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Abstract
Understanding the nature of living organisms is one of the central tasks of biology. In
recent decades, there have been significant advances in this field, thanks in particular to
new technologies that allow us to obtain vast amounts of information at the molecular
level. However, the quantity and speed of the new data acquisition are so high that it is
no longer possible to analyze it manually or to use simple statistical methods. As a re-
sult, there is increasing pressure to develop effective bioinformatics tools that help process
this information in an automated and accurate way. This habilitation thesis summarizes
newly developed algorithms and tools in three areas of bioinformatics in which the author
participated. First, the triplex and pqsfinder tools for searching specific secondary struc-
tures in DNA, such as triplexes and quadruplexes, are presented. Both of these tools stand
out for their ability to detect even non-perfect sequences involving different types of de-
fects, which are also observed in real experiments. Then, newly developed tools in the field
of protein engineering are presented to help design new proteins with desired properties.
Specifically, these tools include SoluProt for protein solubility prediction, EnzymeMiner for
mining enzymes of interest from large databases and prioritizing them, HotSpot Wizard for
identifying protein positions suitable for mutagenesis, and FireProt for automated design
of thermostable proteins. Finally, new tools and approaches to analyze repetitive regions
of the genome are presented. In particular, a tool for detecting distant or novel Insertion
Sequence elements in assembled prokaryotic genomes and a new approach for analyzing
and visualizing satellite DNA directly from sequencing data.
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Abstrakt
Pochopení podstaty živých organismů je jednou z centrálních úloh biologie. V posledních
desetiletích byl v této oblasti zaznamenám významný posun a to zejména díky novým
technologiím, které nám umožňují získávat obrovské množství informací na molekulární
úrovni. Biologové již nejsou schopni takové množství dat analyzovat ručně nebo s využitím
jednoduchých statistických metod. Při své práci se proto neobejdou bez pomoci efektivních
bioinformatických nástrojů. Tato habilitační práce sumarizuje nově vyvinuté algoritmy a
nástroje ve třech oblastech bioinformatiky, na kterých se autor podílel. Nejprve budou
prezentovány nástroje triplex a pqsfinder pro vyhledávání specifických sekundárních struk-
tur v DNA jako jsou triplexy a kvadruplexy. Oba tyto nástroje vynikají svou schopností
detekovat i neperfektní sekvence zahrnující různé typy defektů, které jsou pozorovány i v
reálných experimentech. Následně budou prezentovány nově vyvinuté nástroje v oblasti pro-
teinového inženýrství, které pomáhají při designu nových proteinů s požadovanými vlastnos-
tmi. Konkrétně se jedná o nástroje: SoluProt pro predikci solubility proteinu, EnzymeMiner
pro dolování zájmových enzymů z rozsáhlých databází a jejich prioritizaci, Hotspot Wiz-
ard pro identifikaci pozic proteinu vhodných k mutagenezi a FireProt pro automatizovaný
návrh teplotně stabilních proteinů. Na závěr budou prezentovány nové nástroje a přís-
tupy v oblasti analýzy repetitivních oblastí genomu. Konkrétně bude představen nástroj
pro detekci vzdálených nebo nových Insertion Sequence elementů v sestavených genomech
prokaryot a nový přístup pro analýzu a vizualizaci satelitní DNA přímo ze sekvenačních
dat.
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Sekundární struktury DNA, opakující se sekvence DNA, proteinové inženýrství, bioinfor-
matika



Reference
MARTÍNEK, Tomáš. Bioinformatics tools for sequence and
structural data analysis. Brno, 2022. Habilitation thesis. Brno University of Technology,
Faculty of Information Technology.



Bioinformatics tools for sequence and
structural data analysis

Declaration
Hereby I declare that this habilitation’s thesis was prepared as an original author’s work.
All the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

. . . . . . . . . . . . . . . . . . . . . . .
Tomáš Martínek

November 17, 2022

Acknowledgements
I want to thank Dr. Matej Lexa, who brought me into the field of bioinformatics. His
original ideas and friendly approach have always been a great inspiration for me during
my research. Furthermore, I would like to thank the entire team of Loschmidt laboratories
and especially Prof. Jiří Damborský for his expert guidance in protein engineering. I will
never forget his helpful and dedicated approach and incredible diligence. Furthermore, I
would like to thank my colleagues and collaborators from the Institute of Biophysics of the
Czech Academy of Sciences. In particular, Dr. Marie Brázdová and Assoc. Prof. Eduard
Kejnovský for the valuable advice they provided me during my research in the field of DNA
sequence analysis. I would also like to thank my Ph.D. students: Jiří Hon, Miloš Musil,
and Janka Puterová, for their cooperation in the research and the enormous effort they
have devoted to developing these tools. Without their help, these outputs would not have
been produced. Last but not least, I would like to thank my family for the support and
patience they gave me not only during the writing of this thesis but especially throughout
the research. In conclusion, I would like to thank the team of people who take care of
the Metacentre’s computing resources funded under the project "e-Infrastruktura CZ" (e-
INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the
Czech Republic. Without these computing resources’ support, many of this thesis’s outputs
would be very difficult to produce.



Contents

1 Introduction 5

2 Secondary DNA structures 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Identification of potential triplex-forming sequences . . . . . . . . . 9
2.3.2 Identification of potential quadruplex-forming sequences . . . . . . . 10
2.3.3 Additional biological studies . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Research impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Protein engineering 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Rational selection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Rational protein design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Research impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Repetitive DNA sequences 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Tandem repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Transposable elements . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Study of repetitive sequences . . . . . . . . . . . . . . . . . . . . . . 42

4.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Assembly-based approaches . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Assembly-free approaches . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



4.3.1 digIS - novel approach for detection of distant Insertion Sequence
elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Novel approach for detailed analysis of satellite DNA . . . . . . . . . 46
4.3.3 Additional studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Research impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 55

A Included Papers 79
A.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.7 Paper VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.8 Paper VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.9 Paper IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.10 Paper X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.11 Paper XI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.12 Paper XII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

2







Chapter 1

Introduction

Bioinformatics is an interdisciplinary field of science that helps biologists solve complex
problems using computers. These are primarily tasks in molecular biology that are char-
acterized by large amounts of data and the complexity of its processing and visualization.
Bioinformatics is, therefore, very closely related to biology, chemistry, physics, and com-
puter science. It helps, for example, in the fields of analysis and processing of genomic data
(Genomics), protein sequences (Proteomics), the study of complex biological processes (Sys-
tem biology), or the creation of simulation models (Molecular dynamics). Bioinformatics is
such a broad field that it now encompasses almost anything related to biology and computer
science.

The author of this thesis became familiar with bioinformatics through the design of
digital circuits for hardware acceleration of selected algorithms for the analysis of biological
sequences, which was carried out in collaboration with Dr. Matej Lexa from the Masaryk
University. In the follow-up research, the author moved further towards developing software
tools that fall into three specific subareas of bioinformatics. This thesis aims to present the
results achieved in this follow-up research.

The first part of the thesis (Chapter 2) deals with the area of DNA secondary structures,
such as hairpins, triplexes, or quadruplexes. They represent an alternative to the canonical
(double helix) DNA, and their formation is conditioned by the specific nucleotide sequence
and the physicochemical environment in which the molecule is located. The study of DNA
secondary structures is of great interest to biologists, as it appears that these structures
may have a significant impact on several biological processes, including the regulation of
gene expression, mutagenesis, and the development of various diseases. To understand
these complex processes, biologists need effective bioinformatics tools to detect and search
for these secondary structures in DNA.

Therefore, in the first part of this work, we focused on designing new algorithms for
detecting triplex and quadruplex forming sequences in DNA. Compared to existing tools,
the developed outputs stand out for their ability to search even structures containing a
certain degree of defects. The developed tools were subsequently used in several follow-up
biological studies, where we analyzed the occurrence of triplex-forming sequences in the
human genome or the interactions of these structures with one of the key tumor suppressor
proteins – p53. This work was done in collaboration with the Institute of Biophysics of the
Czech Academy of Sciences and the team around Dr. Marie Brázdová.

The second part of the thesis (Chapter 3) is devoted to protein engineering, which deals
with modifying existing proteins to improve their valuable properties such as activity, sta-
bility, or selectivity. Such modified proteins are then attractive targets for pharmaceutical
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and industrial applications. Successful applications include drug design, biofuel production,
detergents, waste treatment, food processing, the paper industry, and many others. There-
fore, this part of the thesis focuses on developing new or improving existing approaches in
this area. Specifically, we have been designing algorithms and tools for mining enzymes
of interest from large biological databases, predicting protein solubility, predicting protein
positions suitable for mutagenesis, and predicting multi-point mutations to increase protein
stability. The tools developed are among the best in their category, as evidenced by their
massive use by the scientific community and industry. This work was done in collaboration
with Loschmidt laboratories and the team of Prof. Jiří Damborský.

The last third part of the thesis (Chapter 4) combines, to some extent, the author’s
previous experience in the field of genomics and proteomics. It deals with the analysis of
genomic regions containing a large number of repetitive sequences. It has been shown that
these regions are part of the genomes of most living organisms. For example, they make
up more than two-thirds of the human genome, and their representation in plants tend to
be much higher. These regions of the genome were originally referred to as junk DNA.
However, an increasing number of studies have demonstrated their importance in various
biological processes, including chromosome organization and rearrangements, the control
of telomere elongation, or modulation of gene expression. To further understand the role
of these repetitive regions, it is essential to provide the scientific community with efficient
tools to search and analyze them in both assembled genomes and sequencing data.

Therefore, we have developed a new tool to search for Insertion Sequence elements (ISE)
in assembled prokaryotic genomes. Compared to existing approaches, this tool stands out
for detecting even putative novel ISE families. The field of tools for analyzing and quanti-
fying repetitive sequences directly from sequencing data has been further expanded with a
new way of processing satellite DNA sequences and their visualization. The developed tech-
nique was applied to the analysis of the seabuckthorn (Hippophae rhamnoides) genome and
contributed to an interesting discovery regarding the size of X and Y chromosomes. In addi-
tion, a study analyzing the relationships between transposable elements and quadruplexes
was conducted. The results of the study revealed several interesting findings regarding
the occurrence of quadruplexes within or in the vicinity of TEs, including their successful
experimental evaluation in vitro. This work was again done in collaboration with the Insti-
tute of Biophysics of the Czech Academy of Sciences and the team of Assoc. Prof. Eduard
Kejnovský.

The thesis is presented as a set of articles. Each of the three areas is presented separately
and includes an introduction to the field, state of the art, a definition of the objectives, and
a summary of the results achieved. Copies of the published articles on which the thesis is
based are then included in Appendix A.
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Chapter 2

Secondary DNA structures

2.1 Introduction
DNA is commonly known as a molecule made up of a pair of complementary strands
composed of basic building blocks called nucleotides (Adenine, Guanine, Thymine, and
Cytosine). Due to the presence of the complementary strand and the linkages between
Adenine and Thymine or Guanine and Cytosine (known as Watson-Crick base pairing),
DNA acquires its typical double helix structure. However, DNA does not always have to
occupy only a double helix structure. At certain locations and under certain conditions,
specific structures can occur on DNA in the form of hairpins, triplexes, quadruplexes, and
other non-canonical DNA conformations (see Figure 2.1).

The formation of these structures is conditioned by a specific nucleotide sequence at a
given DNA location, the bases of which form additional bonds within one or more strands.
This behavior is best seen in cruciform structures (see Figure 2.1a), where complemen-
tary Watson-Crick bonds are formed within both the forward and reverse DNA strands to
stabilize the structure. In the case of triplexes, the bonds between the three strands are
stabilized by combining Hoogsteen and Watson-Crick base pairing (see Figure 2.1c). The
quadruplex structure is formed even between a quartet of strands composed of Guanine
sequences (see Figure 2.1d). The more layers of Guanines are present, the more stable the
resulting structure is.

A specific nucleotide sequence is a necessary but insufficient condition for forming a
non-canonical DNA structure. The physico-chemical environment in which the molecule
is located or the additional stresses exerted on individual strands (e.g., DNA supercoiling)
is also crucial. Thus, depending on the environmental conditions, the DNA molecule may
adopt one of several stable conformations.

The study of these secondary structures is of great interest to biologists, as it appears
that these structures can have a significant impact on many biological processes. For exam-
ple, most of the observed hairpins and triplexes suggest roles in mutagenesis, recombination,
and gene regulation. Non-B DNA structures have been shown to cause deletions, expan-
sions and translocations in both prokaryotes and eukaryotes [158]. Their distribution is not
random and often colocalizes with sites of chromosomal breakage [233]. Triplex structures
can block the replication fork and result in double-stranded breaks [66]. In some cases,
the mutagenesis induced by such sequences is enhanced by their transcription [21], possi-
bly via transcriptional arrest. Also, quadruplexes (G4) are involved in mutagenesis and
disease [13]. They are implicated in several genome-wide processes, mostly as positive or
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Figure 2.1: Examples of non-B (non-canonical) DNA structures. (a) Cruciform; (b) hair-
pin; (c) triplex or H-DNA (shown is the Y*R:Y structure formed by Hoogsteen hydrogen
bonding); (d) intramolecular tetraplex, G4-DNA or G-quadruplex with diagonal loop; (e)
bent DNA; (f) unwound DNA; (g) comparison between B-DNA (left, clockwise) and Z- or
left-handed DNA (right, anticlockwise). The figure was adapted from [143].

negative transcription regulators [165]. They may be dispersed into critical locations of the
genome by the activity of transposable elements [120].

To understand these complex processes, it is therefore very important for biologists to
have effective bioinformatics tools to search for these secondary structures in DNA.

2.2 State of the art
Several studies deal with the design of algorithms for detecting potential non-canonical DNA
structures. However, many of these algorithms are very simplistic and often only search
for structures without defects, for example, perfect hairpins, triplexes, or quadruplexes.
However, scientific studies are increasingly showing that real secondary structures contain
defects in the form of mutations. Despite these defects, they can be stable and provide
important biological functions. For example, numerous papers have reported the existence
of imperfect triplexes [132, 169, 223]. In recent years, different in vitro experiments have
also confirmed the existence of imperfect G4s [138]. Imperfect G4s have also been explored
in silico by molecular dynamics [210].

Simplistic tools usually fail to detect these structures, limiting the ability of biologists
to study them. In the case of triplexes, existing tools are often based on homopurine
and homopyrimidine tracts, which are most appropriate for detecting perfect triplexes [78].
Another work [40] created a web-based catalog of non-B DNA sequences in major mam-
malian genomes. Their definition of triplex covers the most stable canonical triplexes made
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of G.GC/A.AT and C.GC/T.AT triplets but leaves little room for possible errors. More
complex sequence-structure relationships of triplexes were brought into a small number of
computational tools for identifying relevant sequences in genomes. For example, Schroth
and Ho [179] analyzed the occurrence of inverted and mirror repeats, and Hoyne et al. [93]
studied the Escherichia coli genome (E.coli) for intrastrand triplex sequences.

Similarly, the most commonly used algorithms to search for quadruplexes are based on
a simple folding rule representing four runs of guanines separated by relatively short loops
(or spacers). These include quadparser [94], QGRS Mapper [57, 107], and Quadfinder [177].
The folding rule used is usually of the form G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}
reflecting the fact that potential quadruplex-forming sequences (PQS) with short loops and
four perfect G runs form the most stable G4s in vitro. These tools consider only sequences
that match the sequence formula perfectly.

New tools for the prediction of imperfect G4s have begun to be developed. Such tools
include TetraplexFinder/QuadBase2 [63], ImGQfinder [209], and G4Hunter [19]. For exam-
ple, TetraplexFinder considers potential bulges of defined length in runs of three guanines.
In contrast, ImGQfinder considers the possibility of a single bulge or mismatch in a wider
variety of guanine run lengths. Finally, G4Hunter does not define individual defect types
but uses a simple encoding and statistics over a sliding window that can accommodate
different types of defects.

2.2.1 Research objectives

This work aims to design and implement new and efficient bioinformatics tools for detecting
non-canonical DNA secondary structures that would also consider different types of defects,
allowing biologists to obtain more accurate information for their studies.

2.3 Research summary

2.3.1 Identification of potential triplex-forming sequences

We have developed a new algorithm for the detection of triplex-forming sequences in DNA
that also considers different types of defects between Hoogsteen and Watson-Crick base
pairing compared to existing tools. The proposed algorithm is based on the dynamic pro-
gramming technique, widely used in bioinformatics, for example, for pairwise sequence
alignment [190]. Thanks to this technique, the developed tool can detect mutations in the
searched sequences in the form of a character substitution, insertion, or deletion. An ad-
vantage is also that the scoring function of the algorithm can be adjusted to best meet the
specific characteristics of the triplex structure.

For example, based on the studies of Rathinavelan and Yathindra [160]; Thenmalarchelvi
and Yathindra [203], which discuss different combinations of disorders in the backbone of
triplets, we decided to divide the individual triplets into isomorphic groups. As triplets
from one group are more likely to form stable triplexes than other sequences, a special
penalty to the scoring function for changing the isomorphic group was added. In addition,
we verified the ability of triplets to form bonds and their membership in isomorphic groups
using molecular simulation and the AmberTools [145]. The resulting scoring function was
further adjusted based on an analysis of published experimentally verified structures of
perfect and imperfect triplexes.
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The developed algorithm was tested on real genomes (E.coli and human) and on ran-
domized sequences into which sequences of real triplexes from the non-B DNA database
were inserted [40]. The results show that the developed algorithm achieves high processing
speed and, simultaneously, shows increased sensitivity in finding triplexes with different
types of defects.

More detailed information about the developed algorithm and the achieved results can
be found in the original version of the manuscript in Appendix A.1, published in the Bioin-
formatics journal.

Bioconductor package

Bioinformatics tools often suffer because the original authors stop working on the topic
once the publication is released. The softwares created age gradually to the point where
they become non-functional. One way to solve this problem is to release the source code
of the tools as open and allow others to develop and maintain them. The usability and
availability of the tools are then increased if they become part of a frequently used platform
where they can interoperate with other tools and form part of, for example, a more complex
genomic pipeline.

One such open platform is Bioconductor1, which currently contains more than two
thousand bioinformatic software packages. This platform is based on the R language but
also allows the user to integrate code written in other programming languages, such as
C/C++. The platform also includes basic object class definitions for different areas of
biological data analysis. For example, classes like GRanges are often used for genomic data
to identify specific regions in genomes. Using these predefined classes, it is easy to link
different applications within the platform to more complex pipelines.

For the above reasons, we decided to transfer our implemented algorithm for searching
triplex-forming sequences to Bioconductor. We changed the inputs and outputs of the
tool to objects of type DNAString and GRanges. All necessary modifications were made
according to this platform’s requirements and passed comprehensive acceptance tests. In
addition to the triplex search, we also implemented 3D visualization of the found outputs
and their export to standardized annotation formats such as GFF3.

More detailed information about the package and its capabilities can be found in the
original version of the manuscript in Appendix A.2, published in the Bioinformatics journal.

2.3.2 Identification of potential quadruplex-forming sequences

In this area, we have developed a new tool, pqsfinder, for detecting potential quadruplex-
forming sequences (PQS) in DNA, which also considers non-perfect quadruplexes (G4) in
the search. Based on a study of the literature and experimentally verified G4s, two basic
types of defects were identified: mismatches and bulges (insertions inside G-runs).

We then designed an algorithm that first identifies four consecutive imperfect G-run
sequences (G run quartet). Subsequently, it examines the potential of such a G-run quartet
to form a stable G4 and reports a corresponding quantitative score. Internally, the tool relies
on a suitable combination of regular expression and backtracking to find all overlapping
quadruplexes. The backtracking procedure increases the computational complexity of the
search but allows us to model the competition between overlapping PQS rigorously. The
user can list all or only the non-overlapping PQS with the highest score.

1https://www.bioconductor.org/
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To score the quadruplexes found, we adopted an approach where the score is modular
and obtained by adding scores representing the binding affinities of smaller regions within
the G4. This approach has already been proven to work for simpler DNA structures, such as
nucleic acid duplexes and hairpins [175, 235]. The first part of the scoring scheme quantifies
the quality of individual G runs. It awards the PQS with a score for each G-tetrad stacking
and penalizes mismatches and bulges in G runs. Based on the available literature, bulges
and long loops are considered to be strong destabilizers of G4s and do not expect more
than a few of these imperfections to be possible simultaneously.

The resulting scoring function is based on several penalization constants that are difficult
to determine analytically. Therefore, we decided to use a technique to train these penalties
based on experimental data. Consequently, two datasets were constructed based on the
results of the literature study. The first dataset consisted of experimentally validated G4
sequences obtained from published studies, 392 sequences in total (Lit392). Unfortunately,
this set displayed several shortcomings, such as being unbalanced in terms of positive and
negative samples. Furthermore, it contained a small number of samples representing only
a fraction of possible G4 conformations, including a limited number of errors in the form
of mismatches, bulges, and different loop lengths.

To create the second dataset, we took advantage of the unique outputs of the work of
Chambers et al. [43], where the authors introduced a new technique for high-throughput
sequencing of G4 structures called G4-Seq. The technique detects noisy sequences that
emerge when treating DNA samples with Kþ or PDS (pyridostatin, a chemical G4 stabi-
lizer). In other words, the authors experimentally measured individual pieces of human
DNA and their ability to form G4. As a result of this technology, the authors released a
track (in BED format) that shows the propensity of reference Human DNA sequence (hg19)
to form G4s.

This unique and extensive dataset includes a tremendous amount of information about
potential G4 sequences, including various deformations and their effect on stability. There-
fore, we decided to use this second dataset primarily to train the penalty constants of the
pqsfinder tool. The first dataset (Lit392) containing a limited number of G4s compiled
from published studies was used as a test set.

For pqsfinder training and parameter-space exploration, we took advantage of the ge-
netic algorithm implemented in the R package GA [181]. To evaluate fitness, we calculated
Pearson’s correlation coefficient between the maximum score vector generated by pqsfinder
and the vector representing the propensity of the sequence to form G4 from the G4-seq
training set. The basic idea behind this fitness function is: the higher the correlation coeffi-
cient between pqsfinder score and G4 propensity level, the better the prediction of putative
G4 structures will be.

Comparison results showed that on the Lit392 dataset, pqsfinder significantly outper-
formed existing tools in Matthews’ correlation coefficient (a suitable metric when the test
set is unbalanced). We also prepared a second dataset (from G4-Seq) for testing while keep-
ing the sequences for training and testing of the tool strictly separated. Again, the pqsfinder
tool performed significantly better than competing tools QGRS Mapper and G4Hunter.

Similar to the triplex search algorithm, we implemented pqsfinder as a package for the
R Bioconductor environment. In addition to searching for PQS, the software offers its
visualization and export to standardized annotation formats such as GFF3.

More detailed information about the developed algorithm, package, and results of com-
parison against competing tools can be found in the original version of the manuscript in
Appendix A.3, published in the Bioinformatics journal.
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2.3.3 Additional biological studies

Distribution of triplex-forming sequences in human genome

Using the developed triplex search tool, we performed a lookup and detailed analysis of the
occurrence of potential triplex-forming sequences (PTS) within the human genome. Only
PTS occurrences with a P-value <0.05 were considered for the study. Then the regions
where the PTSs occurred were analyzed, and their numbers were compared against those
we would observe if they were hypothetically randomly distributed in the genome.

The analysis showed that PTS was found in higher numbers in gene promoters, introns,
and intergenic regions. In contrast, a reduced abundance of PTS was observed in coding
sequences, 5’UTR and 3’UTR regions. This finding is consistent with basic assumptions
about the occurrence of these secondary structures. That is, they are more likely to occur
in the regulatory areas of the genome and not to interfere with coding segments.

Given the higher prevalence of PTS in intergenic areas, a detailed analysis of these
regions was needed. Intergenic areas are primarily occupied by repetitive sequences of
different types, ranging from short tandem repeats to transposon sequences of several thou-
sand base pairs. We analyzed the positions of the PTS concerning the different classes and
families of these repetitive elements. This experiment showed an increased occurrence of
PTS in SVA, Alu2, and low complexity regions.

Upon first inspection, it becomes clear that most of the associations mentioned above
are caused by the presence of the polyA3 tail in SINE elements. Because the poly-A tail
is mainly described as a feature circumventing the problematic polyadenylation in RNA
polymerase III transcripts [172], there is a possibility that these sequences do not form
any functionally or evolutionarily meaningful DNA structures, such as triplexes. On closer
inspection, however, we have noticed that the same classes of repeats are also enriched for
other PTS sequences, raising the possibility that triplex formation plays a biological role in
the repeat life cycles at the DNA level. This could also mean a dual role for the Alu poly-A
tail. For example, Dewannieux and Heidmann [62] mention a 15-50 nucleotide range for the
increasing effect of the poly-A tail, a range that also coincides with cited oligonucleotide
lengths for successful triplex formation [37].

More detailed information about the study, the results obtained, and their discussion
can be found in the original version of the manuscript in Appendix A.4, published at the
International Conference on Bioinformatics Models, Methods and Algorithms.

Interactions between p53 and triplex-forming sequences

Previous studies of PTS occurrences within the human genome have shown that these se-
quences are most commonly found in promoter regions. This observation is consistent with
studies demonstrating that triplex-forming sequences play important roles within various
regulatory processes [214]. However, it is necessary to focus on a specific biological pro-
cess, the corresponding set of genes or regulatory proteins such as transcription factors,
to demonstrate such a role for the triplex. It is also necessary to demonstrate that such
behavior occurs in vitro (in a glass) or even in vivo (in a living organism). In a follow-up
study, we, therefore, collaborated with colleagues from the Institute of Biophysics of the

2Alu sequences are short non-autonomous retrotransposons (SINE) driven by the L1 LINE element
protein machinery [61]. SVA elements are evolutionarily related to SINE and Alu sequences; therefore, the
increased occurrence of PTS in these elements is not surprising.

3polyA sequence is a good candidate for triplex formation
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Czech Academy of Sciences to investigate the role of triplexes and their effect on the activity
of p53, one of the most studied proteins affecting key biological processes within the cell.

The p53 protein is a nuclear protein (393 amino acids) that is the product of one of the
key tumor suppressor genes, TP53. The protein functions as a transcription factor and has
a role of a DNA damage sensor in the cell. In the physiological state, the p53 protein is
inactive. When DNA damage occurs, a signaling cascade is induced, resulting in activation
of the p53 protein. This further causes cell cycle arrest in the G1 phase, giving the cell
time to repair. If DNA repair is successful, the cell can resume the cell cycle. Otherwise,
the cell induces apoptosis (cell death) [142].

The p53 protein is known to bind to genes in two ways: (i) it recognizes a DNA-
specific consensus sequence in the form of 5’-PuPuPuC(A/T)(T/A)GPyPyPy-3’ (CON)
separated by 0±13 bp [71], and (ii) it can also bind to specific secondary structures such
as cruciforms [96], DNA loops [198], or G4s [2].

In this study, we were the first to analyze the interactions between the p53 protein and
DNA containing triplex-forming sequences in vitro and in cells. Using luciferase reporter
assay in two different cell systems, we demonstrated that T.A.T triplex-forming sequences
in front of CON, enhanced promoter activation by p53. Interestingly, the reporter vector
containing only the T.A.T triplex-forming sequence was repressed by p53 protein. Both
these effects suggested that T.A.T triplex-forming sequences have the potential to influence
transcription in both directions. We assume that the positioning of T.A.T triplex on the
promoter region facilitates p53 recognition and transcription of genes.

Based on these findings, we then performed an in-silico analysis of the human genome
to find all genes that contain CON sequences in their promoter together with the T.A.T.
triplex and thus may be significantly affected by p53 protein and related biological processes.
As an output, we received 43 promoters of candidate p53 target genes with at least one
CON and a T.A.T triplex with a poly(A/T) run longer than 40 bp. Using STRING-db and
enrichment analysis, we identified 16 genes/proteins out of 43 that are strongly linked in
terms of function and most closely match the GO term ”regulation of signal transduction“.

More detailed information about the study conducted, the results obtained, and their
discussion can be found in the original version of the manuscript in Appendix A.5, published
in the Plos One journal.
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2.3.4 List of publications

Publication I
Title A dynamic programming algorithm for identification of triplex-forming

sequences
Authors LEXA Matej, MARTÍNEK Tomáš, BURGETOVÁ Ivana, KOPEČEK

Daniel, and BRÁZDOVÁ Marie
Abstract Motivation: Current methods for identification of potential triplex-

forming sequences in genomes and similar sequence sets rely primarily
on detecting homopurine and homopyrimidine tracts. Procedures capa-
ble of detecting sequences supporting imperfect, but structurally feasible
intramolecular triplex structures are needed for better sequence analysis.
Results: We modified an algorithm for detection of approximate palin-
dromes, so as to account for the special nature of triplex DNA structures.
From available literature, we conclude that approximate triplexes tolerate
two classes of errors. One, analogical to mismatches in duplex DNA, in-
volves nucleotides in triplets that do not readily form Hoogsteen bonds.
The other class involves geometrically incompatible neighboring triplets
hindering proper alignment of strands for optimal hydrogen bonding and
stacking. We tested the statistical properties of the algorithm, as well
as its correctness when confronted with known triplex sequences. The
proposed algorithm satisfactorily detects sequences with intramolecular
triplex-forming potential. Its complexity is directly comparable to palin-
drome searching.
Availability: Our implementation of the algorithm is available at http:
//www.fi.muni.cz/~lexa/triplex as source code and a web-based search
tool. The source code compiles into a library providing searching ca-
pability to other programs, as well as into a stand-alone command-line
application based on this library.

Journal Bioinformatics, vol. 27, num. 18, 2011
Journal impact factor: 5.468, Q1

Citations 13 (WoS without self-citations)
Author’s
contribution

Algorithm design and implementation, manuscript writing (partially).

Manuscript Appendix A.1
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Publication II
Title Triplex: an R/Bioconductor package for identification and visualization

of potential intramolecular triplex patterns in DNA sequences
Authors HON Jiří, MARTÍNEK Tomáš, RAJDL Kamil, and LEXA Matej
Abstract Motivation: Upgrade and integration of triplex software into the R/Bio-

conductor framework.
Results: We combined a previously published implementation of a triplex
DNA search algorithm with visualization to create a versatile R/Biocon-
ductor package ‘triplex’. The new package provides functions that can be
used to search Bioconductor genomes and other DNA sequence data for oc-
currence of nucleotide patterns capable of forming intramolecular triplexes
(H-DNA). Functions producing 2D and 3D diagrams of the identified
triplexes allow instant visualization of the search results. Leveraging the
power of Biostrings and GRanges classes, the results get fully integrated
into the existing Bioconductor framework, allowing their passage to other
Genome visualization and annotation packages, such as GenomeGraphs,
rtracklayer or Gviz.
Availability: R package ‘triplex’ is available from Bioconductor
(bioconductor.org).

Journal Bioinformatics, vol. 29, num. 15, 2013
Journal impact factor: 4.621, Q1

Citations 13 (WoS without self-citations)
Author’s
contribution

Optimization of the original algorithm, consultation on the design and
implementation of the tool, testing of the final package, manuscript writing
(partially).

