more processors, distribution lists
filled up with either one of processors or with ses-
sion management and finally sent with the sender
module. Unless there is some complex data pro-
cessing involved, data passes through distributed
AE unit in zero copy mode for performance rea-
sons.

The network management module handles commu-
nication with distribution unit and also communi-
cation with other distributed AE units if AE ring
is to be set up and maintained for the Fast Cir-
culating Token protocol (Section 2.2). However,
handling token itself for this protocol is performed
directly by the sender module in order to minimize
operation overhead.

• Aggregation unit aggregates the resulting traffic to
output network line(s). Because the AE element
is often used as data multiplication unit, we as-
sume that output data flow from the distributed
AE is larger than input data flow. Thus we need a
unit that is even more powerful that the input load
distribution unit and in most cases, cheap custom
made software implementation is not available and
we have to use available hardware solution like ag-
gregating switch. However, in that case we must
not assume any further behavior of the aggregat-
ing unit except for two things: first, it is over-
provisioned enough not to loose any data and sec-
ond, it has limited buffer space available.

Whole architecture supports user-empowered opera-
tion, there is still no need for running any part of it in
kernel space. The only administrative requirement is that
the cluster environment needs to be set up together with
networking infrastructure including distribution and ag-
gregation units.

In order to set up and maintain the distributed AE,
some protocol is needed – it has been described in [14]
in detail and it is out of scope of this paper. In the rest
of the paper we describe operation of distributed AE in
static environment, where there is constant number of
AEs participating in distributed processing and the AEs
work reliably.

In order to evaluate our models theoretically, we need
to introduce an idealized environment:

4http://www.ietf.org/html.charters/vrrp-charter.html
5http://www.countersiege.com/doc/pfsync-carp/

J

• The ideal network is a network in which no data
are lost, corrupted, nor reordered. It also provides
instant delivery, i. e. it introduces zero latency.

• The ideal multimedia traffic has bandwidth b and
independent packets of exactly same size sp, which
is equal or smaller than MTU of the underlying
network. The packets are sent in regular intervals.
All the queue sized below are expressed in units
of packet size sp. In order to isolate reordering
introduced by the distributed AE, we assume that
the ideal multimedia traffic has no reordering prior
to entering distribution unit.

• The ideal aggregating unit has n input interfaces
with the same parameters and one output interface
with capacity equal or bigger than the n inputs
together. It reads packets from the size-limited in-
put interfaces queues and sends them on output
interface in such a way, that packets are never lost.
The speed is bSW

j for j-th input interface and each
input queue has equal size of sSW

i for each input
interface. In order not to lose any input data, the
ideal aggregating unit needs to fulfill the following
requirement in the steady state:

∑
j bSW

j ≤ bSW
o .

• The ideal AE has processing capacity equal or
higher than stream bandwidth and it has an input
queue size of qAE

i . All the parallel units of the ideal
AE have the same parameters and performance and
the total bandwidth of the traffic is divided into
streams with the same parameters. The ideal AE
introduces no losses, nor data corruption, nor data
reordering in the data stream.

2.1 Ingress Distribution

The ingress data distribution takes care of distribut-
ing incoming data across different paths inside the dis-
tributed AE. For the ideal distributed AE the ideal dis-
tribution unit distributes packets in round-robin fashion.
In each round, it distributes n packets, one to each of
the parallel units. The distribution unit marks round
number into each packet.

Such an ideal distribution might not be suitable in the
cases, when parallel AE units are of unequal performance
or when data stream packets are not independent and the
processing needs to have all the inter-dependent packets
through the same path. When parallel AE units do not
have the same performance, the load balancer can send
multiple packets in each round to the same parallel path.
All the packets sent in one round are marked with the
same round number. Sample packet distribution is shown
in Figure 3.

2.2 Egress Synchronization

2.2.1 No explicit synchronization.
The simplest model for egress synchronization is to use

no synchronization at all. However, with this model and
limited buffers on the input interfaces of the AEs, there
is still some implicit synchronization achieved.

It can be shown the maximum reordering induced by
an ideal distributed AE with no explicit egress synchro-
nization and ideal aggregating unit is

n(sAE
i + sAE

o + sSW
i + 1),

where n is the number of parallel AE units when all
queues operate in FIFO tail-drop mode. Detailed proof
can be found in [14].

2.2.2 Fast Circulating Token.
In order to decrease packet reordering introduced by

the distributed AE, we propose a distributed algorithm
for achieving less packet reordering compared to no ex-
plicit synchronization. The nodes are ordered in a ring
with one node elected as a master node and they circu-
late a token which serves as a barrier so that no node can
run too much ahead with sending data. The mechanism
is called Fast Circulating Token (FCT) since the token
is not held for the entire time period of data sending as
usual in the token ring networks.

Because of real world implementation of data packet
sending in common operating systems, we assume, that
sending procedure is non-preemptive, i. e. once a packet
is being sent, this process can be interrupted after send-
ing is finished. Further we assume that token reception
event processing has precedence over any other event pro-
cessing in the distributed AE. If there are multiple token
events waiting, they are processed in FIFO way. How-
ever, as the data sending is non-preemptive, if the token
arrives in the middle of data packet sending, it will be
handled just after that packet sending is finished.

The token carries the following information: (1) round
number – corresponds to round number from distribu-
tion unit, which is set and incremented on master node,
(2) last round-trip time, and (3) holding time left after
traveling from master to current node

Depending on implementation circumstances,
timeLeft() function may be used to allow keeping
token on other nodes than master for limited amount
of time. This might be needed if e. g. the master
node is considerably faster than other nodes. For ideal
distributed AE, timeLeft() returns 0.

After more detailed analysis [14], it can be shown the
maximum reordering induced by an ideal distributed AE
with FCT egress synchronization and ideal aggregating
unit is

n(sSW
i + 3),

where n is the number of parallel AE units when all
queues operate in FIFO tail-drop mode.

When operating in a non-ideal environment, there are
several complications that needs to be taken into account:

• packet reordering, either before data reach dis-
tributed AE, or on a single parallel path inside dis-
tributed AE – possible implementation of the first
condition after token reception influences whether
excessive packet reordering will be converted to
packet loss or not,

• due to unequal performance of parallel paths, load
balancing may be deployed – again the reordering

J

5.2. OPERATION IN STATIC ENVIRONMENT 33

Definition 5.4 (Ideal distributed AE) The ideal AE has processing capacity equal or higher
than stream bandwidth and it has an input queue size of qAE

i . All the parallel units of the
ideal AE have the same parameters and performance and the total bandwidth of the traffic
is divided into streams with the same parameters. The ideal AE introduces no losses, nor
data corruption, nor data reordering in the data stream. 2

buffer
unit

aggregatingAE
unit

buffer
input

distribution
output

AEAE aggregating

buffer
input

b
j

s
AE
i s

AE
o s

SW
i

FIGURE 5.2: Model of the ideal distributed AE with ideal aggregation unit.

5.2.1 Ingress Distribution
The ingress data distribution takes care of distributing incoming data across different paths
inside the distributed AE. For the ideal distributed AE, it is suitable to use simple round-
robin distribution as all the parallel AE units are equivalent in their performance.

Definition 5.5 (Ideal distribution unit) The ideal distribution unit distributes packets in
round-robin fashion. In each round, it distributes n packets, one to each of the parallel
units. The distribution unit marks round number into each packet. 2

Such an ideal distribution might not be suitable in the following cases:

• When parallel AE units are of unequal performance. In this case, load balancing
described below is useful.

• When data stream packets are not independent and the processing needs to have all
the inter-dependent packets through the same path. This might be for example when
some data processing is done and some state inside the AE needs to be created and
maintained.

In this case, the packet distribution needs to follow the packet inter-dependencies.
When distribution unit is implemented as a part of sending application (e. g. user-
space library encapsulating UDP sendto() function), it is possible to utilize knowl-
edge of data directly and distribute it correspondingly. If the distribution unit is
implemented as separate stand-alone network unit, the application can mark groups

Figure 2: Model of the ideal distributed AE with ideal aggregation unit.

Round 1

1

2

3

5

6

7

8 9

11

12 134

10

14

15

16

18

19

20

21 22

23

24

25 2617

Round 2

Figure 3: Sample load balancing packet distribution for distributed AE.
.

of two consecutive packet is limited by size of two
consecutive rounds, but each round may have more
than n packets depending on load balancing scheme
used.

2.2.3 Exact Order Sending.
It is possible to design sending protocol that results

into exact ordering, but it requires defined behavior of
aggregation unit and thus it is not suitable for implemen-
tation on commodity hardware like aggregating switches.

One possibility is that aggregation unit behaves simi-
lar to sending modules with FCT protocol, i. e. it reads
packets from input either in the same round robin way
distribution unit distributes packets and utilizes mark
of round number in each packet to recognize when the
packet is ready to be sent. When each parallel path is
ideal, namely there is no packet loss or corruption, even
packet round numbering might not be necessary. How-
ever, in order to protect aggregation against lost and/or
corrupted packets which would make one of the queues
go ahead of the rest, it is advisable to stick to round
numbering of the packets. For such operation, an al-
ternative packet distribution shown in Figure 5 is more
appropriate—compared to the distribution shown in Fig-
ure 3, it has smaller rounds containing either zero or one
packet. Instead of sending no packet, it actually needs

to send empty round marker to let the aggregator know
that there is no need to wait for the packet to arrive. It
not efficient when circulating token is present as there
are more rounds and thus it pronounces overhead of the
token.

Such protocol might be implementable on custom
hardware, e. g. data switch, or custom network proces-
sor, or at least some programmable routing device like
FPGA-enabled routing cards.

3 Prototype Performance Evaluation

Prototype implementation of the distributed AE is im-
plemented in ANSI C language for portability and perfor-
mance reasons. The implementation comprises two parts:
a load distribution library and distributed AE itself.

Because of lack of flexible enough load distribution
hardware unit, we have implemented it as a library, which
allows simple replacement of standard UDP related send-
ing functions in existing applications and allows develop-
ers to have defined type of load distribution—either pure
round robin or load balancing.

Each parallel AE element uses threaded modular im-
plementation based on architecture described in Sec-
tion 2. Internal buffering capacity of each AE node has
been set to 500 packets. Explicit synchronization using

J

Round 6

1

14

2 3 4 5 6 7

8 9 10 11

12 13

15 16 17 18 19 20

21 22 23 24

25 26

Round 1

Round 2

Round 3

Round 4

Round 5

Figure 5: Alternative load balancing packet distribution. Empty round markers are shown as small black filled
rectangles.

1 rnd := 0;
2 finish := false;
3 while ¬finish do
4 if ¬(master ∧ rnd = 0)
5 token ready := 0;
6 do
7 if test recv token(rnd no, last RTT, t left)
8 token ready := 1;
9 if ¬master ∧ t left = 0

10 pass token(rnd no, last RTT, t left);
11 fi
12 fi
13 if test recv finish()
14 finish := true;
15 fi
16 send packet(rnd);
17 while ¬(token ready ∨ finish) od
18 if finish
19 break;
20 fi
21 fi
22 if master
23 send all packets(rnd);
24 rnd := get rnd from queue();
25 last RTT := updateRTT();
26 t left := timeLeft();
27 pass token(rnd, last RTT, t left);
28 else
29 while t left > 0 ∧ is packet(rnd) > 1 do
30 send packet(rnd);
31 t left := t left− 1;
32 od
33 pass token(rnd no, last RTT, t left);
34 discard packets(rnd);
35 rnd := rnd no;
36 fi
37 if master ∧ finish requested
38 foreach s ∈ slaves do
39 send finish(s);
40 od
41 finish := true;
42 fi
43 od

Figure 4: Fast Circulating Token algorithm.

FCT protocol has been implemented using MPICH im-
plementation6 of MPI7 built with low-latency Myrinet
GM 2.0 API8 (so called MPICH–GM). Prototype imple-
mentation has been tested and known to work on Linux.

For cost-effective prototype implementation, the ag-
gregation unit was a implemented as commodity switch
satisfying condition that egress link capacity is equal or
larger than ingress capacities and with sufficient capacity
of internal switching matrix.

3.1 Experimental Setup

In order to evaluate performance and behavior of the
distribute AE experimentally, we have set up a testbed
shown in Figure 6 comprising eight machines and two
switches:

GE data link Myrinet low latency
interconnect

AE
parallel
nodes

low latency
interconnect

switch

data path
switch

sending/receiving
probes

Figure 6: Distributed AE testbed setup.

• A data switch HP ProCurve 6108 with 8× Giga-
bit Ethernet full wire-speed ports. Manufacturer-
specified switching capacity is 16 Gbps and switch-
ing performance of 11.9 million packets per second
is given for 64 B packets.

• A low-latency Myrinet M3-E32 switch with M3–
SW16–8F interface cards that created the control

6http://www-unix.mcs.anl.gov/mpi/mpich/
7http://www.mpi-forum.org/
8http://www.myri.com/scs/GM-2/doc/html/

J

plane for passing control information like token for
FCT protocol. According to manufacturer’s specifi-
cations and benchmarks, it features as low one-way
latency as 6.3µs for short messages up to approxi-
mately 100B with MPI and GM-2.0 API9.

