Course detail
Medical Imaging Systems
FEKT-BPC-ZSLAcad. year: 2022/2023
The basic theory of imaging process and general quantitative evaluation of its quality. Fundamentals physical and technical aspects of structure specific imaging systems. Clinical application of medical imaging systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Physical principles of medical imaging in general.
3. X-ray imaging systems - X-ray tube, detection of X-rays, construction of X-ray systems, image quality.
4. Fluoroscopy, mammography and other methods using the X-rays.
5. Computed tomography (CT) - introduction, image reconstruction, historical development of CT systems.
6. CT systems - construction, helical CT, multi-slice CT, dual-energy CT.
7. Magnetic Resonance Imaging (MRI) - physical principle of nuclear magnetic resonance, basic experiments, Bloch's equations.
8. MRI - pulse sequences, hardware of MRI scanner.
9. Nuclear medicine imaging - differences between emission and transmission imaging, planar gamagraphy, Anger camera.
10. Single Photon Emission Computed Tomography (SPECT) - definition, image reconstruction, attenuation correction, image quality.
11. Positron Emission Tomography (PET) - definition, coincidence detection, attenuation correction. Hybrid systems - PET/CT, SPECT/CT, PET/MRI.
12. Ultrasound imaging - physics of ultrasound, wave equation, imaging modes.
13. Medical imaging using electromagnetic radiation in visible light - endoscopy and infrared part of spectrum - thermography.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Drastich,A.: Netelevizní zobrazovací systémy. Skriptum FEI VUT v Brně, 2001 (CS)
Drastich,A.: Tomografické zobrazovací systémy. Skriptum FEKT VUT v Brně, 2004 (CS)
Mornstein, V. a kolektiv: Lékařská fyzika a biofyzika, MU Brno, 2018 (CS)
Vomáčka, J. a kolektiv: Zobrazovací metody pro radiologické asistenty, 2.vydání, Hanex Olomouc, 2015 (CS)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. General process of imaging, the basic of image data processing.
3. Conventional projection X-ray imaging systems.
4. Digital projection X-ray imaging systems.
5. CT X-ray imaging systems: the principles of construction, the principles of image reconstruction.
6. CT X-ray imaging systems: feature evaluation and trends of development.
7. MRI imaging systems: signal, basic of magnetic resonance, the principles of construction.
8. MRI imaging systems: the principles of image reconstruction, feature evaluation.
9. Planar gammagraphy: the principles of construction, image syntheses, feature evaluation.
10. SPECT: the principles of construction, image syntheses, feature evaluation.
11. PET: signal, the principles of construction, image syntheses, feature evaluation.
12. Ultrasound imaging systems: signal, the principles of construction, image syntheses, feature evaluation.
13. Alternative imaging systems.
Laboratory exercise
Teacher / Lecturer
Syllabus
2. The simulation of image presentation and image discrimination.
3. The simulation of image distortions.
4. The simulation of the basic image processing.
5. The simulation of projection reconstruction process.
6. The simulation of magnetic resonance effect.
Elearning