Manuscript Appendix A.2
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Publication III
Title pqsfinder: an exhaustive and imperfection-tolerant search tool for poten-

tial quadruplex-forming sequences in R
Authors HON Jiří, MARTÍNEK Tomáš, ZENDULKA Jaroslav, and LEXA Matej
Abstract Motivation: G-quadruplexes (G4s) are one of the non-B DNA struc-

tures easily observed in vitro and assumed to form in vivo. The latest
experiments with G4-specific antibodies and G4-unwinding helicase mu-
tants confirm this conjecture. These four-stranded structures have also
been shown to influence a range of molecular processes in cells. As G4s
are intensively studied, it is often desirable to screen DNA sequences and
pinpoint the precise locations where they might form.
Results: We describe and have tested a newly developed Bioconductor
package for identifying potential quadruplex-forming sequences (PQS).
The package is easy-to-use, flexible and customizable. It allows for se-
quence searches that accommodate possible divergences from the optimal
G4 base composition. A novel aspect of our research was the creation and
training (parametrization) of an advanced scoring model which resulted
in increased precision compared to similar tools. We demonstrate that
the algorithm behind the searches has a 96% accuracy on 392 currently
known and experimentally observed G4 structures. We also carried out
searches against the recent G4-seq data to verify how well we can identify
the structures detected by that technology. The correlation with pqsfinder
predictions was 0.622, higher than the correlation 0.491 obtained with the
second best G4Hunter.
Availability: http://bioconductor.org/packages/pqsfinder/ This
paper is based on pqsfinder-1.4.1.

Journal Bioinformatics, vol. 33, num. 21, 2017
Journal impact factor: 5.481, Q1

Citations 52 (WoS without self-citations)
Author’s
contribution

Studying state-of-the-art, consulting on algorithm design and implementa-
tion, training penalization constants, preparing datasets, testing the final
package, writing manuscript (partially).

Manuscript Appendix A.3
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Publication IV
Title Uneven distribution of potential triplex sequences in the human genome:

In silico study using the R/Bioconductor package triplex
Authors LEXA Matej, MARTÍNEK Tomáš, and BRÁZDOVÁ Marie
Abstract Eukaryotic genomes are rich in sequences capable of forming non-B DNA

structures. These structures are expected to play important roles in nat-
ural regulatory processes at levels above those of individual genes, such
as whole genome dynamics or chromatin organization, as well as in pro-
cesses leading to the loss of these functions, such as cancer development.
Recently, a number of authors have mapped the occurrence of potential
quadruplex sequences in the human genome and found them to be associ-
ated with promoters. In this paper, we set out to map the distribution and
characteristics of potential triplex-forming sequences (PTS) in the human
genome sequence. Using the R/Bioconductor package triplex, we found
these sequences to be excluded from exons, while present mostly in a small
number of repetitive sequence classes, especially short sequence tandem re-
peats (microsatellites), Alu and combined elements, such as SVA. We also
introduce a novel way of classifying potential triplex sequences, using a lex-
icographically minimal rotation of the most frequent k-mer to assign class
membership automatically. Members of such classes typically have differ-
ent propensities to form parallel and antiparallel intramolecular triplexes
(H-DNA). We observed an interesting pattern, where the predicted third
strands of antiparallel H-DNA were much less likely to contain a deletion
than their duplex structural counterpart than were their parallel versions.

Conference International Conference on Bioinformatics Models, Methods and Algo-
rithms, 2014

Citations 1 (WoS without self-citations)
Author’s
contribution

Implementation of individual experiments and their evaluation,
manuscript writing (partially).

Manuscript Appendix A.4

17



Publication V
Title p53 Specifically Binds Triplex DNA In Vitro and in Cells
Authors BRÁZDOVÁ Marie, TICHÝ Vlastimil, HELMA Robert, BAŽAN-

TOVÁ Pavla, POLÁŠKOVÁ Alena, KREJČÍ Aneta, PETR Marek,
NAVRÁTILOVÁ Lucie, TICHÁ Olga, NEJEDLÝ Karel, BENNINK
Martin L., SUBRAMANIAM Vinod, BÁBKOVÁ Zuzana, MARTÍNEK
Tomáš, LEXA Matej, and ADÁMIK Matej

Abstract Triplex DNA is implicated in a wide range of biological activities, includ-
ing regulation of gene expression and genomic instability leading to cancer.
The tumor suppressor p53 is a central regulator of cell fate in response to
different type of insults. Sequence and structure specific modes of DNA
recognition are core attributes of the p53 protein. The focus of this work
is the structure-specific binding of p53 to DNA containing triplex-forming
sequences in vitro and in cells and the effect on p53-driven transcription.
This is the first DNA binding study of full-length p53 and its deletion
variants to both intermolecular and intramolecular T.A.T triplexes. We
demonstrate that the interaction of p53 with intermolecular T.A.T triplex
is comparable to the recognition of CTG-hairpin non-B DNA structure.
Using deletion mutants we determined the C-terminal DNA binding do-
main of p53 to be crucial for triplex recognition. Furthermore, strong p53
recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by neg-
ative superhelicity in plasmid DNA, was detected by competition and im-
munoprecipitation experiments, and visualized by AFM. Moreover, chro-
matin immunoprecipitation revealed p53 binding T.A.T forming sequence
in vivo. Enhanced reporter transactivation by p53 on insertion of triplex
forming sequence into plasmid with p53 consensus sequence was observed
by luciferase reporter assays. In-silico scan of human regulatory regions for
the simultaneous presence of both consensus sequence and T.A.T motifs
identified a set of candidate p53 target genes and p53-dependent activation
of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed
by RT-qPCR. Our results show that T.A.T triplex comprises a new class
of p53 binding sites targeted by p53 in a DNA structure-dependent mode
in vitro and in cells. The contribution of p53 DNA structure-dependent
binding to the regulation of transcription is discussed.

Journal PLoS ONE, vol. 11, num. 12, 2016
Journal impact factor: 2.766, Q1

Citations 11 (WoS without self-citations)
Author’s
contribution

In-silico analysis of promoter regions, search for triplexes and P53 consen-
sus sequences.

Manuscript Appendix A.5
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2.4 Conclusions
In the field of DNA secondary structures, we have designed and implemented new tools for
the detection of triplex and quadruplex-forming sequences in DNA. Compared to existing
tools, both of them are superior in finding not only patterns for typical structures but even
those with a certain level of defects. This functionality allows biologists to explore the area
of non-canonical DNA structures better, gain a broader view of their occurrence in real
sequences, and better estimate their influence in various biological processes.

For wider availability of the developed tools, we also implemented them for the R
Bioconductor environment. This approach allows their integration with other tools for
DNA sequence analysis, including automation of experimental data processing in the form
of genomic pipelines.

We have also used the developed tools in several follow-up biological studies. In par-
ticular, we analyzed the occurrence of triplex-forming sequences in the human genome,
which confirmed their dominant occurrence in promoter regions. We have also investigated
the interactions of these structures with the p53 protein, demonstrating these structures’
significant role in the regulation of gene transcription.

2.4.1 Future work

Although the developed tools for searching triplex and quadruplex-forming sequences take
into account different types of defects and push the quality of outputs one step further,
we are still far from considering them (or any other tool) as final. While we have tried
to incorporate as much information as possible into the tools, many factors still have not
been considered. For example, in the case of triplexes we do not consider: the competi-
tion between alternative structures [168], fourth strand (the strand which is not part of
the predicted triplex), effects of C+ distribution [95, 183] and other distortions caused
by electrostatic forces [99, 200]. Most of these factors depend non-trivially on the envi-
ronment [150]. Since the algorithm does not consider the environment, it is limited to
sequence-coded effects only.

Similarly, the relationship between DNA sequence and G4 structure is very complex
for quadruplexes. Despite our ability to model this relationship directly at the molecular
level, using, for example, molecular dynamics and AmberTools [174], this approach is com-
putationally demanding, and the accuracy of the state-of-the-art force fields is still limited.
Therefore, existing tools for G4 prediction (including our pqsfinder) use much simpler mod-
els and currently represent a reasonable compromise between accuracy and computational
complexity. In the future, we can expect a gradual development and improvement of these
tools.

2.5 Research impact
Both developed tools for searching triplex and quadruplex-forming sequences are widely
used by the research community, as evidenced by the statistics on the number of downloads
of these tools from the Bioconductor environment4. These show that the triplex tool has
been downloaded approximately 8.2 thousand times (from unique IP addresses) since its
launch in 2013. In the case of the pqsfinder tool, it has accumulated approximately 4.6

4http://bioconductor.org/packages/stats/bioc/triplex/,
http://bioconductor.org/packages/stats/bioc/pqsfinder/
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thousand downloads since 2016. However, these numbers should be taken with caution
as they may include downloads based on package updates. In addition, the statistics for
unique IP addresses are calculated separately for each year. Next, the unique IP address
type metric may not reflect the actual number of users, as a single user may use multiple
IP addresses over time. A more accurate estimate might be on the order of hundreds of
unique users. Which would also correspond to the number of citations received. In the case
of the triplex tool, this is 26 citations, and for the pqsfinder tool it is 52. (It is assumed
that not every user completes his/her work to publication.)

In the case of additional biological studies, the impact was smaller. The publication
analyzing the distribution of triplexes in the human genome has a low citation rate, probably
due to the choice of a conference instead of a journal. On the other hand, a study on the
interaction of p53 protein and triplex-forming sequences has received 12 citations.
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Chapter 3

Protein engineering

3.1 Introduction
Proteins are molecules that play a key role in all living organisms. For example, they form
the building blocks of muscles and tissues, serve to transmit signals, transport molecules,
or catalyze biochemical reactions. The detailed study of the structure, function, and in-
teractions between proteins and other molecules is the subject of a field called structural
biology.

Protein engineering is a discipline that deals with the subsequent modification of known
wild-type proteins to obtain a new, improved protein function [33]. Elementary modifi-
cations include inserting, removing, or substituting specific amino acids in protein chains.
However, sufficient knowledge of the structure and function of a given protein is necessary
to perform these modifications effectively. Protein engineering is, therefore, very closely
linked to structural biology and other disciplines.

The central interest of protein engineering is in proteins that catalyze chemical reac-
tions, called enzymes or biocatalysts. By appropriate modification of these enzymes, it
is possible to obtain, for example, a variant that can accelerate or inhibit a given chem-
ical reaction or a variant that can function in various environments, e.g., with a higher
temperature or a different pH. Such modified enzymes are then attractive targets for phar-
maceutical and industrial applications. Successful examples of their use include drug design,
biofuel production, detergents, waste treatment, food processing, paper industry, and many
others [45].

In the field of protein engineering, two basic strategies are used to create new enzymes:
(i) directed evolution and (ii) rational design. The basic idea of directed evolution is to
mimic the evolutionary process in nature. A large number of mutations are randomly
generated in the gene of the protein of interest. These modified genes are then inserted
into expression systems, where they are used to create the corresponding proteins. Finally,
a screening process is carried out to verify the individual variants of the protein in terms of
the desired properties (e.g., activity, stability, selectivity), and the final product is selected.

In contrast, rational design is based on making targeted changes instead of random
ones. Protein engineers verify only specific mutations based on a deep knowledge of protein
structure and function and using computational tools. The advantage of this technique is
that it is significantly less demanding in terms of experimental work and less expensive.
Instead of a large library of mutants, only a few targeted mutations are produced, which
are referred to as smart libraries. On the other hand, this method requires deep knowledge
of the protein of interest, including its 3D structure, obtained, e.g., through X-ray crys-
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tallography [191]. Mutations are then designed based on extensive computational analyses
accompanied by molecular-level simulations [102, 6].

These two basic protein engineering strategies have been complemented in recent years
by a third strategy called rational selection. This strategy is based on the hypothesis
that similar proteins from different organisms perform a similar function but may have
interesting properties because they have evolved independently in different organisms and
thus have had to adapt to different environments. An illustrative example is thermophilic
bacteria living in high-temperature environments. The protein of interest found in these
bacteria is likely to be more thermally stable. This protein variant can be directly produced
or used as a starting model for further mutations. Therefore, the cornerstone of rational
selection is the combination of expert knowledge with database searches based on sequence
similarity, complemented by computational analysis.

All these three strategies can be effectively combined, as illustrated in Figure 3.1. Ra-
tional selection can be a source of suitable genes for both rational design and directed
evolution techniques. In addition, rational design can be used to accurately identify pro-
tein subregions suitable for directed evolution.

In the field of protein engineering, we have developed new tools and methods for rational
selection and rational design strategies. For better clarity, the outputs produced are divided
into two separate sections.
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Figure 3.1: Protein engineering methods. The goal of protein engineering is to design a
protein with improved properties, usually an enzyme for the catalysis of biochemical reac-
tions. The rational design uses previous expert knowledge and computational simulations
to design individual improved protein variants. Directed evolution relies on random mu-
tagenesis and high-throughput screening of generated gene libraries. Rational selection
provides alternative starting proteins based on computer-aided database mining for both
rational design and directed evolution. The figure was adapted from the previous work by
Damborský [56].
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3.2 Rational selection methods

3.2.1 State of the art

Mining enzymes of interest

Thanks to significant advances in sequencing technologies, we are experiencing a tremendous
increase in the amount of biological data. It is no longer possible to manually process this
amount of data, extract all genes and proteins, and experimentally verify their function.
Therefore, the vast majority of data is annotated and classified automatically using complex
genomic pipelines such as the GenBank Annotation Pipeline [124].

The current knowledge about existing proteins is accumulated in large protein databases
such as UniProtKB [1] and NCBI Protein [176]. These databases are often divided into
two parts: (i) experimentally obtained and manually annotated proteins and (ii) compu-
tationally predicted proteins. According to the UniProtKB database—a comprehensive,
high-quality, and freely accessible resource of protein sequence and functional information,
approximately 500,000 experimentally verified proteins represent less than 0.3% of all de-
posited proteins. The remaining 209 million computationally predicted proteins represent
a huge source of potentially interesting and diverse proteins for both basic science and
industrial applications.

We can search these large databases based on metadata (extracted from the annotation
pipeline) or sequence similarity. Since the automated annotation and metadata assignments
are based on a tiny number of experimentally validated and characterized proteins (0.3%),
their accuracy is limited for now [164]. Therefore, many studies and bioinformatics tools
use the second option, i.e., data mining based on sequence similarity. In this case, the main
input is the sequence of the protein of interest and the target of the search is the set of pro-
teins with the highest similarity. Many different algorithms and tools have been developed
for this purpose. Some of the most well-known ones include: BLAST [7], HMMER [67],
UBLAST [69], RAPSearch2 [234], MMseqs2 [197], and DIAMOND [36].

One of the key problems of current methods for sequence-based protein search is the
huge number of results found. Depending on the given parameters and the family size of the
protein of interest, thousands to tens of thousands of hits can be obtained. Since only units
or small tens of candidate sequences can usually be selected for experimental evaluation,
these hits must be extensively filtered, categorized, and prioritized based on various criteria.
Unfortunately, to date, we are not aware of a tool that can automate these steps for the
field of protein engineering and search for enzymes of interest. Thus, many departments
have to deal with laborious manual work or focus on developing their own software.

Prediction of protein solubility

In the subsequent steps of the rational selection strategy, it is crucial to produce the selected
proteins easily. For these purposes, so-called expression systems and a technique called
recombinant protein expression (RPE) [53] are used. The basic principle of this technique
is to prepare a gene capable of encoding the protein of interest and insert it into the genome
of a living organism (usually into a specific plasmid of E.coli or other simple organisms).
Suitable conditions are then induced to trigger the expression of the gene, and the living
organism starts producing corresponding proteins using standard biological processes such
as transcription and translation. Finally, the produced proteins are extracted from the
expressing organism and isolated for subsequent screening.
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Trying to create a protein using a foreign organism involves many risks. Firstly, the
protein being created usually comes from another organism, which generally means a dif-
ferent environment (temperature, pH range, etc.). The expression system may lack key
components, such as chaperones, to properly fold the generated protein into its native 3D
structure. Finally, the protective system of the organism used for expression may recognize
the produced protein as foreign and target it for degradation. These may be just some of
the few reasons why the protein of interest fails to be produced.

In general, the ability of a protein to fold into a proper crystal structure in a given
solution is referred to as protein solubility [10]. This key property is dependent not only on
extrinsic factors (e.g., the environment of the expression system) but also on the particular
amino acid sequence. For the time being, the exact relationship between an amino acid
sequence and its solubility is unknown. Still, tools for predicting solubility based on the
sequence are already being developed, as well as various strategies for increasing solubility
using appropriate mutations.

The first methods for solubility prediction include simple multi-parameter models or
regression analysis. This category includes, for example, the Wilkinson-Harrison model
and its extended variants [219, 58, 65], as well as the Protein-Sol tool [88] or the calculation
of a solubility-weighted index [28].

Machine learning-based methods that predict the global solubility level of a protein
based on a set of extracted sequence and physicochemical features are considered more ad-
vanced. Tools in this category include SOLPro [129], PROSSO II [189], and ESPRESSO [89].

More advanced types of tools can calculate not only the global solubility level but also
which parts of the sequence are more sensitive in terms of solubility, calculating the so-called
solubility profile. This property is typical for the tools such as ccSOL [5] and CamSol [193].

Finally, methods based on convolutional neural networks and deep learning techniques
have also been developed. This category includes DeepSol [105] and SKADE [159].

Unfortunately, these tools’ prediction accuracy is insufficient and often overestimated.
An independent study by Chang et al. reported a large drop of 10-20% in the accuracy of
existing tools when evaluated using a larger test set [44]. While most tools report accuracies
around 70-80%, measurements on an independent dataset reveal prediction accuracy close
to the 50% threshold (equivalent to random prediction). The reasons for the observed low
accuracy may be different. The most commonly cited include insufficient training and test
set preparation, or an insufficient number of samples available for training compared to all
known proteins. Last but not least, we still do not know the exact relationship between
the amino acid sequence and its solubility. It is estimated that there is, for example, a
close link to the mechanisms of protein folding, representing a very complex process. Thus,
the sets of basic sequence and physicochemical features used so far may be insufficient to
generalize such a complex process.

Research objectives

This work is focused on improving methods in the area of rational selection. The main
goal is to develop a new tool for mining enzymes of interest from large databases, which
will include efficient filtering of the hits found and their prioritization in terms of different
criteria, especially solubility, which is crucial for protein production.

This task, therefore, includes a part focusing on improving existing methods for protein
solubility prediction. The aim is to address the shortcomings of current tools, focus on
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the precise preparation of datasets, and explore the possibility of more advanced predicted
features.

3.2.2 Research summary

Protein solubility

We have created a new solubility prediction tool called SoluProt. This tool is based on
machine learning, specifically a gradient boosting machine learning technique [77]. The
input is the amino acid sequence, and the output is the predicted solubility level of the
protein.

When creating the tool, we focused on the precise preparation of the training and testing
dataset. We prepared the training set based on information extracted from the TargetTrack
database [27]. This database maintains the outputs of several Protein Structure Initiative
(PSI) projects that aimed to collect a large amount of information about protein 3D struc-
tures. Before obtaining information about the ternary structure, it is necessary to produce
the protein, usually using RPE. Therefore, as a by-product of these PSI experiments, in-
formation about the protein’s solubility is also available.

Although the TargetTrack database is structured, the solubility information is not avail-
able directly. We had to deduce it by analyzing the recorded states that the protein un-
dergoes during its production and crystallization. The output is then usually just binary
information - soluble/insoluble protein. Moreover, key information about the expression
system used in each study had to be parsed and inferred from the text records in a complex
way.

We were the first to create a carefully curated dataset for solubility predictors based
on experimentally obtained data from the TargetTrack database. The created dataset is
balanced not only in terms of positive and negative samples but also with respect to the
representation of different protein lengths. In addition, it only includes samples related to
the E. coli-based expression system, thus removing bias from the data. In total, the dataset
generated consists of 11,436 samples.

Based on communication with researchers from the North East Structural Consortium
(NESG), we also gained access to unique experimental data from protein solubility mea-
surements. In contrast to the information from the TargetTrack database, solubility was
measured at up to five levels, with each measurement repeated several times to verify its
validity. Furthermore, all measurements were always performed using the same procedure.
It is, therefore, one of the most accurate sources of protein solubility data available today.
In total, this dataset contains 3,100 samples.

In addition to preparing the datasets, we also worked intensively on the selection of
suitable features for machine learning. As a result, we selected 96 features falling into
different groups, including complex predicted features such as: (i) average flexibility as
computed by DynaMine [52], (ii) secondary structure content as predicted by FELLS [148],
(iii) average disorder as predicted by ESPRITZ [213], and (iv) content of amino acids in
transmembrane helices as predicted by TMHMM [111].

To compare the newly developed SoluProt tool with competing tools, we used the Tar-
getTrack dataset for training and the NESG dataset for testing. This approach creates a
fairer comparison since most existing ML-based tools have been trained on the TargetTrack
data. The more accurate NESG data was then used as a test set to verify the quality of
each tool.
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Similar to the independent study by Chang et al. [44], we found that the accuracy of
the tools on an independent dataset ranges from 50-60%. Our SoluProt tool achieved the
highest accuracy (ACC 58.5% and AUC 0.62). The second best performance was achieved
by the PROSSO II tool (ACC 58.0% and AUC 0.60). Surprisingly, modern tools based on
deep learning techniques achieved an accuracy of around 52%.

These results show that the current tools are not yet very useful for the basic use
case, i.e., protein solubility prediction. However, we wondered to what extent these tools
can be used, at least for the task of protein prioritization in the context of the rational
selection strategy. We, therefore, performed an experiment in which we sorted the test
set samples for each tool according to the highest predicted score. We then retained only
the top 10% of the highest scoring samples and verified how many of them were soluble.
The best results were achieved by the SoluProt tool, which correctly identified 232 out of
310 proteins as soluble, which is a 49.7% improvement over the random selection, which
would have correctly identified only 155 out of 310 samples. The other tools performed
significantly worse in this test (ranging from -7.1% to 39.4%).

More detailed information about the developed SoluProt and the results of compar-
ison against competing tools can be found in the original version of the manuscript in
Appendix A.6, published in the Bioinformatics journal.

Although current tools cannot reliably determine protein solubility, it has been shown
that they can be very useful for the prioritization task. We have therefore integrated our
tool SoluProt as a key component of a pipeline for mining enzymes of interest from large
databases (see next subsection).

Mining of soluble enzymes

We have developed EnzymeMiner, a tool that focuses on efficiently mining, filtering, an-
notating, and prioritizing enzymes of interest from large databases. It is the first tool of
its kind to automate many steps that researchers have previously performed manually or
using auxiliary scripts.

On its input, it expects the sequence of the enzyme of interest and information about
the positions of essential residues necessary to maintain the enzyme’s catalytic function.
The EnzymeMiner tool then implements a three-step bioinformatics workflow: (i) homology
search, (ii) essential residue-based filtering, and (iii) annotation of hits.

In the first step, the input sequence is used as a query for a PSI-BLAST [7] two-iteration
search in the NCBI nr database [176]. The obtained hits are filtered in the second step
using the input essential residue templates. Essential residues are checked using a global
pairwise alignment with the template calculated by USEARCH [69] and a multiple sequence
alignment calculated by Clustal Omega [185]. In the third step, the identified sequences are
annotated using several databases and predictors: (i) transmembrane regions are predicted
by TMHMM [111], (ii) Pfam domains are predicted by InterProScan [157], (iii) source
organism annotation is extracted from the NCBI Taxonomy [73] and the NCBI BioProject
database [17], (iv) sequence identities to original queries and resulting hits are calculated by
USEARCH and (v) solubility is predicted by the solubility predictor SoluProt (described
above).

The tool’s output is an interactive table of found occurrences with rich annotation and
the possibility of prioritization according to different criteria. This table is also comple-
mented by graphical visualizations showing the network sequence similarity of the identified
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occurrences, which further facilitates their selection for experimental characterization pur-
poses.

The EnzymeMiner workflow has been thoroughly experimentally validated using the
model enzymes of haloalkane dehalogenases [206]. The sequence-based search identified
658 putative dehalogenases. The subsequent analysis prioritized and selected 20 candidate
genes to explore their protein structural and functional diversity. The selected enzymes
originated from genetically unrelated Bacteria, Eukarya, and, for the first time, also Archaea
and showed novel catalytic properties and stabilities. The workflow helped to identify novel
haloalkane dehalogenases, including (i) the most catalytically efficient enzyme (𝑘𝑐𝑎𝑡/𝐾0.5 =
96.8𝑚𝑀−1𝑠−1), (ii) the most thermostable enzyme showing a melting temperature of 71°C,
(iii) three different cold-adapted enzymes active at near to 0°C, (iv) highly enantioselective
enzymes, (v) enzymes with a wide range of optimal operational temperature from 20 to 70°C
and an unusually broad pH range from 5.7-10, and (vi) biocatalysts degrading the warfare
chemical yperite and various environmental pollutants. The sequence mining, annotation,
and visualization steps from the workflow published by Vanacek et al. [206] were fully
automated in the EnzymeMiner web server.

More detailed information about the developed EnzymeMiner tool can be found in the
original version of the manuscript in Appendix A.7, published in the Nucleic Acid Research
journal.

3.3 Rational protein design

3.3.1 State of the art

Identification of hotspots

As mentioned above, the basic idea of rational design is to engineer a small library of
specific mutations (smart library) towards the desired change in the protein of interest.
These hotspot mutations are selected based on a deep knowledge of the protein structure
and function. The key role in the selection also depends on which property we wish to
change. For example, catalytic properties such as activity, specificity, and stereoselectivity
are often related to amino acid residues that mediate substrate binding, transition-state
stabilization, or product release [60, 31]. Such residues can be identified using tools for
predicting and analyzing enzyme-ligand interactions [222, 230, 118] or detecting binding
pockets or access tunnels [182, 35, 232]. Strategies for improving protein stability include
rigidifying flexible sites, cavity filling, tunnel engineering, consensus and ancestral mutation
identification, or redesigning surface charges [30, 217, 229]. While hotspots for some of these
strategies can be identified straightforwardly using a single computational tool [76], others
require multi-step analyses or molecular modeling methods [18].

Although specific tools can be very effective, for example, in predicting mutations to
increase protein stability, they may neglect other important properties such as activity [114,
184, 228]. Thus, it appears that when selecting suitable hotspots, it is essential to consider
a number of different factors simultaneously, integrating the outputs of different tools and
providing the user with a comprehensive view of the space of possible mutations, including
their impact on protein structure and function.

To our knowledge, there is only one integral tool in this area so far, the HotSpot Wiz-
ard [22], developed within Loschmidt laboratories. This tool can combine the outputs of
different bioinformatics analyses and automatically suggest sites suitable for mutagenesis.
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However, the current version of the tool (2.0) has certain limitations, including the re-
quirement for a 3D protein structure (mandatory input) and a large number of candidate
mutations in the output that could be further filtered or prioritized.

Identification of mutations increasing protein stability

The application of proteins in various medical, biotechnological, and industrial applications
often requires them to perform their function in an environment significantly different from
the native one. A key factor is, therefore, the stability of the protein determining its
applicability under harsh conditions such as extreme temperatures [12], acidic or basic pH,
or unfavorable effects of organic solvents and proteases [151].

Stability is strongly connected with protein’s conformation and can be qualified as the
net balance of various intramolecular interactions and conformational entropy [84]. These
interactions and forces can be strengthened or disrupted by introducing mutations into the
protein. Therefore, many tools and methods have been developed to predict the effect of
mutation on protein stability.

A large group of them consists of so-called energy-based methods that are based on
molecular modeling of the physical interactions between the atoms in the tertiary structure
of the protein. This group includes: Rosetta suite [103], ERIS software [227], Concoord/Pois-
son-Boltzmann surface area method [23], PopMuSiC method [59], DMutant [91] or HotMu-
SiC [155], CUPSAT [144], and FoldX suit [180].

The disadvantage of these tools is the high computational complexity and the require-
ment for knowledge of the protein’s 3D structure. Therefore, alternative methods have
emerged that attempt to identify suitable mutations based solely on the input sequence and
the study of its evolution. Tools such as 3DM [112], VectorNTI [127], and EMBOSS [167]
can be used for this purpose. This category also includes tools focused on ancestral sequence
reconstruction, such as FastML [11], RAxML [194], Ancestors [64], HandAlign [216], and
MrBayes [171] methods.

Machine learning-based methods have also been developed to reduce computational
complexity. Their main advantage is that they do not require comprehensive knowledge
of the physical and biochemical forces acting within a protein’s tertiary structure. Pre-
dictions are therefore based exclusively on the available experimental data. This group
includes tools such as: I-Mutant [39], EASE-MM [76], MuStab [202], and MuPro [49],
PROTSRF [125], ProMaya [212], ELASPIC [220], and MAESTRO [116]. Unfortunately,
independent studies [152, 103, 104] have shown that ML-based methods do not achieve the
accuracy of energy-based methods, and their performance is often overestimated [154, 205].
This is mainly due to the limited experimental data necessary to train these tools.

The last group of tools is based on a combination of the above approaches, the so-called
hybrid method. These methods use, for example, evolutionary analysis to identify conserved
and correlated positions of a protein. Mutations at these positions are excluded from further
analyses as they can seriously damage the structure or function of the protein. The space of
candidate mutations is thus significantly reduced, decreasing the computational demands
in subsequent energy-based calculations. This group includes, for example, the FRESCO
protocol [218] and the PROSS tool [81].

In summary, hybrid methods represent the next step in predicting protein stability, as
their robustness and complexity allow for constructing significantly more stable multiple-
point mutants while maintaining reasonable computational demands. Unfortunately, cur-
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rently, we are aware of only one server for the design of stable multiple-point mutants
(PROSS) since FRESCO represents only a protocol description.

Research objectives

The aim of this work in rational design is to address two key topics:

• Eliminate the drawbacks of the current version of the HotSpot Wizard tool and extend
it with 3D protein structure prediction and appropriate output mutation filtering
mechanisms.

• Focus on identifying mutations leading to increased protein stability and develop a
new tool based on a hybrid approach capable of predicting multiple-point mutants.

3.3.2 Research summary

HotSpot Wizard 3.0

We have created a new version of the HotSpot Wizard tool, developed within the Loschmidt
laboratories. The basic idea of this tool is to identify positions in proteins called hotspots
that will be suitable for mutagenesis. For this purpose, the tool uses four strategies:

• Identification of functional hotspots – the tool searches highly mutable residues located
in the catalytic pockets or tunnels connecting these pockets with the bulk solvent.
Residues located close to the active site have been identified as good mutagenesis
targets for engineering [163, 161, 137]. On the other hand, catalytic residues are
excluded from this list to avoid damaging the primary function of the protein.

• Identification of stability hotspots (based on structural flexibility) – based on the calcu-
lation of B-factors, positions suitable for stabilization of flexible regions of the protein
are identified. The rationale for targeting these flexible residues is that they have
relatively few contacts with neighbors, so their substitution can produce more inter-
actions [162, 41, 97].

• Identification of stability hotspots (based on conservation) – implements majority and
frequency ratio approaches, both of which suggest mutations at positions where the
wild-type amino acid differs from the most prevalent amino acid (i.e., the consensus
residue) at a given position in the multiple sequence alignment. The assumption that
the most common amino acid is likely to be stabilizing has proven to be very successful
at creating more stable proteins [199, 146, 9, 119].

• Identification of correlated hotspots – involves searching for coordinated changes of the
amino acids at two separate positions within the protein-co-evolving residues. These
correlated positions are subsequently removed from the list of hotspots, as they may
break key links that ensure protein stability or the function of interfaces used for
interaction between proteins.

The resulting pipeline of twenty integrated tools and three databases represents a unique
one-stop solution that makes library design accessible even to users with no prior knowledge
of bioinformatics.
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When designing and implementing the new version (3.0), we addressed two major draw-
backs of the previous version: (i) the requirement for the protein tertiary structure as essen-
tial input and (ii) a large number of candidate hotspots in the output of the tool. HotSpot
Wizard 3.0 (HSW3) dramatically enhanced usability by overcoming these key limitations.

If only a protein sequence is used as input, the HSW3 first verifies the existence of
a 3D structure for that sequence. It searches the RCSB Protein Data Bank [26] and, if
unsuccessful, the Protein Model Portal [86], which collates models of protein structures from
different resources. If no existing model can be found for the protein, the tool proceeds
to homology modeling. For this purpose, the user has a choice between a pair of tools:
Modeller [215] (faster but less accurate) and I-Tasser [225] (more accurate but slower).