• 6× PCs used as the parallel nodes for the dis-
tributed AE with configuration shown in Table 1.
Each node was connected to via data link to HP
switch via full-duplex Gigabit Ethernet and also to
Myrinet switch for control information passing.

• Sender and receiver PCs with the same configura-
tion (Table 1), that have been used for generating
traffic and collecting and analyzing results. Both
computers were connected to the HP switch via
full-duplex Gigabit-Ethernet.

Configuration
Brand HP ProLiant
Model DL 360 G3
Processor 2× Intel Xeon 2.40 GHz
Front-side bus 533 MHz
Memory 2 GB (PC 2100 DDR)
GE NIC 2× Broadcom Corporation

NetXtreme BCM5703 (rev. 2)
Myrinet NIC M3F-PCI64C-2
Operating system Linux Debian Woody

kernel 2.4.29 SMP
GM Socket version 2.0.8

Table 1: Configuration of distributed AE nodes and send-
ing/receiving probes.

The data flows were generated using simple RTP-
compliant sending application and data reception was
done by receiver, which also computed all the required
statistics. We have evaluated it with sending data stream
with bandwidth up to 1Gbps and measurements above
1 Gbps will be carried out in the near future.

3.2 Performance Evaluation

Performance of the distributed AE prototype with-
out explicit sending synchronization and with FCT-based
synchronization is shown in Figures 7 and 8 respectively.

It turns out that single path AE (equivalent to sin-
gle reflector) is not capable of processing streams be-
yond 600 Mbps on given testbed infrastructure without
packet loss. This is in accordance with findings in [15],
where stand-alone centralistic reflector was examined
on testbed infrastructure with even slightly less perfor-
mance.

Contrary to the stand-alone reflector, the distributed
AE prototype can process and distribute streams up to
1 Gbps using 1472 B UDP payload without significant
packet loss starting with two parallel paths. Jitter, usu-
ally explained as delay dispersion, is calculated according

9http://www.myri.com/myrinet/performance/#GM-2.0

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

200

400

600

800

1000

R
ea

l b
an

dw
id

th
 [M

bp
s]

1 parallel path
2 parallel paths
3 parallel paths

Bandwidth

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

50

100

150

200

250

300

Ji
tte

r
[u

s]

Jitter

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

10

20

30

40

Lo
ss

 [%
]

Loss

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

200

400

600

800

1000

R
ea

l b
an

dw
id

th
 [M

bp
s]

4 parallel paths
5 parallel paths
6 parallel paths

Bandwidth

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

50

100

150

200

250

300

Ji
tte

r
[u

s]

Jitter

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

10

20

30

40

Lo
ss

 [%
]

Loss

Figure 7: Forwarding performance of distributed AE
without explicit synchronization for number of paths 1
through 6.

J

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

200

400

600

800

1000

R
ea

l b
an

dw
id

th
 [M

bp
s]

2 parallel paths
3 parallel paths

Bandwidth

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

50

100

150

200

250

300

Ji
tte

r
[u

s]

Jitter

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

10

20

30

40

Lo
ss

 [%
]

Loss

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

200

400

600

800

1000

R
ea

l b
an

dw
id

th
 [M

bp
s]

4 parallel paths
5 parallel paths
6 parallel paths

Bandwidth

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

50

100

150

200

250

300

Ji
tte

r
[u

s]

Jitter

0 200 400 600 800 1000
Target bandwidth [Mbps]

0

10

20

30

40

Lo
ss

 [%
]

Loss

Figure 8: Forwarding performance of distributed AE
with synchronization using FCT for number of paths 2
through 6.

to RFC 3551 based on arrivals of two consecutive packets
as

Di,j = (Rj −Ri)− (Sj − Si) = (Rj − Sj)− (Ri − Si),

J = J +
1
16

(|Di−1,i| − J),

where Si is the RTP timestamp from packet i, and Ri is
the time of arrival in RTP timestamp units for packet i
for two consecutive packets i and j. From this definition
it doesn’t include packet reordering discussed below and
it only measures “evenness” of packet arrivals indepen-
dent of packet order. It starts about 300 µs when sending
100 Mbps and slowly drops to below 100 µs as the data
rate increases. For more parallel paths, it slightly raises
and this effect is more pronounced on distributed AE
without egress synchronization.

3.3 Packet Loss and Reordering Evaluation

We have measured and analyzed also packet reorder-
ing in order to experimentally compare behavior of dis-
tributed AE without explicit egress synchronization and
distributed AE with synchronization using FCT protocol.
The detailed reordering samples can be found in [14].

The reordering is expressed as the difference between
sequence numbers of two consecutive packets. Thus, if
all the sequentially numbered packets arrive in the same
order they were sent, all the differences are +1. Higher
number than +1 means, that some packets were skipped
forth (either because of packet reordering or because of
packet loss) while negative number means stepping back
in packet numbering (due to packet reordering only).
Value of 0 occurs when duplicate packets arrive imme-
diately following each other. min{j} is the maximum
negative difference in sequence numbers of successively
received packets and max{j} is the maximum positive
difference.

For any interval of arrivals of two or more packets, the
following equation holds

−1∑
j=min{j}

jhj︸ ︷︷ ︸
H−

+ h1︸︷︷︸
H1

+
max{j}∑

j=2

jhj︸ ︷︷ ︸
H+

= ∆, (1)

where ∆ is difference between sequence number of last
and first packet in the observed interval. Also, for the any
interval of arrivals of more than one packet, the following
equation holds:

Π +
−1∑

j=min{j}

hj︸ ︷︷ ︸
N−

+ h1︸︷︷︸
N1

+
max{j}∑

j=2

hj︸ ︷︷ ︸
N+

−δ = ∆. (2)

where Π is number of lost packets and δ is a number of
duplicated packets that are not included in h0. Proofs for
both can be found in [14]. By combining both equations
(1) and (2), we can derive packet loss as Π = H− +
H+ −N+ −N− + δ. Because positive part of the graph
described by H+ or N+ includes also packet loss, the
negative part of the graph described by H− or N− can
be seen as measure of packet reordering.

J

With no egress synchronization With FCT protocol
2 parallel paths

BW min{j} H− N−

[Mbps]
100 -15 -58 18
200 -7 -35 11
300 -49 -339 55
400 -13 -194 150
500 -15 -1370 1266
600 -19 -12240 11726
700 -25 -48405 47871
800 -33 -105801 103793
900 -35 -239722 234334
1000 -35 -265286 258558

BW min{j} H− N−

[Mbps]
100 -1 -19 19
200 -3 -242 184
300 -3 -502 466
400 -3 -4768 4724
500 -3 -4563 4533
600 -3 -36270 36220
700 -3 -109264 109238
800 -3 -176277 176269
900 -3 -98721 98703
1000 -3 -55548 55476

3 parallel paths
BW min{j} H− N−

[Mbps]
100 -13 -37 11
200 -32 -149 20
300 -376 -28171 1230
400 -113 -2452 316
500 -17 -576 474
600 -104 -3759 1473
700 -154 -9608 4129
800 -26 -10147 8821
900 -32 -25210 20327
1000 -32 -31032 24806

BW min{j} H− N−

[Mbps]
100 -2 -16 13
200 -5 -269 154
300 -5 -606 432
400 -5 -1357 976
500 -5 -2169 1897
600 -5 -5688 5268
700 -5 -9180 8303
800 -5 -14522 13069
900 -5 -32276 28228
1000 -5 -29819 25872

Table 2: Comparison of reordering for distributed AEs with no explicit egress synchronization and with synchronization
using FCT. Part 1.

The difference between the H-sums and the N -sums is
that the H-sums are “weighted sums”. Thus the more
packets are farther from 1 in either direction, the higher
the absolute value of H-sums are, while the N -sums re-
main the same. All the terms in the N−, N+, and H+

are positive and all the terms in the H− are negative. If
H− ≈ N−, the vast majority of out-of-order packets in
the negative part is reordered by j = −1.

Stand-alone reflector. As discussed above, the
stand-alone reflector is not capable of forwarding data
streams above 600Mbps without packet loss, where only
+1 reordering value is only populated up to 600 Mbps and
asymmetrical distribution leaning toward positive values
is shown for 700 Mbps and above. The bigger the loss
is, the larger the sum H+ is. Because no reordering nor
duplicates are introduced either, H− = N− = h0 = 0.

Distributed AE without explicit synchronization.
While the distributed AE performs very well in terms
of low packet loss, it introduces severe packet reorder-
ing in both terms of maximum reordering (expressed as
the minimum reordering populated in histogram, i. e.
min{j}) and also numbers of packets reordered (ex-
pressed by H− and N−), as obvious from left column of
Tables 2 through 4. Furthermore, the reordering fluctu-
ates very significantly in time and is hardly reproducible.

Distributed AE with synchronization using FCT
protocol. Compared to distributed AE without ex-
plicit synchronization, the FCT protocol allows dis-
tributed AE to work in much more predictable manner.
It reduces packet reordering to just a very few packets
and it also reduces reordering both in terms of max-
imum reordering (min{j}) and numbers of packets re-
ordered (H− and N−), as can be seen from right column
of Tables 2 through 4. The maximum reordering grows
min{j} = 2n+1 where n is number of parallel AE paths,
which indicates that the switch in the testbed works in
rather very precise round robin fashion when aggregating
flows from multiple interfaces. The number of reordered
packets is comparable for lower number of parallel paths
for both with and without synchronization and as the
number of parallel path grows, the synchronized version
becomes better more than 3× for higher bandwidths.
The results are also in agreement with the theoretical
analysis of maximum reordering, as n(sSW

i +3) > 2n−1.

Detailed reordering histograms for both distributed
AE without explicit synchronization and with it can be
found in [14].

Token round-trip time has been also periodically sam-
pled10 and it ranges between 14 µs for 2 parallel AE paths

10In order not to influence results of measurements of distributed
AE performance, it was not possible to continuously gather indi-
vidual token round-trip times. Thus only sample values were peri-
odically gathered.

J

With no egress synchronization With FCT protocol
4 parallel paths

BW min{j} H− N−

[Mbps]
100 -14 -63 17
200 -41 -194 86
300 -35 -6632 6546
400 -13 -141793 141701
500 -15 -499869 499478
600 -106 -543649 535408
700 -119 -578858 542561
800 -38 -683344 547351
900 -31 -976225 552171
1000 -30 -1022286 553458

BW min{j} H− N−

[Mbps]
100 -2 -12 11
200 -5 -85 74
300 -7 -491 298
400 -7 -4897 4526
500 -7 -13894 13214
600 -7 -94937 91991
700 -7 -254382 243885
800 -7 -375694 359466
900 -7 -466649 418082
1000 -7 -482681 425897

5 parallel paths
BW min{j} H− N−

[Mbps]
100 -2 -17 13
200 -6 -98 61
300 -21 -3683 3584
400 -11 -159904 159808
500 -44 -418933 417555
600 -22 -434274 425202
700 -156 -493158 435529
800 -42 -852873 519740
900 -28 -1458732 736498
1000 -152 -1520055 762531

BW min{j} H− N−

[Mbps]
100 -2 -18 17
200 -4 -139 115
300 -9 -729 574
400 -9 -2299 1575
500 -9 -18685 17901
600 -9 -40039 37833
700 -9 -121278 116791
800 -9 -288200 276433
900 -9 -382566 349666
1000 -9 -380204 349372

Table 3: Comparison of reordering for distributed AEs with no explicit egress synchronization and with synchronization
using FCT. Part 2.

and raises up to 40 µs for 6 parallel paths. This closely
approaches manufacturer-stated one-way message pass-
ing latency of Myrinet configuration used for the testbed
as described above.

4 Conclusions

When parallelizing individual AE itself, the distributed
AE comprises multiple equivalent AE units running in
parallel and data distribution unit, which distributes
data over the multiple parallel paths in the distributed
AE, and data aggregation unit, which aggregates result-
ing data from the parallel paths into one or more output
network links.

Distributed AE brings a new problem inherent to the
fact that the data is flowing through multiple indepen-
dent paths—packet reordering. It results either into
packet loss (if delayed out-of-order packets are just dis-
carded) or indirectly into latency increase as the applica-
tion needs to buffer the data in order sort packets before
actual processing begins. For cases where better than
no explicit sending synchronization is needed to mini-
mize output packet reordering induced by the distributed
AE, we have designed and evaluated Fast Circulating
Token protocol providing limited synchronization among
sender modules of distributed AE parallel paths. While
distributed AE with no explicit sending synchronization
provides limited reordering, we have shown both theoret-
ically and experimentally that FCT decreases maximum

egress packet reordering, sometimes even more than two
orders of magnitude.

Regarding future work, the distributed AE could be
complemented with programmable hardware implemen-
tation of load distribution and especially aggregation,
which could be used for implementing sending in exact or-
der, yielding zero packet reordering. The implementation
could be based on FPGA-based programmable network
interface cards with multiple interfaces.

Furthermore we would like to study different audio and
video processing algorithms suitable for implementation
on distributed AE. Such algorithms must minimize state
sharing in order to provide efficient and scalable process-
ing.

