Course detail
Communication Systems for IoT
FEKT-BPC-IOTAcad. year: 2021/2022
Not applicable.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
0-10 points - written test in laboratory, (optional part),
0-15 points – elaboration of individual project,
0-70 points - written exam with e-learning support, compulsory part for course completion.
The exam is focused on verifying the orientation of high-speed communication systems with a view to SDH and Ethernet.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Elearning
Classification of course in study plans
- Programme BPC-AMT Bachelor's 0 year of study, summer semester, elective
- Programme BPC-AUD Bachelor's
specialization AUDB-TECH , 2 year of study, summer semester, compulsory-optional
specialization AUDB-ZVUK , 0 year of study, summer semester, elective - Programme BPC-ECT Bachelor's 3 year of study, summer semester, compulsory-optional
- Programme BPC-IBE Bachelor's 3 year of study, summer semester, compulsory-optional
- Programme BPC-MET Bachelor's 0 year of study, summer semester, elective
- Programme BPC-SEE Bachelor's 3 year of study, summer semester, compulsory-optional
- Programme BPC-TLI Bachelor's 3 year of study, summer semester, compulsory-optional
- Programme IT-BC-3 Bachelor's
branch BIT , 2 year of study, summer semester, elective
- Programme BIT Bachelor's 2 year of study, summer semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2 Synchronous Digital Hierarchy - SDH. Recommendation ITU-T about SDH, multiplex structure SDH, frame STM-1 structure, synchronous multiplexing STM-1 to STM-4, SDH generation.
3. Integration of PDH 4.th order to STM-1, pointer AU-4/PTS, stuffing of frame beginning, integration E1 to STM-1. Ethernet over SDH. Network elements and nodes SDH. Network SDH structure.
4. Architecture of Czech synchronization network. Quality of digital channel evaluation, area of using Rec. G.826.
5. Technology ATM. ATM cell, interfaces of ATM networks, ATM connection, addressing at ATM, reference model ATM. ATM adaptive layer, ATM quality of service.
6. TMN - Telecommunication Management Network. Function blocks TMN. Physical TMN architecture.
7. Basics of voice transmission using IP. Using of CISCO technology. Principles of VoIP, signalling protocols VoIP, covered protocols set H.323, important protocols MGCP, SIP (Session Initiation Protocol), SCCP (Skinny Client Control Protocol). Protocols for medium transports RTP (Real Time Transport Protocol), RTCP (RTP Control Protocol), cRTP (Compressed RTP), sRTP (Secure RTP). gates VoIP, hardware gates.
8. VoIP and QoS. Sound quality for IP, using methods, voice packets, processing by codecs, processing by processors DSP
9. Analogue voice ports, local calling, calling in network, calling out of network, voice ports on routers CISCO IOS, analogue voice ports configuration, trunks, Dial-peers
10. Digital voice ports, digital trunks, CAS T1, CAS E1 R2, QSIG
11. Gates control, protocol H.323, implementation of gates MGCP, implementation of gates SIP
12. Plan of dialling. Addressing of end po
Laboratory exercise
Teacher / Lecturer
Syllabus
2. CISCO VoIP
3. MPLS VPN
4. CISCO security
5. Přenos FHHS
6. CDMA
7. BER
8. Bandwidth
9. Voiceband
10. DSS
Elearning