It is essential to verify the quality of the created model before using it. Therefore, HSW3
provides a robust quality assessment of the protein structure using three well-established
tools: PROCHECK [117], MolProbity [47], and WHAT CHECK [90].

In addition to the prediction of the 3D protein structure, the HSW3 was also enriched
to evaluate the proposed mutations (outputs from the four main strategies) in terms of
their effect on protein stability. Wild-type and mutant structures were evaluated using
Rosetta [103] software. Finally, FoldX [180] tool was used for repairing protein structure by
filling in the missing atoms and patching the structure. In summary, this step allowed us
to filter out a huge number of mutations that would destabilize the protein and thus make
experimental characterization more expensive.

The final version of the HSW3 web server has been thoroughly validated and tested.
The reliability of the Rosetta protocol was benchmarked against experimental stability
data previously collected for multiple-point mutants in the Loschmidt laboratory [18] as
well as 1,573 single-point mutants available in the ProTherm database [113] and HotMu-
SiC dataset [155]. These tests confirmed a significant correlation between half-lives and
calculated changes in free energy G, as well as the ability of the Rosetta protocol to classify
stabilizing and destabilizing mutations correctly. The quality of HSW3 predictions was
further validated by saturation mutagenesis at the hotspot position L177 located at the
tunnel mouth of the haloalkane dehalogenase LinB [42]. Theoretical predictions correctly
identified the variant L177W, which was also found to be the most stable experimentally.

More detailed information about the developed HotSpot Wizard 3.0 tool and its vali-
dation can be found in the original version of the manuscript in Appendix A.8, published
in the Nucleic Acid Research journal.

FireProt

We have created a new tool FireProt for the automated design of thermostable proteins.
FireProt combines energy- and evolution-based approaches to design thermostable multiple-
point mutants. This combination appears to be very useful since phylogenetic analysis
enables the identification of the mutations stabilized by entropy, which cannot be predicted
by force field calculations [20].

First, the FireProt tool uses evolution-based approaches to identify conserved and corre-
lated positions. These are excluded from further analysis as it was observed that functional
and structural constraints in proteins generally lead to the conservation of amino acid
residues [24, 34, 54, 92]. Similarly, correlated residues ordinarily help to maintain protein
function, folding, or stability [80, 139, 201]. Mutations conducted on these positions are
therefore considered unsafe by the current FireProt strategy.
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The remaining positions are subjected to an energy-based approach and saturation
mutagenesis by using the FoldX tool. Mutations with predicted ∆∆𝐺 over a given threshold
are steered away, and the rest is forwarded to Rosetta calculations. Finally, the mutations
predicted by Rosetta as strongly stabilizing are tagged as potential candidates for the design
of the multiple-point mutants.

Because of potentially antagonistic effects between individual mutations, we cannot
combine individual mutations blindly. To avoid possible clashes, the FireProt strategy tries
to minimize antagonistic effects by utilizing Rosetta. In the first step, all pairs of single-
point mutations within the range of 10 Å are evaluated. Once a change in free energy is
obtained for all residue pairs, FireProt starts to introduce them into the multiple-point
mutant in the order based on their predicted stability, excluding the mutations that are
colliding with already included mutations. The algorithm stops once no mutations are left
or the analyzed pair’s stabilizing effect drops below a defined threshold.

In summary, FireProt integrates sixteen computational tools and utilizes sequence and
structural information. It represents a unique integrated solution that makes the design of
thermostable proteins accessible even to users with no prior knowledge of bioinformatics.

The FireProt protocol was experimentally verified with three proteins (haloalkane de-
halogenase DhaA, hexachlorocyclohexane dehydrochlorinase LinA, and fibroblast growth
factor 2). It provided higher stabilization of proteins from 15 to 25°C compared to wild-
type. Additionally, FireProt predictions of eight multiple-point mutants were validated
using the PROSS tool. FireProt and PROSS showed similar predictive power, correctly
identifying 29 and 20 potentially stabilizing positions.

More detailed information about the FireProt tool and its validation can be found in the
original version of the manuscript in Appendix A.9, published in the Nucleic Acid Research
journal.
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3.4 List of publications
Publication I
Title SoluProt: prediction of soluble protein expression in Escherichia coli
Authors HON Jiří, MARUŠIAK Martin, MARTÍNEK Tomáš, KUNKA Antonín,

ZENDULKA Jaroslav, BEDNÁŘ David, and DAMBORSKÝ Jiří
Abstract Motivation: Poor protein solubility hinders the production of many ther-

apeutic and industrially useful proteins. Experimental efforts to increase
solubility are plagued by low success rates and often reduce biological ac-
tivity. Computational prediction of protein expressibility and solubility in
Escherichia coli using only sequence information could reduce the cost of
experimental studies by enabling prioritization of highly soluble proteins.
Results: A new tool for sequence-based prediction of soluble protein
expression in E.coli, SoluProt, was created using the gradient boosting
machine technique with the TargetTrack database as a training set. When
evaluated against a balanced independent test set derived from the NESG
database, SoluProt’s accuracy of 58.5% and AUC of 0.62 exceeded those
of a suite of alternative solubility prediction tools. There is also evidence
that it could significantly increase the success rate of experimental protein
studies. SoluProt is freely available as a standalone program and a user-
friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/.
Availability:https://loschmidt.chemi.muni.cz/soluprot/.

Journal Bioinformatics, vol. 37, num. 1, 2021
Journal impact factor: 6.931, Q1

Citations 15 (WoS without self-citations)
Author’s
contribution

Studying state-of-the-art, consulting on algorithm design and implemen-
tation including preparation of datasets.

Manuscript Appendix A.6
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Publication II
Title EnzymeMiner: automated mining of soluble enzymes with diverse struc-

tures, catalytic properties and stabilities
Authors HON Jiří, BORKO Simeon, ŠTOURAČ Jan, PROKOP Zbyněk,

BEDNÁŘ David, ZENDULKA Jaroslav, MARTÍNEK Tomáš, and
DAMBORSKÝ Jiří

Abstract Millions of protein sequences are being discovered at an incredible
pace, representing an inexhaustible source of biocatalysts. Despite ge-
nomic databases growing exponentially, classical biochemical characteriza-
tion techniques are time-demanding, cost-ineffective and low-throughput.
Therefore, computational methods are being developed to explore the un-
mapped sequence space efficiently. Selection of putative enzymes for bio-
chemical characterization based on rational and robust analysis of all avail-
able sequences remains an unsolved problem. To address this challenge,
we have developed EnzymeMiner––a web server for automated screen-
ing and annotation of diverse family members that enables selection of
hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are
more likely to preserve the catalytic activity and are heterologously ex-
pressible in a soluble form in Escherichia coli. The solubility prediction
employs the in-house SoluProt predictor developed using machine learn-
ing. EnzymeMiner reduces the time devoted to data gathering, multistep
analysis, sequence prioritization and selection from days to hours. The
successful use case for the haloalkane dehalogenase family is described
in a comprehensive tutorial available on the EnzymeMiner web page.
EnzymeMiner is a universal tool applicable to any enzyme family that
provides an interactive and easy-to-use web interface freely available at
https://loschmidt.chemi.muni.cz/enzymeminer/.

Journal Nucleic Acids Research, vol. 48, num. 1, 2020
Journal impact factor: 16.971, Q1

Citations 16 (WoS without self-citations)
Author’s
contribution

Implementation of selected modules, consultation on the design and im-
plementation of the tool.

Manuscript Appendix A.7
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Publication III
Title HotSpot Wizard 3.0: Web Server for Automated Design of Mutations and

Smart Libraries based on Sequence Input Information
Authors SUMBALOVÁ Lenka, ŠTOURAČ Jan, MARTÍNEK Tomáš, BEDNÁŘ

David, and DAMBORSKÝ Jiří
Abstract HotSpot Wizard is a web server used for the automated identification of

hotspots in semi-rational protein design to give improved protein stability,
catalytic activity, substrate specificity and enantioselectivity. Since there
are three orders of magnitude fewer protein structures than sequences in
bioinformatic databases, the major limitation to the usability of previous
versions was the requirement for the protein structure to be a compulsory
input for the calculation. HotSpot Wizard 3.0 now accepts the protein
sequence as input data. The protein structure for the query sequence is
obtained either from eight repositories of homology models or is modeled
using Modeller and I-Tasser. The quality of the models is then evaluated
using three quality assessment tools––WHAT CHECK, PROCHECK and
Mol-Probity. During follow-up analyses, the system automatically warns
the users whenever they attempt to redesign poorly predicted parts of their
homology models. The second main limitation of HotSpot Wizard’s pre-
dictions is that it identifies suitable positions for mutagenesis, but does not
provide any reliable advice on particular substitutions. A new module for
the estimation of thermodynamic stabilities using the Rosetta and FoldX
suites has been introduced which prevents destabilizing mutations among
pre-selected variants entering experimental testing. HotSpot Wizard is
freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.

Journal Nucleic Acids Research, vol. 46, num. 1, 2018
Journal impact factor: 11.147, Q1

Citations 85 (WoS without self-citations)
Author’s
contribution

Consultation on the design and implementation of the tool, especially the
module for 3D protein structure prediction.

Manuscript Appendix A.8
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Publication IV
Title FireProt: web server for automated design of thermostable proteins
Authors MUSIL Miloš, ŠTOURAČ Jan, BENDL Jaroslav, BREZOVSKÝ Jan,

PROKOP Zbyněk, ZENDULKA Jaroslav, MARTÍNEK Tomáš, BEDNÁŘ
David, and DAMBORSKÝ Jiří

Abstract There is a continuous interest in increasing protein stability to enhance
their usability in numerous biomedical and biotechnological applications.
A number of in silico tools for the prediction of the effect of mutations on
protein stability have been developed recently. However, only single-point
mutations with a small effect on protein stability are typically predicted
with the existing tools and have to be followed by laborious protein expres-
sion, purification, and characterization. Here, we present FireProt, a web
server for the automated design of multiple-point thermostable mutant
proteins that combines structural and evolutionary information in its cal-
culation core. FireProt utilizes sixteen tools and three protein engineering
strategies for making reliable protein designs. The server is complemented
with an interactive, easy-to-use interface that allows users to directly an-
alyze and optionally modify designed thermostable mutants. FireProt is
freely available at http://loschmidt.chemi.muni.cz/fireprot.

Journal Nucleic Acids Research, vol. 45, num. 1, 2017
Journal impact factor: 11.561, Q1

Citations 55 (WoS without self-citations)
Author’s
contribution

Consultation on the design and implementation of the tool.

Manuscript Appendix A.9
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3.5 Conclusions
In the field of protein engineering, we focused on improving existing approaches in the areas
of rational selection and rational design.

As part of the rational selection strategy, we have developed the EnzymeMiner tool,
which can efficiently mine information about enzymes of interest from large databases and
perform filtering and prioritization concerning various criteria. We identified protein solu-
bility as one of the key criteria, as it fundamentally affects subsequent experimental protein
characterization. Therefore, we also focused on developing a new solubility prediction tool.
The developed tool, SoluProt, uses machine learning techniques and achieves the best pre-
diction accuracy and prioritization capability compared to existing approaches. It has,
therefore, also been integrated as part of the EnzymeMiner tool.

As part of the rational design strategy, we have contributed to developing a new version
of the HotSpot Wizard (3.0) that allows users to identify suitable positions for mutagenesis.
This new version has been extended with the ability to predict the 3D structure of a protein
and to evaluate the effect of mutations on protein stability. These new features have
significantly expanded the possibilities of using this tool while eliminating many potential
mutations leading to protein destabilization.

For the use of proteins in real applications in medicine or industry, it is often required
that the protein of interest can work even under harsh conditions (e.g., higher temperature,
pH, etc.). Therefore, we also focused on developing a new tool for the automated design of
thermostable proteins. The developed tool FireProt efficiently combines energy-based and
evolutionary-based approaches to design thermostable multiple-point mutants. This tool’s
applicability has been demonstrated experimentally and in comparison with competing
tools.

3.5.1 Future work

At present, we are still far from being able to consider the developed approaches and tools
as final.

EnzymeMiner

The developed tool for mining enzymes of interest could be integrated with other types of
databases. For example, the MGnify metagenomics database [136] of more than 267 million
protein sequences can be a rich source of information. The MGnify database contains pro-
teins from organisms living deep in the ocean in hot springs or digestion systems. Proteins
from such organisms may have interesting properties for biotechnological applications.

If we could build a 3D protein structure for the hits found (e.g., through homology mod-
eling), it would be possible to add support for various additional annotation and efficient
filtering techniques to the tool. For example, information about the size of the catalytic
pocket or the structural properties of the tunnels going to the active site could be beneficial.

Given the ever-increasing data in current biological databases, it is advisable to repeat
the mining process periodically and inform users about new candidate sequences. En-
zymeMiner should therefore be extended with a so-called incremental mining mode, which
would focus only on newly added data and thus be undoubtedly more efficient in terms of
computational effort.
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SoluProt

Solubility prediction tools are moving toward determining not only the global solubility of a
protein but also the solubility profile (solubility score for individual residues). This ability,
in turn, will also allow the prediction of the effect of mutation on solubility and, thus, the
development of new approaches for increasing protein solubility by appropriate mutations.

It also shows that knowledge of the 3D structure of a protein can significantly help in
predicting the effect of a mutation on solubility. Thus, in the future, it would be helpful to
extend the tool to predict the 3D structure of the protein of interest (e.g., through homology
modeling) and enrich the predictor with several structural features.

Finally, novel experimental data for protein solubility change upon a single-point muta-
tion are emerging rapidly thanks to the advent of deep mutational scanning technology [108].
The data usually contain thousands of samples covering nearly all possible point mutations
in a selected protein, making them well suited for understanding the fundamental mecha-
nisms influencing protein solubility.

HotSpot Wizard

The current version of the tool could be extended, for example, by a more detailed analysis
of correlated mutations. While the current version eliminates them for safety reasons, the
new version could allow combinations that would not disrupt the structure and function of
the protein.

The prediction of positions suitable for mutagenesis represents an area that can be
continuously enriched with new information on protein structure and function. Therefore,
it is essential to equip the HSW3 with as general an interface as possible to integrate other
tools and analyses in the future.

FireProt

Similar to the HotSpot Wizard, it would be helpful to perform a more detailed analysis
of correlated mutations (especially contacts) and use them to increase protein stability. A
challenge for current tools is a more detailed understanding of the importance of charges
on the protein surface, as mutations in these regions have been shown to affect stability
significantly.

Finally, with the advent of new technologies and more experimental data, it would be
useful to reopen the idea of using machine learning-based tools that have the potential to
model very complex relationships within a protein at a reasonable computational cost.

3.6 Research impact
All developed tools are quite complex and often integrate many external tools. Moreover,
some of the implemented analyses are computationally intensive, especially where they in-
volve energy-based calculations or 3D protein structure prediction. Distributing these tools
as open-source is usually not efficient, as end-users are often unable to install and operate
such complex systems. A variant in the form of a web-based interface further connected to
the computational core of the application running in a grid or cloud environment seems to
be preferable. All four tools presented in this section were created in this way. Users access
them through a web interface, and their input requests are sorted into a queue of jobs,
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executed sequentially using the Metacenter grid infrastructure. Once a job is processed, a
notification is sent to the user with a link to the results.

In the following Table 3.1, you can see the statistics of the number of visits to the website
for each of the tools created, including the number of completed jobs. This information
is supplemented by the number of citations at the end. From these statistics, it can be
concluded that the tools created are widely used and cited by the scientific community.

Tool Number of
visitors

Number of
jobs

Number of
citations

EnzymeMiner
https://loschmidt.chemi.muni.cz/
enzymeminer/

13,471 2,799 16

SoluProt
https://loschmidt.chemi.muni.cz/
soluprot/

13,281 23,484 15

HotSpot Wizard
https://loschmidt.chemi.muni.cz/
hotspotwizard/

71,787 38,068 85

FireProt
https://loschmidt.chemi.muni.cz/
fireprotweb/

30,965 5,582 55

Table 3.1: Statistics on the use of developed tools
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Chapter 4

Repetitive DNA sequences

4.1 Introduction
Repetitive sequences are pieces of DNA that occur in an excessive number of copies in
genomes. They appear to be part of the genomes of most living organisms, from simple
bacteria to complex eukaryotes, including plants and animals. For example, studies report
that repetitive sequences make up more than two-thirds of the human genome [110]. Their
abundance is even higher in plants, e.g., 80% of the maize genome [178]. Initially, these
sequnces were considered as ”junk“ DNA, but more and more studies have demonstrated
their importance in many biological processes [147, 149, 50, 133, 123].

Repetitive sequences fall into two main categories: tandem repeats and interspersed
repeats, often referred to as transposable elements.

4.1.1 Tandem repeats

Tandem repeats (TR) are defined as repetitive pieces of DNA placed side by side in a large
number of copies. The core of the repeated sequence is referred to as a monomer. According
to the length of this monomer, tandem repeats are divided into: (i) microsatellites with
monomer length < 9 nucleotides, (ii) minisatellites with monomer length between 10 and
100 bp, and (iii) satellite DNA (satDNA) having monomers longer than 100 bp. Based on
sequence similarity, we then classify monomers into different families. For example, there are
12 satDNA families in Hippophae rhamnoides [156], 62 families in Locusta migratoria [173],
or 9 families within the human genome [134].

Although TRs were initially considered to be non-functional DNA, at present, we know
they have many functions in the genome. TRs are involved in chromosome organization,
telomere elongation control, transcriptional response during stress, or the modulation of
gene expression [147, 149]. They could influence the adaptability of a host genome and sex
chromosome evolution [46].

4.1.2 Transposable elements

Transposable elements (TEs), also called jumping genes, were firstly discovered in the 1940s
by geneticist Barbara McClintock [16]. They can move or even copy themselves from one
genomic location to another, resulting in their rapid amplification in the genome. TEs can
occur in hundreds or even thousands of copies.
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TEs are divided into two major classes according to whether they transpose via an
RNA intermediate, Class I - retrotransposons, or a DNA intermediate, Class II - DNA
transposons. Both of these groups are further subdivided into subclasses and families of
TEs. For example, Class I - Retransposons include LTR retrotransposons (LTR), Dic-
tyostelium Intermediate Repeat Sequences (DIRS), Penelope-like elements (PLE), Long
Interspersed Nuclear Elements (LINE), and Short Interspersed Nuclear Elements (SINE).
Similarly, Class II - DNA transposons are further subdivided into subclasses: TIR, Crypton,
Helitron, and Maverick.

The individual classes and subclasses of TEs are specific in their structure. Typically,
they contain a group of protein-coding genes essential for their transmissions, such as reverse
transcriptase (RT), transposase (TPase), integrase (INT), or tyrosine recombinase (YR).
The structure of TEs can also be enriched with a number of other signatures, such as long-
terminal repeats (LTR), terminal inverted repeats (TIR), direct repeats (DR), Poly(A), or
A- or AT-rich regions. Examples of TEs structures can be seen in Figure 4.1.

Recent studies have revealed that TEs are involved in several biological processes. They
can regulate genes [50, 130], increase genetic variation, influence genome size [133, 48], play
an essential role in chromosomal rearrangements [123], or be crucial players in genome
evolution [25, 32].

4.1.3 Study of repetitive sequences

With the advent of high-throughput sequencing technologies, research on repetitive se-
quences and their representation in genomes has also been significantly expanded.

One of the basic techniques is the study of repeats in the already assembled genome, i.e.,
the complete sequence divided into individual chromosomes. However, obtaining an assem-
bled genome is not easy. The organism’s genome must first be sequenced with considerable
coverage. Short sequencing reads are subsequently linked into longer contigs, supercontigs,
up to the resulting chromosomes. Interestingly, the process of genome assembly is signif-
icantly complicated by the presence of a large number of repetitive sequences. Linking
repetitive sequences into unique contigs is often complex and ambiguous.

This issue can be partially improved either by higher genome coverage (increasing the
cost) or by using third-generation sequencing technologies that produce long reads (up to
several tens of thousands of bp) that can bridge the repeat and correctly link the correspond-
ing contigs. The second method is, in principle, more efficient, but for now, third-generation
sequencing technologies are still under development and struggling with high error rates.

As an alternative method, so-called low-pass sequencing is applied, where the genome
of the organism of interest is sequenced with low coverage (e.g., around 5-10%). Sequencing
reads of such low coverage cannot be used to assemble the genome (or even a part of it).
However, this tiny amount of data will contain a sufficient number of copies of repetitive
sequences present in several thousand copies within the original genome. The low-pass
sequencing technique thus represents a good compromise between the cost of sequencing
and the amount of information obtained.

Based on the input data type, methods for searching and analyzing repetitive sequences
are divided into assembly-based and assembly-free approaches.
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Figure 4.1: Major classes of repetitive elements and examples of their families and structural
features. DR - direct repeat, EN - endonuclease, eORF - extra open reading frame, gag -
gag gene, INT - integrase, IR - inverted repeat, LTR - long terminal repeat, ORF - open
reading frame, pol - pol gene, PR - protease, RH - RNase H, RT - reverse transcriptase,
UTR - untranslated region, TSD - target site duplication, YR - tyrosine recombinase, HEL
- helicase domain, REP - replication initiator motif, TIR - terminal inverted repeat, TPase
- transposase gene, TSD - target site duplication, YR - tyrosine recombinase, Y2 - Y2-type
tyrosine recombinase.
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4.2 State of the art

4.2.1 Assembly-based approaches

Several approaches are used to search for repetitive sequences in assembled genomes. The
first category consists of library-based methods. Their basic idea is to explore the input
sequence and compare it with a database of known repeats, such as Repbase [14]. The
comparison itself is performed based on sequence similarity, whereby tools like BLAST [8]
or HMMER [68] are used. The range of repeats found strongly depends on the quality
of the database. Unfortunately, these methods cannot find new (previously undiscovered)
repeats by design.

Signature-based methods represent the second group. The goal of these methods is to
search for signatures specific to TEs. For example, LTR retrotransposons are terminated
with long terminal repeats at their 5’ and 3’ ends. In contrast, the TIR, Maverick, and
MITE families have inverted repeat regions. These specific signatures can be searched for
regardless of knowledge of the full-length TE sequence. Therefore, compared to library-
based methods, these approaches can also find new families/subfamilies of TEs. On the
other hand, they often suffer from a large number of false positives that need to be further
analyzed and filtered. Tools in this category include: LTR STRUCT [131], LTR par [98],
and detectIR [226].

A separate group consists of so-called de novo methods, which aim to find all repetitive
sequences regardless of prior knowledge of their sequence or structure. This goal can be
achieved, for example, by finding all local similarities of an input sequence to itself through
tools such as Repeat Pattern Toolkit [4], RECON [15], and PILER [70]. For large genomes,
however, this approach is very computationally intensive. It is therefore being replaced by
more efficient k-mer counting-based methods such as Reputer [115], RepeatScout [153], and
RepLoc [74]. The drawbacks of these methods include the difficulty in detecting repeats
with low copy numbers and the need for appropriate adjustment of the k-mer length to
achieve the desired sensitivity.

The last group is represented by hybrid methods that combine some of the above ap-
proaches. Probably the most common is the combination of library-based and signature-
based techniques. While signature-based search is used, for example, to detect terminal
LTR regions, the library-based approach verify the presence of gag or pol coding regions.
Such a combination can detect new LTR transposon subfamilies and reduce many false
positives typical for signature-based methods. Tools in this category include, for example,
LTR finder [224], LTRdigest [196], and TIRfinder [79].

Please note that the selection of a particular method or combination of approaches
always depends on the structure of the TE being searched. For example, there are TEs
without any signatures such as Crypton and Helitron, or their signatures may be very short
(in the range of units of bases). In these cases, signature-based approaches cannot be used.

4.2.2 Assembly-free approaches

Most of the tools for searching, reconstructing, and quantifying repeats directly from se-
quencing data are based on data from 2nd generation sequencers. This is mainly due to
their availability and low error rate. They expect single or pair-end reads of about 200-
300bp as inputs. On the other hand, the examined repeats are usually longer (units to tens
of thousands of bp), and therefore these tools have to deal with their assembly. With the
increasing availability of data from 3rd generation sequencers (long reads with higher error
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rates), so-called hybrid approaches combining the 2nd and 3rd generation data are starting
to emerge. While the 3rd generation long reads are used to identify the underlying scaffold
structure of the repeat, the 2nd generation data are additionally mapped to refine their
content. Generally, tools for reconstructing repeats from sequencing data fall into three
basic groups.

The first group consists of approaches based on the k-mer counting technique, similar to
the assembly-based methods. The basic idea of these tools is to split reads into individual
k-mers, identify the most numerous k-mers, and gradually concatenate them up to the level
of reconstructed repetition. This group includes tools such as: ReAS [122], RepARK [109],
REPdenovo [51], and DLR [126]. The disadvantage of these approaches is the difficulty in
detecting repeats with low copy numbers and reconstructing regions with lower sequence
similarity, for example, evolutionarily distant families or older TEs with higher numbers of
accumulated mutations.

The second group of methods uses de Bruijn graphs to reconstruct repetitive sequences.
The de Bruijn graph is a directed multigraph consisting of vertices and a multiset of directed
edges. It is constructed using the unique k-mers that occur in the input data (sequencing
reads). k-1-mers are added to the graph as nodes and k-mers as edges. To assemble the orig-
inal genome, every edge in the graph is visited exactly once, representing an Eulerian path
problem that can be resolved in a linear time. These types of graphs have therefore been
successfully used for DNA sequence assembly and implemented in tools such as Trinity [83],
ABySS [188], and Velvet [231]. Similar principles have been adopted by repeat reconstruc-
tion tools such as Tedna [236], dnaPipeTE [82], and MixTaR [75]. Unfortunately, the
variability of repetitive sequences combined with the error rate of sequencing reads causes
the frequent occurrence of branching structures in the form of tips (”dead-ends“) and bub-
bles within de Bruijn graphs. These branching structures make the constructed graph very
large, leading to high memory usage and increased computational demand.

The third group of methods also uses graphs, but in a different way. The graph nodes
represent individual reads, and edges connect reads that achieve a certain level of sequence
similarity. Before constructing such a graph, an all-against-all pairwise alignment of the
input reads is performed, representing one of the most computationally demanding steps.
Subsequently, the graph is scanned for connected components, groups of mutually connected
vertices representing repetitive sequences. This group includes tools such as: RepeatEx-
plorer [140], Transposome [195], and RepLong [85].

In summary, graph-based clustering approaches can deal better with the variability
of repetitive sequences compared to k-mer or de Bruijn-graph-based approaches as the
desired similarity and overlap length thresholds can be set. Another significant advantage
is that the input reads do not have to be split into k-mers, thus their continuity is not lost.
The main drawbacks of the graph-based clustering approach are (i) chimeric clusters and
(ii) splitting one repeat family into multiple clusters. Both happen due to divergence of
repeat and different conservation levels within the repeat families. For these reasons, it is
recommended to manually inspect the output of these tools and refine the created clusters.

4.2.3 Research objectives

This work focuses on improving existing methods in both assembly-based and assembly-free
approaches. One of the main goals is to develop a new tool for detecting Insertion Sequence
elements in assembled prokaryotic genomes. Other goals include the development of a new
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technique for the reconstruction and analysis of satellite DNA directly from sequencing
data.

4.3 Research summary

4.3.1 digIS - novel approach for detection of distant Insertion Sequence
elements

Insertion Sequence elements (ISE) are TEs widespread in prokaryotic genomes. They play
an essential role in genome evolution, structure, and host-genome adaptability, including
modulation of gene expression or antimicrobial resistance [187, 207]. Their body typically
encodes a protein that catalyzes the transposition (TPase), flanked by short IRs and DRs
(see Figure 4.1). Up to now, 29 IS families have been identified [187].

At present, there are several tools available for the detection of IS elements in prokaryotic
genomes. Some of them are designed for searching in raw sequenced data (ISQuest [29],
ISMapper [87], ISseeker [3], and panISa [204]), and the others require assembled sequences
(IScan [211], ISsaga [208], OASIS [170], ISEScan [221], and TnpPred [166]). Since signatures
in the form of IR and DR are very weak and in some families not present at all, most tools
utilize a library-based approach which is dependent on a source of known IS elements,
usually ISfinder database [186].

Unfortunately, the developed tools are either very conservative and accept only se-
quences that are very close to known ISEs, or they are benevolent and report even frag-
ments of ISEs in their outputs, including many false positives. Therefore, this work aimed
to develop a new approach that would search not only for known ISEs but also for members
of putative novel families while reporting the lowest number of false positives.

In developing the digIS tool, we designed a novel approach that first targets the TPase
catalytic domain, representing the most conserved part of the ISE. Based on known ISE
sequences from the ISfinder database, we built and manually refined profile HMM models of
the catalytic domains for all available families. Using the created models and the HMMER
tool [135], we then searched the input genome sequence translated into all six frames.

The occurrences found are treated as seeds, which are then filtered, merged, and ex-
panded based on similarity to sequences of known ISEs in the ISfinder database. If a
GenBank annotation is available for the input sequence, the tool classifies the found oc-
currences into three categories that help the user better distinguish the quality of the hits.
The search and classification results are finally saved in a GFF3 format file.

We compared the performance of digIS with competing tools on manually annotated
datasets from the ISbrowser database [106] and automatically annotated genomes from the
NCBI database [176]. The results of the comparisons demonstrated that the developed tool
could identify not only known ISEs but also putative novel elements. Compared to tools
that also detect fragments, the digIS tool reports significantly fewer false positives.

More detailed information about the digIS tool can be found in the original version of
the manuscript in Appendix A.10, published in the BMC Bioinformatics journal.

4.3.2 Novel approach for detailed analysis of satellite DNA

While studying repetitive regions of the seabuckthorn (Hippophae rhamnoides) genome,
we developed a new approach for satellite DNA analysis. This approach is based directly
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on sequencing data and extends the comprehensive analysis of repetitive regions of the
RepeatExplorer tool [140]. The core of the proposed method operates in three steps:

• Detection of satellite monomers – Contigs of selected clusters are extracted from
RepeatExplorer output. For each contig, the monomer length is estimated from dis-
tances between the identical k-mers in the contig. Finally, the monomer sequence is
extracted from the most covered region of the contig.

• Estimation of satellite family composition and their annotation – To estimate the
composition of satellite families, extracted monomer sequences are clustered using
the UPGMA method [192]. The resulting dendrogram is cut to define the individual
satellite families and visualized using igraph library1. Then, monomers are annotated
by querying them against the nt/nr nucleotide collection and PlantSat database [128]
using BLASTN [8]. To estimate the diversity within each satellite family, reads be-
longing to the family are mapped to the representative monomer using the BWA-MEM
aligner [121], and a sequence logo is generated by WebLogo [55].

• Visualization of satellite families’ homogeneity – Reads of each satellite family are
merged and sampled randomly to decrease the computational demands for highly
abundant families. Sequence similarity of these reads is estimated by all-against-
all alignment performed by MegaBLAST [38]. Only pairs of reads that meet the
specific thresholds (70% sequence identity over at least 55% sequence length) are
used for graph construction and visualization. A relative abundance of male and
female reads in each family is estimated. Such information can be useful to determine
the chromosomal location, whether the satellite family is present on sex chromosomes
or autosomes.

By applying the approach described above, we identified 12 satellite families in the
seabuckthorn (Hippophae rhamnoides) genome, including Y-specific, X-accumulated, and
sex-chromosome-accumulated satellite families. The discovery of the Y-specific satellite
helped to show that seabuckthorn has small Y and large X chromosomes since it was
previously thought to be exactly the opposite [72].

More details of the approach developed for satellite DNA analysis can be found in the
original version of the manuscript in Appendix A.11, published in Genome Biology and
Evolution journal.

4.3.3 Additional studies

In addition to developing specific tools or extending existing pipelines, we also participated
in a study investigating the relationship between transposons in the human genome and
secondary structures, specifically quadruplexes.