Finally, we would like to design an AE with built-in
Quality of Service on all levels, including underlying op-
erating system, for strict separation of different proces-
sors as well as different flows. Actually, many multi-
cast deployment related problems, which initiated our
research into overlay networking, could be mitigated if
the multicast-enabled routers had strict separation of dif-
ferent processes running inside. In the longer term we
would like to design and prototype a distributed router
with such QoS capabilities.

Acknowledgments

This project has been supported by a research intent
“Optical Network of National Research and Its New Ap-

J

With no egress synchronization With FCT protocol
6 parallel paths

BW min{j} H− N−

[Mbps]
100 -16 -80 17
200 -7 -78 47
300 -47 -1955 1804
400 -62 -62744 62452
500 -14 -331120 330329
600 -17 -371489 357821
700 -124 -397293 363594
800 -27 -517597 379041
900 -31 -1252132 629255
1000 -25 -1237362 622667

BW min{j} H− N−

[Mbps]
100 -3 -18 13
200 -5 -49 36
300 -9 -418 359
400 -11 -2596 1823
500 -11 -7553 6638
600 -11 -27938 25856
700 -11 -140596 135701
800 -11 -171797 164183
900 -11 -324345 297198
1000 -11 -330780 302301

Table 4: Comparison of reordering for distributed AEs with no explicit egress synchronization and with synchronization
using FCT. Part 3.

plications” (MŠM 6383917201) and “Parallel and Dis-
tributed Systems” (MŠM 0021622419). The authors
would like to acknowledge help of Jǐŕı Denemark and
Tomáš Rebok for their assistance during measurements
implementation.

References

[1] Petr Holub, Eva Hladká, and Luděk Matyska. Scal-
ability and robustness of virtual multicast for syn-
chronous multimedia distribution. In Networking
- ICN 2005: 4th International Conference on Net-
working, Reunion Island, France, April 17-21, 2005,
Proceedings, Part II, volume 3421/2005 of Lecture
Notes in Computer Science, pages 876–883, La
Réunion, France, April 2005. Springer-Verlag Hei-
delberg.

[2] Petr Holub, Eva Hladká, Jǐŕı Denemark, and Tomáš
Rebok. Active elements for high-definition video dis-
tribution. In ICT 2006, 13th International Confer-
ence on Telecommunications.

[3] Philippe Galvez. From VRVS to EVO (Enabling
Virtual Organizations). In TERENA Networking
Conference 2006, Catania, Italy, May 2006.

[4] Markus Buchhorn. Designing a multi-channel-video
campus delivery and archive service. In The 7th An-
nual SURA/ViDe Conference, Atlanta, GA, USA,
March 2005.

[5] Tzi-cker Chiueh and Prashant Pradhan. Suez: A
cluster-based scalable real-time packet router. In
The 20th International Conference on Distributed
Computing Systems (ICDCS 2000), Taipei, Taiwan,
April 2000.

[6] Tzi-cker Chiueh and Prashant Pradhan. Suez: A
cluster-based scalable real-time packet router. Tech-
nical Report TR-65, Experimental Computer Sys-
tems Lab, State University of New York, April 2000.

[7] D. Decasper, G. Parulkar, and B. Plattner. A scal-
able, high performance active network node. IEEE
Network, 33(1):8–19, January 1999.

[8] P. Graham. A DSM cluster architecture supporting
aggressive computation in active networks. In Intl.
Workshop on Distributed Shared Memory, 2001.

[9] Young Bae Jang and Jung Wan Cho. A cluster-
based router architecture for massive and various
computations in active networks. In ICOIN, KAIST,
Korea, February 2003.

[10] M. Aron, D. Sanders, P. Druschel, and
W. Zwaenepoel. Scalable content-aware re-
quest distribution in cluster-based network servers.
In Proc. USENIX Ann. Technical Conf., June 2000.

[11] R. Bianchini and E. V. Carrera. Analytical and ex-
perimental evaluation of cluster-based www servers.
World Wide Web J., 3(4):215–229, December 2000.

[12] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based network
servers. In Proc. Eighth ACM Conf. Architectural
Support for Programming Languages and Operating
Systems, pages 205–216, October 1998.

[13] Enrique V. Carrera and Ricardo Bianchini. Press: A
clustered server based on user-level communication.
IEEE Transactions on Parallel and Distributed Sys-
tems, 16(5):385–395, May 2005.

[14] Petr Holub. Network and Grid Support for Mulit-
media Distribution and Processing. PhD thesis, Fac-
ulty of Informatics, Masaryk University Brno, Czech
Republic, 2005.

[15] Eva Hladká. User Empovered Collaborative Environ-
ment: Active Network Support. PhD thesis, Faculty
of Informatics, Masaryk University Brno, Czech Re-
public, 2004.

J

Appendix K

Secure and Pervasive Collaborative
Platform for Medical Applications

by Petr Holub, Eva Hladká, Michal Procházka and Miloš Liška

From Genes to Personalized HealthCare: Grid solutions for the Life Sciences, HealthGrid
2007, Geneva, Switzerland, April 2007. Proceedings. Health Technology and Informatics,
Amsterdam, The Netherlands: IOS Press, 126, pp. 229–238, 10 p. ISSN 0926-9630. 2007.

Secure and Pervasive Collaborative Platform for Medical
Applications

Petr Holub1,3, Eva Hladká2,3, Michal Procházka1,3, and Miloš Lǐska2,3

1 Institute of Computer Science
2 Faculty of Informatics,

Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
3 CESNET z.s.p.o., Zikova 4, 160 00 Prague, Czech Republic

hopet@ics.muni.cz, eva@fi.muni.cz, michalp@ics.muni.cz, xliska@fi.muni.cz

Abstract. Providing secure, extensible, pervasive and easy to implement collaborative en-
vironment for medical applications poses significant challenge for state-of-the-art computer
systems and networks. In this paper, we describe such a collaborative environment devel-
oped for Ithanet project, based on Grid authentication mechanisms. Significant effort has
been put into developing a system, that is capable of deployment across tightly secured
networking environments as implemented in vast majority of hospitals. The environment is
extensible enough to incorporate Grid-service based collaborative systems like AccessGrid.

1 Introduction

Virtual communication environments in the medicine are slowly becoming more popular with ad-
vent of reliable high-speed networking. Current trends go in two basic directions: (1) conservative
commercially available technologies like voice over IP teleconferencing and H.323/SIP infrastruc-
tures, and (2) more advanced and more experimental tools like AccessGrid. While the former
group is sufficient for basic communication, we focus in this paper on more advanced extensible
environments, that is suitable for advanced collaboration.

The medical network are being protected heavily namely due to requirements on security of
data about patients. However, such an “adverse” networking environment has usually sever conse-
quences on collaborative technologies. Firewalls and network address translators (NATs), together
with very conservative behavior of network administrators are the major obstacles for deployment
of the majority of the conferencing systems, with notable exception of Skype [1], as discussed
in Section 2. For collaborative environment, synchronous transmissions audio and video signals
is essential. In terms of network transfers, this is usually implemented using RTP/UDP packet
distribution. But UDP packet distribution in networks with NATs and firewalls with common set-
tings is not allowed. One way to get around this problem is to change the settings; for this, users
have not only to ask for an approval of their administrators, but also they need them to make
the configuration changes in security-sensitive devices, which is usually very hard to achieve. The
second way is to use software for penetrating NATs and firewalls on application layer allowing com-
munication without setting changes. This problem is not limited to collaborative environments, as
demonstrated by a recent study by Open Grid Forum [2].

In this paper, we focus on building a secure extensible collaborative platform suitable for medi-
cal purposes, that is capable of working in such “adverse” networking environments inside hospitals
with minimum requirements on support from network and system administrators. The platform
uses Grid-compatible authentication based on PKI infrastructure and is ready to incorporate other
Grid extensions based on Grid service oriented architecture.

The described system has been designed in Ithanet4 project as stated in Acknowledgments at
the end of this paper. The design reflects our experiences from participation in Ithanet and also
EuroCareCF5 projects, that showed how difficult it is to deploy reliable, secure, and affordable
4 http://www.ithanet.eu/
5 http://www.eurocarecf.eu/

K

collaborative tools in multi-institutional environment across many hospitals all over the Europe.
Both according to surveys we have conducted in these projects and according to our experiences
with other medical communities, there is a number of problem to solve: the connectivity among the
partners varies to large extent; already existing computer systems are largely based on Microsoft
Windows system (often under central administration), making installation of additional software
and especially remote support very difficult or virtually impossible; computer support teams at
the hospitals often do not have enough experiences to work with more complex collaborative
environments. Therefore we have decided to propose and implement a system, that is able to
avoid or at least to mitigate these problems.

The rest of the paper is structured as follows: Section 2 summarizes relevant related work,
Section 3 gives an overview of the architecture of the whole collaborative environment, Section 5
details proposed client devices and software tools. In Section 6, we give performance measure-
ments of the VPN-based networking solution implemented for the environment and also further
experiences with the system. Section 7 concludes the paper with final remarks and directions for
future development of the collaborative platform.

2 Related Work

Traditionally, the tele-medicine was implemented using phone-based solutions, later migrating to
H.323/SIP solutions. However, both H.323 and SIP are hard to implement in “adverse” networking
environments and require serious support for network administrators side.

Skype [1] has thus become very attractive alternative for many users, because of its capa-
bilities to penetrate firewalls and work behind NATs—unless explicitly forbidden by the network
administrators, and also rather robust commercial-grade implementation. Providing limited multi-
point conferencing support, it is also usable for small teams to communicate. When user signs up
for commercial Skype services, it is possible to call also to public telephony network. In recent
versions, Skype provides basic video support, which is however much less mature than its audio
counterpart. However, there are several reasons why this tool doesn’t meet the needs of medical
communication particularly well and becomes often explicitly forbidden by the hospital manage-
ment: first, the security model is proprietary and very obscure [3, 4] and may change without any
prior notification, and second, users participating in the Skype network are automatically pro-
viding their computers to be used by other Skype users, thus actually supporting the business of
Skype company with their own resources. Further, it is hard to block Skype on the networking
layer, because of its firewall/NAT penetration techniques (e.g., even the login messages to Skype
servers may be router through the super-nodes in the P2P overlay network as shown in [4]). Being
a proprietary solution, Skype is hard to be integrated in more complex Grid-like infrastructures,
too.

On the other side of the collaboration tools spectra, there is an experimental open extensi-
ble system called AccessGrid [5, 6]. Since its version 2, it features service oriented architecture
for the collaborative environment based on Grid services [7]. For deployment in the hospital en-
vironments, it has two major drawbacks though. First, the data distribution is not suitable for
“adverse” networking environments—authors of AccessGrid assumed multicast to be the primary
data distribution technology; since the multicast deployment is a problem even in very open aca-
demic networks, they added simple unicast bridging technology based on UDP packet reflectors
later on. Second, the whole system is rather complicated and hard to deploy without knowledge-
able on-site support staff. Despite these issues, AccessGrid features many interesting properties
making in worth considering when planning deployment of larger collaborative systems, by at least
preparing compatible equipment for its future installation.

Another well known example of collaboration environment, created for high energy physics
community that is now becoming more widely used, is the Virtual Room Videoconferencing System
(VRVS)6. VRVS is based on multicast-like schema and is provided as a service and user data traffic
is managed by VRVS administrators. The successor of VRVS called Enabling Virtual Organizations
6 http://www.vrvs.org/

2

K

(EVO)7—is based on self-organization of system of reflectors, again not empowering the end-user
with tools to change the distribution topology. However, for medical problem it has the similar
problem as AccessGrid and even worse it is a closed system with the similar consequences like for
Skype.

3 Architecture of the Collaborative Stack

When designing the collaborative platform architecture, we have had the following main design
principles in mind:

1. The system has to be secure to protect the communicated data. It should utilize Grid-
compatible authentication, so that the users can use their existing Grid identity to join the
collaborative environment.

2. Support for firewall and NAT penetration to facilitate deployment in “adverse” networking
environments in hospitals. The support has to be flexible and auditable, and the network
administrators must not be ”cheated”, (but rather just avoided unless really necessary).

3. The system has be extensible towards service-oriented architecture compatible with Grids.

The proposed collaborative environment comprises the following layers from the bottom-up
perspective: network connectivity layer, data distribution layer, central services layer, client tools
and devices layer. Each of the layers is discussed in more detail below.

Network connectivity layer. The network connectivity layer takes care of interconnecting all the
elements of the collaborative environment into a continuous network, so that all the element may
reach one another or at least some central site or server site when all-to-all connectivity is not
desirable for any reason. If the elements can’t reach one another over the native network, this may
be implemented as an overlay network, be it simple tunnels or more sophisticated VPNs. Assuming
Internet protocol stack, the tunnels may run over UDP, TCP, HTTP (including emulation of
HTTP and HTML encapsulation), TCP with HTTP proxy, and TCP with SOCKS proxy. For vast
majority of the firewall and NAT protected networks, at least one of the mentioned solution works.
VPNs are also useful when overlay network privacy is desired based on overlay link encryption.

Data distribution layer. This layer takes care of multi-point data distribution to the connected
clients. Assuming the Internet protocol stack, this is usually implemented either using multicast,
which is more efficient but much harder to deploy properly esp. in network spanning multiple
administrative domains, or using UDP packet reflectors. While less efficient, the UDP packet
reflectors are much less error-prone and provide also possibility of data processing even on per-
user basis (something theoretically impossible in multicast).

UDP packet reflectors may also be modified to provide the network connectivity layer to the
clients and between the reflectors directly, thus merging Network connectivity and Data distribu-
tion layers.

Central services layer. This layer comprises services provided to the client on some “server” basis—
though the servers may be largely distributed and not limited to one physically central location.
The services may include monitoring, virtual rooms or venues (for creating separate virtual spaces
for communication of different user groups), wikis, persistent data storage, etc.

Client tools layer. The client layer comprises of tools and hardware devices on client side. The
software tools primarily incorporate audio, video, and a chat service, and may include other tools
like shared presentation, shared desktop or application window, or shared text editor.

While software tools are traditional when looking on computer based collaborative environ-
ments, we have included also the hardware part, as the quality of hardware and a level of its
7 http://evo.caltech.edu/

3

K

software support is critical for the successful experience with collaborative environments. Often
this creates a point of failure for the collaborative environments deployment. The collaborative
tools are much harder to deploy compared, e.g., to SETI@Home or similar computation-heavy
tasks that are relatively easily distributed because they are only dependent on CPU and very
basic OS services.

4 Preliminary Implementation of the Collaborative Stack

4.1 Network Connectivity Layer

Secure communication together with ability of firewall and NAT penetration is achieved using the
OpenVPN software. It makes the VPN on the application layer from the ISO/OSI perspective
and supports the whole range of methods as discussed in the previous section. It means that there
is no need to modify configuration of network elements on the path from the client to the VPN
server. Also whole communcation between client can be encrypted.

All client workstations are connected to a VPN server in a point-to-point mode. The set up of
the VPN network guarantees that only the traffic belonging to the collaboration services is sent
into the VPN tunnel. Originally, we wanted to use one of the private IP address ranges as defined
by RFC 1918 for internal VPN addressing. After the partner networking survey we have found
it very complicated to avoid conflicts with internal address ranges used at various institutions,
especially as new institutions may join. The whole overlay network is therefore addressed using a
public IP address range assigned by RIPE, but the addresses are treated as internal address and
not distributed outside of the VPN overlay network. As there is no direct traffic between any two
partners and thus all the traffic may be filtered on the VPN server.

The OpenVPN server runs in two modes—either over UDP or TCP. The UDP mode is preferred
due to better performance, as the VPN is not limited by the TCP congestion control algorithm [8].
The TCP mode can also run over HTTP or SOCKS proxy.

The client side needs OpenVPN software to be able to connect to the OpenVPN server. This
software makes the virtual network adapter and sets appropriate routing table records for the
client. Clients are authenticated using their personal X.509 certificates—the Grid users may user
their existing ones, while others are given new certificates from a dedicated certificate authority.
Client software is able to work with certificates stored in the file or on the secure smart card.
Second option is strongly preferred because the client certificate can be delivered and kept by the
client in a secure way.

4.2 Data distribution layer

The data distribution layer is implemented using modular user-empowered UDP packet reflec-
tor [9], which is known to work very well with the taget client media tools—MBone Tools8. It
is highly configurable with modules loadable in run-time, supporting sophisticated access control
policing and even data transcoding for some data formats. Media streams may be encrypted by
the client software tools using symmetric encryption in case that the data replication site is not
considered trusted enough. Communication based on UDP packet reflector is communication with
central replication unit and number of communicated client is limited by capacity of this unit.
Solution of this problem is to decentralize reflector by network of reflectors [10].

4.3 Central services layer

Currently, there are UDP packet reflector administration and monitoring run as a central services.
When the system is extended to full AccessGrid support, Venue Server could be an example of
central service. Another centrally run service is the OpenVPN server supporting users as described

8 http://www-mice.cs.ucl.ac.uk/multimedia/software/

4

K

in section 4.1. To support the user communication we furthermore provide an IRC daemon (cur-
rently IRCD-hybrid9 run as a central services. A special IRC client daemon which run on the same
machine was developed to store and provide the chat history. A Jabber instant messaging server
may be provided in the same way as IRC.

5 Client Platform

The collaborative platform client is developed as a mixed HW/SW solution. The client is based
on well defined and tested HW with preinstalled operating system and set of collaborative and
especially videoconferencing tools. The choice of operating system was done with emphasis on
simple modifications of the system, remote management, wide hardware support, security and last
but not least user friendly environment. As a result we chose Ubuntu Linux to be the base for the
client SW.

The collaborative tools depend on many dedicated hardware devices like sound cards, sound
acquisition devices, video capture cards, USB cameras, etc., whose quality and level of support may
vary to a large extent. Therefore, we have opted for suggesting a set of hardware: widely available
low-cost HP Compaq dc7700 Ultra-Slim Desktop PC with known-to-work and well tested sound
and graphics card and video capture cards, together with some other devices like headsets and USB
cameras. This provides well defined starting point for efficient distribution of operating system and
collaborative tools.

Security and personal configuration of the platform is based on combined USB security and
storage token. The token is used for following purposes:

– identity storage which is based on PKI for authentication purposes, especially to connect to
VPN server

– customized configuration storage for each users configuration, allowing user to store his contact
informations for videoconferencing purposes and start the videoconference in specific mode
(e.g., specific reflector address and port or VPN configuration)

Basic videoconferencing capabilities are provided by MBone Tools. Robust Audio Tool (RAT)
is used for audio transmission and playback. RAT supports variety of audio codecs and allows to
fine tune the audio stream according to quality or bandwidth limitations where necessary. Video
communication is provided by Videoconferencing Tool (VIC) providing transmissions of video
acquired from video capture card or USB cameras.

Besides VIC and RAT other we provide audio and videoconferencing tools like Ekiga, Wen-
goPhone and even Skype which allow audio and video communication with number of other
videoconferencing platforms.

While the individual tools are rather user-friendly when started, the initialization of the con-
ference itself is not very intuitive step. In order to facilitate this, we are developing an integrating
Graphical User Interface (GUI) (see fig. 1 for the platform, that supports easy setup of the confer-
ence. The default settings may be stored for future reuse, so in the production state, the user just
pushes a single button to start the whole conference. The GUI also monitors all the applications,
so that if any part of the system crashes, the user is immediately informed and it also provides a
very detailed information for the remote user support.

To support the collaboration beyond scope of just audio or videoconferencing we provide bidi-
rectional sharing of whole desktop or particular applications between videoconferencing platform
clients. Desktop and application sharing is based on VNC protocol [11] and related tools, namely
shared-app-vnc10 and x11vnc11. A secondary intent is to provide user with remote control of his
videoconferencing machine in case the machine has no display and keyboard or the user wants to

9 http://ircd-hybrid.com/
10 http://shared-app-vnc.sourceforge.net/
11 http://www.karlrunge.com/x11vnc/

5

K

Fig. 1. GUI for the collaborative platform client.

control the videoconference from his/her laptop computer. However, using VNC as a software dis-
play is considered as an emergency solution only because of high demands on the videoconferencing
machine and the latency introduced video displaying.

The client platform is based on SW that is stable yet under development and some new and
desired functionality may appear. In a worse case a security hole may be discovered in one or
more platform SW components. Thus it is necessary to update the SW base of the platform
regularly. The individual videoconferencing tools as well as other platform SW may be updated
automatically based on the operating system SW repositories.

Underlying operating system updates are more complicated and failed update may turn whole
machine unusable. There may be no system administrator available or skilled enough to perform
the operating system update on end users site. That is why we opt for prepare the operating system
update as a black box solution. The update is based on bootable CD/DVD with an image of well
tested and working updated operating system and platform SW. It is not necessary to distribute
the CDs among the end users. More comfortable approach is to create and ISO image of the update
CD and make it available for download. The update procedure is performed automatically right
after the CD is inserted into the machine. End users don’t need to reconfigure their box after each
operating system update because all custom configuration is stored on the USB token and thus is
not affected by the update.

6 Experiences with Preliminary Implementation

In order to evaluate influence of incorporation of OpenVPN into the collaborative platform, we have
measured a number of parameters critical for real-time multimedia communication using different
VPN modes. The measurement testbed comprised one client and one VPN server, interconnected
with high-speed backbone network link with capacity above 1 Gbps spanning about 250 km. The

6

K

results of measurements are summarized in Table 1. We can conclude that UDP based VPN is very
safe and has minimum impact on the traffic. Slight CPU requirements increase for the UDP based
VPN compared to TCP based VPN is due to application-level packet loss recovery and congestion
control, which is marginally less CPU efficient compared to kernel-based TCP implementation.
TCP-based VPNs also perform very well provided they are on low-latency network with very low
packet loss, so that congestion control algorithm doesn’t influence the data flow significantly. If
the HTTP proxy is of good performance, it has minimum impact on performance, too.

Table 1. Measured comparison between direct communication and communication through various VPN
modes as implemented by OpenVPN.

no VPN UDP VPN TCP VPN TCP VPN + HTTP proxy

pchar latency [ms] 3.51 3.69 3.94 3.93
iperf jitter [µs] 6 6 9 13
pchar capacity est. [Mb/s] 39.8 35.2 20.1 19.8
iperf packet loss @ 30Mb/s [%] 0.0 0.0 0.0 0.0
iperf CPU idle @ 30Mb/s [%] 48.9±0.2 41.7±0.4 44.5±0.4 42.6±0.4

When evaluating the performance of this solution subjectively, the media streams are fine
and the overall quality is very good. The only problem we were facing is that the users are
sometimes very reluctant to buy a new hardware for the client platform, even though it is very
cost effective compared to dedicated videoconferencing solutions. However, they are also unhappy
about performance of videoconferencing tools self-installed on their existing desktop computers, as
these were not performing well without substantial tweaking because of rather complex interactions
with undefined or poor hardware components and existing software. Thus the deployment requires
significant work in order to explain principles of the system to the users as described above.

7 Conclusions and Future Work

In this paper, a secure and pervasive collaborative platform for medical applications has been
introduced to provide flexible multi-point Grid-compliant collaborative environment. The design
and implementation was targeted to create remotely supported system, that is scalable, robust
and flexible allowing to collaborate to tens of people.

The first version of the system, described in this paper, has risen a number of new problems
and ideas. The first ideas for future work are concerned with reflector functionality. In the future
we plan to utilize per-user processing on the reflector for solving the problem when a single client
with a very limited network connectivity limits the quality of the collaboration for the whole
group. Currently we are using OpenVPN to traverse NATs and firewalls but in the future, we plan
to implement this directly in the reflectors. Such an approach allows for more aggressive failure
detection and faster problem recovery. Also as the reflectors may be deployed as a network, it
naturally avoids the single point of failure currently imposed by a central VPN server.

Grids and Grid-based systems are now widely developed and used in many areas. We plan
to utilize the Grid-services based approach and to incorporate AccessGrid services. On the other
side, AccessGrid needs to be modified to work with our advanced reflectors, firewall and NAT
penetration techniques and reflector networks for better scalability and robustness. We are at the
beginning of practical usage of the proposed platform and its routine operation will definitely
bring other new ideas and requirements for the future.

8 Acknowledgments

This work has been kindly supported byt European Commission project “ITHANET – eInfras-
tructure for Thalassaemia Research Network”, RI-2004-026539.

7

K

References

1. Zennström, N., Friis, J.: Skype (2003-2007) http://www.skype.com/.
2. Niederberger, R., Allcock, W., Gommans, L., Grünter, E., Metsch, T., Monga, I., Volpato, G.L.,

Grimm, C.: Firewall issues overview. Technical Report GFD-I.083, Open Grid Forum (2006)
3. Biondi, P., Desclaux, F.: Silver needle in the skype. In: BlackHat Europe. (2006) http://www.

blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf.
4. Baset, S.A., Schulzrinne, H.: An analysis of the skype peer-to-peer internet telephony protocol. In:

INFOCOM 2006, Barcelona, Spain (2006) http://www1.cs.columbia.edu/∼salman/publications/

skype1 4.pdf.
5. Childers, L., Disz, T., Hereld, M., Hudson, R., Judson, I., Olson, R., Papka, M.E., Paris, J., Stevens, R.:

ActiveSpaces on the Grid: The construction of advanced visualization and interaction environments.
In Engquist, B., ed.: Simulation and visualization on the grid: Parallelldatorcentrum, Kungl. Tekniska
Högskolan, seventh annual conference, Stockholm, Sweden, December 1999: proceedings. Volume 13
of Lecture Notes in Computational Science and Engineering., New York, NY, USA, Springer-Verlag
Inc. (2000) 64–80

6. Childers, L., Disz, T., Olson, R., Papka, M.E., Stevens, R., Udeshi, T.: Access grid: Immersive group-
to-group collaborative visualization. In: Proceedings of Immersive Projection Technology, Ames, Iowa
(2000)

7. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open grid services
architecture for distributed systems integration (2002)

8. Jacobson, V.: Congestion avoidance and control. In: ACM SIGCOMM ’88, Stanford, CA (1988)
314–329

9. Hladká, E., Holub, P., Denemark, J.: An active network architecture: Distributed computer or trans-
port medium. In: 3rd International Conference on Networking (ICN’04), Gosier, Guadeloupe (2004)
338–343

10. Holub, P., Hladká, E., Matyska, L.: Scalability and robustness of virtual multicast for synchronous
multimedia distribution. In: Networking - ICN 2005: 4th International Conference on Networking,
Reunion Island, France, April 17-21, 2005, Proceedings, Part II. Volume 3421/2005 of Lecture Notes
in Computer Science., La Réunion, France, Springer-Verlag Heidelberg (2005) 876–883

11. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual network computing. IEEE
Internet Computing 2 (1998) 33–38

8

K

Appendix L

Distributed Active Element in 10 Gbps
Network

by Petr Holub and Eva Hladká

In 13th International Conference on Telecommunications, ICT 2007, Penang, Malaysia, May
2007. Proceedings. IEEE/MICC, 2007. pp. 1-6, 6 p. ISBN 1-4244-1094-0.