Positions of repetitive sequences in the human genome were collected using UCSC Table
Browser data [100] (Repeat Masker track [101]) and extended with 200 bp flanking regions.
The collected sequences were scanned for the occurrence of the typical quadruplex pattern
GGG.{1,7}GGG.{1,7}GGG.{1,7}GGG2 on both strands.

In subsequent analyses, we verified the occurrence of potential quadruplex-forming se-
quences (PQS) within and around the four most abundant families of TEs in the human

1https://igraph.org/r/
2Please note that our quadruplex search tool, pqsfinder (2017), was not yet available at the time of the

study (2014).
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genome (LINE-1, HERV, SVA, and ALU). We also extended the analysis to compare dif-
ferences between TEs and PQSs on the X and Y chromosomes, including an analysis of
the occurrence of PQSs in the vicinity of TEs of different ages. Finally, we selected 12
PQS sequences found in the vicinity of TEs and performed in vitro experimental evaluation
using circular dichroism measurements and gel electrophoresis.

In summary, the study results suggest that the activity of transposable elements, espe-
cially LINE-1 and SVA elements, contributes toward genome-wide quadruplex distribution
in humans. Conservation of quadruplexes at specific positions implies their function ei-
ther in the life cycle of transposable elements or host genome maintenance, or both. All
tested PQSs could form quadruplex structures in vitro, albeit with differing willingness,
strand orientation, and molecularity. LINE-1 and SVA families displayed an age-dependent
pattern with younger elements containing a higher number of more stable quadruplexes.

More detailed information on the results of this study can be found in the original
version of the manuscript in Appendix A.12, published in the BMC Genomics journal.
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4.3.4 List of publications

Publication I
Title digIS: Towards detecting distant and putative novel insertion sequences

in prokaryotic genomes
Authors PUTEROVÁ Janka and MARTÍNEK Tomáš
Abstract Background: The insertion sequence elements (IS elements) represent

the smallest and the most abundant mobile elements in prokaryotic
genomes. It has been shown that they play a significant role in genome or-
ganization and evolution. To better understand their function in the host
genome, it is desirable to have an effective detection and annotation tool.
This need becomes even more crucial when considering rapid growing ge-
nomic and metagenomic data. The existing tools for IS elements detection
and annotation are usually based on comparing sequence similarity with a
database of known IS families. Thus, they have limited ability to discover
distant and putative novel IS elements.
Results: In this paper, we present digIS, a software tool based on profile
hidden Markov models assembled from catalytic domains of transposases.
It shows a very good performance in detecting known IS elements when
tested on datasets with manually curated annotation. The main contri-
bution of digIS is in its ability to detect distant and putative novel IS
elements while maintaining a moderate level of false positives. In this
category it outperforms existing tools, especially when tested on large
datasets of archaeal and bacterial genomes.
Conclusion: We provide digIS, a software tool using a novel approach
based on manually curated profile hidden Markov models, which is able
to detect distant and putative novel IS elements. Although digIS can
find known IS elements as well, we expect it to be used primarily by
scientists interested in finding novel IS elements. The tool is available at
https://github.com/janka2012/digIS.

Journal BMC Bioinformatics, vol. 22, num. 258, 2021
Journal impact factor: 3.328, Q2

Citations 1 (WoS without self-citations)
Author’s
contribution

State-of-the-art study, algorithm design and implementation, tool testing,
manuscript preparation.

Manuscript Appendix A.10

49

https://github.com/janka2012/digIS


Publication II
Title Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae

rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes
Authors PUTEROVÁ Janka, RAZUMOVA Olga, MARTÍNEK Tomáš, ALEXAN-

DROV Oleg, DIVASHUK Mikhail, KUBÁT Zdeněk, HOBZA Roman,
KARLOV Gennady, and KEJNOVSKÝ Eduard

Abstract Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly
used in the pharmaceutical, cosmetic, and environmental industry as a
source of oil, minerals and vitamins. In this study,we analyzed the trans-
posable elements and satellites in its genome.We carried out Illumina DNA
sequencing and reconstructed the main repetitive DNA sequences. For
data analysis, we developed a new bioinformatics approach for advanced
satellite DNA analysis and showed that about 25% of the genome consists
of satellite DNA and about 24% is formed of transposable elements, dom-
inated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH map-
ping revealed X chromosome-accumulated, Y chromosome-specific or both
sex chromosomes-accumulated satellites butmost satellites were found on
autosomes. Transposable elements were located mostly in the subtelom-
eres of all chromosomes. The 5S rDNA and 45S rDNA were localized on
one autosomal locus each. Although we demonstrated the small size of the
Y chromosome of the seabuckthorn and accumulated satellite DNA there,
we were unable to estimate the age and extent of the Y chromosome de-
generation. Analysis of dioecious relatives such as Shepherdia would shed
more light on the evolution of these sex chromosomes.

Journal Genome Biology and Evolution, vol. 9, num. 1, 2017
Journal impact factor: 3.940, Q1

Citations 13 (WoS without self-citations)
Author’s
contribution

Consultation on the design and implementation of a new approach for
satellite DNA analysis.

Manuscript Appendix A.11
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Publication III
Title Guanine quadruplexes are formed by specific regions of human transpos-

able elements
Authors LEXA Matej, ŠTEFLOVÁ Pavlína, MARTÍNEK Tomáš, VORLÍČKOVÁ

Michaela, VYSKOT Boris, and KEJNOVSKÝ Eduard
Abstract Background: Transposable elements form a significant proportion of eu-

karyotic genomes. Recently, Lexa et al. (Nucleic Acids Res 42:968-978,
2014) reported that plant long terminal repeat (LTR) retrotransposons
often contain potential quadruplex sequences (PQSs) in their LTRs and
experimentally confirmed their ability to adopt four-stranded DNA con-
formations.
Results: Here, we searched for PQSs in human retrotransposons and
found that PQSs are specifically localized in the 3’-UTR of LINE-1 ele-
ments, in LTRs of HERV elements and are strongly accumulated in specific
regions of SVA elements. Circular dichroism spectroscopy confirmed that
most PQSs had adopted monomolecular or bimolecular guanine quadru-
plex structures. Evolutionarily young SVA elements contained more PQSs
than older elements and their propensity to form quadruplex DNA was
higher. Full-length L1 elements contained more PQSs than truncated ele-
ments; the highest proportion of PQSs was found inside transpositionally
active L1 elements (PA2 and HS families).
Conclusion: Conservation of quadruplexes at specific positions of trans-
posable elements implies their importance in their life cycle. The increas-
ing quadruplex presence in evolutionarily young LINE-1 and SVA families
makes these elements important contributors toward present genome-wide
quadruplex distribution.

Journal BMC Genomics, vol. 15, num. 1032, 2014
Journal impact factor: 3.986, Q1

Citations 21 (WoS without self-citations)
Author’s
contribution

Implementation of quadruplex search in the human genome.

Manuscript Appendix A.12
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4.4 Conclusions
A growing number of studies are confirming the importance of repetitive sequences in the
genomes of organisms and their essential role in many biological processes. To understand
these relationships, it is essential to provide the scientific community with effective tools to
search for and analyze them in assembled genomes and sequencing data.

Therefore, we have developed a new tool digIS, for searching Insertion Sequence elements
in assembled genomes of prokaryotes. This tool can detect distant and putative novel IS
elements. Although digIS can also find known IS elements, we expect it to be used primarily
by scientists interested in finding novel IS elements and their experimental characterization.

The spectrum of tools for analyzing and quantifying repetitive sequences directly from
sequencing data has been further extended by a new approach for processing satellite DNA
sequences and their visualization. The developed technique was applied to the analysis
of the seabuckthorn (Hippophae rhamnoides) genome and contributed to the interesting
discovery of the Y-specific satellite showing that seabuckthorn has small Y and large X
chromosomes since it was previously thought to be exactly the opposite.

Additionally, we also performed a study analyzing the relationships between trans-
posable elements and specific secondary DNA structures, specifically quadruplexes. The
study’s results revealed several interesting insights into the occurrence of PQS within or in
the vicinity of TEs, including their successful experimental evaluation in vitro.

4.4.1 Future work

The digIS tool for searching ISEs should be extended in two directions in the future:

• It can be expected that new families of IS elements will be discovered in the future,
and the library of HMM profiles of catalytic domain models will need to be updated
accordingly. It would therefore be beneficial to create a procedure to update this
library automatically, for example, according to the ISfinder database, without the
intervention of the original authors.

• During the experiments performed, we discovered several putative novel IS elements
(see Additional file 9 of the original manuscript). It would be useful for digIS users if
it also offered the possibility of additional analysis of these occurrences. For example,
putative novel elements can further be clustered, aligned into a multiple sequence
alignment, and verified for occurrence in other prokaryotic genomes.

In the case of the newly proposed approach for satellite DNA analysis and visualization,
it would be useful to integrate it into the existing RepeatExplorer tool to extend its capa-
bilities. Because of the importance of repeats in the study of genomes, several groups study
this subject in parallel with us. As a result, a similar method called ”TAndem REpeat
ANalyzer“ (TAREAN) [141] was developed directly by the authors of RepeatExplorer and
integrated into the new version of this tool.

4.5 Research impact
To make digIS easily accessible, its source code has been released as open-source on GitHub
(https://github.com/janka2012/digIS). The installed tool, including all dependencies,
is also available as a docker image at https://hub.docker.com/r/janka2012/digis. So
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far, we have registered 120 downloads of this tool and one citation. We attribute this
relatively small number of citations to the only recent publication of the paper and also to
the relatively small community of users dedicated to studying TEs in prokaryotic genomes.

In the case of the new approach for analyzing satellite DNA within the seabuckthorn
genome, we recorded 13 citations. For the study of the relationships between TEs and
quadruplexes, there was a total of 21 citations.
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ABSTRACT

Motivation: Current methods for identification of potential triplex-
forming sequences in genomes and similar sequence sets rely
primarily on detecting homopurine and homopyrimidine tracts.
Procedures capable of detecting sequences supporting imperfect,
but structurally feasible intramolecular triplex structures are needed
for better sequence analysis.
Results: We modified an algorithm for detection of approximate
palindromes, so as to account for the special nature of triplex
DNA structures. From available literature, we conclude that
approximate triplexes tolerate two classes of errors. One, analogical
to mismatches in duplex DNA, involves nucleotides in triplets that
do not readily form Hoogsteen bonds. The other class involves
geometrically incompatible neighboring triplets hindering proper
alignment of strands for optimal hydrogen bonding and stacking.
We tested the statistical properties of the algorithm, as well as
its correctness when confronted with known triplex sequences.
The proposed algorithm satisfactorily detects sequences with
intramolecular triplex-forming potential. Its complexity is directly
comparable to palindrome searching.
Availability: Our implementation of the algorithm is available at
http://www.fi.muni.cz/˜lexa/triplex as source code and a web-based
search tool. The source code compiles into a library providing
searching capability to other programs, as well as into a stand-alone
command-line application based on this library.
Contact: lexa@fi.muni.cz
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on March 16, 2011; revised on June 24, 2011; accepted
on July 13, 2011

1 INTRODUCTION
Triplexes are local structural variants of DNA, wherein the molecule
adopts a specific secondary structure differing from a canonical
duplex by the recruitment of a third DNA strand. The third strand
binds to the duplex by Hoogsteen or reverse Hoogsteen bonds
with stringency of the same order of magnitude as duplex-forming
strands for the most stable nucleotide combinations (reviewed by

∗To whom correspondence should be addressed.

Frank-Kamenetskii and Mirkin, 1995). Depending on the source of
the third strand, triplex DNA can be intrastrand and interstrand,
or intramolecular and intermolecular. The third strand may just
come from the other strand of the same DNA duplex or from a
completely different DNA molecule, as is the case with triplex-
forming oligonucleotides (Knauert and Glazer, 2001). Nucleotides
in the middle strand of a triplex have Watson–Crick base pairing
to one nucleotide and Hoogsteen or reverse Hoogsteen pairing to
another nucleotide. Together they form a triplex-forming triplet
(also called triad) (Mirkin and Frank-Kamenetskii, 1994; Soyfer and
Potaman, 1995). Depending on the orientation of the third strand, we
distinguish parallel and antiparallel triplexes, named according to
the orientation of the third strand in respect to the central strand.
Figure 1 shows eight types of intramolecular triplex structures
considered in this article. A given sequence on the (+) strand of a
DNA molecule can possibly support all eight types, but necessarily,
only one of the types will be formed at any particular moment.
In DNA triplexes, there is a requirement for neighboring triplets
to be isomorphic, otherwise the potential triplet would be under
strain, hindering the binding of the third strand (Rathinavelan and
Yathindra, 2006; Thenmalarchelvi and Yathindra, 2005). Regardless
of orientation and geometry, the middle nucleotide is generally a
purine-containing one, to support the extra hydrogen bonds needed
to bind the third nucleotide.

Because the middle nucleotide is almost invariably one with
a purine base, attempts to correlate sequence with triplex-
forming properties usually involve detection of homopurine and
homopyrimidine tracts in the analyzed sequence. For example,
Gaddis et al. (2006) created a web-based program that identifies
target sequences for triplex-forming oligonucleotides. The program
identifies homopurine stretches that are allowed to be occasionally
interrupted by a pyrimidine. While this is an appropriate method
for detection of strong triplex-forming signals, we consider this
to be an oversimplification. Numerous papers have reported the
existence of imperfect triplexes (Mergny et al., 1991; Roberts and
Crothers, 1991; Xodo et al., 1993), including cases where the authors
deliberately changed individual nucleotides to observe the effects of
such change. Changes resulting in the formation of non-canonical
triplets did not necessarily disrupt the entire triplex. It is conceivable
that many of the imperfect triplexes may still have similar biological
activity to their ideal counterparts. One possible explanation for the
existence of imperfect triplexes is that they may allow an overlap
between the structural signal and some other sequence feature,
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Fig. 1. Eight types of triplexes that are detected in separate runs of the
algorithm for a given region. Numbering of types is shown as used in
the accompanying software (Supplementary Material). Watson–Crick base
pairing is shown by vertical bars. X and Y are two nucleotides on the
same strand that will form a triplet. The eight possible triplets are: Y.X′X,
Y′.XX′, Y′.X′X, Y.XX′, X.Y′Y, X′.YY′, X′.Y′Y and X.YY′ (N′, a nucleotide
complementary to N; ‘.’, Hoogsteen or reverse Hoogsteen bond).

such as nucleosome positioning pattern or a regulatory protein-
binding sequence. Kinniburgh (1989) proposed a triplex structure
containing a single deletion to explain his experimental results.
Additionally, analyzed sequences may contain errors, including
occasional deletions and insertions.

The existence of triplex DNA has been repeatedly associated
with important biological processes at the molecular level, making
them an attractive target in sequence analysis. Most of the observed
associations suggest roles in mutagenesis, recombination and gene
regulation. Non-B DNA structures, including DNA triplexes, have
been shown to cause deletions, expansions and translocations in
both prokaryotes and eukaryotes (Raghavan et al., 2005). Their
distribution is not random and often colocalizes with sites of
chromosomal breakage (Zhao et al., 2010). Triplex structures can
block the replication fork and result in double-stranded breaks
(Dixon et al., 2008). Unlike other non-canonical structures, triplex-
forming sequences are found frequently in promoters and exons
and have been found to be involved in regulating the expression of
several disease-linked genes (Wang and Vasquez, 2004). In some
cases, the mutagenesis induced by such sequences is enhanced
by their transcription (Belotserkovskii et al., 2007), possibly via
transcriptional arrest.

Sequence–structure relationships of triplexes were brought into
a small number of computational tools for identifying relevant
sequences in genome sequences. Schroth and Ho (1995) analyzed
the occurrence of inverted and mirror repeats in three genomes.
Hoyne et al. (2000) analyzed the Escherichia coli genome for
intrastrand triplex sequences. Another recent work (Cer et al., 2010)
created a web-based catalog of non-B DNA sequences in major
mammalian genomes. Their definition of triplex covers the most
stable canonical triplexes made of G.GC/A.AT and C.GC/T.AT
triplets, but leaves little room for possible errors. Jenjaroenpun and
Kuznetsov (2009) created a web-based analysis tool for triplex target
sequences.

Intramolecular triplex DNA (also called H-DNA) has been shown
to exist both invivo and invitro (Hanvey et al., 1988). Its formation
also depends on the topological state of the given DNA molecule.
While sequences supporting canonical triplets, such as (CT (T ))n
and (GA(A))n tracts, form triplexes readily, imperfect triplexes

may require special conditions, such as low superhelical density
or certain pH to form. Invitro, superhelical density and pH can be
easily controlled. Invivo, pH is tightly controlled by the cell, while
the topological state of any stretch of genomic DNA is generally
unknown, but presumed to be under regulatory control as well. This
uncertainty is the main reason for using the term ‘triplex-forming
sequence’ or ‘triplex-forming potential’, which hints that while the
sequence should be capable of forming a triplex, it may only be
formed under special circumstances.

2 APPROACH
Based on available literature, we assume there are two important
classes of sequence-based imperfections (errors) destabilizing
potential triplex structures.

• Base pairing mismatch

• Geometrical mismatch

Abase pairing mismatch occurs upon the formation of a nucleotide
triplet that does not support strong Hoogsteen or reverse Hoogsteen
bonds. The ability to form the bond and its strength is related to the
number of hydrogen bonds that can be made between the second
and third strand base. In this article, we present an algorithm that
is based on scores assigned to base triplets. The scores are meant
to approximate energy contributions of individual triplets, but at the
same time to be simple enough to support rapid searching that could
be used as pre-filtering, preceding detailed energy calculations on
the candidate sequences.

A geometrical mismatch occurs when directly neighboring
triplets in a structure are not isomorphic. This places extra stress
on the backbone of the third DNA strand preventing it from
creating optimal hydrogen bonds. According to Thenmalarchelvi
and Yathindra (2005), conformational changes necessitated by
triplet non-isomorphism are found to induce an alternative zig-zag
backbone structure for the third strand in special cases. Accordingly,
we made our algorithm favor triplet combinations that are either
isomorphic or made of non-isomorphic pairs that could form a zig-
zag shape by canceling their geometric effect on the third strand
backbone.

We currently ignore other known factors of triplex DNA
formation, such as the competition between alternative structures
(Rippe et al., 1992), fourth strand (the strand which is not part of
the predicted triplex) secondary structure, effects of C+ distribution
(James et al., 2003; Seidman and Glazer, 2003) and other distortions
caused by electrostatic forces (Kang et al., 1992; Tan and Chen,
2006). Most of these factors depend non-trivially on the environment
(Plum et al., 1995). Since the algorithm does not consider the
environment, we focus primarily on sequence-coded effects and the
resulting constraints which can be computed using the information
from primary structure. Destabilizing effects of loop lengths that
differ from the optimum of about five nucleotides (Haasnoot et al.,
1986) and the overall length of the triplex (Tan and Chen, 2006) are
partly accounted for, since these parameters can be set as hard limits
in our implementation, to narrow the search space.

3 METHODS
Datasets: to evaluate the algorithm on selected datasets, we prepared a
set of sequences to work with (all ∼4.7 Mb to match the size of E.coli
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genome): (i) a random nucleotide sequence; (ii) E.coli K-12 MG1655
complete genome (the 1995 U00096.1 version to be able to compare our
results to previous publications); (iii) E.coli K-12 MG1655 complete genome
(the current U00096.2 version for proper positioning in genome browsers);
(iv) a randomized nucleotide sequence of the same E.coli genome; (v) a part
of the human chromosome 5 sequence (positions 144635154–149340649)
and (vi) a randomized version of the same human sequence. For the human
randomized sequence, we also generated a triplex-seeded version with 418
triplex-forming sequences from literature inserted at positions ∼10 000 bp
apart. All the sequence data are available as Supplementary Material and can
also be downloaded from http ://www.fi.muni.cz/∼lexa/triplex. Random
sequences were generated with equal probability for all four bases, and were
prepared with an in-house algorithm seqmix-0.2 (Supplementary Material).

Molecular simulations of triplets: to obtain objective information about
isomorphic groups, we analyzed the angle and radius formed by C1 atoms of
triplet nucleotides as defined in Thenmalarchelvi and Yathindra (2005). The
groups were determined using the following procedure. First, the structures
of all considered triplets were constructed using the NAB language from
AmberTools 1.4 and their potential energy surface was explored for local
minima by moving and rotating the third (Hoogsteen) base in the plane
formed by the other two bases. The energy function was parametrized using
the ff99bsc0 set (Perez et al., 2007). The obtained local minima were filtered
according to the values of the C1 angle (t) and the ratio |WH|/|CH|, where
|WH| represents the distance between the C1 atoms of the Hoogsteen pair
and |CH| represents the distance between the C1 atoms of the mutually
unpaired bases. Filtering thresholds were derived from measurements on
a set of real structures, namely the structures 135D, 149D, 1BCB, 1D3X
(PDB identifiers). The specific thresholds used were 70≤ t ≤130 and 0.54≤
|WH|/|CH|≤0.88. From the resulting set of local minima, the structure with
the lowest potential energy was selected as the source of the parameters t
and r (the radius of the circle formed by the C1 atoms). Finally, the groups
were established by performing cluster analysis using Ward’s method and
euclidean distance between the (t,r) vectors. These results were interpreted
to obtain isomorphic groups in Table 1, and detailed results are available as
Supplementary Material.

Testing overview: we tested our implementation for correctness and
usability. Clearly, the algorithm will only be useful, if it is capable of
identifying potential triplex-forming sequences in a genomic background
with a reasonable success rate. To test the implementation in this respect,
we performed statistical tests on real and randomized sequences, a sequence
recovery test on the triplex-seeded sequences, and we compared our solution
to previously published results for the E.coli genome (Hoyne et al., 2000)
and a currently published non-B DNA database (Cer et al., 2010).

Statistical tests: the statistical tests served to find parameters for the
distribution of scores on randomized sequences and establish a proper
threshold above which candidate hits should be considered significant.
The distribution of scores was modeled according to principles used for
evaluating BLAST results and other sequence similarity scores (Altschul
et al., 1994; Korf et al., 2003), since the alignment of a DNA strand
against itself is statistically similar to aligning two different sequences. This
treatment allowed us to fit the score distribution with an extreme value
distribution function and fit the parameters λ and µ as described by Korf et al.
(2003). To carry out the calculation, we used a function from hmmer-2.3.2
source code (Eddy, 1997).

Recovery tests: the recovery tests evaluated how many of the introduced
triplex-forming sequences were recovered for a selected significance
threshold (P-value) from different backgrounds sequences. We used the
commonly used characteristics for such experiments: specificity (precision),
sensitivity (recall), F2 measure and accuracy (Manning et al., 2008). The
algorithm was tested against our triplex-seeded sequence and a database of
non-B DNA (Cer et al., 2010).

Table 1. Triplex scoring of canonical and less usual triplets

Triplex type Triplet
H.WC:WC

Score
(tts)

Isomorphic
group

References

PARALLEL T.A:T 2 a Goni et al. (2004)
T.G:C 1 a Ghosal and Muniyappa (2006)
C.G:C 2 a Walter et al. (2001),Goni et al.

(2004)
G.G:C 1 b Soyfer and Potaman (1995)
G.T:A 2 b Gowers and Fox (1998)
T.C:G 1 b Soyfer and Potaman (1995)

ANTIPARALLEL A.A:T 2 c (Goni et al. (2004), Mirkin and
Frank-Kamenetskii (1994))

A.G:C 1 d Mirkin and Frank-Kamenetskii
(1994), Raghavan and Lieber
(2007)

T.A:T 2 c Goni et al. (2004), Mirkin and
Frank-Kamenetskii (1994)

T.C:G 1 e Raghavan and Lieber (2007),
Beal and Dervan (1992)

C.A:T 1 d Raghavan and Lieber (2007),
Soyfer and Potaman
(1995),Dayn et al. (1992)

G.G:C 2 e Goni et al. (2004), Mirkin and
Frank-Kamenetskii (1994)

The final score values for both Hoogsteen and reverse-Hoogsteen bonds are in
accordance with tables 4.1 and 4.2 in Soyfer and Potaman (1995). Isomorphic
groups shown here are based on residual twist calculations using molecular dynamics
simulations with the nbd program (AmberTools). ., Hoogsteen bp; :, Watson–Crick bp;
tts, tabulated triplet score.

Escherichia coli tests: we compared our tool and its performance on the
E.coli genome sequence to the results published by Hoyne et al. (2000).
Additionally, we calculated the genome positioning of program output in
respect to known E.coli genes, counting the frequency with which predicted
triplexes fell inside the gene, outside any genes or intersected with them.
Distance to the closest gene was calculated as shown in Figure 6.

4 THE ALGORITHM
Our approach to search for approximate triplexes is based on a dynamic
programming (DP) algorithm to search for approximate palindromes that
can be traced back to Landau and Vishkin (1986). The relationship between
triplex DNA and palindromes stems from the fact, that one of the DNA
strands in the triplex must fold back onto itself, either for Hoogsteen base
pairing or for reverse Hoogsteen base pairing, depending on the type of
triplex that is to be formed (parallel or antiparallel) and the nucleotide
sequence present at the site in question. We will call the part of the triplex
that folds back onto itself self-recognizing.

A DP matrix is constructed so that one side represents the original
sequence, while the other contains the same sequence written backwards
(Fig. 2). With such setup, the main antidiagonal of the DP matrix represents
the n possible central starting positions for the self-recognizing parts of
triplexes with an odd number of nucleotides in the loop. The neighboring
antidiagonal contains the other n−1 possible starting sites for the triplexes
with even number of nucleotides in their loops. Naturally, diagonals starting
at any of these positions represent potential triplexes. If we fill the cells
representing the starting positions with zeros, we can start filling the DP
matrix along the diagonals. At each position [i,j] of the DP matrix, we
compare the symbols at positions i and j in the original sequence. If they
represent a pair present in triplex-forming triplets (tabulated in Table 1), they
are evaluated with positive score. In opposite case, they are penalized with
a negative score value. The numbers entered represent the best score in the
subsequence evaluated so far.
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A

B

Fig. 2. Triplex detection by the DP algorithm demonstrated on the string
gggctccttcttctatcctcttt. (A) The DP matrix with calculated score values.
Because of space limitations, loop size was forced to 0. (B) Triplex alignment.
Hoogsteen bonds are shown by semicolons.

The necessity for a dynamic programming algorithm comes from the
possibility to insert gaps into the triplexes, where symbols in some positions
have no symbols to pair up with in the other arm of the self-recognizing
sequence. In terms of the described algorithm, this means moving from one
diagonal to a neighboring one when calculating the score. At any position,
three possibilities are evaluated:

(1) Extending the existing triplex along the diagonal - match or mismatch,

(2) Inserting a gap at position i of the original sequence - insertion,

(3) Inserting a gap at position j of the original sequence - deletion.

The solution that leads to the maximum score value is recorded in the DP
matrix, while the other possibilities are discarded.

In comparison to a similar algorithm for approximate palindrome
detection, we have introduced three important modifications. First, we
redefined the concept of match and mismatch. Instead of being made up
by pairs of nucleotides with only two possible base pairs, triplexes can
be thought of as sequences of triplets with many possible combinations
of nucleotides in the triplet. There are 16 possible base pairs for parallel
DNA strands and another 16 for antiparallel strands. For these reasons, we
constructed a general similarity matrix instead of using a single match rule
and score.

Second modification brings geometrical considerations into the algorithm,
making certain sequences of triplets less desirable than others. This is similar
to the nearest-neighbor scoring used in duplexes, although we are not as
much concerned about base stacking as we are about the geometry of the
third strand and its ability to position itself for optimal hydrogen bonding.
As discussed by Rathinavelan and Yathindra (2006); Thenmalarchelvi and
Yathindra (2005), some combinations disrupt the backbone geometry. We
therefore decided to divide the triplets into isomorphic groups. Groups
of triplets from one group are more likely to form stable triplexes than
other sequences. Our modification assigns the information about isomorphic
groups to the last computed DP matrix cell on each diagonal. When
calculating a new cell, we lower the score if the newly evaluated triplet

belongs to a different isomorphic group than the preceding one. The score
calculation is

S[i,j]=max

⎧⎨
⎩

S[i,j−1]+gp
S[i−1,j]+gp
S[i−1,j−1]+tts[a,b]+nip

(1)

where a, b are characters at appropriate row and column, tss is tabulated
triplet score, gp is gap penalty and nip is no-isomorphism penalty.

The third consideration is to account for all the possible ways a triplex
can form from a given sequence, i.e. which three strands combine together
and in which orientation (Fig. 1). There are always eight ways that can give
rise to a intramolecular triplex at a given position, since there are two strands
that can serve as the third strand, each having two ends that can loop back
onto the double-stranded region and in each of these cases it can attach
on either side of the duplex in a parallel or antiparallel fashion, forming
Hoogsteen and reverse Hoogsteen bonds, respectively. In order to detect
all types of triplexes the computation is repeated eight times with scoring
matrices specific for parallel and antiparallel triplexes.

4.1 Scoring function
We evaluate the combinations based on their ability to form Hoogsteen
base pairs, tabulating the 32 values as complementarity scores. One way to
populate such table is to consider all canonical triplets to represent a match
and everything else a mismatch. Because the ability to form Hoogsteen bonds
depends partly on the environment of the given nucleotide, we took a semi-
empirical approach, giving all canonical triplets a match score of 2, scanning
triplex literature for examples of less usual triplets and giving those a score
of 1, while all other combinations are scored as a mismatch (Table 1). Other
approaches leading to a better scoring scheme are certainly possible, but
beyond the scope of this article.

4.2 Triplex loop detection
The algorithm introduced in this section has been designed to detect the best
candidates for triplex formation. To avoid the inclusion of free-strand and
loop nucleotides into the overall score for a particular triplex (because these
nucleotides do not participate in Watson–Crick or Hoogsteen base pairing),
our calculations use a technique composed of a combination of local and
global alignment.

In terms of the DP matrix, potential loops always begin at the main
antidiagonal, extending up to lloopmax (user-defined algorithm parameter),
using Equation (1) to calculate new values. The first 2lloopmax antidiagonals
are therefore calculated by a technique similar to the one used in Smith–
Waterman local sequence alignment. In this part, we allow the score of a
growing triplex to grow or decline. However, if the density of errors is
high enough to bring the score into the negative territory (potential loop
occurrence), we do not allow the score to become negative.

Once the calculations exit the area of a potential loop, the calculations
continue in a global alignment mode. This way the algorithm can detect
high-quality triplex candidates without considering errors that fall within
potential loops.

4.3 Triplex detection
The best triplexes in the DP matrix can be identified as those reaching the
highest score. To allow detection of such high scoring segments (HSS)
during the calculation, we use a technique similar to the one used in the
BLAST program. Once the score rises above a preset threshold value, the
region responsible for the score is considered a potential triplex. The score
is monitored (allowed both to increase and decrease) until it falls below a
preset threshold. The sequence from the beginning (the first antidiagonal) up
to the maximum score becomes the HSS of the potential triplex (Fig. 3).

A number of filtration mechanisms can be applied to the step of HSS
segment detection. One of the problems we had to deal with (causing false
HSS detection), was the transfer of scores from neighboring diagonals.
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Fig. 3. Detection of high scoring segments.

In the presence of a high-quality triplex sequence, neighboring diagonals
adopt its high score by introduction of an extra insertion or deletion. We
therefore check for such cases and only report genuine HSS scores and not
the neighboring derivatives.

Further filtration is carried out based on statistical significance of the
results, eliminating all short or low-quality potential triplexes below a
user-defined E-value or P-value threshold (see Section 5 for details on
P-value calculations on experimental datasets). A pair of filtering programs
(prefilter_gff.c and filter_gff.c, see Supplementary Material) were used to
filter out results not supporting a local score maximum (meaning there is a
better result nearby).