Distributed Active Element in 10 Gbps Network

Abstract—In this paper, we propose a distributed Active
Element for tightly coupled cluster environment, suitable for
distribution of large bandwidth data that exceed capacity of
every single node in the cluster. This approach utilizes the fact
that real-time multimedia transmission systems relying on non-
guaranteed protocols like UDP need to handle limited packet
reordering on their own. We describe the Fast Circulating Token
protocol, which enables imposing even stricter bound on the
outbound packet reordering. The whole system is examined
on 10GE testbed and shows very good performance. The FCT
provides expected improvement, making the packet reordering
comparable to long haul networks.

Index Terms—multi-point user-empowered data distribution,
distributed Active Elements, virtual multicast, multimedia data
distribution

I. INTRODUCTION

High-speed networking proliferation has catalyzed devel-
opment and deployment of new real-time communication
systems based on distribution of high-bandwidth multimedia
information, like 4K and High-Definition (HD) video sys-
tems [1], [2], [3]. When designed for multi-point collaborative
environments, multi-point data distribution needs to be en-
sured. Native network multicast has turned to perform less then
acceptably in many cases and thus systems like Flexcast [1]
or reflectors [2] have been developed. In this paper, we focus
on a parallel reflector-based system called distributed Active
Element (AE) for synchronous multimedia data distribution
and processing [4], [5], which allows distribution of high
bandwidth streams using parallel processing on tightly coupled
commodity computer clusters. Parallel processing is incor-
porated in specialized hardware of modern high-performance
switches and routers. However, its implementation on general
purpose hardware is limited because of requirement for zero
output packet reordering, which has severe consequences,
e.g., on slowing down performance of the most widely used
transport protocol—TCP [6]. The real-time multimedia com-
munication relying on non-guaranteed transmission protocols,
like RTP over UDP, however needs to handle the packet
reordering on their own anyway, as the reordering is often
present in long-distance transmissions for high-bandwidth data
rates [6], [7]. We examine performance of the distributed AE
in 10 Gigabit Ethernet environment for distribution of multi-
Gigabit data streams, as used by advanced multimedia systems
relying on uncompressed HD and post-HD video.

Related work. Since the native multicast support is not
always available, reliable, or performing well enough, mul-
ticast virtualization technologies have been introduced, like
the H.323 MCUs or reflectors in the Virtual Room Videocon-
ferencing System (VRVS)1. Its successor EVO [8] is based

1http://www.vrvs.org/

on self-organization of system of reflectors. Similar approach
has been pursued earlier by our group [9]. Other simpler UDP
packet reflectors include rcbridge [10], reflector2, and Alkit
Reflex3.

Another area related to this paper is utilization of computer
clusters as either distributed routers or distributed servers [11],
[12], [13]. Project Suez [14] is a distributed router based on
commodity PC cluster with Myrinet interconnection with each
node of the cluster having one internal interface to the Myrinet
switch and optionally one or more external interfaces. Suez
uses a routing-table search algorithm that exploits CPU cache
for fast lookup by treating IP addresses directly as virtual
addresses. Another project which distributes processing load
on active network elements is Active Network Node [15] that
relies on specialized hardware. Software DSM project [16]
attempts to build efficient distributed memory for closely
coupled clusters for using them as active routers. There is yet
another similar project called Cluster-based Active Network
Router [17]. However none of the above mentioned projects
addresses finer than per-address network load distribution—
thus there is no need for solving packet reordering issues,
but on the other hand it doesn’t solve the problem of data
distribution for streams where the bandwidth exceeds capacity
of each single parallel unit in the cluster.

Our distributed AE is designed not only for data distribution,
but allows for processing as well. Relevant parallel program-
ming paradigm for stream processing on distributed clusters
has been proposed in MIT StreamIt project [18].

Paper organization. Section II gives a brief overview of
distributed AE architecture, introducing the packet reordering
limiting using Fast Circulating Token protocol. Section III
describes experimental results of distributed AE used with
multi-Gigabit data flows. Concluding remarks and future work
ideas are given in Section IV.

II. DISTRIBUTED ACTIVE ELEMENT

In this section, we give an overview of the distributed
AE and its basic properties with respect to data distribution,
required for understanding experimental section of this paper.
More details on the distributed AE can be found in [4], [5].
The architecture of the distributed AE is based on architecture
of AE [9] and it is partly determined by requirement of
implementability on existing tightly coupled clusters with low
latency interconnection. The computing nodes form a com-
puter cluster with each node having two connections: (1) low-
latency control connection used for internal communication

2http://www.cs.ucl.ac.uk/staff/s.bhatti/teaching/z02/reflector.html
3http://w2.alkit.se/reflex/

L

and synchronization inside the distributed AE, and (2) data
connection used for receiving and sending the data. Example
of such a system is shown in the evaluation testbed description
in Figure 2.

The incoming data needs to be first distributed across the
multiple parallel units of the distributed AE, processed in these
units, and finally aggregated and sent over the network to the
listening clients. Thus the architecture comprises three major
parts:

• Distribution unit takes care of ingress data flow distribu-
tion over multiple parallel distributed AE units. When the
distribution unit is part of the same L2 domain as parallel
AE units (e.g., using VRRP or CARP protocols), it may
operate on L2 addresses only, otherwise L3 (usually IP)
addressing is needed.

• Parallel AE unit is a complete instance of AE with modi-
fied sender module to allow for possible synchronization.
It has the kernel with administrative submodules, session
management, processor schedulers, and AAA submod-
ules. Data is received by network listener modules, stored
into shared memory (shared across a single instance of
the reflector only, not across multiple AE unit instances),
processed by zero or more processors, distribution lists
filled up with either one of processors or with session
management and finally sent with the sender module. The
network management module handles communication
with distribution unit and also communication with other
distributed AE units.

• Aggregation unit aggregates the resulting traffic to out-
put network line(s). Because the AE element is most
commonly used for data multiplication, we assume that
output data flow from the distributed AE is larger than
input data flow. Thus we need a unit that is even more
powerful than the input load distribution unit. In most
cases, cheap custom made software implementation is not
available and we have to use available hardware solution
like aggregating switch. However, in that case we must
not assume any further behavior of the aggregating unit
except for the following two things: first, it is over-
provisioned enough not to loose any data, and second,
it has limited buffer space available.

There are also protocols designed for set up and mainte-
nance the distributed AE [5], so that new parallel units may
join in and existing may leave.

• The ideal network is a network in which no data is lost,
corrupted, nor reordered. It also provides instant delivery,
i. e., it introduces zero latency.

• The ideal multimedia traffic has bandwidth b and inde-
pendent packets of exactly same size sp, which is also
used to express all the queue sizes in the system. In order
to isolate reordering introduced by the distributed AE, we
assume that the ideal multimedia traffic has no reordering
prior to entering distribution unit.

• The ideal aggregating unit has n identical input interfaces
and a single output interface with capacity equal or bigger

than the n inputs together. It reads packets from the
size-limited input interface queues and sends them on
an output interface in such a way, that packets are never
lost. The speed is bSW

j (bits per second) for j-th input
interface and each input queue has equal size of sSW

i for
each input interface. In order not to lose any input data,
the ideal aggregating unit needs to fulfill the following
requirement in the steady state:

∑
j bSW

j ≤ bSW
o .

• The ideal AE has processing capacity equal or higher than
stream bandwidth and it has an input queue size of sAE

i

and all the parallel units have the same parameters and
performance. The ideal AE introduces no losses, no data
corruption, nor data reordering in the data stream.

5.2. OPERATION IN STATIC ENVIRONMENT 33

Definition 5.4 (Ideal distributed AE) The ideal AE has processing capacity equal or higher
than stream bandwidth and it has an input queue size of qAE

i . All the parallel units of the
ideal AE have the same parameters and performance and the total bandwidth of the traffic
is divided into streams with the same parameters. The ideal AE introduces no losses, nor
data corruption, nor data reordering in the data stream. 2

buffer
unit

aggregatingAE
unit

buffer
input

distribution
output

AEAE aggregating

buffer
input

b
j

s
AE
i s

AE
o s

SW
i

FIGURE 5.2: Model of the ideal distributed AE with ideal aggregation unit.

5.2.1 Ingress Distribution
The ingress data distribution takes care of distributing incoming data across different paths
inside the distributed AE. For the ideal distributed AE, it is suitable to use simple round-
robin distribution as all the parallel AE units are equivalent in their performance.

Definition 5.5 (Ideal distribution unit) The ideal distribution unit distributes packets in
round-robin fashion. In each round, it distributes n packets, one to each of the parallel
units. The distribution unit marks round number into each packet. 2

Such an ideal distribution might not be suitable in the following cases:

• When parallel AE units are of unequal performance. In this case, load balancing
described below is useful.

• When data stream packets are not independent and the processing needs to have all
the inter-dependent packets through the same path. This might be for example when
some data processing is done and some state inside the AE needs to be created and
maintained.

In this case, the packet distribution needs to follow the packet inter-dependencies.
When distribution unit is implemented as a part of sending application (e. g. user-
space library encapsulating UDP sendto() function), it is possible to utilize knowl-
edge of data directly and distribute it correspondingly. If the distribution unit is
implemented as separate stand-alone network unit, the application can mark groups

Figure 1. Model of the ideal distributed AE with ideal aggregation unit.

A. Ingress Distribution

The ingress data distribution takes care of distributing
incoming data across different paths inside the distributed
AE. For the ideal distributed AE the ideal distribution unit
distributes packets in round-robin fashion. In each round, it
distributes m packets, one to each of the parallel units. The
distribution unit marks round number into each packet. This
protocol is modified in case that parallel units are of unequal
performance.

B. Egress Synchronization

1) No explicit synchronization: The simplest model for
egress synchronization is to use no synchronization at all.
However, with this model and limited buffers on the input
interfaces of the AEs, there is still some implicit synchroniza-
tion achieved.

It can be shown the maximum reordering induced by an
ideal distributed AE (shown in Figure 1) with no explicit
egress synchronization and ideal aggregating unit is

n(sAE
i + sAE

o + sSW
i + 1),

where n is the number of parallel AE units when all queues
operate in FIFO tail-drop mode. Detailed proof can be found
in [5].

L

2) Fast Circulating Token: In order to decrease packet
reordering introduced by the distributed AE, we have in-
troduced a distributed algorithm for achieving less packet
reordering compared to no explicit synchronization. The nodes
are ordered in a ring with one node elected as a master
node and they circulate a token which serves as a barrier
so that no node can run too much ahead with sending data.
After reception of the token containing the current “active”
round number, each non-master node passes on the token
immediately and may send only the data from the round
marked in the token until it receives to token again. When the
master node receives the token from the last node in the ring,
it finishes sending the current round, increments the round
number in the token a passes on the token. The mechanism
is called Fast Circulating Token (FCT) since the token is not
held for the entire time period of data sending as usual in the
token ring networks.

Because of real world implementation of data packet send-
ing in common operating systems, we assume that sending
procedure for a single packet is non-preemptive. Further we
assume that token reception event processing has precedence
over any other event processing in the distributed AE. How-
ever, as the data sending is non-preemptive, if the token arrives
in the middle of data packet sending, it will be handled just
after that packet sending is finished.

After more detailed analysis [5], it can be shown the
maximum reordering induced by an ideal distributed AE with
FCT egress synchronization and ideal aggregating unit is

n(sSW
i + 3),

where n is the number of parallel AE units when all queues
operate in FIFO tail-drop mode.

When operating in a non-ideal environment, there are sev-
eral complications that need to be taken into account:

• packet reordering, either before data reaches the dis-
tributed AE, or on a single parallel path inside distributed
AE—settings of the FCT determine whether excessive
packet reordering will be converted to packet loss or not,

• due to unequal performance of parallel paths, load bal-
ancing may be deployed—again the reordering of two
consecutive packet is limited by size of two consecutive
rounds, but each round may have more than n packets
depending on load balancing scheme used,

• packet loss due to overloading of distributed AE or some
of its parts.

3) Exact Order Sending: It is possible to design sending
protocol that results into exact ordering, but it requires de-
fined behavior of aggregation unit and thus it is not suitable
for implementation on commodity hardware like aggregating
switches. The details can be found in [4], [5].

III. PROTOTYPE PERFORMANCE EVALUATION IN 10GE
ENVIRONMENT

Prototype implementation of the distributed AE is imple-
mented in ANSI C language for portability and performance

reasons. The implementation comprises two parts: a load
distribution library and the distributed AE itself.