4.4 Time and space complexity
Time complexity: the calculation of the entire triangle of the DP matrix
has n2/2 steps. However, when analyzing real or random sequences, the
likelihood of finding a potential triplex decreases with its length (see section
5 for a detailed description of this effect). Therefore, for most practical
purposes we only need to evaluate a limited number of antidiagonals, say 2l,
where l is the maximal length of detected triplexes. Time complexity thus
becomes O(2ln).

Space complexity: with respect to data dependencies, only the values for
the last two antidiagonals are necessary for calculation. Thus, the space
complexity of our algorithm is O(2n).

Both simplifications/efficiency enhancements used to derive the time and
space complexities allow us to easily extend the algorithm to perform an
incremental calculation. If upon completion of the calculation we find that
the number of antidiagonals was not sufficient, leaving several potential
triplexes unresolved, we can pick up the score values from the last two
diagonals and continue in the calculations in another 2l antidiagonals.

5 RESULTS AND DISCUSSION
We subjected the algorithm to increasing levels of scrutiny to verify
the validity of our searching procedures, fine-tune some of the
parameters and establish the biological relevance of selected results.

Initial experiments were directed towards establishing reasonable
mismatch and insertion/deletion penalties. The penalties have
to be high enough to allow for a negative average score per
triplet (Korf et al., 2003). Without any rigorous optimization, we
found the combination mismatch −7, insertion or deletion −9,
no_isomorphism −5 to fulfill these criteria and work reasonably
well on all sequences.

Table 2. The results of fitting an extreme value distribution function to score
distribution data obtained from randomized sequences of E.coli and human
genomes

Randomized sequence data λ µ Threshold

Escherichia coli 0.91 6.00 20
Human chr5 0.84 6.28 21

The threshold shown here for reference purposes is the score above which <10 sequences
were found in randomized data. Precise E-values and P-values can be calculated from
values of λ and µ according to Equation (2).

Identification of a higher number of potential triplexes in real-
world sequences compared with random and randomized sequences
is the first confirmation that the patterns we are collecting using this
approach are not random, but rather specific combinations with a
possible function that are less frequent in random sequences.

For a rigorous test of non-randomness of the identified candidates,
we tested our implementation of the algorithm against a set of 4.7 Mb
DNA sequences from E.coli and human genomes, their randomized
version and a triplex-seeded randomized E.coli genome (see Section
3). For each of the sequences, we used the program to identify
all potential triplexes and their scores. Since an incrementally
detected triplex-forming sequence must obey similar rules as an
incrementally growing sequence alignment (only with different base
pairing rules), we would expect the obtained scores to obey an
extreme value distribution described by Altschul et al. (1994).

P(S >x)=1−e−e−λ×(x−µ)
(2)

We used a maximum likelihood method described by Eddy (1997)
to fit our scores to this function. The resulting values of λ and µ are
given in Table 2. Figure 4 shows a graphical representation and
corresponding parameter values of triplex scores for the different
datasets used. Clearly, randomized sequences have a lower content
of high-scoring sequence patterns. Also, human sequences seem
to be richer in potential triplex-forming sequences, comparable in
density to the artificially seeded E.coli sequence with one triplex
sequence per every 10 000 bp.

We used the λ and µ values to derive statistical thresholds for
searching (Table 2). These are different for parallel and antiparallel
triplexes, since the two use a different similarity matrix, resulting in
different score distributions.

Next, we analyzed the non-B DNA database triplex predictions
(Cer et al., 2010) and our triplex-seeded sequence containing 418
inserted triplexes with artificial mismatches and insertions. Our
program preferentially recovered the positions of known triplex
sequences. Figure 5 shows sensitivity, specificity, accuracy and
F2 measure for these two sets. F measure is the harmonic
mean of sensitivity and specificity. F2 measure is its commonly
used modification, which gives higher priority to recall. F2
measure values >40% are satisfactory, given that 100% of potential
triplexes are recovered with a P-value better than 0.01. Some
loss of performance on triplex-seeded data is understandable, since
mismatches and insertions/deletions were introduced in sequences
as short as 6 bp.

One of the detected sequences, is a well-studied triplex
from human metallothionein-I promoter (Bacolla and Wu, 1991).
This sequence was the second highest-scoring sequence in the
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Fig. 4. Log-scale extreme value distribution functions for E.coli (dashed
line), human (solid line) and triplex-seeded datasets (dotted line) compared
with background random sequences (thin lines), including a random
sequence, randomized E.coli and human sequences. A maximal likelihood
fit to the random sequences is available in Table 2. While the E.coli genome
contains potential triplex sequences only slightly above background levels,
the human genome seems to be rich in such sequences with density similar
to the triplex-seeded dataset.

triplex-seeded data, scoring 34 with a P-value of 5.10−9.
Interestingly, we detected two high-scoring subsequences within the
MT-I promoter potential triplex, supporting the view of Bacolla and
Wu (1991) and Becker and Maher (1998) that alternative triplex
structures may be formed at this specific site.

For an alternative evaluation of the validity of our algorithm,
we analyzed the E.coli genome for triplex-forming sequences and
compared the results with those described in Hoyne et al. (2000).
They searched for potential intrastrand triplex (PIsT). The PIsT
element requires the consecutive occurrence of all three triplex-
forming blocks of nucleotides, while potential intramolecular triplex
(PImT) element requires the consecutive occurrence of just two
triplex-forming blocks (the third block is provided by the parallel
strand). Thus, every PIsT element by definition contains also a PImT
element.

For each of the 25 PIsT elements presented in Hoyne et al.
(2000), we are able to identify the corresponding PImT element
in E.coli genome with appropriate parameter settings. The score of
these elements range from the value of 6 to the value of 20 and
the corresponding P-values vary from 4.7×10−1 to 2.9×10−6.
The best potential triplex element in E.coli genome found by our
algorithm scored 21 with a P-value of 1.2×10−6.

Finally, we examined some of the identified potential triplex sites
for biological relevance. Producing a GFF file with results enabled
us to view them in the UCSC Genome Browser. Here, we noticed a
possible relationship to known E.coli genes. To test this, we counted
the number of predicted triplexes falling within genes, outside genes
or <100 bp from gene boundaries (Fig. 7A). We also calculated the
number of predicted triplexes occurring at different distances from
the closest gene (Fig. 6) and calculated the ratio of this value to
randomly placed positions. There seems to be some preference for
potential triplexes to occur in the −50 to −160 region of known
genes (Fig. 7B). Given the relatively high P-value at which this
effect was still visible, it is possible that it is not directly related
to the presence of triplexes, but rather a result of shared sequence

B

A

Fig. 5. Sensitivity, specificity, accuracy and F2 measure calculated for (A)
the non-B DNA database (Cer et al., 2010); (B) the triplex-seeded dataset.
The figure shows that the best matches obtained with the described algorithm
and settings are entirely made up of the seeded sequences. At lower P-
values, we start picking up some sequences from the background sequence;
acceptable results before accuracy drops sharply are achieved for P-values
of <1.0×10−2.

Fig. 6. The definition of the closest gene as used in the numerical experiment.
For each triplex we identified its center S (rounded up for even triplexes),
and calculated the distances l1, l2, l3 and l4 to the closest upstream and
downstream gene borders on both DNA strands. The minimum of these four
values was used.

characteristic between triplexes and regulatory sequences, such as
their underlying palindromic nature.

Another observation showed these positions to be clustered at
boundaries of evolutionarily poorly conserved regions. A quick
literature search revealed a possible connection. Non-B DNA
structures are likely to pose a physical barrier to transcriptional
apparatus, causing possible transcriptional arrest at such sites (Young
et al., 1991). Transcriptional arrest has been directly linked to
increased mutation rate (Belotserkovskii et al., 2007), which could
explain some aspect of the above-mentioned positioning in genomes.
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B

A

Fig. 7. Graphs showing how potential triplexes identified by the program
are positioned in respect to genes in E.coli. (A) The percentage of triplexes
in the results falling inside genes, intersecting with a gene or falling within
intergenic segments of the genome. Bars are shown for results of decreasing
specificity (from left to right); (B) the relative abundance of high-scoring
sequences at different distances from nearby genes (relative to randomly
placed positions). Both figures were generated after applying the following
cutoffs to the results: top 122 (strong triplex), top 1391 (potential triplex),
top 15300 (weak triplex), top 106623 (background) and random selection of
positions (genome).

While the main purpose of this article is to present the algorithm
itself, a more detailed analysis of the best parameter settings and
performance with specific DNA sequences is needed to further
increase confidence in this kind of sequence analysis.

Because of the increased complexity of scoring, the outlined
procedure for scoring individual triplets within the DP matrix cannot
be easily extended to take advantage of suffix arrays as is done with
palindromes, to further speed up computation.

Overall, we consider it an advantage that triplex identification
can be mapped to a well-researched family of DP algorithms and
possibly take advantage of approaches aimed originally at other
problems, such as sequence alignment.

6 CONCLUSION
We present a novel approach to identifying triplex-forming
sequences in genomes and other DNA sequence data. The
approach is presented in the form of an algorithm based on
previously published algorithms for detection of palindromes. The
novelty stems from the adaptation of DP for use with triplexes

instead of relying on simpler identification of homopurine and
homopyrimidine tracts, which are most appropriate for detection
of perfect triplexes. We implemented our algorithm as a program
written in C, using a reasonable set of parameters based on published
data. The test runs of this program are encouraging, suggesting
that the algorithm can provide high speed searches with increased
sensitivity for approximate triplex-forming sequences.
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ABSTRACT

Motivation: Upgrade and integration of triplex software into the

R/Bioconductor framework.

Results: We combined a previously published implementation of a trip-

lex DNA search algorithm with visualization to create a versatile

R/Bioconductor package ‘triplex’. The new package provides functions

that can be used to search Bioconductor genomes and other DNA

sequence data for occurrence of nucleotide patterns capable of forming

intramolecular triplexes (H-DNA). Functions producing 2D and 3D dia-

grams of the identified triplexes allow instant visualization of the search

results. Leveraging the power of Biostrings and GRanges classes, the

results get fully integrated into the existing Bioconductor framework,

allowing their passage to other Genome visualization and annotation

packages, such as GenomeGraphs, rtracklayer or Gviz.

Availability: R package ‘triplex’ is available from Bioconductor

(bioconductor.org).

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

DNA sequence analysis and annotation are important steps in

uncovering the molecular basis of life. Although protein-coding
sequences have been intensively studied in the past, recent focus

has shifted toward the less-known biological functions encoded

in intergenic DNA, as well as the study of structural and regu-

latory aspects of genetic information packaging in chromosomes.

Tools for the necessary sequence analysis of non-coding
sequences are less common than their gene-centered counter-

parts. We have recently formulated and implemented an algo-

rithm to detect potential triplex-forming sequences in genomes

(Lexa et al., 2011). Such sequences have been implicated as im-

portant players in several key processes, such as transcriptional

regulation (Walter et al., 2001) or DNA recombination (Rooney
and Moore, 1995).

Triplex DNA forms when a third strand of nucleotides is

allowed to align with a Watson–Crick duplex using Hoogsteen

bonds to stabilize the nascent structure (Soyfer and Potaman,

1995). H-DNA is a form of DNA where triplexes form intramo-

lecularly, without the participation of other DNA molecules

(Htun and Dahlberg, 1989).
Currently, several research groups reported on their efforts to

map triplex-forming sites in known genomes, as well as on the

development of tools to carry out such searches. Hoyne et al.

(2000) used pattern recognition tools to search for homopurine/

homopyrimidine stretches in DNA as likely triplex formation

sites. Cer et al. (2012) created a non-B DNA search tool

(nBMST) that includes mirror repeat detection functionality to

identify potential triplexes. Buske et al. (2012) and Lexa et al.

(2011) created triplex detection procedures allowing for a small

percentage of imperfections in the sequences, leading to higher

sensitivity of searches. Often, the tools exist as stand-alone soft-

ware or web tools, which led us to the idea to integrate triplex

search, visualization and genome annotation into a unified

Bioconductor software package in R for increased flexibility.
Here, we describe triplex, demonstrating its use in sequence

analysis of sample data, focusing on functions integrating it with

the rest of the R/Bioconductor suite. Of the aforementioned soft-

wares, only triplex provides specialized H-DNA searching. The

other software treats H-DNA as general mirror repeats and lacks

fine-grained or configurable mismatch evaluation (nBMST),

focuses on a different class of triplexes (Hoyne et al., 2000) or

provides general results that need to be further filtered to identify

H-DNA (triplexator), requiring several orders of processing time

more than triplex. The software by Lexa et al. (2011) used

to create the package was improved by (i) integration into

R/Bioconductor, (ii) elimination of recognized bugs in scoring

and alignment and by (iii) providing base pair information, either

as text/variables or visualizations.
We performed a simple comparison of nBMST and triplexator

programs with triplex (see Supplementary Material). It showed

that reported (CT)n and (TA)n mirror repeats coincide with

H-DNA found by triplex. Triplexator returned several longer

patterns reported by triplex in fragments, a problem that may

depend on precise settings, although we found computation time

and memory use increased significantly at such attempts. This is

likely caused by triplexator design to find any combinations of

triplex-forming sequences, not only local patterns leading to

H-DNA.*To whom correspondence should be addressed.
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2 THE SOFTWARE

The R triplex package is essentially an R interface to the under-
lying C implementation of a dynamic-programming search strat-
egy of the same name (Lexa et al., 2011). The main functionality

of the original program was to detect the positions of subse-
quences in a much larger sequence capable of folding into an
intramolecular triplex (H-DNA) made of as many canonical nu-

cleotide triplets as possible. We extended this basic functionality
to include the calculation of exact base pairing in the triple helices.
This allowed us to include visualization, showing the exact base

pairing in 1D, 2D or 3D (see Section 3). The created package
takes advantage of the existing Bioconductor infrastructure. For
example, the triplex search method uses the DNAString object as
input. As a result, all available genomes (BSgenomes objects) can

be easily analyzed. As for the output, identified triplexes are
stored in data objects of a class based on XStringViews. Thus,
all other libraries or methods working with IRanges can be

applied to triplexes as well. Alternatively, the results can be trans-
formed into GRanges objects that enable further possibilities, such
as visualization of genome tracks using GenomeGraphs or export

of results to the GFF3 annotation format.

3 USAGE EXAMPLE

In the following example, we load a genomic sequence from one

of the BSGenome packages, identify potential triplexes with
length over eight triplets of nucleotides and score �17, create
two different visualizations of the best-scored triplex. Finally,

we export the identified positions into a genome annotation
track (via a GFF3 file) and store the sequences in a FASTA file.

I) Load necessary libraries and genomes.

II) Search for potential triplex positions and display the results.

III) Sort the results by score and display the best-scoring

non-trivial triplex. Graphical output is shown in Figure 1.

IV) Export the results as GFF3 and FASTA files.

4 CONCLUSION

We present a new R/Bioconductor package that integrates our

previously defined algorithm for identification of triplex-forming

sequences with two new methods of their visualization (2D dia-

gram and 3D model). The created package uses existing

Bioconductor infrastructure in such way that available genomes

(BSGenomes) can easily be used as input. The identified triplexes

can be further analyzed as IRanges or GRanges objects (and

optionally exported into GFF3 or FASTA file). In connection

with R language and existing libraries for statistical analysis, the

package represents powerful tool for molecular biologists inter-

ested in analysis of non-canonical DNA structures such as

triplexes.
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Abstract

Motivation: G-quadruplexes (G4s) are one of the non-B DNA structures easily observed in vitro

and assumed to form in vivo. The latest experiments with G4-specific antibodies and G4-

unwinding helicase mutants confirm this conjecture. These four-stranded structures have also

been shown to influence a range of molecular processes in cells. As G4s are intensively studied, it

is often desirable to screen DNA sequences and pinpoint the precise locations where they might

form.

Results: We describe and have tested a newly developed Bioconductor package for identifying po-

tential quadruplex-forming sequences (PQS). The package is easy-to-use, flexible and customiz-

able. It allows for sequence searches that accommodate possible divergences from the optimal G4

base composition. A novel aspect of our research was the creation and training (parametrization)

of an advanced scoring model which resulted in increased precision compared to similar tools. We

demonstrate that the algorithm behind the searches has a 96% accuracy on 392 currently known

and experimentally observed G4 structures. We also carried out searches against the recent

G4-seq data to verify how well we can identify the structures detected by that technology. The cor-

relation with pqsfinder predictions was 0.622, higher than the correlation 0.491 obtained with the

second best G4Hunter.

Availability and implementation: http://bioconductor.org/packages/pqsfinder/ This paper is based

on pqsfinder-1.4.1.

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA sequences capable of forming alternative secondary structures,

called non-B DNA, have long been at the center of research interest

because of their possible biological functions (Du et al., 2013) and

their involvement in mutagenesis and disease (Bacolla and Wells,

2009). Instead of forming canonical B-DNA helices with Watson-

Crick base pairing, these regions of DNA can engage in different

types of base pairing and form cruciforms, triplexes (or H-DNA),

G-quadruplexes (G4s), i-motifs and a few other alternative struc-

tures (Wells, 2007). After previous work on algorithms and practical

solutions to identify triplex DNA (Hon et al., 2013; Lexa et al.,

2011), we focus here on identifying potential quadruplex-forming

sequences (PQS).

As evidenced by sequencing (Chambers et al., 2015), as well as a

large number of other experimental and in silico studies, PQS are

found in high numbers in eukaryotic genomes (Huppert, 2005; Lexa

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3373
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et al., 2014). They are implicated in several genome-wide processes,

mostly as positive or negative regulators of transcription (Rhodes

and Lipps, 2015), negative regulators of replication which require

specialized helicases for the processes to continue (Mendoza et al.,

2016) and may be dispersed into critical locations of the genome by

the activity of transposable elements (Kejnovsky and Lexa, 2014).

Today, several software tools for identification of PQS in biolo-

gical sequences are available. The oldest and most commonly used

algorithms are based on a simple folding rule representing four runs

of guanines separated by relatively short loops (or spacers). These

include quadparser (Huppert, 2005), QGRS Mapper (D’Antonio

and Bagga, 2004; Kikin et al., 2006) and Quadfinder (Scaria et al.,

2006). The folding rule used in these tools is usually of the form

G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}.{1,8}G{3,6} reflecting the fact that

PQS with short loops and four perfect G runs form the most stable

G4s in vitro. These tools consider only sequences that match the se-

quence formula perfectly.

In recent years, different in vitro experiments have confirmed the

existence of imperfect G4s (Mukundan and Phan, 2013). They have

also been explored in silico by molecular dynamics (Varizhuk et al.,

2017). As a result, new tools for prediction of imperfect G4s began

to be developed. Such tools include TetraplexFinder/QuadBase2

(Dhapola and Chowdhury, 2016), ImGQfinder (Varizhuk et al.,

2014) and G4Hunter (Bedrat et al., 2016). For example,

TetraplexFinder considers potential bulges of defined length in runs

of three guanines, while ImGQfinder considers the possibility of a

single bulge or mismatch in a wider variety of guanine run lengths.

Finally, G4Hunter does not define individual defect types, but uses a

simple encoding and statistics over a sliding window, that can

accomodate different types of defects.

It has also been discovered that a given DNA segment (sequence)

can form several overlapping G4s, by definition mutually exclusive,

where individual nucleotides in the sequence compete with each

other for binding via Hoogsteen bonds (Agrawal et al., 2014). In

these cases, it is very useful to have a tool for predicting all overlap-

ping instances and evaluate them with scores that correlate with the

propensity for G4 formation. The only tool predicting overlapping

G4s and at the same time capable of assigning scores to their indi-

vidual instances is QGRS Mapper. Its score function considers the

number of Gs in each run, loop lengths as well as the difference in

loop lengths. Features of existing software tools for PQS identifica-

tion are summarized in Table 1.

In this paper, we introduce an R package and the underlying al-

gorithm for PQS detection that addresses certain shortcomings of

the available tools.

Five main ideas projected into the package functioning are to: (i)

allow imperfections in PQS as mismatches or bulges in G runs and

excessively long loops between the G runs, (ii) provide a PQS score

that is closely related to G4 stability, (iii) give the user a choice be-

tween reporting all overlapping PQS and/or only the locally best,

(iv) provide the overall number (density) of possible PQS conform-

ations covering each position in the input sequence and (v) allow

users to define their own criteria for matching and scoring, overrid-

ing the defaults determined by calculations in this paper.

The package and the algorithm were called pqsfinder and ac-

cepted into Bioconductor (Huber et al., 2015) in April 2016. Here,

we explain how the ideas were implemented in the package and

apart from tuning its default parameters and settings, we show how

pqsfinder predictions relate to recently carried out G4 sequencing

(also called G4-seq or G-seq) (Chambers et al., 2015).

2 Approach and algorithm

The main principle of the algorithmic approach presented here is

based on the fact that monomolecular G4 structures arise from com-

pact sequence motifs composed of four consecutive and possibly im-

perfect guanine runs (G runs) interrupted by loops of semi-arbitrary

lengths.

The algorithm first identifies four consecutive G run sequences

(G run quartet). Subsequently, it examines the potential of such G

run quartet to form a stable G4 and reports a corresponding quanti-

tative score.

The pqsfinder algorithm can be divided into three logical steps:

(i) identification of all possible G run quartets, (ii) score assignment

and (iii) overlap resolution. All three parts are described in the fol-

lowing sections.

2.1 Identification of all possible G run quartets
The first G run is matched freely in the sequence by a regular expres-

sion G{1,10}.{0,9}G{1,10} with limited minimal and maximal

length. This regular expression allows us to match imperfect G runs

containing both mismatches and bulges while requiring at least two

guanines. The remaining three G runs are matched by the same regu-

lar expression with the following additional constraints: (i) each

subsequent G run must lie beyond the 3’-end of the previous one (no

overlap), (ii) the distance of each G run to the previous G run must

be in the range of minimal and maximal loop length and at most

one loop is allowed to have zero length (Marusic et al., 2013) and

(iii) each G run has to fit in a sequence window defined by the first

G run starting position and the user-defined maximal PQS length.

These constraints are summarized in Figure 1.

As regular expressions are able to capture only one match (usu-

ally the maximal one), to list all possible combinations we use a

backtracking approach. After four initial G runs are matched and

processed, the last successfully matched G run is shortened by one

Table 1. Feature comparison of existing tools for PQS identification

Name Model Overlaps Imperf. Score Avail.

quadparser Folding rule � � � �

QGRS Mapper Folding rule � � � Web

Quadfinder Folding rule � � � �

ImGQfinder Folding rule � �a � Web

TetraplexFinder Regular expression � �b � Web

G4Hunter Sliding window �c � � R script

aImGQfinder allows at most one imperfection.
bTetraplexFinder supports only bulges of fixed length between 0 and 7.
cG4Hunter model inherently merges overlapping and neighbouring PQS. For this reason, the boundaries of individual PQS are not well-defined.
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nucleic acid base from the end and if it is still a valid G run, the algo-

rithm proceeds normally to scoring and overlap resolution. On the

other hand, if the shortened G run is not valid, the algorithm tracks

back to the previous successfully matched G run and applies the

same shortening modification. In this case, if the modified G run is

valid, the algorithm proceeds to match all the following G runs

again. Once the backtracking procedure gets to the first G run and

finds its shortened variant to be invalid, the whole process of G run

identification is rerun from position one after the starting position

of the first G run. The backtracking procedure increases the compu-

tational complexity of the search, but allows us to rigorously model

the competition between overlapping PQS.

2.2 Score assignment
The pqsfinder scoring scheme was designed to quantitatively ap-

proximate the relationship between G4 sequence and the stability of

its structure. While the scoring function is purely empirical, we in-

tentionally chose an approach where the score is modular and, ob-

tained by addition of scores representing the binding affinities of

smaller regions within the G4. This kind of approach has already

been proven to work for simpler DNA structures, such as nucleic

acid duplexes and hairpins. (SantaLucia, 2012; Zuker, 2003)

The first part of the scoring scheme quantifies the quality of indi-

vidual G runs. It awards the PQS a score for each G-tetrad stacking

and penalizes mismatches and bulges in G runs.

The scoring is then defined by Equation 1, where Nt is the num-

ber of tetrads, Bt is a G-tetrad stacking bonus, Nm is the number of

inner mismatches, Pm is mismatch penalization, Nb is the number of

bulges, Pb is bulge penalization, Fb is bulge length penalization fac-

tor, Lbi is the length of the i-th bulge and Eb is bulge length

exponent.

Sr ¼ ðNt � 1ÞBt �NmPm �
XNb

i¼1

Pb þ FbLEb

bi (1)

However, discrimination between bulges and mismatches can be a

demanding task requiring multiple sequence alignment. To avoid

this, we made two simplifying assumptions that allowed us to effi-

ciently analyze bulges and mismatches by only counting lengths of G

runs and their G content. First, we require at least one G run to be

perfect (consisting of just guanines). Second, we limit the number of

imperfections to one per G run. Based on the available literature, we

consider bulges and long loops to be strong destabilizers of G4s and

do not expect more than a few of these imperfections to be possible

at the same time.

In the scoring procedure, a perfect G run is taken as a reference

and other G runs are assessed relatively to the reference. A G run is

classified as mismatched, if it has the same length as the reference

and the G content lower by one. When a G run has a greater length

than the reference and at least the same G content, it is classified as

bulged. Finally, all G runs can only be either perfect, mismatched or

bulged. Other cases are considered to be invalid G runs. When there

are multiple perfect G runs present, the shortest one is used as the

reference.

The second part of the scoring scheme quantifies the destabiliz-

ing effect of the loops on G4 stability. At this time we have no mech-

anistic understanding of possible loop sequence and length effects.

Hence, we limit ourselves to an empirical formula that can accom-

modate some of the observations made by Guédin et al. (2010).

Loop length mean Lm is multiplied by the factor Fm and raised to

the power of Em. Complete scoring function is then expressed by

Equation 2.

S ¼ maxðSr � FmLEm
m ; 0Þ (2)

Fm and Em are numerical parameters that empirically model the

relationship between loop lengths and their destabilization effects

on the quadruplex. These permit a non-linear relationship, while

their values are derived by fitting the model to experimental results

(see Section 4). Sr is the value from Equation 1.

2.3 Overlap resolution
The overlap resolution is an iterative process that is designed to al-

ways prefer dominant PQS. First, all PQS sharing the highest ob-

tained score are selected (in subsequent iterations, PQS sharing the

highest remaining score are used). Second, the selected PQS are pro-

cessed one by one in the order of their increasing starting position as

follows: (i) if the current PQS overlaps the previous PQS, the current

PQS is removed, (ii) if the current PQS is completely included in the

previous PQS, the previous PQS is removed. Third, all lower-scoring

PQS overlapping with any of the remaining selected PQS are dis-

carded. Fourth, all selected PQS are reported and removed. Fifth,

the next iteration begins again with the remaining PQS. Iterations

continue until all PQS are checked (either reported or removed).

We implemented the process above effectively in order to reduce

the memory usage. The main optimization idea is to run the iterative

process progressively as the identification algorithm proceeds

through the sequence. As a result, only a small set of recently identi-

fied overlapping PQS has to be in memory.

3 Implementation

The pqsfinder package was created following recommended prac-

tices for R/Bioconductor packages and all functions are well-

documented within the inline R documentation system. A detailed

user guide with convenient examples was also prepared as a package

vignette. Source code is written in both R and Cþþ, each having its

own important role in the package architecture.

The R code implements the interface that is needed for a seam-

less user interaction within the Bioconductor framework, relying on

the following R packages: Biostrings (Pagès et al., 2016a),

GenomicRanges, IRanges (Lawrence et al., 2013), S4Vectors (Pagès

et al., 2016b), Rcpp (Eddelbuettel and François, 2011) and BH

(Eddelbuettel et al., 2016). The package provides one main function

pqsfinder for running the PQS search algorithm and several second-

ary functions that operate on the search results.

The central data structure for results is the PQSViews class

which is derived from the XStringViews class from the Biostrings

package. It maintains the sequence coordinates of the identified PQS

along with other useful metadata: (i) score, (ii) strand, (iii) number

of tetrads, (iv) number of bulges, (v) number of mismatches and (vi)

loop lengths.

Fig. 1. PQS constraints. Every PQS consists of two types of elements: G runs

(R1–4) and loops (L1–3). The minimal and maximal length of each element

type is constrained by the corresponding options depicted in the picture as

well as the overall PQS length. All these options can be freely customized

when using the pqsfinder package

pqsfinder 3375
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This aside, the PQSViews object provides access to two add-

itional vectors. The first is a density vector—for each sequence pos-

ition it gives the number of different PQS conformations

overlapping that position. The second vector maxScores reports the

PQS quality along the sequence—for each sequence position it gives

the maximal score of all PQS overlapping that position. We consider

these two vectors particularly useful as additional information to the

exact PQS coordinates and metadata. The density and maxScores

vectors can be easily used to discriminate low-complexity regions

(full of guanines) that inherently allow a large amount of folded

PQS conformations from regions that on the other hand contain a

singular high-scoring PQS.

The main PQS search logic is implemented purely in the

Cþþ language for speed since the algorithm is based on an exhaust-

ive search of the PQS topological space and it is computationally in-

tensive by definition. The Rcpp library was used to easily link the

Cþþ code with R scripts. We also employed the Boost regular ex-

pression library (Maddock, 2016) to match individual G runs.

However, we soon realized that the general regular expression en-

gine has a significant overhead and is too slow for our needs. For

this reason, we implemented an optimized matching function for the

default G run regular expression. At the same time, we are linking

the Boost library for the case where users would like to use their

own definition of a G run using an alternative regular expression.

3.1 Customization
Since we strongly support the Bioconductor goal to further scientific

understanding by producing extensible, scalable and interoperable

software, we designed pqsfinder to be easily customizable. The users

can tweak the algorithm options for their personal needs or test new

hypotheses about PQS conformations and develop novel innovative

scoring schemes. Supported options are divided into three logical

groups: (i) filters, (ii) scoring and (iii) advanced (see Table 2).

Filter options control the main algorithmic constraints (see Fig. 1).

These have great impact on the algorithm sensitivity and speed. All

PQS that do not satisfy the basic constraints are excluded immediately

and do not proceed further to the scoring step.

Scoring options include all the constants that appear in the scor-

ing Equations 1 and 2. By default, these constants are set to reason-

able values as described in the next section and its modification is

recommended only to users who would like to bias the scoring sys-

tems towards a specific type of G4 or to refine the constants on

novel data.

Advanced options allow to get full control over the search algo-

rithm by providing alternative G run regular expression and scoring

function. However, the custom scoring function can negatively in-

fluence the overall algorithm performance, particularly on long se-

quences, since there is a significant overhead linked to the calling of

custom R function instead of efficient inline Cþþ implementation.

Thus, this feature is recommended only for rapid prototyping of

novel scoring techniques, which can be later implemented efficiently

in Cþþ and delivered in the next version of the pqsfinder package.

4 Model training

As described in the foregoing section, the scoring model requires sev-

eral constants to be chosen (see scoring group in Table 2). It is, how-

ever, very difficult to estimate these parameters. For this reason, we

decided to construct a training set from available experimental data

and search for a setting that gives the best performance on these

data. The dataset construction process and parameter-search algo-

rithm are discussed in detail in this section.

4.1 Existing datasets
Methods for G4 prediction are usually evaluated on a set of experi-

mentally verified (in vitro) G4s, extracted from different publica-

tions. For example, a recently published method G4Hunter involved

collecting a set of 392 experimentally verified G4s consisting of 298

positive and 94 negative samples (later referred to as Lit392).

However, these datasets have several disadvantages: (i) they are

unbalanced regarding the number of positive and negative samples,

(ii) significant number of items differ only by a single mutation and

(iii) datasets are very small and cover only a small proportion of pos-

sible G4 conformations given all the possible loop lengths, bulges,

mismatches and other defects.