Because of lack of flexible enough load distribution hard-
ware unit, we have implemented it as a library, which allows
simple replacement of standard UDP related sending functions
in existing applications and allows developers to have defined
type of load distribution—either pure round robin or load
balancing.

Each parallel AE uses threaded modular implementation
based on architecture described in Section II. Internal buffering
capacity of each AE node has been set to 500 packets. Explicit
synchronization using FCT protocol has been implemented
using MPICH implementation4 of MPI built with low-latency
Myrinet GM 2.0 API5 (so called MPICH–GM). Prototype
implementation has been tested on Linux.

For cost-effective prototype implementation, the aggregation
unit was a implemented as commodity switch with sufficient
capacity of internal switching matrix.

A. Experimental Setup

The behavior of the distributed AE has been evaluated on
a 10GE testbed shown in Figure 2. The sender and receiver
machines were identical PCs with dual AMD Opteron 250
processor at 2.4 GHz, 2 GB RAM, and 10GE Chelsio T110
NIC card in a PCI-X 133 MHz slot. Both computers were
running SuSE Linux 9.1 with 2.6.6 vanilla kernel with Chelsio
drivers and patches. The computers were connected to 10GE
ports of the Cisco 6506 switch.

Figure 2. Experimental testbed setup.

The parallel AE units were run on a IA32 PC cluster with
Myrinet-2000 low-latency interconnection. The nodes were
equipped with dual Intel Xeon at 2.4 GHz, 2 GB RAM, and
Broadcom NetXtreme BCM5703 card plugged into Gigabit
Ethernet ports of Cisco 6506 switch. Each node had also
Myrinet M3F-PCI64C-2 NIC plugged into Myrinet M3-E32
with M3-SW16-8F interface.

4http://www-unix.mcs.anl.gov/mpi/mpich/
5http://www.myri.com/scs/GM-2/doc/html/

L

parallel units max. bw [Mbps]
1 800
2 1600
3 2400
4 3200
5 4000
6 5000
7 5000
8 5000

Table I
MAXIMUM FORWARDING BANDWIDTH FOR VARYING NUMBER OF

PARALLEL UNITS FOR THE DISTRIBUTED AE.

The distribution unit was implemented in software based on
direct IP addressing of the parallel nodes, the stream splitting
was carried out by the 6506 switch, which was also acting as
the aggregating unit.

B. Performance Evaluation

In order to evaluate raw performance of the AE, we have
measured maximum bandwidth of a stream that the AE
is able to forward without packet loss greater than 0.1%.
This benchmark more demanding and thus also representative
because of memory to memory copying limitations, compared
to the replication, which easily saturates the bandwidth of the
outgoing network interface [19].

a) Stand-alone reflector: Standalone reflector running on
one node of the testbed cluster was measured for reference
purposes and it was able to forward data up to 800 Mbps.

b) Distributed AE: Maximum bandwidth for forwarding
with less than 0.1% packet loss was measured for varying
number of parallel units and the results are summarized in
Table I. Note the saturation at 6 parallel units, which is caused
by the maximum throughput on the Chelsio T110 cards on
sender and receiver.

For low loss area, the results are equivalent both for the un-
synchronized and FCT-synchronized version of the distributed
AE. It also turns out that the performance scales linearly with
respect to the number of parallel AE units. When examining
the higher loss areas (which are not usable for real data
distribution anyway), the FCT-synchronized version performs
slightly worse than the unsynchronized. This can be observed
from upper part of the graphs in Figure 3, for 2 and 4 parallel
units respectively; the lines are overlapping for 6 and 8 units as
the higher loss region is not reached because of sender/receiver
saturation as discussed above.

C. Packet Loss and Reordering Evaluation

The reordering is expressed as the difference between
sequence numbers of two consecutive packets. Thus, if all the
sequentially numbered packets arrive in the same order they
were sent, all the differences are +1. Higher number than +1
means, that some packets were skipped forth (either because
of packet reordering or because of packet loss) while negative
number means stepping back in packet numbering (due to
packet reordering only). Value of 0 occurs when duplicate

BW FCT-sync unsync
[Mbps] min{j} H− N− min{j} H− N−

200 0 0 0 -4 -12 3
400 0 0 0 -6 -7 2
600 -1 -6 6 -3 -5 2
800 -5 -26 16 -4 -13 5
1000 -6 -124 93 -10 -21 5
1200 -7 -82 67 -33 -113 15
1400 -5 -220 179 -39 -455 65
1600 -6 -522 466 -7 -301 281
1800 -5 -1162 1104 -50 -911 627
2000 -5 -1317 1252 -20 -1214 1119
2200 -7 -1545 1443 -10 -1706 1599
2400 -7 -2634 2520 -14 -2591 2435
2600 -6 -4946 4736 -14 -5423 5177
2800 -15 -6539 5886 -15 -7351 7005
3000 -6 -7963 7424 -31 -10987 9654
3200 -7 -8712 7117 -89 -9420 7592
3400 -7 -9431 5060 -100 -9104 4827
3600 -7 -57523 27730 -38 -50178 26252
3800 -7 -256152 122298 -111 -253093 125121
4000 -7 -482062 229886 -23 -480988 236434
4200 -7 -989134 464849 -33 -952629 476268
4400 -7 -1484894 685827 -46 -1535218 755956
4600 -7 -1081210 497005 -25 -938601 473483
4800 -7 -406902 183817 -43 -181140 97237
5000 -7 -38077 19546 -27 -13435 10480

Table II
PACKET REORDERING FOR 8 PARALLEL UNITS.

packets arrive immediately following each other. min{j} is
the maximum negative difference in sequence numbers of
successively received packets. The min{j} is very important
from the application developer perspective, as it gives the
amount of packet buffer needed to reconstruct the proper order
of packets (provided no packet loss occurs), and also from
the users perspective, as the amount of buffering it related to
latency increase the users are experiencing.

For any interval of arrivals of two or more packets, the
following equation holds

−1∑
j=min{j}

jhj︸ ︷︷ ︸
H−

+ h1︸︷︷︸
H1

+
max{j}∑

j=2

jhj︸ ︷︷ ︸
H+

= ∆, (1)

where ∆ is difference between sequence number of last and
first packet in the observed interval. Also, for the any interval
of arrivals of more than one packet, the following equation
holds:

Π +
−1∑

j=min{j}

hj︸ ︷︷ ︸
N−

+ h1︸︷︷︸
N1

+
max{j}∑

j=2

hj︸ ︷︷ ︸
N+

−δ = ∆. (2)

where Π is number of lost packets and δ is a number of
duplicated packets that are not included in h0. Proofs for both
can be found in [5]. By combining both equations (1) and (2),
we can derive packet loss as Π = H−+H+−N+−N−+ δ.
Because positive part of the graph described by H+ or N+

includes also packet loss, the negative part of the graph
described by H− or N− can be seen as measure of packet
reordering.

L

The difference between the H-sums and the N -sums is that
the H-sums are “weighted sums”. Thus the more packets are
farther from 1 in either direction, the higher the absolute value
of H-sums are, while the N -sums remain the same. All the
terms in the N−, N+, and H+ are positive and all the terms in
the H− are negative. If H− ≈ N−, the vast majority of out-
of-order packets in the negative part is reordered by j = −1.

-250 -200 -150 -100 -50 0 50 100 150 200 250

1

10

100

1000

10000

1e+05

1e+06

FCT sync, 3400 Mbps

-250 -200 -150 -100 -50 0 50 100 150 200 250

1

10

100

1000

10000

1e+05

1e+06

no sync, 3400 Mbps

Figure 4. Sample packet reordering distribution with FCT and without
synchronization, for 8 parallel units and 3.4 Gbps per data flow.

c) Stand-alone reflector: The bigger the loss is above the
800 Mbps performance limit, the larger the sum H+ is. No
reordering nor duplicates are introduced, thus H− = N− =
h0 = 0.

d) Distributed AE: The results presented here are a
subset of complete set of measurement carried out in order
to evaluate the behavior of distributed AE throughly. Figure 4
shows dependence of min{j} on bandwidth of the forwarded
stream (lower part of each graph) together with packet loss
(upper part) for 2, 4, 6, and 8 parallel units. The behavior for
3, 5, and 7 is comparable. It turns out that before the saturation
of the distributed AE (c.f. Table I), the FCT significantly
improves maximum packet reordering min{j}.

More detailed results for 8 parallel units is shown in
Table II, revealing that H− and N− are similar for FCT and
unsynchronized versions. Sample reordering distribution for
the 3400 Mbps stream and 8 parallel units is given in Figure 4.
The reordering results are appropriate to be viewed in the
context of long haul network paths. Given examples [7] of
rather problematic Washington D. C. to Los Angeles link with
min{j} over -60 and high-quality link from Los Angeles to
Pittsburgh with min{j} of -1, the FCT gives much better
results than the former link and gives comparable results
to the latter one. Thus a real-time multimedia transmission

application, which has been developed to work over long
distance networks, needs to adapt to even significantly worse
packet reordering than the one outgoing from distributed AE,
to perform reliably in real world conditions.

Token round-trip time in FCT protocol has been also moni-
tored and it ranges between 14 µs for 2 parallel AE paths and
raises up to approximately 60 µs for 8 parallel paths, which
is in accordance with one-way message passing latency of
Myrinet configuration used for the testbed as described above.

IV. CONCLUSIONS

In this paper, we have presented the concept of distributed
Active Element, which relaxes the requirement for strict packet
ordering, assuming that the real-time multimedia transmission
applications relying on non-guaranteed protocols like UDP
need to adapt to some degree of packet reordering on their
own. This allowed us to design and prototype a scalable system
for data distribution and potentially also processing of real-
time multimedia data based on tightly coupled clusters with
low-latency internal interconnection. We have proposed the
Fast Circulating Token protocol in order to impose harder up-
per bound on the maximum packet reordering. The prototype
system has been examined using 10 Gigabit Ethernet testbed
and the results suggest its usability for high-end applications.

In the future, we would like to focus on three basic areas.
First, we would like to adapt some of the parallel stream
processing paradigms like StreamIt [18] to program data pro-
cessing for the distributed AE, thus turning the system into a
more general active router. Second, having the data processing,
we would like to extend the distributed AE with quality of
service support on several levels (network bandwidth, CPU
capacity, memory capacity and bandwidth, etc.). Third, we
intend to examine suitability of custom hardware solutions
based on FPGA to build a aggregation unit allowing exact
order packet sending.

ACKNOWLEDGMENTS

This project has been supported by a research intent “Opti-
cal Network of National Research and Its New Applications”
(MŠM 6383917201) and “Parallel and Distributed Systems”
(MŠM 0021622419). The authors would like to acknowledge
help of Jiří Denemark and Tomáš Rebok for their assistance
during measurements implementation.

REFERENCES

[1] T. Shimizu, D. Shirai, H. Takahashi, T. Murooka, K. Obana, Y. Tono-
mura, T. Inoue, T. Yamaguchi, T. Fujii, N. Ohta, S. Ono, T. Aoyama,
L. Herr, N. van Osdol, X. Wang, M. D. Brown, T. A. DeFanti,
R. Feld, J. Balser, S. Morris, T. Henthorn, G. Dawe, P. Otto, and
L. Smarr, “International real-time streaming of 4K digital cinema,”
Future Generation Computer Systems, vol. 22, no. 8, pp. 929–939, Oct.
2006.

[2] P. Holub, L. Matyska, M. Liška, L. Hejtmánek, J. Denemark, T. Rebok,
A. Hutanu, R. Paruchuri, J. Radil, and E. Hladká, “High-definition mul-
timedia for multiparty low-latency interactive communication,” Future
Generation Computer Systems, vol. 22, no. 8, pp. 856–861, 2006.

[3] J. Jo, W. Hong, S. Lee, D. Kim, J. Kim, and O. Byeon, “Interactive
3D HD video transport for e-science collaboration over UCLP-enabled
GLORIAD lightpath,” Future Generation Computer Systems, vol. 22,
no. 8, pp. 884–891, 2006.

L

0 1000 2000 3000 4000 5000 6000

stream bandwidth [Mbps]

0

50

100

pa
ck

et
 lo

ss
 [

%
]

-100

-80

-60

-40

-20

0

-120

-140

m
in

{j
}

FCT sync
no sync

2 parallel units

0 1000 2000 3000 4000 5000 6000

stream bandwidth [Mbps]

0

50

100

pa
ck

et
 lo

ss
 [

%
]

-100

-80

-60

-40

-20

0

-120

-140

m
in

{j
}

FCT sync
no sync

4 parallel units

0 1000 2000 3000 4000 5000 6000

stream bandwidth [Mbps]

0

50

100

pa
ck

et
 lo

ss
 [

%
]

-100

-80

-60

-40

-20

0

-120

-140

m
in

{j
}

FCT sync
no sync

6 parallel units

0 1000 2000 3000 4000 5000 6000

stream bandwidth [Mbps]

0

50

100

pa
ck

et
 lo

ss
 [

%
]

-100

-80

-60

-40

-20

0

-120

-140

m
in

{j
}

FCT sync
no sync

8 parallel units

Figure 3. Packet loss and reordering comparison for FCT synchronized and unsynchronized version for distributed AE and various number of parallel units.