On the other hand, (Chambers et al., 2015) recently published a

novel approach for high throughput sequencing of DNA G4 struc-

tures called G4-seq. The technique detects noisy sequences that

emerge on treatment of DNA samples with Kþ or PDS (pyridostatin,

a chemical G4 stabilizer). As a result of this technology, the authors

released a track (in BED format) that shows the propensity of refer-

ence Human DNA sequence (hg19) to form G4s.

This track has two disadvantages. First, it only shows the level of

mismatches at given sequence positions that were observed during

the sequencing process. Hence, in reality, we have no evidence that a

G4 has been formed, but based on the G4-seq method the level of

mismatches should show high correlation with the probability that

the sequence forms the G4 structure. Second, as the G4 structure is

formed during sequencing, the level of mismatches remains high,

until the end of the sequenced read, even downstream of the actual

G4 structure. As a result, the BED file constructed by mapping the

reads onto the reference sequence, can be affected by this ‘memory

effect’.

Despite these disadvantages, the G4-seq dataset is extremely

valuable, because it shows the G4 structure propensity for the entire

human genome and thus it covers many more possible conform-

ations and imperfect structures (including long loops and bulges)

than any dataset extracted from the published literature.

Table 2. Overview of pqsfinder options

Group Name Description

Filters strand Strand symbol: þ, – or * (both).

overlapping Enables overlapping PQS.

max_len Maximal PQS length.

min_score Minimal PQS score.

run_min_len Minimal G run length.

run_max_len Maximal G run length.

loop_min_len Minimal loop length.

loop_max_len Maximal loop length.

max_bulges Maximal number of bulges.

max_mismatches Maximal number of mismatches.

max_defects Maximal number of all defects.

Scoring tetrad_bonus G-tetrad stacking bonus Bt.

mismatch_penalty Inner mismatch penalization Pm.

bulge_penalty Bulge penalization Pb.

bulge_len_factor Bulge length penal. factor Fb.

bulge_len_exponent Bulge length penal. exponent Eb.

loop_mean_factor Loop mean penal. factor Fm.

loop_mean_exponent Loop mean penal. exponent Em.

Advanced run_re G run regular expression.

custom_scoring_fn User-defined scoring function.

use_default_scoring Enables internal scoring system.

verbose Enables detailed text output.
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Based on these facts we decided to use a subset of G4-seq data

for training of the pqsfinder scoring model. We then used two add-

itional independent datasets for testing: Lit392 and a different (non-

overlapping with training data) subset of G4-seq data. The whole

process was operated as follows:

1. We prepared independent training and test sets from G4-seq

data.

2. We trained pqsfinder parameters on G4-seq training set.

3. We selected those parameters that performed best on the G4-seq

training set.

4. Finally, the selected pqsfinder parameters were evaluated and

compared to other tools on the Lit392 dataset and G4-seq test

set.

In the following subsection, individual steps of this procedure are

described in more detail.

4.2 Preparation of the training and test sets
From the G4-seq data, we used BED files representing the level of

mismatches from two experimental treatments. In the first treat-

ment, the authors stabilized G4s using Kþ while in the second case

they used PDS. In both cases, measurements were done on both

DNA strands separately resulting in four BED files (two treatments

with two strands each).

In the first step, as the Kþ and PDS measurements do not cover

100% of hg19 genome, we identified only those DNA fragments

where both Kþ and PDS measurements were available. Then, we fil-

tered out fragments shorter than 10 kbp and longer fragments were

trimmed to 10 kbp. In the next step, we combined Kþ and PDS BED

files by calculating the average value from both treatments.

Subsequently, we filtered out those fragments that did not include a

significant level of mismatches (where the averaged level of mis-

matches from Kþ and PDS never exceeded threshold 40). In order to

eliminate cases where potential G4 overlapped the beginning or the

end of the fragment, we also filtered out those fragments that

included a significant level of mismatches in the first 30 bp or the

last 30 bp of the fragment.

The described procedure was applied to each strand separately.

Finally, 1100 fragments were chosen at random, 100 as G4-seq

training set (for a total of 1 Mbp) and 1000 as G4-seq test set (for a

total of 10 Mbp). Both datasets are available as Supplementary

Data.

4.3 Training of scoring parameters on the G4-seq train-

ing set
We used the genetic algorithm implemented in the R package GA

(Scrucca, 2013) as a method for parameter-space exploration and

training. In order to make the exploration process easier, the G-tet-

rad stacking bonus was fixed at 40. The remaining scoring options

were trained. Their names, number of bits allocated in GA chromo-

some and ranges of values considered are summarized in Table 3.

Total GA chromosome length was 33 bits. Other pqsfinder options

were fixed to the default values.

To evaluate fitness, we calculated Pearson’s correlation coeffi-

cient between the vector maxScores generated by pqsfinder (see sec-

tion 3) and the averaged level of mismatches from Kþ and PDS

treatments of G4-seq training set. More specifically, maximal values

of the pqsfinder score were calculated for all positions of all DNA

fragments in the training set and these values were correlated with

appropriate positions in the G4-seq training set (experimentally veri-

fied level of mismatches). The basic idea behind this fitness function

is: the higher the correlation coefficient between pqsfinder score and

G4-seq mismatch level, the better the prediction of putative G4

structures will be.

A genetic algorithm was set up with the following parameters: (i)

population size 24, (ii) probability of crossover 0.5, (iii) probability

of mutation 0.5 and (iv) number of generations 200. During the ex-

ploration process, we used monitor function and recorded 1157

unique combinations of parameters and their fitness values.

As the final parameters, we selected the combination with the

maximal fitness value. Concrete values of selected parameters are

listed in Table 3 (column Result). The table of all explored param-

eter combinations and their fitness values is available as

Supplementary Data.

5 Results

In the first step, we compared pqsfinder to other tools capable to

predict whether a given sequence can form a G4 or not. As candi-

date tools that are still working and available online/offline, we se-

lected: G4Hunter, QGRS Mapper, TetraplexFinder and

ImGQfinder. We applied these to a recently published dataset

(Bedrat et al., 2016) containing 392 in vitro verified G4s (Lit392),

originally used to test G4Hunter.

In the next step, we configured and executed the selected tools

with the following parameters. (i) pqsfinder was executed with the

parameters that had the best fitness value on the G4-seq training set.

(ii) G4Hunter was executed with the default parameters. (iii) QGRS

Mapper was executed with the most relaxed parameters, i.e. min-

imal G run length was 2, loop length was in the range 0 to 36 and

maximal length was 45. As pqsfinder, G4Hunter and QGRS

Mapper report scores, to calculate accuracy and Matthews correl-

ation coefficient (MCC), we always systematically found a threshold

that resulted in the highest possible values for each tool.

Interestingly, we found out that for G4Hunter, the threshold 0.71

works even better than thresholds 1.0, 1.2 and 1.5 that are recom-

mended by the authors. (iv) TetraplexFinder was executed with the

following combinations of parameters: G run length 2 and 3, greedy

and non-greedy approach, bulge length in the range 0 to 7 and max-

imal loop length 50. Of all possible TetraplexFinder parameter com-

binations, only the best ones are reported in Table 4. (v)

ImGQfinder was executed with G run length in the range 2 to 5,

maximal loop length 25 and number of defects 0 and 1. Again, only

the best combinations are presented in Table 4.

Finally, for all selected tools and their configurations, we meas-

ured basic performance characteristics, namely accuracy (ACC) and

Matthews correlation coefficient (MCC). For tools that report a

score or allow us to specify a threshold, we also measured the area

under the ROC curve (AUC). The results are summarized in Table

4. Since the Lit392 dataset is unbalanced, MCC is the most relevant

value. As we can see, pqsfinder outperformed other tools

significantly.

Table 3. Trained parameters and their encoding in chromosome

Name Bits Range Step Result

bulge_penalty 6 0–63 1 20

mismatch_penalty 6 0–63 1 28

bulge_len_factor 5 0–3.1 0.1 0.2

bulge_len_exponent 5 0–3.1 0.1 1

loop_mean_factor 6 3–9.3 0.1 6.6

loop_mean_exponent 5 0–3.1 0.1 0.8
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Subsequently, we identified tools capable of predicting overlap-

ping G4s and assigning them a score. Only those tools could also be

evaluated on the G4-seq test set. The basic idea behind this test is to

calculate all possible overlapping G4s for a given sequence and ex-

tract the characteristics of maximal score values (for every sequence

position maximal score of all overlapping G4s is selected). Such

characteristic can then be correlated with the level of mismatches at

the same positions of the G4-seq test set. From the set of available

tools, only the QGRS Mapper and G4Hunter met the requirement.

As a dataset, we used G4-seq test set consisting of 1000 randomly

selected DNA fragments with length of 10 kbp (procedure for data-

set construction is described in Section 4.2).

In the next step we configured and executed selected tools with

the following parameters: pqsfinder was executed with parameters

trained on G4-seq training set. G4Hunter was executed with all

thresholds between 0 and 4 (with step 0.05). Predicted G4s were

refined and merged together. QGRS Mapper was evaluated with the

most relaxed parameters as before, i.e. minimal G run length is 2,

loop length is in range 0 to 36 and maximal length is 45. For results

from each tool, the characteristic of maximal score value was calcu-

lated and compared with the G4-seq test set. This comparison was

done in two ways. First, Pearson correlation coefficient was calcu-

lated for every fragment separately. As the result, we got a

distribution of correlation coefficients with individual means and

standard deviations (see Fig. 2 and Table 5, columns CC mean and

CC SD). Second, Pearson correlation coefficient was calculated for

all fragments joined together to get a single overall value (see Table

5, column Overall CC). As we can see, the pqsfinder significantly

outperformed other tools.

6 Discussion

The objective of the tools for G4 prediction is to model the complex

relationship between DNA sequence and G4 structure. Despite our

ability to model this relationship directly at the molecular level,

using for example molecular dynamics Amber tool (Salomon-Ferrer

et al., 2013), this approach is computationally demanding and the

accuracy of the state-of-the-art force fields is still limited. For these

reasons, existing tools for G4 prediction use much simpler models.

The majority of tools are based on a simple folding rule and are

very fast, but do not allow for possible defects (mismatches and

bulges) easily. There are tools, such as TetraplexFinder and

ImGQfinder that allow for imperfections in G-quadruplexes.

However, without a properly trained scoring model this can easily

lead to a large number of false positives. These tools performed better

in our tests when imperfections were limited or not allowed at all.

A very interesting approach allowing imperfections that is based

on specific encoding and simple statistic over a sliding window was

implemented in G4Hunter. Despite its simplicity, it shows very good

performance characteristics. Unfortunately, we believe that such

simple encoding and statistics cannot reveal all complex relation-

ships between sequence and G4 stability, and thus the accuracy of

such approach is limited.

On the other hand, the approach proposed in this article that

combines pattern matching and detailed inspection of possible de-

fects is configurable and easily extensible. Using advanced options,

it can be quickly customized to detect novel and experimental G4

types that are currently not commonly studied or might be dis-

covered in the future. One such example is the recently postulated

interstrand G4s (Kudlicki, 2016) or G4s formed in cis, as proposed

by Hegyi (2015).

By default, the pqsfinder provides a scoring function that was

trained on G4-seq experimental data and performs better than com-

peting tools. We are aware that G4-seq data essentially represent

conditions in vitro and may not necessarily be directly related to the

ability of G4s to form in vivo, but our current view is that in vivo

G4 formation is a function of their in vitro stability. Therefore,

G-seq experimental data is the best publicly available dataset we

could find at this moment.

However, detailed inspection and modularity are at the cost of

lower processing speed. In the extremely sensitive configuration

Table 4. Performance comparison of different tools on Lit392

dataset

Tool Configuration ACC MCC AUC

pqsfinder Best on G4-seq training set 0.964 0.902 0.975

G4Hunter Default 0.952 0.865 0.969

QGRS Mapper g�2, ll ¼ 36, l ¼ 45 0.954 0.872 0.968

TetraplexFinder g ¼ 2, ll ¼ 50, gr, bl ¼ 0 0.946 0.850 –

TetraplexFinder g ¼ 2, ll ¼ 50, ngr, bl ¼ 0 0.946 0.850 –

ImGQfinder g ¼ 2, ll ¼ 25, d ¼ 0 0.941 0.835 –

ImGQfinder g ¼ 2, ll ¼ 25, d ¼ 1 0.918 0.767 –

Note: The meaning of the configuration options is as follows: t is threshold,

g is G run length, ll is maximal loop length, l is maximal G4 length, gr is

greedy approach, ngr is non-greedy approach, bl is bulge length and d is num-

ber of defects. For tools that report score (pqsfinder, G4Hunter and QGRS

Mapper), we systematically determined thresholds that resulted in the highest

possible ACC and MCC. We also found that for tools without scoring system

(TetraplexFinder and ImGQfinder) it is always better to disable

imperfections.

Fig. 2. Histogram of correlation coefficients for QGRS Mapper, G4Hunter and

pqsfinder on the G4-seq test set fragments. The correlation was measured

between the averaged level of mismatches of the G4-seq test set fragments

(see Section 4.2) and the vector of maximal scores predicted by each tool.

While histograms of QGRS Mapper and G4Hunter correlations are almost the

same, the histogram of pqsfinder correlations is much more positively

skewed

Table 5. Comparison of correlation coefficient (CC) statistics for dif-

ferent tools

Tool CC mean CC SD Overall CC

pqsfinder 0.583 0.106 0.622

G4Hunter 0.450 0.093 0.491

QGRS Mapper 0.422 0.112 0.479

Note: The individual CCs were measured between the averaged level of

mismatches of the G4-seq test set fragments (see Section 4.2) and the vector

of maximal scores predicted by each tool. Overall CC was calculated between

concatenated averaged level of mismatches of all G4-seq test fragments and

concatenated vector of the corresponding predicted maximal scores.
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having the minimal G run length set to 2, the algorithm is able to

process approximately 4 kb per second on current hardware. For ex-

ample, pqsfinder running time on the G4-seq test set (in total 10

Mbp) was around 40 minutes. When the minimal G run length is

increased by one, the speed is usually more than doubled. We do not

consider the speed limitations to be critical. For the most frequently

studied sequences, pqsfinder results can be precomputed and pro-

vided to many users, for example as an R data file or a GFF3-

formatted file.

7 Conclusion

We created a PQS detection tool with a sequence scoring function

that has a moderate number of tunable parameters reflecting se-

quence properties previously associated with observed G4s or their

destabilization (number of Gs in G runs, loop length, presence of

mismatches and bulges). To model G-quadruplexes and search for

the responsible sequences, we selected a mix of known and novel

approaches that give the pqsfinder several desirable characteristics.

In our tests it achieved the best accuracy on both experimentally

verified G-quadruplexes (Lit392) and the independent part of

G4-seq data (none of these datasets were used for training). The

pqsfinder estimates the total number of possible local conform-

ations, accounts for competition between them and allows for im-

perfections with a sound, carefully trained structure-based scoring

model. The presented model was trained on a subset of G4-seq data

that represents the largest set of experimentally verified quadruplex-

forming sequences available so far and includes a wide variety of

imperfections. This new tool also evaluates all the competing con-

formations and can be easily expanded or modified for newly dis-

covered rules and scoring functions in future. We provide evidence

that the pqsfinder is a convenient R/Bioconductor package compat-

ible with many other packages available in this environment.
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Abstract: Eukaryotic genomes are rich in sequences capable of forming non-B DNA structures. These structures are
expected to play important roles in natural regulatory processes at levels above those of individual genes,
such as whole genome dynamics or chromatin organization, as well as in processes leading to the loss of
these functions, such as cancer development. Recently, a number of authors have mapped the occurrence of
potential quadruplex sequences in the human genome and found them to be associated with promoters. In
this paper, we set out to map the distribution and characteristics of potential triplex-forming sequences (PTS)
in the human genome sequence. Using the R/Bioconductor package triplex, we found these sequences to be
excluded from exons, while present mostly in a small number of repetitive sequence classes, especially short
sequence tandem repeats (microsatellites), Alu and combined elements, such as SVA. We also introduce a
novel way of classifying potential triplex sequences, using a lexicographically minimal rotation of the most
frequent k-mer to assign class membership automatically. Members of such classes typically have different
propensities to form parallel and antiparallel intramolecular triplexes (H-DNA). We observed an interesting
pattern, where the predicted third strands of antiparallel H-DNA were much less likely to contain a deletion
than their duplex structural counterpart than were their parallel versions.

1 INTRODUCTION

Eukaryotic genomes are rich in sequences capable of
forming non-B DNA structures. Cruciform, slipped,
triplex or quadruplex DNA has been recognized as
a factor in several important biological processes or
functions (Buske et al., 2011) (Bacolla and Wells,
2004). Non-B DNA is often found close to recombi-
nation hotspots and is thought to aid genomic instabil-
ity and evolution (Zhao et al., 2010). The structures it
forms have the ability to modulate replication (Dixon
et al., 2008), transcription (Rich and Zhang, 2008)
or translation (Arora et al., 2008) of DNA/RNA by
mechanisms that may have their origins in times when
nucleic acids dominated all life processes. These
structures are expected to play important roles in nat-
ural regulatory processes at levels above those of in-
dividual genes, such as whole genome dynamics or
chromatin organization (Sarkies et al., 2012) (Maizels
and Gray, 2013), as well as in processes leading to the
loss of these functions, such as cancer development.

For example, a recent study has shown that an
interplay between G4-quadruplexes, FANCJ protein
and DNA replication in cells influences the formation
of euchromatin versus heterochromatin after the repli-
cation stage (Schwab et al., 2013). Ability to form
H-DNA is often associated with recombinational and
mutational hotspots in the human genome (Akman
et al., 1991).

Recently, a number of authors have mapped the
occurrence of potential quadruplex sequences in the
human genome and other eukaryotic genomes. They
found them to be associated with promoters and cer-
tain classes of repeat elements (Savage et al., 2013)
(Lexa et al., 2013). Possibilities of searching for non-
B DNA (Cer et al., 2011) and specifically triplex/H-
DNA exist as well (Buske et al., 2012) (Hon et al.,
2013). In this paper, we map the distribution and
characteristics of potential triplex-forming sequences
(PTS) in human genomic DNA as detected/predicted
using the R/Bioconductor package triplex.



2 SOFTWARE AND METHODS

To analyze the human genome, or other sequence sets,
we employed the R/Bioconductor framework, which
has now matured to the point, where we can use R
to represent biological sequences, search these se-
quences, represent the search results, analyze them
statistically and visualize the results of the searches
and the statistical analysis. All this can be done
with relatively straightforward scripts, using a hand-
ful of well integrated R/Bioconductor software pack-
ages (Lawrence et al., 2013).

2.1 R/Bioconductor packages used in
this study

Biostrings String objects representing biological se-
quences, and matching algorithms (Pages et al.,
2013)

BSgenome Infrastructure for Biostrings-based
genome data packages (Pages, 2013)

BSgenome.Hsapiens.UCSC.hg19 Homo sapiens
(Human) full genome (UCSC version hg19)

biomaRt Interface to BioMart databases (e.g. En-
sembl, COSMIC ,Wormbase and Gramene) (Dur-
inck et al., 2009)

triplex Search and visualize intramolecular triplex-
forming sequences in DNA (Hon et al., 2013)

GenomicRanges Representation and manipulation
of genomic intervals (Aboyoun et al., 2013)

2.2 General triplex detection pipeline

All types of potential triplexes (parallel and an-
tiparallel) were identified in the human genome us-
ing the Bioconductor triplex package (Hon et al.,
2013). We used the unmasked sequence from
BSGenome.Hsapiens.UCSC.hg19 package in all
analyses. Only potential triplexes with P value less
than or equal 0.05 were considered for further anal-
ysis. A GFF file with all the identified poten-
tial triplexes is available at http://fi.muni.cz/

˜lexa/triplex/hsapiens_pts.gff

2.2.1 Analysis of coding and non-coding regions

Information about genes was obtained from the En-
sembl database using its Biomart interface. Only
coding genes at chromosomes 1-22, X and Y were
considered (roughly 20k genes) and only their cod-
ing transcripts were selected for analysis (roughly 80k
transcripts). Data about exons of selected transcripts

were downloaded from Ensembl database and used
for identification of promoters, introns, coding re-
gions (CDS), 5’UTR, 3’UTR and intergenic regions.
All this information was stored as individual tracks
(GRanges objects). For the purpose of this study,
promoters were defined as 1000 bp regions upstream
of the coding sequence (flanking the 5’ end). Inter-
genic regions were identified as a complement to cod-
ing transcripts supplemented with promoters. In the
next step we found the overlaps between triplexes and
all prepared tracks. If a given triplex fell into more
than one type of region (e.g. triplex is part of CDS
and intron simultaneously) the triplex was counted in
each overlapping region. Finally, we compared the re-
sults with numbers expected if positioning of poten-
tial triplexes was random. The expected values can be
calculated from the percentage of genome covered by
a certain type of region (see equations 1-5 below).

2.2.2 Analysis of regions composed of repeats

Information about different types of repeating se-
quences was obtained from the UCSC Table Browser,
specifically from the Repeat Masker track (Karolchik
et al., 2004). Data records were organized into 26
classes and 56 families covering both genes (coding
and non-coding) and intergenic regions. At first, we
analysed the number of potential triplexes in regions
with and without repeats in genes and intergenic ar-
eas. As the majority of PTS were located in regions
with repeats, we performed a detailed study of PTS
overlapping individual repeat classes and families. In
this experiment we focused on the number of repeats
(in a given class or family) containing at least one
triplex. The measured values were compared with
numbers expected to be obtained at random.

We were also interested in potential triplexes oc-
curring in close proximity to repeats. Therefore
we extended all repeat regions with flanking areas
(100bps at both ends) and repeated the analysis in-
cluding these expanded areas.

2.2.3 Calculation of expected values

Expected values were calculated as the number of
repeats (of given class/family) that would contain at
least one triplex by random choice. This calculation
consists of the following steps:

1. Number of triplexes NTrRep that would fall into
a given class or family by random is calculated
using equation 1.

NTrRep =
∑rep∈class len(rep)

len(genome)
(1)



2. For each repeat repsel of a given class/family:

(a) The probability that a randomily selected
triplex is placed ouside of a given repeat is cal-
culated using equation 2.

PRepComp =

(
∑rep∈class len(rep)

)
− len(repsel)

∑rep∈class len(rep)
(2)

(b) Next, the probability that all triplexes of a given
class/familly are placed outside of a given re-
peat is calculated using equation 3.

PRepCompAll = (PRepComp)
NTrRep (3)

(c) Finaly, the probility that at least one triplex falls
into a given repeat is calculated using equa-
tion 4.

PRep = 1 − PRepCompAll (4)

3. The overall number of repeats that would contain
at least one triplex by random choice is calculated
as a sum of all probabilities calculated in the pre-
vious step (see equation 5).

NRep = ∑
Rep∈class

PRep (5)

Please note that in equations 1 and 2 we use a sum
for expression of area occupied by repeats. In fact the
real calculation is slightly more complex because the
overlapping repeat regions have to be considered as
well. Concretely, if two repeats of the same class or
family overlap each other then the overlapping part is
counted only once in that sum.

Expected values for repeats supplemented with
flanking areas are calculated analogically.

2.2.4 Analysis of non-coding genes

Data about non-coding genes were obtained from
the Ensembl database using the Biomart interface
(roughly 40k genes). All genes were split into 26 cat-
egories based on their biotype (e.g. lincRNA, pseudo-
gene, miRNA, scRNA, etc.) The same type of anal-
ysis, which was performed for repetitive sequences,
was applied for non-coding genes as well.

All types of experiments were applied separately
on a set of parallel, antiparallel and all types of
triplexes (parallel and antiparallel together).

2.3 Classification of potential triplex
sequences

H-DNA often forms in sequences that contain simple
repetitions. The type of triplex that forms (e.g. par-
allel or antiparallel) often depends on the particular
kind of repeat present. We therefore decided to clas-
sify the identified triplexes by the prevailing k-mers
present in their sequences. Although different values
of k will serve the purpose of classification, we se-
lected k = 6 as a value which is not too high since
high values of k would produce a large number of
categories that would be difficult to follow. Because
k = 6 is also the lowest number that can capture well
both, periods of 2 and 3, we chose this value for all
calculations in this study.

The prevailing k-mers for identical classes of se-
quences will sometimes differ, because in a peri-
odic sequence, all rotations of the repeated sequence
monomer will have similar chance of becoming the
most prevalent k-mer. The precise result will depend
on subtle changes in the sequence. For example, for
k = 2, the sequence GCGCGCCGCGC will have 4
CG dinucleotides and 5 GC dinucleotides, we would
therefore label this sequence as ”GC”. A very similar
sequence CGCGCGGCGCG with one C− > G sub-
stitution and one nucleotide moved from the end to
the front has 5 CGs and 4GCs and would therefore be
labeled as ”CG”.

In situations were several rotations of a string may
represent the same feature, we can deterministicaly
choose one of the variants (rotations) to represent
all of them. One way of choosing the representa-
tive string (hexamer) is to choose the one that comes
first in lexicographical order. We therefore propose to
classify and label the sequences with the lexicograph-
ically minimal rotation of the most prevalent k-mer.
This way the DNA sequence gets labeled by the most
prevalent sequence motif, regardless of its exact dis-
tribution. In R, the classification into labelled classes
was achieved by the following R code:
triplex_class <- function(x,k){
s <- as.character(x)
n <- nchar(s)
res <-
names(sort(table(substring(s,1:(n-k+1),k:n))
,decreasing=TRUE)[1])
# the lexicographically minimal rotation
res2 <- paste(res,res,sep="")
sort(substring(res2,1:6,6:11))[1]
}

One can then easily annotate sequences identified
by triplex.search(), and stored in the variable tc, sim-
ply by calling
sort(table(sapply(tc,triplex_class,6))



,decreasing=TRUE)

This novel method of annotation will probably
need to be further refined, since in its proposed form
it only works well if the value of k used in the analy-
sis is equal to the intrinsic periodicity of the analysed
sequence. Using hexamers succesfully captures pe-
riods of 1,2,3 and 6 but may give fragmented results
for other periods. We presently solve this by manu-
ally choosing a class name based on an inspection of
the hexamer, such as CTT/GAA (see Table 1).

2.4 Insertions or deletions in potential
triplex sequences

The output of triplex.alignment() contains the desig-
nation of individual H-DNA strands. They are la-
belled as plus, minus, par+, par−, apar+, apar−
and loop. We used the script count chars.R to de-
termine the frequency of insertions/deletions (symbol
”-”) or other symbols in the aligned DNA strands. We
expected different tolerance for insertions/deletions
between strands, because the properties of the orig-
inal duplex (strands plus and minus may be quite dif-
ferent from the properties of the third DNA strand
attached via Hoogsteen or reverse Hoogsteen bonds.
The counted insertions were compared to the total
length of each type of strand (regular expression ”.”
for any symbol).

3 RESULTS

A series of calculations were carried out as described
in section 2 to understand the distribution of PTS in
the human genome and determine the properties of
these sequences.

3.1 Distribution of potential triplex
sequences in the human genome

To obtain an overall picture of how potential
triplex sequences (PTS) are distributed in the human
genome, we first compared the PTS positions with the
positions of general annotated genome features, such
as protein-coding sequences, promoters, introns and
intergenic regions. There is a clear preference of PTS
to be present in promoters or intergenic regions with
close-to-predicted content in introns and strong avoid-
ance of exons, including 5’- and 3’-UTRs (Figure 1).

Because the intergenic regions in the human
genome are also known to harbor a high number of
repetitive sequences (e.g. 10% Alu (SINE), 15% L1
(LINE), 8% LTR retrotransposons) we calculated the
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Figure 1: Distribution of potential triplex sequences (PTS)
in genes and intergenic regions. The figure (a) shows the
percentage of all elements in a given region. The four
bars on the right side, namely Promotor, CDS, 5’UTR and
3’UTR, were zoomed in 20× and supplemented with its
own axis. The figure (b) shows the ratio between real and
expected counts. The expected number of triplexes was es-
timated from triplex density and the overall length of se-
quence in a given category.

number of PTS associated with individual repetitive
sequence classes (Figure 2(a)) and families (Figure
2(b)). This analysis shows that only a limited num-
ber of repeat classes and families associate with H-
DNA more frequently than expected from genome av-
erages.

To allow better comparison across families and
classes that would not depend on repeat size and fre-
quency of occurrence, we calculated the ratio between
real and expected counts. In both types of analy-
sis, there is a strong enrichment of PTS sequences in
low complexity sequences and simple repeats (Fig-
ure 2(c)). Such findings are compatible with the
limited number of nucleotide triplets found in sta-
ble H-DNA (Soyfer and Potaman, 1995) (Lexa et al.,
2011) and the general requirement for polypurine and
polypyrimidine tracts in triplexes. We also found SVA
and to a limited extent also SINE and scRNA ele-
ments to have above average PTS association (Figure
2(c)). Of these, specifically SVA and Alu sequences
showed above average association (Figure 2(d)).

We also looked whether there was a difference be-
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Figure 2: Association of potential triplex sequences (PTS) with different families of repetitive sequences identified by Re-
peatMasker. The figures (a) and (b) show the percentage of all elements in a given family harboring at least one PTS. The
figures (c) and (d) show ratio between real and expected counts test The expected number of triplexes was estimated from
triplex density and the overall length of sequences of a given family.
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Figure 3: Occurrence of repeat and non-repeat-associated
potential triplex sequences (PTS) in different regions of the
human genome. Data shown as percentage of all PTS in the
genome. The expected percentages of triplexes were esti-
mated from average triplex density and the overall length of
sequences of a given genomic region.

tween PTS sequences found in the different regions
of the human genome. While the frequency of PTS in
intergenic regions was slightly higher than in genes,
were they prevailed in introns, they were equally as-
sociated with repeats in both parts, introns and inter-

genic (Figure 3).

3.2 Classification of potential triplexes
by sequence composition

To classify the detected PTS, we counted all nu-
cleotide hexamers in their sequence and determined
the lexicographically minimal rotation of the preva-
lent hexamer as described in section 2. This anal-
ysis revealed the presence of six main categories of
PTS in the human genome (Table 1). In the order
of prevalence, these were classes labelled by us as
T/A (45.8%), CT/GA (20.6%), CT T/GAA (14.6%),
CCT/GGA (13.1%), C/G (3.6%), CA/GT (1.6%)
and TA/TA (0.5%). The remaining PTS constituted
only 0.3% of detected sequences.



Table 1: Classification of PTS by sequence composition and
the occurrence of different composition classes in the hu-
man genome.

Hexamer Count [%] Class/Composition
TTTTTT 4360 16.6 T/A
AAAAAA 4346 16.5 T/A
AAAAAG 1993 7.6 T/A
CTCTTT 1564 5.9 CT/GA
CTCTCT 1470 5.6 CT/GA
AGAGAG 1444 5.5 CT/GA
CTTTTT 1337 5.1 T/A
CCCCTT 992 3.8 CCT/GGA
AAAAGG 954 3.6 CTT/GAA
AAAGAG 950 3.6 CT/GA
CCCCCT 624 2.4 C/G
AGAGGG 568 2.2 CCT/GGA
AAGGGG 528 2.0 CCT/GGA
CCTCCT 520 2.0 CCT/GGA
CCCTCT 508 1.9 CCT/GGA
CCTTTT 480 1.8 CTT/GAA
CTTCTT 439 1.7 CTT/GAA
CCTTCT 417 1.6 CTT/GAA
AAGAAG 410 1.6 CTT/GAA
AAGAGG 345 1.3 CTT/GAA
AGGAGG 326 1.2 CCT/GGA
AAGGAG 314 1.2 CTT/GAA
AGGGGG 311 1.2 C/G
CCTCTT 285 1.1 CTT/GAA
GTGTGT 225 0.9 CA/GT
ACACAC 187 0.7 CA/GT
ATATAT 144 0.5 TA/TA
AAAGGG 109 0.4 CTT/GAA
CCCTTT 85 0.3 CTT/GAA
OTHER 68 0.3 -

3.3 Tolerance of different potential
triplex classes and aligned DNA
strands for insertions

We hypothesized that triplex sequences have asym-
metric tolerance for insertions/deletions. Because
the third strand binds to a DNA duplex in its ma-
jor grove with lower stringency than seen in Watson-
Crick basepaired duplex, the third strand may be able
to accept insertions, but not deletions when aligned
to the duplex with triplex.alignment(). Although the
ability of H-DNA to accept mismatches, let alone in-
dels, is highly questionable, we still carried out this
calculation, counting the occurrence of the ”-” sym-
bol in different strands and counting the overall length
(Table 2). We found that only 0.75% of positions in
PTS were insertions/deletions in PTS scoring 25 or
more. Moreover, when we compared the occurence

of deletions in the different types of PTS third strand
to the frequencies observed in the duplex at various
score thresholds, we found the percentage to be lower
in parallel strands (0.87-0.97%) and much lower in
antiparallel strands (0.16-0.22%) (Table 3). These
data appear to support our hypothesis of asymmetrical
insertion/deletion distribution among DNA strands in
potential triplexes.