[4] P. Holub and E. Hladká, “Distributed active element for high-
performance data distribution,” in NPC 2006: Network and Parallel
Computing, Tokio, Japan, Oct. 2006, pp. 27–36.

[5] P. Holub, “Network and grid support for mulitmedia distribution and
processing,” Ph.D. dissertation, Faculty of Informatics, Masaryk Uni-
versity Brno, Czech Republic, 2005.

[6] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet reordering
is not pathological network behavior,” IEEE/ACM Transactions on
Networking, vol. 7, no. 6, pp. 789–798, Dec. 1999.

[7] L. Gharai, C. Perkins, and T. Lehman, “Packet reordering, high speed
networks and transport protocol performance,” in Proceedings of the
13th International Conference on Computer Communications and Net-
works (ICCCN’04), Chicago, IL, USA, Oct. 2004, http://ultragrid.east.
isi.edu/publications/2004icccn.pdf.

[8] P. Galvez, “From VRVS to EVO (Enabling Virtual Organizations),” in
TERENA Networking Conference 2006, Catania, Italy, May 2006.

[9] P. Holub, E. Hladká, and L. Matyska, “Scalability and robustness
of virtual multicast for synchronous multimedia distribution,” in
Networking - ICN 2005: 4th International Conference on Networking,
Reunion Island, France, April 17-21, 2005, Proceedings, Part II, ser.
Lecture Notes in Computer Science, vol. 3421/2005. La Réunion,
France: Springer-Verlag Heidelberg, Apr. 2005, pp. 876–883. [Online].
Available: http://www.springerlink.com/index/GETV62MG4GA0CUPL

[10] M. Buchhorn, “Designing a multi-channel-video campus delivery and
archive service,” in The 7th Annual SURA/ViDe Conference, Atlanta,
GA, USA, Mar. 2005.

[11] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,
and E. Nahum, “Locality-aware request distribution in cluster-based
network servers,” in Proc. Eighth ACM Conf. Architectural Support for
Programming Languages and Operating Systems, Oct. 1998, pp. 205–
216.

[12] R. Bianchini and E. V. Carrera, “Analytical and experimental evaluation
of cluster-based WWW servers,” World Wide Web J., vol. 3, no. 4, pp.

215–229, Dec. 2000.
[13] E. V. Carrera and R. Bianchini, “Press: A clustered server based on user-

level communication,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 5, pp. 385–395, May 2005.

[14] T. Chiueh and P. Pradhan, “Suez: A cluster-based scalable real-time
packet router,” in The 20th International Conference on Distributed
Computing Systems (ICDCS 2000), Taipei, Taiwan, Apr. 2000.

[15] D. Decasper, G. Parulkar, and B. Plattner, “A scalable, high performance
active network node,” IEEE Network, vol. 33, no. 1, pp. 8–19, Jan. 1999.

[16] P. Graham, “A DSM cluster architecture supporting aggressive
computation in active networks,” in Intl. Workshop on Distributed
Shared Memory, 2001. [Online]. Available: http://www.cs.umanitoba.
ca/~pgraham/papers/DSM_body.pdf

[17] Y. B. Jang and J. W. Cho, “A cluster-based router architecture for
massive and various computations in active networks,” in ICOIN,
KAIST, Korea, Feb. 2003. [Online]. Available: http://camars.kaist.ac.kr/
~ybjang/research/publication/icoin2003.pdf

[18] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language
for streaming applications,” in Proceedings of the 11th International
Conference on Compiler Construction, ser. Lecture Notes in Computer
Science, vol. 2304/2002. Grenoble, France: Springer-Verlag Heidelberg,
2002, pp. 179–196.

[19] E. Hladká, “User empovered collaborative environment: Active network
support,” Ph.D. dissertation, Faculty of Informatics, Masaryk University
Brno, Czech Republic, 2004.

L

Appendix M

Virtual Classroom with a Time Shift

by Luděk Matyska, Eva Hladká, and Petr Holub

8th International Conference on Information Technology Based Higher Education and Train-
ing. Kumamoto, Japan, July 2007. Proceedings. Kumamoto University, 2007. 6 p.

Virtual Classroom with a Time Shift
Luděk Matyska 1,2 and Eva Hladká 1,2 and Petr Holub 1,2

1CESNET z.s.p.o, Zikova 4, 162 00 Prague, Czech Republic

2Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

ABSTRACT
In spring 2007, Prof. Sterling’s Introduction to High
Performance Computing has been delivered in a vir-
tual classroom consisting of 5 sites spanning Louisi-
ana, Arkansas, and North Carolina in the USA and the
Czech Republic in Europe. By utilizing a multi-point
uncompressed audio and High Definition (HD) video
capturing, transmission, and presentation system, a
high fidelity collaborative environment was available
to students, giving them access to the lecturer regard-
less of the place they attended the lecture. However,
the semester start differs at individual participating
educational institutions by several weeks and the in-
stitutions are also in different time zones. A store and
replay technology was used in these cases, together
with a larger number of lectures presented per week,
to accommodate for this difference. The whole system
worked well, the high quality of the HD video al-
lowed students even in the most distant place to get a
very good feeling of participating in a live lecture.

INTRODUCTION

Providing high-quality university lectures on special-
ized advanced topics is increasingly difficult for
smaller and less rich universities, as the top field spe-
cialist are very scarce resource. To mitigate this situa-
tion and to help their less developed peers, some top
class universities are providing their lecture material,
including captured video of individual lectures, free
of charge to everybody interested. The MIT’s Open-
CourseWare activity is among the most widely
known 1 . While helping to improve local teaching
quality, this approach does not provide direct access
to the teacher and keeps students at individual univer-
sities out of contact. Educationally more advanced
(and more challenging) is thus the concept of a virtual
classroom, where students at different places are syn-
chronously attending the lecture. While the concept
itself is rather old [1,2] and initially covered one cam-
pus only, the recent advances in network and au-
dio/video technology open up access to a really high
fidelity environment. The distance between individual
halls of such a virtual classroom does not play serious
role, students from differing institutions can share a
particular lecturer, perceiving the illusion of being in
direct contact with him or her.

1 See http://ocw.mit.edu/index.html.

We have implemented a state of the art multi-point
uncompressed HD video over IP transmission system
together with other supporting technologies that can
be used to provide such a high-fidelity environment.
We have expected that our system would provide
enough immersion for the students in order to feel be-
ing part of a single class, despite being divided by
both geographical and time distances. As a pilot ex-
periment, prof. Sterling at the Louisiana State Univer-
sity developed an Introduction to High-Performance
Computing class that was offered to be shared in the
virtual classroom setup at several universities and
higher education institutions. The institutions partici-
pating in the class were Masaryk University (MU) in
the Czech Republic, University of Arkansas (UARK),
Louisiana Technical University (LATECH), MCNC
and North Carolina State University (NCSU). In this
paper, we present the necessary technical details of
the setup together with a discussion of the experience
on psychological and sociological levels.

From both technical and psychological points of view,
the ultimate goal of a system to support true globe-
spanning distributed class is to provide minimum dis-
turbance for all the students of a class, while mitigat-
ing the separation of students on the remote locations
and providing the same opportunities to both local
and remote students. In order to achieve this, high-
fidelity real-time audio and video transmission system
have to be implemented, as further discussed in the
following section. However, the real-time transmis-
sion and collaboration support is not sufficient, as the
distributed classes face time-shift problems. One,
simple problem is the time zone shift. While it may be
possible to agree on a time that is convenient for two
sides, with more sides and full globe coverage, not
everybody is able to participate during his usual
working hours. More serious problem is caused by
differences in start of the class. Order of weeks skew
may be found among individual institutions. To over-
come both problems, the system must support non-
synchronized, non-real time mode of work and the
lack of real-time interaction should be taken care of at
the educational process level, too.

INTERACTIVE COLLABORATION
TECHNOLOGIES

We decided to build our virtual classroom environ-
ment of top of the real-time collaboration environ-
ment using uncompressed audio and HD video and

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

256

M

over IP [3]. The HD video offers very high detail, al-
lowing, e.g., to capture classical projection screen and
to transmit the picture without any distortion (and loss
of readability) to the remote location. It is also possi-
ble to capture both the projection screen and the lec-
turer. Using the HD video, students can see detailed
facial expressions of the lecturer (and she can see the
facial gestures of the remote students), providing a
realistic remote presence. However, this high quality
resolution does not come without a price—a lot of
data is generated, which means the compression takes
a long time even on high performance hardware. The
several second long lag created by the compression
and decompression of the video stream is unaccept-
able for the real-time collaborative environment. This
lag can be easily removed using the uncompressed
HD video.

The uncompressed HD video was HD-SDI over IP
transmission based on UltraGrid software [3], featur-
ing full 1080i SMPTE 274M/292M video with effec-
tive resolution of 1920×1080, 60 interlaced fields per
second, 4:2:2 color space sampling, and 10 b per color
plane.2 The stream was packetized into the 8,500 B
Jumbo Ethernet frames with 44 B IP/UDP/RTP
header overhead and the resulting data rate was about
1.5 Gbps. With this data rate, we decided to distribute
the video asymmetrically, in 1:N way from site where
the class is given to all the other sites, and in N:1 way
back, i.e. all sites are sending back to the lecturer only
(this way the lecturer can see all his students but stu-
dents can not see other lecture halls apart from the one
with a lecturer). This asymmetry was implemented
due to bandwidth constraints at participating sites.

Figure 1: HD video formats

The audio part has been implemented by RAT [4] at
16 b quantization and up to 48 kHz sampling rate in
stereo. Thus data rates up to 1.6 Mbps were used.
The audio was distributed in full N:N way, i.e., all
participants can hear and talk to one another. While
the compression and decompression of the audio is

2 For more details on the HD formats see e.g. Society of Motion
Picture and Television Engineers: “The Bit-serial Digital Interface
or High Definition Television Systems”, SMPTE-292M-1998 and
“1920x1080 Scanning and Analog and Parallel Digital Interfaces
for Multiple Picture Rates”, SMPTE-274M-1998.

not so computationally demanding as the processing
of HD video, we used uncompressed audio to provide
highest quality possible.

The high data rate needed for the uncompressed HD
video streams transmission is not widely available on
the shared production networks. We used a dedicated
high speed network described in the following sec-
tion, but we have also implemented a backup solution
based on AccessGrid and webcasting in QuickTime
format for those unable to participate at full network
data rate.

Network and Data Distribution Setup

The five partners participating in the virtual classroom
needed a multi-point distribution of the video and au-
dio streams. The very high data transmission rate dis-
qualified use of native multicast—the routers usually
do not support such high multicast distribution rate.
We built an overlay network where specific nodes—
the reflectors—took care of multi-point data distribu-
tion (see Figure 2). While a shared production net-
works available in academic environment already
provide data rates above 1 Gbps at some locations, we
used a dedicated 10 Gbps network as the underlying
transmission medium.

Figure 2: Overlay data distribution network for the
1.5 Gbps uncompressed HD video streams

The network has been implemented using experimen-
tal 10 Gigabit Ethernet (10GE) infrastructure and both
statically and dynamically allocated λ-services. The
network topology resembles star with center in Star-
Light (SL) in Chicago, IL. LSU and LATECH3 were
using 10GE backbone Louisiana Optical Network Ini-
tiative (LONI), which has an uplink to SL using a
dedicated Enlightened wave running 10GE on Na-
tional Lambda Rail (NLR). The Enlightened wave

3 LATECH is not part of the actual 10GE infrastructure though,
because of the last-mile problems from the LONI point of presence
at the LATECH campus to the room used for the teaching and thus
they are using AccessGrid as the backup solution.

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

257

M

was being dynamically provisioned for the class and
for the testing windows using a preliminary version of
HARC [5], the software stack developed by the En-
lightened project. UARK was connected via OneNet
network and a wave on NLR running 10GE; again,
the circuit was automatically setup before the class
begins and shut down after it ends. MCNC and NCSU
were connected to SL in the same way using NLR
waves. MU, the only transatlantic partner, was con-
nected using a dedicated permanent circuit Prague–SL
leased by CESNET and the Brno–Prague imple-
mented using CzechLight experimental infrastructure
based on leased dark fiber lit by CESNET equipment.
While the rest of the infrastructure runs 10GE, Brno–
SL circuit runs OC192 protocol. The whole infra-
structure is switched L2 network and is transparent on
the IP level; only a few important network devices
have been assigned IP addresses for monitoring and
debugging purposes (see Figure 3).

Figure 3: Detailed data distribution overlay network

Latencies are the major problem in real-time collabo-
rative environments—with higher latencies it is not
possible have a true dialog. The network latencies
shown in Table 1 are sufficiently low not to create
interactivity problems even in case of the transatlantic
connection.

Table 1: Network round-trip latencies (RTTs) in the
10 Gigabit infrastructure
Ping from To StarLight to LSU
LSU 30.6 ms -
MU 115.4 ms 145.7 ms
MCNC 23.5 ms 53.8 ms
UARK 19.3 ms 49.6 ms

The actual data distribution was implemented using
user-empowered software UDP packet reflectors

[6,7]. The reflectors ran on dual-Opteron computers
equipped with either Chelsio or Myrinet 10GE NICs.
For the audio, although distributed in the full N:N pat-
tern, a single reflector distributing is sufficient.
The video was distributed in 1:N and N:1 way and the
schematics of the 1:N video distribution is shown in
Figure 2. Note that there are actually two sites partici-
pating at LSU as not everybody can fit in a single
room—thus the same technology was used for dis-
tributing the data locally on the campus between two
buildings. There were also two streams being sent to
MU—one of them was used for live video feed, while
the other was used for the full-quality recording.