4 DISCUSSION

We have taken a closer look at the output of the
R/Bioconductor triplex search package when ran
against the human genome DNA sequence. In terms
of search results, we were interested to see the differ-
ent categories of human sequences that associate with
potential intramolecular triplexes. The slight over-
representation of PTS in non-coding sequences and
clear absence from coding sequences seen in Figure
1 led us to focus on intergenic DNA, promoters and
introns in more detail (Figure 2(a), 2(b)). H-DNA has
been found in promoters of genes involved in disease
(Bissler, 2007) and cell signalling and communication
(Bacolla et al., 2006).

There is a common theme to the majority of PTS
occurrences we observed in human DNA. Inspection
of Figure 2(b)-2(d) reveals the presence of PTS in or
near Alu, scRNA and simple repeat or low complexity
sequences. Alu sequences are short non-autonomous
retrotransposons (SINE) driven by the L1 LINE el-
ement protein machinery (Dewannieux et al., 2003)
thought to have emerged in primate as duplication de-
scendants of 7SL sc RNA (Kriegs et al., 2007). SVA
repeats, which contained more then twice the num-
ber of PTS than expected by chance are also strongly
associated with PTS. Perhaps not surprisingly, even
SVA elements are evolutionarily related to SINE and
Alu sequences. Their sequence is chimeric and con-
tains two sequences of SINE origin separated by a
variable number tandem repeat (Savage et al., 2013).
According to our study, a large proportion of PTS in
the human genome can therefore be directly attributed
to the proliferation of SINE elements, especially Alu.

Upon first inspection, it becomes clear that most
of the above-mentioned associations are caused by the
presence of the polyA tail in SINE elements. Because
the poly-A tail is mainly described as a feature cir-
cumventing the problematic polyadenylation in RNA
polymerase III transcripts (Roy-Engel, 2012), there
is a possibility that these sequences do not form any
functionally or evolutionarily meaningful DNA struc-
tures, such as H-DNA. On closer inspection, however,
we notice that the same classes of repeats are also en-



riched for other PTS sequences, raising the possibil-
ity that triplex formation plays a biological role in the
repeat life cycles also at the DNA level. This could
also mean a dual role for the Alu poly-A tail. For
example, (Dewannieux and Heidmann, 2005) men-
tion a 15-50 nucleotide range for increasing effect
of the poly-A tail, a range that also coincides with
cited oligonucleotide lengths for successful H-DNA
formation (Buske et al., 2011). (CT)n tandem repeats
have also been implicated in tandem array mainte-
nance (Bailey et al., 2013), the mechanism and its de-
pendence on triplex formation is, however, presently
unknown. (Brereton et al., 1993) showed that the A-
rich sequence in a human Alu element can form an
intramolecular triplex in vitro.

Given the presence of PTS in Alu and SVA re-
peats in human, that have evolved as dimers (the for-
mer) and dimer of dimers (the latter) of ancient RNA,
there is a possibility for intramolecular triplexes to aid
the recombination processes leading to chimeric se-
quences. There are indeed many reports of H-DNA
occurrence near recombination hotspots (Napierala
et al., 2004).

Because of the high Alu content of the human
genome, the presence of PTS in Alu elements bi-
ased our estimates of expected PTS association fre-
quency with other elements. Upon subtracting these
from our results, several other classes get into the
”above-expected” occurrence territory, namely the L1
retrotransposon and MuDR DNA transposon as well
as snRNA which often contains a (CT)n dinucleotide
tandem repeat.

We have also noticed a high occurrence of PTS in
the miRNA class of RNAs (data not shown). Kanak
and colleagues (Kanak et al., 2010) recently reported
the discovery of a set of miRNA sequences that could
form triplexes at HIV target sites and suppress its
retroviral activity. An increased presence of PTS se-
quences has recently been reported in the 5’ and 3’-
UTR of plant retroelements, probably analogous to
the reported 3’-UTR HIV regulatory region.

Probably the second most typical location for PTS
in our study were the promoters of genes. The for-
mation of special DNA structures at sequences such
as PTS studied in this paper may create structurally
distinct features providing possibilities for specific
DNA-binding proteins to recognize locations in the
genome for gene regulation or chromatin organiza-
tion. For example, triplex DNA has been found to
be incompatible with nucleosome formation and may
act as a nucleosome barrier (Westin et al., 1995).
They are often found near recombination and muta-
tion hotspots (Napierala et al., 2004)(Akman et al.,
1991). This may be related to the inevitability of

single-stranded DNA stretches at or near the triplexes.
Association of PTS with certain types of repeat ele-
ments could not only suggest a possible function in
the repeat ”life cycle” but also a possible positive se-
lection for repeats with such association, if the pres-
ence of triplexes was required at several locations of
the host genome.

Among the typical hexamers found in triplexes,
we identified a minor group wih prevailing CA/GT
dinucleotide repeats. Although this combination does
not meet the often cited requirement for homopurine
and homopyrimidine tracts in H-DNA, it may ac-
tually form intramolecular triplexes in combination
with other base triplets, as observed by (Gowers and
Fox, 1998). Our extremely low counts (Table 1) seem
to support the notion that if G.T:A and T.A:T triplets
occur in triplexes, they are most likely to be mixed
with other nucleotide combinations.

5 CONCLUSIONS

In this paper we examined the types of sequences
that can be identified in the human genome DNA se-
quence with triplex DNA detection software, namely
the R/Bioconductor package triplex-1.0.10 and its
triplex.search() function. The presented results ex-
amine the usability of the software for genome stud-
ies as well as some basic properties of the identi-
fied potential triplex sequences (PTS). We found that
most of the triplex-forming potential of the human
genome is concentrated in simple repeats and flank-
ing regions of repetitive and other genome elements
descending from 7SL RNA, especially Alu and SVA
repeats. We also found potential triplex-forming se-
quences in the miRNA class of RNA genes. Alu ele-
ments are known to contain or flank adenine homonu-
cleotide tracts which replace polyadenylation of its
RNA, but could also carry out a DNA-based function
involving H-DNA formation.

We propose a computational rule to automatically
classify triplex-forming sequences according to the
most prevalent k-mer present in their sequence. For
unambiguity, we include the search for a lexicograph-
ically minimal rotation before assigning the name.
After applying this principle we see that the major-
ity of human PTS fall into four main classes based on
their nucleotide composition (T/A - 45.8%; CT/GA -
20.6%; CTT/GAA - 14.6% and CCT/GGA - 13.1%).
We also characterized the detected PTS based on dele-
tions found in alignments of the third triplex strand
to the DNA duplex, sowing that deletions are present
less frequently in the third strand, especially in an-
tiparallel PTS.



In terms of biological relevance, our studies of
PTS suggest they are positioned non-randomly in the
genome, their sequences fall into a small number of
distinct classes and some of them are associated with
specific types of repeats. Their strand bias for in-
sertions or deletions suggests that these sequences
may indeed form the predicted structures. In future it
would be desireable to single out specific combination
of repeat types and PTS classes, prove the existence
of triplex formation in each case and systematically
search for proteins that could interact with such struc-
tures and provide a more precise clue to their specific
biological function.
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Table 2: The number of deletions counted in different strands of PTS in the human genome DNA sequence and the total
number of PTS strands examined.

Number of deletions Number of PTS strands of a given type
Score duplex para+ para- anti+ anti- duplex para+ para- anti+ anti-
> 25 7953 3053 2931 202 170 956452 378942 357804 109834 109872
> 35 7443 2934 2834 116 105 853345 365429 345811 70800 71305
> 50 3972 1630 1624 8 10 425395 206228 200898 8985 9284
> 70 1001 442 437 0 0 148244 72251 73930 897 1166

Table 3: The frequency and relative occurrence of deletions in DNA strands of different classes in human PTS.

100*deletions/strand relative to duplex
Score duplex [%] para+ [%] para- [%] anti+ [%] anti- [%] para/duplex anti/duplex
> 25 0.83 0.81 0.82 0.18 0.15 0.98 0.19
> 35 0.87 0.80 0.82 0.16 0.15 0.93 0.17
> 50 0.93 0.79 0.81 0.09 0.11 0.86 0.10
> 70 0.68 0.61 0.59 0.00 0.00 0.88 0.00
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Abstract

Triplex DNA is implicated in a wide range of biological activities, including regulation of gene

expression and genomic instability leading to cancer. The tumor suppressor p53 is a central

regulator of cell fate in response to different type of insults. Sequence and structure specific

modes of DNA recognition are core attributes of the p53 protein. The focus of this work is

the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro

and in cells and the effect on p53-driven transcription. This is the first DNA binding study of

full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T tri-

plexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is com-

parable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we

determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition.

Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by

negative superhelicity in plasmid DNA, was detected by competition and immunoprecipita-

tion experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation

revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by

p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was

observed by luciferase reporter assays. In-silico scan of human regulatory regions for the

simultaneous presence of both consensus sequence and T.A.T motifs identified a set of

candidate p53 target genes and p53-dependent activation of several of them (ABCG5,

ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T tri-

plex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-depen-

dent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to

the regulation of transcription is discussed.
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Introduction

Tumor suppressor p53 contains two DNA binding domains. The central (core) domain

(amino acids ~100 to ~300) is evolutionarily highly conserved and is essential for p53

sequence-specific binding to promoters of p53 target genes that take part in cell cycle regula-

tion, apoptosis and DNA repair [1]. The p53 consensus sequence (CON) has been originally

defined as two copies of the sequence 5´-PuPuPuC(A/T)(T/A)GPyPyPy-3´ separated by 0–13

bp [2]. The core domain also binds in non-sequence-specific manner to single- and double-

stranded DNA, preferentially interacting with internal regions of single-stranded (ss) DNA

[3], three-stranded DNA substrates mimicking early recombination intermediates [4], inser-

tion/deletion mismatches [5] and DNA cruciform stabilized by DNA superhelicity [6]. The C-

terminal part of the protein contains a flexible linker (amino acids ~300 to ~325), a tetrameri-

zation domain (amino acids ~325–356) and a basic C-terminal DNA binding domain

(CTDBD, aa 363–382). The ability of the C-terminus to bind single-stranded gaps in double-

stranded (ds) DNA [7], cisplatin-modified DNA [8], hemicatenated DNA loops [9] and super-

helical DNA (scDNA [10, 11]) has been described. There is a growing amount of data suggest-

ing that p53 interactions with different DNA targets represent a complex network involving

contributions from both DNA binding domains reviewed in [12]. Recently, we have shown

that the human telomeric G-quadruplexes are recognized by full length p53 protein and both

DNA-binding domains take part in this interaction [13].

The triple-helical (triplex) DNA adopts a structure characterized by a third pyrimidine-rich

or purine-rich DNA strand located within the major groove of a homopurine/homopyrimi-

dine stretch of duplex DNA [14–16]. Stable interaction of the third strand is achieved through

either specific Hoogsteen or reverse Hoogsteen hydrogen bonding with the homopurine

strand of the duplex. Preferred base triplets include T.A.T and C.G.C in the pyrimidine motif

and C.G.G and T.A.A in the purine motif. Triplexes can be either intermolecular, where the

third strand originates from a separate DNA molecule, or intramolecular (named also

H-DNA), where the third strand originates from the same DNA molecule as its duplex accep-

tor [15, 16]. Naturally occurring sequences capable of forming intramolecular triplex are

found in human genome as frequently as 1 in every 50000 bp [17] and are enriched in introns

and promoters [18, 19]. Intramolecular triplexes are postulated to occur in vivo under suitable

conditions (such as sufficiently high negative superhelical stress) and their involvement has

been implicated in several cellular processes, including transcription, replication and recombi-

nation [15, 16]. The triplex target sequence for formation of intermolecular DNA triplexes is

even more abundant, on average one unique triplex target sequence every 1366 bases [20].

Intermolecular triplexes are widely recognized as potential tools for different genetic manipu-

lations including gene regulation and mutagenesis [21, 22]. So far, only a few proteins recog-

nizing triplexes of pyrimidine type are known [23–26]. The importance of triplex DNA for the

occurrence of some breakpoint hotspots in cancer has also been hypothesized [27]. Despite the

correlation between genomic instability and formation of triplex DNA, the function of pro-

teins that recognize these structures is still poorly understood. Several DNA repair proteins

have been shown to bind triplex DNA [23].

Negative DNA superhelicity is necessary for the formation of intramolecular triplex DNA

(H-DNA) and other non-B DNA structures in vivo [28]. Observations from our laboratory

[11, 29, 30], as well as of others [12, 31] have revealed a clear relationship between the topology

of recognized DNA and p53. Both wild-type p53 and mutant p53 proteins have considerable

potential to recognize non-B DNA structures. In particular, formation of stem-loop, hairpin

or cruciform structures affects p53-DNA interactions [12, 30–33].

p53-Triplex DNA Recognition
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In this study, we have analyzed for the first time the interaction of the full-length p53 and

its deletion variants to DNA containing triplex-forming sequences in vitro and in cells. We

show that p53 protein possessing intact C-terminus exhibits high affinity to intermolecular

and intramolecular T.A.T triplex DNA. In-silico analysis of human promoters for simultaneous

presence of consensus sequence and T.A.T motifs identified a set of candidate p53 target

genes. Possible contribution of DNA triplex-dependent binding of p53 for regulation of their

transcription is discussed.

Material and Methods

Oligonucleotides

The sequences of oligonucleotides used in this study are presented in S1 Table, oligonucleo-

tides were synthesized by VWS (Vienna, Austria). Duplex and triplex probes were prepared as

previously described [25]. Briefly, intermolecular T.A.T triplex (oligo(dT)50.oligo(dA)50.oligo

(dT)50) was formed by standard annealing of (dT)50 to labeled (dA)50 and titration of duplex

with (dT)50 to molar excess (3–5×) in presence of Mg2+ ions in triplex forming buffer (5 mM

Tris-HCl, pH 8, 1 mM MgCl2, 300 mM NaCl) at 37˚C for 60 min. CTGhairpin and TAhairpin

were prepared as described in [32] with labeled lock oligonucleotide (S1 Table).

Recombinant plasmids

Plasmids encoding human p53 proteins pT7-7wtp53 (full length wild type p53,p53, aa 1–393),

pET-p53CD (p53CD, aa 94–312), pGEX-2TKp53CT (GST-p53CT, aa 320–393), pGEX-

2TKp53T (GST-p53T, aa 363–393) and pGEX-4Tp53CD (GST-p53CD, aa 94–312) were

described in [10, 29]. Plasmids with T.A.T triplex forming sequences (pBA50 and pPA50)

were prepared by cloning of (dT)50.(dA)50 into the EcoRV site of pBluescript SK II- (pBSK,

Stratagene) and pPGM1 [34] (S1 Table). Similarly, plasmids for cruciform formation

(pBAT34, pPAT34) were prepared by cloning (dAdT)34 sequences to the same plasmids, for

details see S1 Table. Plasmid pA69 with (dT)69.(dA)69 (on pUC19 basis [35]) and pUC19 con-

trol plasmid were used. Nonspecific competitor (pBSK/SmaI) was prepared by SmaI restric-

tion enzyme (Takara, Japan) cleavage of pBSK. Plasmids for luciferase reporter assay

(pGL3-BSK, pGL3-P1, pGL3-BA50, pGL3-PA50, pGL3-PA20, S1 Table) were constructed by

cloning fragments from pBSK derivatives into the SmaI/XhoI site of the pGL3-promoter (Invi-

trogen). All plasmids were isolated from bacterial strain TOP10 (Stratagene) and verified by

sequencing.

p53 recombinant proteins purification

Full length p53 and isolated DNA binding domains p53CD, p53CT, and p53T (with or without

GST tag) were purified according to a protocol described previously [10, 29]. The purity and

appropriate size of each protein were analyzed by Coomassie blue staining of 12.5% SDS-

PAGE gels (S1A Fig), using bovine serum albumin as a standard.

EMSA in polyacrylamide gels
32P-radiolabeled oligonucleotide probes (1 pmol) were mixed with p53 proteins and incubated

in binding buffer (5 mM Tris-HCl, pH 8, 1 mM MgCl2, 0.01% Triton X-100 and 50 mM KCl)

in the presence of 5–50 ng pBSK/SmaI competitor DNA for 30 min on ice or at 25˚C to reach

equilibrium. Samples were loaded onto a 4–5% polyacrylamide gel containing 0.5× TB buffer

with 2 mM MgCl2. After 1–3 h electrophoresis (at 4–6 V/cm2) the gels were dried and DNA

was detected by autoradiography using Typhoon FLA 9000 (GE Healthcare). Polyclonal rabbit

p53-Triplex DNA Recognition

PLOS ONE | DOI:10.1371/journal.pone.0167439 December 1, 2016 3 / 25



CM1 and mouse monoclonal (DO1 (aa 20–25), Bp53-10.1 (aa 375–379), PAb421 (aa 371–380)

and ICA9 (aa 388–393)) antibodies, kindly provided by Dr. B. Vojtesek, were used in super-

shift and IP experiments.

ELISA

96-well Immuno Plates (SPL LIFE SCIENCES) were streptavidin (PROSPEC) coated and

blocked for unspecific binding by BSA (Sigma). Biotinylated oligonucleotides (0.5 pmol) were

bound to the plate and then pre-incubated protein-primary antibody mixes (in 2/1 Ab/protein

molar ratio) were added. Secondary HRP-labeled antibody was incubated on ELISA plate for

30 min, washed and then TMB substrate was added. Absorbance was measured at 370 nm on

Synergy H1 (BioTek) and evaluated in GraphPad Prism using hyperbolic or Hill equation fit-

tings. All wash and incubation steps were done in the presence of 2 mM MgCl2 in 1× PBS. Kd

were obtained from at least three independent measurements. Details of the procedures are

described in [13].

EMSA in agarose gels

scDNAs (200 ng pBSK, pPGM1, pBA50, pPA50) were preincubated in triplex-forming buffer

at 37˚C for 30 min. scDNAs were mixed with p53 proteins in p53 tetramer/DNA molar ratios

0.25–5 and incubated in binding buffer (5 mM Tris-HCl, pH 8, 1 mM MgCl2, 0.01% Triton X-

100 and 50 mM KCl) for 30 min either on ice or 25˚C to reach equilibrium. Samples were

loaded onto a 1% agarose gel containing 0.33× Tris-borate-EDTA (TBE) buffer. After 5 h elec-

trophoresis (at 4–6 V/cm2) agarose gels were stained with ethidium bromide (EtBr) and photo-

graphed. Intensities of bands of free DNA substrates were quantified using ImageQuant

software. Graphs show the evaluation of p53-DNA binding as the dependence of % of bound

DNA on the amount of p53 proteins (expressed by molar ratio p53/DNA), more details in

[29]. Mean values of three independent experiments were plotted in the graph.

Immunoprecipitation assay

The DO1-p53-DNA complexes were prepared by mixing the DO1 antibody (400 ng) with the

purified protein (50 ng) in binding buffer followed by 20 min incubation on ice. Then, 200 ng

of scDNA (preincubated in triplex-forming buffer) and the same amount of linDNA (pBSK/

SmaI) were mixed with the given complexes and incubated in the binding buffer for 30 min on

ice. Magnetic beads (12 μl of suspension per sample) coated with protein G (MBG, Dynal/Invi-

trogen) were added to DO1-p53-DNA complexes after washing in binding buffer and incu-

bated with the beads for 30 min at 10˚C. Finally, after washing in binding buffer with

increased salt concentration (1× 50 mM, 2× 50–600 mM, 1× 50 mM), DNA was released from

the beads by heating at 65˚C in 15 μl of 1.0% SDS for 5 min and analyzed by agarose gel elec-

trophoresis, more details in [29]. Intensities of bands of bound DNA substrates were quanti-

fied using ImageQuant software. Graphs show the evaluation of p53-DNA binding as the

dependence of % of bound DNA on the concentration of KCl. Mean values of three indepen-

dent experiments were plotted in the graph.

Human cell lines, transfections and luciferase assays

Human breast adenocarcinoma MCF7 (HTB-22, ATCC), human non-small cell lung carci-

noma line H1299 (NCI-H1299, ATCC) and H1299-wtp53 cells (Tet-On system, [36]) were

grown in DMEM medium supplemented with 5% FBS and penicillin/streptomycin (Gibco).

All cultures were incubated at 37˚C with 5% CO2. The luciferase reporter constructs (S1 Table)

p53-Triplex DNA Recognition

PLOS ONE | DOI:10.1371/journal.pone.0167439 December 1, 2016 4 / 25



containing CON and/or (dA)50 or (dA)20 sequences were used for luciferase assay as described

in [29]. pRL-SV40 was used as a transfection efficiency control. 200 ng of reporter construct

was transfected in triplicates. Luciferase activity was measured in a plate reader luminometer

IMMUNOTECH LMT01 (Beckmann) with Dual Luciferase Assay System (Promega). For

each construct, relative luciferase activity is defined as the mean value of the Firefly luciferase/

Renilla luciferase activity ratios obtained from at least three independent experiments.

RT-qPCR

Total RNA was isolated using NucleoSpin RNA II (Macherey-Nagel) and 2 μg of RNA was

subsequently reverse transcribed into cDNA by applying High Capacity RT kit (Applied Bio-

systems). qPCR was performed using EvaGreen (Solis Biodyne) fluorescent dye in the standard

program (15 min 95˚C; 15 s 95˚C, 30 s 60˚C, 20 s 72˚C, 10 s 74˚C; 50 cycles) running in Rotor-

Gene 6000 (Corbett Research). RT-qPCR reactions for each sample were measured in tripli-

cates. GAPDH was used as reference gene. Absolute quantification was performed using

standard curve method. Data were then normalized to GAPDH. The housekeeping genes

(HPRT1, GAPDH) were used as endogenous controls. Relative quantification of transcript lev-

els with respect to the calibrator (H1299 with empty vector, MCF7 siRNA control, MCF7) was

done based on 2-ΔΔCT algorithm. All reactions were carried out in biological triplicates. The

primer sequences used are listed in S1 Table.

Immunoblotting

H1299 and Hwtp53 (expressing wtp53, induced with 1 μg/ml tetracycline for 24 hours) cells

were harvested from 10 cm plates and lysed with 1× PLB (Promega), followed by the sonica-

tion of cells (Bandelin Sonopuls). Samples (100 μg of total protein) were analyzed on 12.5%

SDS-PAGE gels and proteins were detected by the following primary antibodies: DO1 (anti-

p53, kindly provided by B. Vojtesek), anti-CDKN1A (Millipore), anti-β-Actin (Sigma), anti-

BAX (Sigma), anti-NAT10 (ThermoScientific).

Chromatin immunoprecipitation

Human breast adenocarcinoma MCF7 treated for 4 hours with nutlin-3 (5 μM) or doxorubi-

cine (1 μM) were subjected to chromatin immunoprecipitation (ChIP) assays as previously

described [29] with the following modifications: the cell sonication was limited to 4 kJ (Bande-

lin Sonopuls). Purified monoclonal DO1 antibody and IgG (negative control) were incubated

overnight with diluted chromatin and immunoprecipitations were performed with protein G-

magnetic beads (Invitrogen). The PCR was performed using the primers targeting expected

p53 binding site (S1 Table). In other type of ChIP experiment was performed with H1299 cells

transfected with plasmids pGL3-PGM1 and pGL3-BA50 (2 μg) and p53 expression vector

(pCDNA3.1; 1 μg), after 16 hours cells were subjected to chromatin immunoprecipitation

(ChIP) assays. The PCR was performed using the primers targeting expected p53 binding site

in pGL3 vector or native promoter sequence see in S1 Table. For quantitative analysis, PCR

was carried out for 25 or 30 cycles.

In-silico analysis of promoter regions

Human regulatory sequences were obtained using Table Browser [37] and saved as a FASTA-

formatted file of -5000bp to +2000bp regions around each RefSeq TSS. The CON binding sites

were identified as closely (<21bp) located pairs of sequence motifs with a maximum of 1 mis-

match. The set of identified p53CON sites was expanded to include all full-length grade 3–5
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sites identified by p53retriever R/Bioconductor package [38], which largely overlapped the

original set. The identification of potential triplex-forming sequences was carried out using the

R/bioconductor program triplex-1.8.0 [19], using the default scoring scheme of the software

tested in our previous work on human sequences [39]. To check for possible common func-

tions of the identified proteins, we performed a network enrichment analysis using the

STRING database tool [40] and gProfiler [41].

In-silico candidate gene transcription screening

Candidate gene transcription was checked in publicly available microarray and sequencing

datasets from experiments involving p53-transformed cells originally lacking active p53 or

experiments were p53 was activated by nutlin-3, 5-fluoruracil or doxorubicin (SRP043273,

SRP022871, E-GEOD-30753, E-GEOD-50650, E-GEOD-8660, E-MEXP-2556 [42]). We

obtained expression data from tables available from the iRAP pipeline [43], deposited by

authors to Array Express [44] or calculated from the available data using the ArrayExpress R/

Bioconductor package [45]. Raw expression values were normalized relative to GAPDH

housekeeping gene and averaged, where replicates were available.

Atomic Force Microscopy (AFM)

AFM measurements were carried out on MultiMode 8 system (Bruker) with NanoScope 8.15

software or on a custom-built AFM system [46]. 50 A silicon nitride MSCT probe, cantilever F

(k = 0.5 N/m, Bruker, Santa Barbara, CA, USA), was used with a free amplitude between 1 and

2 nm (amplitude set point between 0.8 and 1.5 nm, 80–90% of the free amplitude). Plasmids

were incubated in binding buffer at 37˚C for at least 30 min. For p53-DNA complex images,

plasmids were mixed with p53 proteins in p53 tetramer/DNA molar ratio 5/1 and incubated

on ice for 20 min. Sample containing 2 ng of plasmid DNA was diluted in 4 mM HEPES pH

7.6, 5 mM MgCl2, 5 mM KCl buffer and placed on freshly cleaved mica V4 surface, incubated

for 2 min, washed with distilled water and dried with a stream of compressed air.

Results

Full length p53 binding to intermolecular T.A.T triplex is comparable with

CTG hairpin non-B DNA structure recognition

Wild type p53 protein is well-known as a non-B DNA structure binder but its interaction with

triplex DNA has not been studied yet. We examined p53 binding to pyrimidine type of triplex

DNA formed by homoadenine and homothymine oligonucleotides. Intermolecular T.A.T tri-

plex was formed in neutral pH in the presence of Mg2+ ions [25]. Binding of full-length wild

type p53 (p53, Fig 1A) to T.A.T triplex was examined by EMSA in the presence of Mg2+ ions.

Increasing amounts of p53 (50–500 ng, Fig 1A) were bound to 50 bp long random sequence

(NON, lanes 2–5), p53 consensus sequence (CON, lanes 7–10) and T.A.T triplex (TAT, lanes

12–15). We observed small differences in p53 binding to T.A.T triplex (Fig 1A, TAT, lanes 12–

15) and to CON (lanes 7–10). In comparison with CTGhairpin (Fig 1B, lanes 7–10) and TAhairpin

(Fig 1B, lanes 12–15), the T.A.T triplex (Fig 1B, lanes 2–5) was bound by p53 stronger. Consid-

erably weak binding was observed to NON (Fig 1A, lanes 2–5). Detailed titration of p53 pro-

tein to T.A.T triplex and CON substrates (S1 Fig) mapped the differences between recognition

of both substrates.

To better characterize the differences in p53 binding to T.A.T triplex in comparison with

CON and CTGhairpin, we employed an enzyme-linked immunosorbent assay (ELISA) with a

set of biotinylated target oligonucleotides CON, TAT and CTGhairpin as recently described for
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Fig 1. Full length p53 binds strongly to T.A.T triplex DNA. (A) Full length p53 was incubated with 1 pmol

of 32P-labeled 50-mer oligonucleotides: nonspecific dsDNA (NON, lanes 1–5), p53 specific dsDNA with CON

(CON, lanes 6–10) and (dT)50.(dA)50.(dT)50 triplex (T.A.T triplex, lanes 11–15) in presence of 50 ng pBSK/

SmaI. Molar ratios of p53 tetramer/DNA ranged between 0.1 and 0.75. The samples were loaded onto 5%

0.5 × TBM (2 mM MgCl2) polyacrylamide gel and electrophoresis was performed for 0.45 h. (B) Full length

p53 was incubated with 1 pmol of 32P-labeled (dT)50.(dA)50.(dT)50 triplex (T.A.T triplex, lanes 1–5), CTG

hairpin (lanes 6–10) and TA hairpin (lanes 11–15) oligonucleotides in presence of 50 ng pBSK/SmaI. Molar

ratios of p53 tetramer/DNA ranged between 0.2 and 1.2. The samples were loaded onto 5% 0.5 × TBM (2 mM

MgCl2) polyacrylamide gel and electrophoresis was performed for 0.45 h. (C) p53 binding to biotinylated

oligonucleotides by ELISA. p53 binding curves for the TAT, CON and CTG oligonucleotides are shown, and

the dissociation constants (Kd) are indicated.

doi:10.1371/journal.pone.0167439.g001
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p53-quadruplex DNA binding [13]. Incubation of the immobilized target oligonucleotides

with a range of p53 protein (0.1–90 nM) was followed by quantitation using DO1 antibody.

Using this system, we demonstrated that p53 binds to T.A.T triplex with higher affinity

(Kd = 0.75 ± 0.07 nM), in comparison with CTGhairpin (Kd = 1.88 ± 0.13 nM) (Fig 1C). But as

expected, CON (Kd = 0.58 ± 0.05 nM) was the best substrate.

Role of core and C-terminal DNA binding domains for p53 T.A.T triplex

recognition

To examine the roles of both DNA binding domains in p53 T.A.T triplex recognition we ana-

lyzed the interaction of isolated p53 core domain (p53CD, aa 94–312, Fig 2A), C-terminal seg-

ment of p53 (p53CT aa 320–393; containing p53CTDBD and tetramerization domains, Fig

2B) and fragment of the last 30 aa of p53 (p53T, aa 363–393, Fig 2C) [10, 29]. At first, we com-

pared binding of p53CD (Fig 2A, lanes 9–11) and full length p53 (Fig 2A, lanes 12–14) to TAT.

An unchanged amount of proteins was used for p53CD and p53 binding to CON (Fig 2A,

lanes 2–7). In contrast to p53, p53CD was unable to form a stable complex with T.A.T triplex.