Site Setup

Each site was equipped with one sender and one or
more receivers for uncompressed HD video over IP
transport system. The machines were essentially the
same as used for the reference UltraGrid 1080i im-
plementation [3], i.e., dual-Opteron computers with
Myrinet or Chelsio 10GE NICs. The sender com-
puters were equipped with DVS Centaurus HD-SDI
capture card, while the receivers used NVidia graph-
ics card to render the video on attached LCD screen or
projector. 24" to 30" LCD screens and plasmas were
used and installation at MU also used the Projection
Design Cineo3+ 1080i projectors. The video part runs
flawlessly with very good user perception.

Though less challenging from the networking and
processing perspective, the audio part created many
more problems due to various factors namely on au-
dio capture side. The worst problems are caused by
bad audio installations (ranging from wiring problems
to echo canceling, gain control problems, and over-
processing of the sound by various components before
it gets to the computer—all this resulting in noises
and distorted sound) used within the lecturing rooms
primarily at LSU and wireless microphone interfer-
ences. Problems have also been encountered when
using some on-board integrated sound cards, as their
obviously half duplex behavior resulted in clicks and
sound distortions. After appropriate corrective actions
were undertaken, the sound quality has become very
high and pleasing to hear.

Data Storage

As stated above, the lecture had to be presented to
students also in the asynchronous way. This was
achieved through the recording of the live stream for a
later use. The media streams (1 video and N audio
streams) from the network were captured and stored
as raw data on a disk array. Varying slightly depend-
ing on the size, each 1.5 hr lecture was about 1 TB of
stored data.

The data storage has been implemented using the very
fast local disk array comprising 12 disks (actually 6+6

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

258

M

disks attached to two physical channels of one SATA
to SCSI disk array controller) in RAID 0, as it re-
quired both read and write throughput of at least
190 MBps. The actual write performance of the array
was 385 MBps and read performance was 414 MBps.
The tested parallel filesystem PVFS did not provide
sufficient robustness with the inexpensive hardware
we used. The stored streams were indexed so that
seeking capability was also available. The data was
archived to a slower RAID 5 disk array immediately
after recording and later also to a tape archive so that
there was always a backup copy available. When
needed, the data was replayed from the same RAID 0
disk array.

TIME-SHIFT MITIGATION

The time warping had to be implemented for two
scales of time shifting—the short term, as the students
may not be forced for instance to stay up to very late
night due to different timezones, and the long term,
because of different semester start dates. Both cases
actually happened for the Introduction to HPC class.

The time difference between LSU and MU is 7 hours,
which meant that the lecture starting at 3pm local time
in Louisiana was received at 10pm at MU in Brno.
The two hour lecture ended slightly before a midnight
Czech Republic local time 4 . The time zone differ-
ences with other partners were at most one hour,
which did not cause a real problem. In theory, the
time zone problem could be solved by careful plan-
ning, but as we found, the LSU internal rules made it
impossible to move the lecture to the more appropri-
ate morning time and we had to account for this.

There is unfortunately no way how to directly over-
come the second problem, differences in semester
start. The only possible solution is to relax the real-
time requirement and use recorded data instead of the
live lecture. The semester at LSU started already in
mid January, while the MU starts only after mid Feb-
ruary. With two lectures per week this meant a delay
of 10 lectures (full 15 hours of recorded material). To
catch this delay students agreed to take up to twice the
number of hours per week (usually there has been
three instead two lectures). However, this created an-
other problem with the problem sets and other pre-
scribed homework.

Other supporting material. The students were also
provided supplementary material like all the slides,
additional reading, problem sets and homework, etc.
The supporting material must be uncovered individu-
ally for each student’s group, to follow the differing
speed of presenting the recorded lectures. The major

4 We may consider it irony that both time zones use the same ab-
breviation—CET. It denotes Central European Time in Europe and
also Central Time in the USA.

problem has been associated with the problem sets
and the homework. Usually 4 to 6 weeks were avail-
able to solve a problem set and return the report.
However, with the “faster than real time” lecture
presentation the time available could be reduced, as
some “future” lecture might provide hints for the
problem set solution before they are actually submit-
ted by students. We maintained supplementary mate-
rials in an archive local to each of the desynchronized
institutions. The eventual shortening of time for
homework has been agreed with students. In some
cases, students were given new problem set before the
previous was submitted—we checked that the “fu-
ture” lectures are harmless, not containing any un-
wanted hints. All the homework as well as mid-term
and final exams were evaluated locally.

The lectures at MU were replayed at the same days
(Tuesday and Thursday) as at LSU, but at early eve-
ning hours. In the middle of semester (also due to the
different holiday times and other reasons that lead to
few than expected lectures at LSU) we were able to
synchronize the MU and LSU classes. We still con-
tinued to present the recorded lectures at 7pm but in-
vited students to stay longer and watch also the live
lessons given by prof. Sterling or his colleagues.

Most of the time the whole system worked well, but at
several occasions (3 times during the 13 week long
semester) the live transmission has not been possi-
ble—either the transatlantic or other part of the path
from LSU to Brno was broken and not operational.
All the lectures were regularly recorded also at LSU
and post-processed there. We used these post-
processed lectures if the recording at MU was not
available. The post-processing created another prob-
lem—usually it had taken one week before the mate-
rial was ready for presentation. When MU and LSU
were not synchronized, we had enough local material
to present, but after the mid-term synchronization,
there was no safety margin (the LSU has just one les-
son ahead). Once we had to use a different lecture (re-
corded keynote from an international conference).

LESSONS LEARNED

As we are expecting to repeat the experience next
spring with substantially higher number of partici-
pants and also for everybody interested in similar
educational setup, we summarize the major issues
here. Two most important lessons are: (1) it is possi-
ble to run a lecture in HD quality at the virtual class-
room setup even over transatlantic distances, and (2)
it is not easy and needs a lot of man power.

The amount of necessary manual work surprised us.
Part of it was due to a lot of homework and problem
sets students were expected to work on during the se-
mester. All the problem sets were prepared with the
LSU resources available and we had to adjust our

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

259

M

computing environment to provide a similar setup to
our students. Also, the teaching assistants at LSU had
to learn how to share their experience (including the
process of evaluation student’s work) with the staff
local at other sites. Without this, students would be
graded differently.

To operate the whole system and especially the net-
work setup took another portion of man power. As
stated above, most lines were dynamically activated
and de-activated, some of them through the use of ex-
perimental HARC software. All the transmissions
were real-time and there was just a little time before
the start of a lecture—the setup was usually initiated
just half hour earlier, leaving very limited time for
reaction to any problem encountered. We have learnt
that when using experimental network, it is impera-
tive to have a fall back solution available. An alterna-
tive capturing and presentation system must be avail-
able at all sites, having less stressing demands on the
network and thus enabling use of a shared academic
production networks instead of the dedicated experi-
mental one. If more than the 5 sites are to be con-
nected, much more automation is also needed, includ-
ing a constant monitoring of the quality of network,
drop rate (esp. for the audio) and other parameters that
influence the quality of perception. Ideally, the system
should be able to react immediately to network prob-
lems and reconfigure either the network or the col-
laborative environment itself on the fly.

The importance of good audio can not be overstated.
While the full HD video quality provided details as
expected, when a lower quality backup solution was
used, it did not have tremendous negative impact.
However, when the audio quality deteriorated, the lec-
ture became completely useless. Even small noise,
clicks and other artefacts negatively influence the stu-
dent’s focus and ability to follow the lecture (and
learn from it). New microphones, audio cards and
other equipment were tried during the first lectures to
provide the best audio experience, but some problems
repeated the whole semester. We are considering to
study the studio quality audio systems to provide a
flawless audio; it is worth even the higher price of
studio systems.

When the semester starts at different time, it is very
important to plan ahead how to mitigate it. We
“learned by doing”, adapting to the student’s require-
ments and ability to follow the lectures (e.g., we did
not know in advance whether students will be able to
take more than the two lectures per week). Next time,
we would like to synchronize with LSU as soon as
possible, as it lessens the problem of material reveal-
ing and, most importantly, allow direct collaboration
among students at different institutions. Without at-
tending same lectures students have a little in com-
mon (they solve different problem sets, they have dif-
ferent experience from the last lecture seen etc.).

We also learned that the lecture must be prepared with
the virtual classroom setup in mind. While Prof. Ster-
ling prepared a lot of homework and other material,
none of them directly encouraged remote student’s
collaboration. For the next semester, we would like to
see also team homework, when students from differ-
ent institutions will work together to solve a particular
problem set. More interactivity between the lecturer
and students is also very much needed. Students must
be explicitly asked to participate, because even with
the advanced technology the ability to ask question
remotely is something that people do not know auto-
matically and it must be learnt. Encouraging direct
interaction between students and asking for feedback
during or after lectures will teach students how to live
well in a virtual classroom environment.

CONCLUSIONS

The collaborative system described in this paper had
been implemented by the beginning of year 2007 and
has been used since then for supporting the HPC
class. Due to running on highly experimental net-
working infrastructure, some sites had to resort to us-
ing backup solutions at times, but the infrastructure
worked flawlessly most of the time. Another experi-
ence gathered from this class is how important is
high-quality audio installation at participating sites
and how difficult it is to implement it properly. The
low sound quality is much less tolerated when other
means of communication are of high quality com-
pared to common point-to-point communication tools.

We are currently undertaking a number of studies on
subjective user perceptions in order to map the tech-
nology improvements to user perception improve-
ments. As more sites want to participate, the whole
system needs to get revamped in order to support
much higher degree of monitoring and self organiza-
tion.

RELATED WORK

We are not aware of any e-learning system that uses
the uncompressed HD video for real time lecture de-
livery. The virtual classroom concept is widely used,
but with the more classical collaboration technologies
like H.323 videoconferencing systems and simple
shared work space.

Interest in HD video is growing, also due to the in-
creased availability of adequate equipment designated
for the consumer market. A recent presentation at
EUNIS conference [8] gives a good introduction to
the use of commercially available products that use
compression and introduce thus latencies unaccept-
able for the live collaborative environments of the
real-time virtual classrooms. The HD video is cur-
rently used for lecture streaming only.

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

260

M

ACKNOWLEDGMENT

This project has been kindly supported by the re-
search intent “Optical Network of National Research
and Its New Applications” (MSM 6383917201). We
would also like to thank other people working with us
on this project, namely Tomáš Rebok, Miloš Liška,
Lukáš Hejtmánek from Laboratory of Advanced Net-
working Technologies at Masaryk University, and our
partners at Center for Computational Technology at
Louisiana State University and other partnering sites.

REFERENCES

[1] S.R. Hiltz, “The “virtual classroom”: Using Com-
puter-mediated Communication for University Teach-
ing”, Blackwell Synergy, 1986
[2] S.R. Hilts, “The virtual classroom: learning with-
out limits via computer networks”, Ablex Publishing
Corp. Norwood, NJ, USA, 1994
[3] P. Holub, L. Matyska, M. Liška, L. Hejtmánek, J.
Denemark, T. Rebook, A. Hutanu, R. Paruchuri, J.
Radil, E. Hladká, “High Definition Multimedia for
Multiparty Low-latency Interactive Communication”,
Future Generation Computer Systems, Vol. 22(8),
pp. 856–861, 2006

[4] V. Hardman, A. Sasse, M. Handley, A. Watson,
“Reliable audio for use over the Internet”, Proceed-
ings of INET’95, Honolulu, Hawai, 1995
[5] L. Battestelli, A. Hutanu. G. Karmous-Edwards,
D.S. Katz, J. MacLaren, J. Mambretti, J.J. Moore, S.-
J. Park, H.G. Perros, K.S. Sundar, S. Tanwir,
S.R.Thorpe, Y. Xin, “EnLIGHTened computing: An
architecture for co-scheduling and co-allocating
network, compute, and other grid resources for high-
end applications”, 2007. Available from
http://enlightenedcomputing.org/index.php?n=Main.A
boutEnLIGHTenedPage?action=dowload&upname=E
nlightenedGrid07.pdf
 [6] E. Hladká, P. Holub, J.Denemark, “An Active
Network Architecture: Distributed Computer of
Transport Medium”, Proceedings of 3rd International
Conference on Networking (ICN’04), pp. 338–343,
Gosier, Guadeloupe, 2004
[7] P. Holub, E. Hladká, L. Matyska, “Scalability and
Robustness of Virtual Multicast for Synchronous
Multimedia Distribution”, Proceedings of 4th Interna-
tional Conference on Networking, La Réunion, LNCS
vol. 3431, pp. 876–883, Springer-Verlag Heidelberg,
2005
 [8] J. Oxenford, “Using HD Videoconferencing for
Teaching and Learning”, Proc. EUNIS 2007 Confer-
ence, Grenoble, Paris, 6 pages, 2007

8th International Conference on Information Technology Based Higher Education and Training, 10th to 13th July 2007, Kumamoto, JAPAN

261

M