Binding of C-terminal p53 fragments p53CT (aa 320–393, Fig 2B) and p53T (aa 363–393,

Fig 2C) to T.A.T triplex was compared with proteins binding to other forms of DNA (ssDNA,

dsDNA). We observed that binding of both p53CT and p53T to T.A.T triplex DNA was stron-

ger than to the used dsDNA or ssDNA substrates. To better characterize differences in affini-

ties of isolated DNA binding domains to T.A.T triplex, we used ELISA with all p53 constructs

(p53CD, p53CT and p53T, Fig 2A–2D) followed by quantitation using a specific antibody as

was recently described for p53-telomeric quadruplex DNA-binding [13]. With this system, we

demonstrated that construct with CTDBD and tetramerisation domain, p53CT (Fig 2B) binds

to T.A.T triplex with nanomolar affinity (Kd = 1.88 ± 0.30 nM). p53T construct with CTDBD

and lacking the tetramerization domain recognized TAT with lower affinity (Kd = 10.44 ±
0.84 nM) than p53CT which is still better than for dsDNA or ssDNA (Fig 2C). And, the lowest

affinity for TAT triplex was observed for p53CD (Kd = 16.82 ± 2.13 nM). The results of bind-

ing studies are summarized on Fig 2E. Our results showed that the C-terminal DNA binding

domain with the tetramerization domain is crucial for TAT triplex high affinity binding.

We confirmed that the C-terminal DNA binding domain is necessary for T.A.T triplex rec-

ognition by full-length protein with monoclonal antibodies targeting N- and C- terminus (S2A

Fig). CTDBD mapping antibody inhibition of p53-non-B DNA complex was previously

shown for CTGhairpins and stem-loop structures [33]. DO1, monoclonal antibody targeting aa

20–25 on N-terminus, supershifted both p53-CON and p53-TAT complexes (S2B Fig, lanes

3,8). In contrast to DO1, PAb421 antibody (mapping CTDBD, aa 371–380) induced a partial

inhibition of p53 binding to TAT triplex (S2B Fig, lane 9) as opposed to supershifting of

p53-CON (S2B Fig, lane 4). ICA9, mapping aa 388–393 on extreme C-terminus, supershifted

both p53-CON and p53-TAT complexes (S2B Fig).

Binding of p53 to triplex forming sequence in supercoiled DNA in vitro

Intramolecular T.A.T triplex (H-DNA) formation in the presence of Mg2+ ions in supercoiled

plasmids containing homoadenine-homothymine blocks has been described for several vec-

tors [35, 47]. We prepared constructs based on the pBSK vector in variants with and without

p53 specific sequence (CON), triplex-forming sequence (TFS, (dA)50.(dT)50) and AT-rich cru-

ciform-forming sequence d(AT)34 (more details in S1 Table). Formation of non-B DNA struc-

tures in different superhelical plasmids was checked by several techniques (S3 Fig): S1 nuclease

treatment, OsO4-bipy modification detected by specific antibody against OsO4-bipy-DNA

adducts [48] (S3F Fig) and OsO4-bipy modification on the sequencing level [47, 49] (S3G Fig).
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Fig 2. Binding of p53CD and C-terminal p53 fragments to T.A.T triplex. (A) p53 Core domain (p53CD, aa 94–312) and full length p53 were

bound to CON, (lanes 1–7) and triplex (TAT, lanes 8–14) in p53 tetramer/DNA molar ratios 0.7–10 in presence of 10 ng competitor DNA. Graph of

p53CD (aa 94–312) binding to biotinylated oligonucleotides by ELISA. p53CD binding curves for the TAT, CON and A oligonucleotides are shown,

and the dissociation constants (Kd) are indicated. (B) C-terminal part of p53 (p53CT, aa 320–393) was incubated with (dT)50 (T, lanes 1–5), triplex

(dT)50.(dA)50.(dT)50 (TAT, lanes 6–10) and CON (lanes 11–15) in p53CT tetramer/DNA molar ratios 0.4–3.6. Graph p53CT (aa 320–393) binding to

biotinylated oligonucleotides by ELISA. p53CT binding curves for the TAT, CON and A oligonucleotides are shown, and the dissociation constants
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The H-DNAs formed in plasmids pBA50 and pA69 were also visualized by AFM (Fig 3A and

S5 Fig).

At first, we compared p53 binding to scDNA capable of H-DNA formation at native super-

helical density pBA50 and pPA50 with other plasmids pBSK and pPGM1 by EMSA (Fig 3B).

Differences in p53 recognition of scDNA with and without TFS or CON are measurable by

number and intensity of retarded bands (compare lanes 3, 8, 13 and 18, Fig 3B) and were eval-

uated by densitometry of the band corresponding to free (protein-unbound) DNA. The frac-

tion of DNA bound by the protein was calculated and plotted in the graphs shown in Fig 3B

(average of at least 3 independent experiments). Both plasmids pPGM1 (with CON, lanes

7–10) and pBA50 (with TFS and H-DNA potential, lanes 12–15) were more strongly bound by

p53 than pBSK (Fig 3B, lanes 2–5), similarly to pA69 (with H-DNA potential) versus pUC19

(S4 Fig). The best substrate for p53 was pPA50, plasmid with both motifs CON and TFS

(Fig 3B, lanes 16–20).

Furthermore, we applied a competition immunoprecipitation assay and compared binding

of p53 to scDNA with and without TFS and CON in the presence of competitor DNA (pBSK/

SmaI). Increasing salt concentration (50–600 mM KCl, [50]) was applied to detect the differ-

ence in stabilities of p53-scDNA complexes containing CON and TFS (Fig 3C). We observed

an increase in stability of p53-scDNA binding in the presence of TFS and in agreement with

other results, more so in the case of CON (Fig 3B). Due to stability of p53-scDNA complex we

were able to perform AFM visualization of p53 bound to scDNA with triplex-forming

sequence (dA)69.(dT)69 is depicted in Fig 3A and S5 Fig.

To probe differences in relative p53 binding affinity to scDNA with/without TFS and CON

we used a competition assay proposed previously [30]. Binding of the p53 protein to CON

fragment yielded a well resolved retarded band p53-CON (Fig 3D, lane 2). The intensity of this

band was affected by the additions of tested scDNAs, which represented the competitors.

Decrease of the p53-CON band intensity relative to the intensity detected in the absence of the

competitors reflected the relative affinity of p53 for a given competitor, bar graph represents

results from three independent experiments. We observed that pBA50 (T.A.T, H-DNA) was a

comparable competitor to all plasmids with CON (pPGM1, pPA50 and pPAT34). The control

vector pBSK together with pBAT34 (X, cruciform DNA) were the worst competitors.

In-silico screening of human regulatory sequences for co-occurrence of

CON binding sites and potential T.A.T triplex-forming sequences

To investigate the possible significance of p53 binding of T.A.T triplex-forming sequences for

transcription regulation we carried out a series of in-silico investigations. Within the context of

p53 transcription factor functions involving CON recognition, we looked for T.A.T triplex-

forming and CON sequence co-occurrence in the human genome to predict new class of p53

target genes. We analyzed the -5000/+2000 bp neighborhoods of 42106 RefSeq gene transcripts

(promoters). Of these, 19373 promoters were found to contain at least one CON sequence

when 1 mismatch was allowed. T.A.T triplex-forming sequences with a prevailing poly(A) or

poly(T) run with score> = 18 were found in 376 sequences. Because of the asymmetry in

occurrence of these two patterns we decided to screen the promoters primarily on the

(Kd) are indicated. (C) C-terminal part of p53 (p53T, aa 363–393) was incubated with (dA)50 (A, lanes 1–5), triplex (dT)50.(dA)50.(dT)50 (TAT, lanes

6–10) and double-stranded TA (lanes 11–15) in p53CT tetramer/DNA molar ratios 0.8–8.4. Graph of p53T (aa 363–393) binding to biotinylated

oligonucleotides by ELISA. p53T binding curves for the TAT, CON and A oligonucleotides are shown, and the dissociation constants (Kd) are

indicated (D) Scheme showing p53 domains and p53 protein constructs used in this work. (E) Relative binding properties of p53 protein constructs to

TAT triplex and CON oligonucleotides.

doi:10.1371/journal.pone.0167439.g002
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predicted length of the T.A.T triplex. There were 43 promoters of candidate p53 target genes

with at least one CON and a T.A.T triplex with a poly(A/T) run longer than 40 bp. S2 Table

shows locations, common gene abbreviations and binding site data for these promoters. Inter-

estingly, in-silico analysis shows that most CONs are downstream of the triplex (Fig 4).

Fig 3. Binding of p53 to supercoiled DNA bearing homoadenine-homothymine triplex forming sequences. (A) Scheme of intramolecular T.A.

T triplex in scDNA. AFM image of sc pA69 plasmid adsorbed on mica surface in the presence of 2 mM MgCl2 and complex of pA69 with p53. (B)

Comparison of p53 binding to scDNA with and without triplex forming sequence (dA)50.(dT)50 by EMSA. Binding of p53 protein to pBSK, pPGM1,

pBA50 and pPA50 detected by EMSA in agarose gel. p53 protein was bound to scDNA (pBSK, 200 ng, lanes 1–5), scDNA with CON (scPGM1, 200

ng, 6–10), scDNA with (dA)50.(dT)50 (scBA50, 200 ng, 11–15) and scDNA with both CON and (dA)50.(dT)50 (scPA50, 200 ng, 16–20) in p53/DNA

molar ratios 1–3 at 4˚C, EMSA was performed at 4˚C. Graph represents the dependence of percents of bound DNA on the amount of p53 proteins

calculated from three experiments. (C) Interaction of p53 with scDNA (BSK, PGM1, BA50 and PA50) in presence of pBSK/SmaI (linear competitor, lin)

by immunoprecipitation on MBG. Agarose gel electrophoresis of DNA recovered from MBG after incubation of DO1-wtp53-DNA complex at the beads

to 50, 100, 300 or 600 mM KCl for 30 min at 10˚C followed by the SDS treatment. DNA inputs of scDNA BSK (lane 2), PGM1 (lane 3), BA50 (lane 4),

PA50 (lane 5), linBSK (lane 1). Arrows indicate precipitated supercoiled (sc), open circular (oc), linear (lin) and supercoiled dimers (dimer sc). Mean

values of bound DNA from three independent experiments were plotted in the graph. Graph represents the dependence of percents of bound DNA on

the concentration of KCl in washing buffer calculated from three experiments. (D) Competition assay of p53 binding to CON and non-B-DNA structures

in scDNA plasmids. First, full length p53 (60 ng) was incubated with 200 ng PGM1/PvuII fragments (short fragment with CON sequence (CON, 474

bp) and long fragment as linear nonspecific competitor (NON, 2513 bp) for 20 min on ice to form p53-CON complexes. Subsequently, 200 or 300 ng of

different scDNA plasmid competitors were added and incubation was prolonged to 40 min. Plasmids forming triplex T.A.T were marked by TAT,

plasmids forming cruciform by X. Graph represents the dependence of percents of bound DNA on the amount of used competitor scDNAs calculated

from three experiments.

doi:10.1371/journal.pone.0167439.g003
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STRING-db functional association tool shows 16 of the 43 highest-scoring genes/proteins

found in the screening, together with p53 and 10 most-related proteins from STRING-db,

organized into a network by common properties and interactions (S6 Fig). 16 proteins from

our study that are also part of well-connected networks are: ABCG5, PIK3R4, INSR, MIB1,

MAPK9, TGIF1, STAG2, NFAT5, MAK16, DDX54, NAT10, BMS1, PSMB2, PEX12, MCC

and MCCC1 shown in blue (S6 Fig). The common functional theme for the proteins clustered

by STRING as suggested by gProfiler GO term enrichment analysis is “regulation of signal

transduction” (P-value = 2.52e-04).

Triplex forming sequence and DNA topology influence p53

transactivation

To analyze whether the triplex-forming sequence (dA)50 has any effect on p53-driven tran-

scription we performed luciferase reporter assays using reporter vectors in variants with and

without TFS (dA)50, (dA)20 too short for triplex formation and p53 specific sequence CON

(Fig 5A). Luciferase assay was performed in H1299 cells with transfected pCDNAp53 effector

and related to transfected pCDNA vector only (Fig 5B) with linear and supercoiled reporter

vectors and in p53 inducible H1299wtp53 cell line (Tet-on system) with sc reporters after p53

induction and related to no induced stage (Fig 5C). Only supercoiled reporters could form

non-B DNA structures, in our case H-DNA (Fig 5A, 5B and 5C; B50, P50, TAT) or cruciform

(Fig 5A, 5B and 5C; P1, P20, cruciform-X). As expected p53 expression resulted in stronger

activation of all vectors containing CON (P1, P20, P50) in comparison with vectors missing

CON (BSK and B50). As for P20, with an insert not yet suitable for triplex formation [35], the

activation was comparable to the original reporter P1. Interestingly, activation of P50, for

intramolecular triplex formation already satisfactory reporter occurring when the reporter was

Fig 4. T.A.T triplex and p53CON positions in promoters of the 43 analyzed human genes. (A) Relative

distance between each p53CON and the corresponding T.A.T triplex. Most p53CONs are 2000-2500bp

downstream of the triplex. Second peak corresponds to T.A.T triplex positioned in front CON. (B) Absolute

positions of p53CONs (yellow) and T.A.T triplex-forming sequences (blue). TSS is positioned at 0.

doi:10.1371/journal.pone.0167439.g004
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supercoiled, was significantly stronger than analogous reporter containing only CON (P1) (Fig

5B and 5C). For linear reporter P50 such effect was not observed (Fig 5B). In the case of B50, a

repression was observed with sc form of reporter (Fig 5B and 5C). In summary, triplex-form-

ing sequence (dA)50 enhances p53-driven transcription from supercoiled reporter containing

p53 specific sequence CON.

Fig 5. Influence of T.A.T triplex forming sequence on p53-driven activation of CON containing reporter vector in scDNA and

lin DNA. (A) Scheme of reporter plasmid constructs used in luciferase reporter assay and non-B DNAs formation under supercoiled

stress (CF- cruciform, TAT-triplex). (B-C) H1299 cells were transiently transfected with plasmids expressing the p53 (pCDNA3.1-p53)

or pCDNA3.1 vector alone (CMV) together with reporter: the supercoiled or linear reporter plasmids (BSK, P1, P20, P50, B50)

expressing the firefly luciferase gene and a reference plasmid with the renilla gene under control of the SV40 promoter. Luciferase

activity was analyzed 16 hours after transfection and signal was normalized on renilla signal. Transfections were carried out in

triplicates at least at three independent times and standard deviations are indicated. (B) p53 activation of supercoiled reporters.

Luciferase activity was normalized on control with vector alone. Only B50 and P50 reporters were able to form triplexes. p53 activation

of linear reporter as described above, none of used reporters was able to form triplexes. (C) p53 activation of supercoiled reporter

plasmids in H1299-wtp53 cells (Tet-on promoter). Luciferase signal after p53 induction was normalized on control without p53

induction. Only B50 and P50 reporters were able to form triplexes. (D) Interaction of full length p53 with CON (P1) and triplex T.A.T

(B50) in scDNA plasmids by ChIP in vivo. Plasmids BA50 or PGM1 (2 μg) were transfected into H1299 cells together with vector

pCDNA3.1-wtp53 (0.1 μg). ChIP was performed with CM1 antibody. Results of PCR analyses of immunoprecipitated DNA were

detected on a 1.5% agarose gel in 1× TAE buffer. PCR samples on the gel are: marker (lane 1), plasmid PGM1 (P1, lane 2) and BA50

(lane 6); 1/20 of DNA input (lanes 5 and 9 marked as IN); IP with IgG (negative control) (lanes 4 and 8); IP with CM1 Ab (lanes 3 and 7).

doi:10.1371/journal.pone.0167439.g005
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To confirm in vivo p53 binding to (dA)50 sequence capable to form H-DNA, supercoiled

plasmids B50 (H-DNA potential) and P1 (CON with potential to form DNA cruciform) were

transfected to H1299 cells together with effector plasmid pCDNA3.1p53 and a ChIP assay was

performed with p53 specific antibody CM1 (Fig 5D lane 3 and 7) and IgG (negative control)

(Fig 5D, lane 4 and 8). We observed comparable binding of p53 to B50 (TAT, H-DNA-form-

ing sequence Fig 5D, lane 7) as to P1 (CON, Fig 5D, lane 3).

Together, these data demonstrate that the triplex-forming sequence (dA)50 under condi-

tions favorable for the actual H-DNA formation can influence the level of DNA-binding and

transactivation of p53 binding sites in promoter regions by p53 in vivo.

Analysis of candidate p53 target genes with triplex-forming sequences in

promoter region

To better prioritize the candidate p53 target genes identified by the above in-silico screening

(S2 Table and S6 Fig) we consulted publicly available microarray and sequencing datasets for

experiments involving full-length p53, p53CΔ30 and p53S389A transformed cells originally

lacking p53 [51, 52] or experiments with endogenous p53 activated by nutlin-3/doxorubicin/

5-fluoruracil for gene expression values [42, 53–58], results are summarised in S3 Table. This

way we were able to evaluate expression of many of the candidate p53 target genes and also

evaluate the influence of p53 C-terminus as shown in S3 Table. Several of the genes selected

by the screen showed consistent up-regulation in these conditions (MCC, NFAT5, ENOX1,

ABCG5) or down-regulation (MAPK9, MAK16). Interestingly, NAT10 and STAG2 belongs to

several genes down-regulated after activation of p53 by drug treatment and up-regulated in

p53 overexpression in p53 null cells. Several up or down regulated genes (ABCG5, INSR,

MCC, NFAT5 and NAT10) were limited to the STRING-db-supported functionally associated

group of genes. Intact C-terminus was necessary for strong p53-dependent activation of

MCC, one of the best candidate p53 target gene, in contrast to well-known target gene

MDM2 (S3 Table).

To validate experimentally our set of candidate genes (S2 Table) as novel p53 target genes,

at first we performed their RT-qPCR analysis after p53 transient transfection experiment in

p53 null cell line (H1299, Fig 6A, S3 Table). As expected p53 overexpression activated p21,

BAX and several new potential candidate p53 target genes (e.g. ABCG5, INSR, MCC, NFAT5;

Fig 6A). Next, we checked whether p53 downregulation in MCF7 cells could reduce their

expression. Downregulation after p53siRNA treatment was observed for ABCG5, ENOX1,

INSR, MCC, NAT10 and NFAT5 (Fig 6A, S3 Table). In addition, ABCG5, ENOX1, INSR,

MCC, NFAT5 together with p21 and BAX were induced in MCF7 cells treated with nutlin-3,

a p53-stabilizing agent (Fig 6B). However, activating p53 by actinomycin D did not promote

ENOX1, INSR, MCC expression, in contrast to BAX, p21 and ABCG5 (Fig 6B). For another

candidate genes MAPK9 and NAT10 we observed down-regulation after p53 activation by

actinomycin D drug treatment. Interestingly, after 24 hours tetracycline p53 induction of

Hwtp53 cells, we observed activation of NAT10, p21 and BAX on the protein level (Fig 6C).

To determine binding of endogenous p53 to triplex forming sequences in selected new

potential p53 target gene promoters, we performed ChIP assay for analysis of p53 binding on

MCC, NAT10 and p21 promoters in MCF7 cells (Fig 6D). Using of primers covering TAT tri-

plex we observed p53 binding to MCC and NAT10 promoters also after stabilization of p53

after nutlin-3 and doxorubicin treatment in MCF7 cells (Fig 6D). Taken together, in silico
analysis of expression data, RT-qPCR and ChIP analysis have shown connection between

p53 and new set of potential p53 target genes with triplex forming sequences in promoter

regions.
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Discussion

Alternative, non-B DNA structures, such as triplex, quadruplex, hairpin and cruciform can be

formed by sequences that are widely distributed throughout the human genome [59]. Triplexes

and cruciforms are implicated in regulating gene expression and causing genomic instability

Fig 6. Verification of candidate p53 target genes. (A) RT-qPCR analysis of candidate p53 target genes and BAX,

p21 and p53 mRNA levels in i) H1299 cells transfected by pCDNAp53 for 48 hours (left graph); ii) MCF7 cells with

downregulation of p53 by siRNA over control siRNA for 48 hours (right graph). (B) RT-qPCR analysis of candidate

p53 target genes and BAX, p21 mRNA levels in MCF7 cells after nutlin-3 or actinomycin D 12 hours treatment. Gene

values were normalized to GAPDH. The values are the average of three independent experiments. (C) p53 mediated

up-regulation of NAT10 on protein level and activation of BAX and CDKN1A was analyzed in Hwtp53 cells (24 hours

induction) vs H1299 without p53 expression. Western blots presenting protein levels of p53, NAT10, CDKN1A and

BAX. Actin was used as loading control. (D) Chromatin immunoprecipitation showing p53 binding to MCC and

NAT10 promoters which contain a TAT triplex motif. DNA fragments from MCF7 cells without and with nutlin-3/

doxorubicin 4 hours treatment were immunoprecipitated using DO1 antibody against p53 (lane 4,7,10), negative

control ChIP with IgG (lanes 3,6,9), positive input control (1/15 input for ChIP, lanes 2,5 and 8).

doi:10.1371/journal.pone.0167439.g006
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[60, 61]. Despite the known fact of tumor suppressor p53 protein importance for maintaining

genomic stability, the mechanisms in this protective function are still not well understood.

Regions with the potential to form triplex DNA are generally over-represented in the pro-

moter regions and introns of genes involved in cell signaling as indicated by genome-wide bio-

informatics analyses [18, 19, 62]. In our previous bioinformatics study, we showed the

prevalence of the T.A.T triplex class in the human genome [19]. The present work was a fol-

low-up by focusing on p53 recognition of T.A.T triplex-forming sequence (dA)50.(dT)50, espe-

cially in promoters containing this sequence in close proximity to specific p53 binding sites

(CONs).

A number of independent studies have established that p53 recognizes non-B DNA struc-

tures including hairpins, stem-loops, cruciforms, mismatches, bulges, G-quadruplexes, three-

and four-way junctions [4, 30, 31, 63–66]. For example CTG.CAG trinucleotide repeats were

shown to be a novel class of p53-binding sites in vitro and in vivo, CTG and CAG hairpins

were determined as p53 bound non-B DNA structures in that repetitive sequence [33]. To best

of our knowledge no study has been published on triplex DNA recognition by wild-type p53

protein. Mutant p53 (R273H) binding to genomic fragment containing mirror repeats with

the potential to form intramolecular triplex was shown in an earlier study of ours on identify-

ing natural binding sites in glioblastoma cell line U251 [67].

In the present study, a range of biophysical approaches was used to analyze the interaction

of full-length and isolated DNA binding domains of p53 with intermolecular triplex DNA.

The T.A.T type of triplex was chosen with respect to physiological conditions necessary for tri-

plex formation [35, 47] and for the high frequency of potential triplex-forming sequences in

the genome [39]. Both EMSA and ELISA assays demonstrate slightly greater binding affinity

of full-length p53 protein to the T.A.T triplex than to the CTGhairpin (Fig 1). Binding of full-

length p53 to T.A.T triplex was weaker than to specific sequence CON. In contrast to p53T

and p53CD, the affinity of p53CT for the T.A.T triplex was in range of full-length p53. Thus,

our data showed that both CTDBD and the tetramerization domain (aa 325–356) are necessary

for high affinity p53 binding to the T.A.T triplex.

Although binding of DNA by the C-terminus is usually marked as non-specific, CTDBD

has a major role in non-B DNA structures recognition (e.g. stem-loop structure, G-quadru-

plex, CTG and CAG hairpins, [13, 31, 33, 68]) and there is increasing evidence for the impor-

tance of intact CTDBD for regulating sequence-specific DNA binding, transactivation and

also for the maintaining genomic stability [69, 70]. The C-terminus is marked by the presence

of a large number of positively charged amino acid residues and has an inherently disordered

character. The CTDBD structure gives intrinsic flexibility and possesses molecular recognition

features necessary for the multifunctional nature of this region [70, 71]. The formation of a

partially helical structure was observed experimentally after binding of the C-terminus to non-

specific DNA (sheared herring sperm DNA, [72]). Laptenko´s recent in vivo and in vitro study

with p53 proteins mutated in CTDBD (mimicking acetylation/phosphorylation) points to sev-

eral positive roles of intact unmodified CTDBD in regulating sequence specific DNA binding,

p53 protein stability, p53 cellular localization and co-factor recruitment [70]. Recently, the rel-

evance of post-translational modifications of the C-terminus in the DNA-binding properties

of p53 has been reviewed in [71].

There is no systematic study to date of the role of DNA binding domains in different non-B

DNA structures recognition. CTDBD is necessary for recognition of DNA cruciform and

stem-loop structures both formed by CON sequences [30, 31], as well as CTG.CAG tracts [33].

In the case of p53 interaction with scDNA, we have shown that at least the dimeric form of

CTDBD is essential for highly selective binding [10]. Three-stranded junctions (with and with-

out mismatches) were recognized by full length protein but with lower affinity by p53CΔ30
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(containing core domain with the tetramerization domain) as well [4]. On the other hand, the

CD and dimerization domain are required for high affinity interaction with insertion/deletion

lesions [5]. Our data agree with the majority of studies on p53 interaction with alternative

DNA structures, showing the CTDBD and tetramerization domain is responsible for high-

selective binding of p53 to non-B DNA structures [4, 9, 12, 30–32, 73].

For the first time we show preferential p53 binding to supercoiled plasmids capable of

H-DNA formation by (dA)50.(dT)50 sequence. We verified H-DNA formation under superhe-

lical stress under conditions used for p53 binding using several techniques and visualized

them by AFM. scDNA pBA50 was somewhat more weakly bound by p53 than scDNA with

CON (pPGM1). In competition assay, pBA50 and pPA50 capable of H-DNA formation were

better competitors than pBAT34 forming AT-rich cruciform and comparable in competition

to plasmids with CON (Fig 3D). Supercoiled pPGM1 was shown to form cruciform by CON

with stem-loop motif with mismatches and to be more attractive for p53 binding [30, 31]. We

suspect that the high affinity of p53 for scDNA capable of forming H-DNA is due to the fact

that besides the triple-helical part of the scDNA molecule (Fig 3A), p53 also recognizes single-

stranded loops and junctions (Fig 3A) already described as p53 recognition motifs in DNA

[31].

Identification of T.A.T triplex as a novel p53 binding site recognized by CTDBD raises the

question of the physiological significance of such interaction. The nM binding/dissociation

constant that we observed for p53 binding to intermolecular T.A.T triplex (Fig 1C) shows that

this binding is slightly stronger than to CTGhairpin and slightly weaker than to CON observed

in this work using ELISA and EMSA (Fig 1) providing evidence for the in vivo relevance T.A.T
triplex p53 binding. The nM range of binding/dissociation constant for p53 sequence-specific

interaction has been found by several groups using various techniques e.g. Fersht´s group by

FA [30, 31]. For sequence-specific p53 binding, application of competitive fluoresce anisotropy

technique has shown Kd values in the range of 10–100 nM. The pM dissociation constant for

sequence-specific and insertion/deletion lesion p53 interactions has been reported so far in

only one study [5].

We speculate that the T.A.T triplex formed by (dA)50.(dT)50 tracts may act as a non-B DNA

p53 binding site essential for p53 stability, co-factor recruitment and regulating sequence-spe-

cific binding mainly in the case of unmodified C-terminus by phosphorylation and acetylation.

Binding of p53 to a significant number of sites within the genome depends on the availability

of unmodified CTDBD according to a recent report [70]. The C-terminus has been shown to

be crucial for the sliding mechanism of p53 recognition of CON by p53CD [74]. p53 binding

to multiple non-B binding sites can influence their stability. One suggested scenario is that

non-B DNA structures may be targeted by p53, which then binds to and stabilizes or destabi-

lizes such DNA structures to increase gene transcription. Besides its effect on gene transcrip-

tion, p53-non-B DNA recognition can participate in DNA repair, DNA replication and/or

DNA recombination. Genome-wide studies show that p53 binds to many loci in the genome,

including sites not associated with transcriptional control [75]. Recently, the prevention of

accumulation of DNA damage by p53 binding to subtelomeric regions has been described

[76]. Walter et al. showed that p53 induces local distortions in mismatched trinucleotide

repeats and suggested that p53 may be involved in the maintenance of CTG.CAG tract stability

[12, 30, 33]. In our case we observed a positive effect of T.A.T triplex-forming sequence

(dA)50.(dT)50 on the stability of the p53-scDNA complex and p53 binding to (dA)50.(dT)50 in

scDNA in cells. For this reason, we hypothesize that p53 interaction with T.A.T triplex, pri-

marily by CTDBD, can stabilize p53 protein in both non-B DNA and CON. Additionally, we

can discuss the role of the p53-T.A.T triplex recognition in the process of DNA repair. It was

shown that triplex-forming oligonucleotides are able to activate DNA recombination and
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DNA repair in addition to inducing genomic instability [77]. Intact p53 C-terminus is neces-

sary for recognition of damaged DNA and recombination intermediates [2, 3, 7, 8, 63, 78, 79].

Triplex DNA may also elicit genetic instability by a roadblock to DNA replication and tran-

scription elongation [80]. The DNA damage tolerance pathway and p53 regulates DNA repli-

cation fork progression according to a recent study [78]. It was shown, that the helical

distortions and structural alternations induced by triplex formation may be recognized as

“DNA damage” [80, 81]. So far, we can only speculate that p53-T.A.T triplex recognition can

eliminate DNA damage caused by triplex formation.

Interestingly, the group of proteins specifically recognizing triplex DNA (HMG, helicases,

RAD51, RPA [82]) are also known as p53 interaction partners. As large number of p53 inter-

acting proteins also interact with triplex DNA, we reason that p53 triplex recognition has the

potential to influence the regulation of genomic stability, DNA repair, DNA replication, DNA

recombination and gene expression at different levels.

Using luciferase reporter assay in two different cell systems, we demonstrate that T.A.T tri-

plex-forming sequences (dA)50.(dT)50 in front of CON, enhanced promoter activation by p53.

Interestingly, the reporter vector containing only T.A.T triplex-forming sequence (dA)50.

(dT)50 was repressed by p53 protein. Both these effects suggested that T.A.T triplex-forming

sequences have the potential to influence transcription in both directions. We assume that

positioning of p53 on promoter region facilitates p53 recognition and transcription of genes.

Our in-silico analysis with STRING showed that a fraction of promoters containing both

CON and a potential T.A.T triplex-forming sequence belong to the functional and structural

association network of p53. Although p53 has a large association network, repeated experi-

ments with randomly chosen UniProt Ids have shown that the majority of blind tests had net-

works with less than 10 interactions while we observed 14, before adding the additional 10 best

connected proteins. A medium strength enrichment (P-value ~ 0.00025 after correction for

multiple testing) was obtained from gProfiler for the most enriched Gene Ontology term: “reg-

ulation of signal transduction”. Consequently, the in-silico experiments did not yield results

that would have the power of proof for us. Rather, they should be viewed as a tool to narrow

down possible candidates for further studies, such as the RT-qPCR experiments carried out

here. Several candidate genes from the narrowed-down list that have been tested by RT-qPCR

show increased expression in p53 dependent manner in p53 null cell line. The best candidates

are ABCG5, ENOX1, INSR, MCC, NAT10, NFAT5 and MAPK9 (Fig 6). Only MCC, INSR and

NAT10 association with p53 has been described so far. MCC was described as a target gene

upregulated by nutlin-3 but not by doxorubicin and its promoter CON sequence was bound

by p53 in U2OS cells [83]. INSR is described as a target gene upregulated by overexpression of

p53 in HCT116 p53-/- cells [83]. Recently, NAT10 was described as a protein regulating p53

activation through its acetylation and also that NAT10 was upregulated under stress condi-

tions in a p53-dependent manner. Thus, NAT10 forms a positive regulation feedback with p53

in response to stress [84].

The tumor suppressor p53 has been studied extensively as a direct transcription regulator

of several hundred target genes and it is currently known to indirectly regulate thousands of

genes [85]. Detailed promoter analyses of each potential candidate p53 target gene have to be

done to validate them as genuine p53 target genes, as well as, to prove the importance of DNA

triplex formation for their regulation by p53. So far, in-silico analysis of promoters of candidate

p53 target genes shows that most CONs are downstream of the triplex and we can only specu-

late about the possible functions of T.A.T triplex-forming sequence as enhancers and this has

to be experimentally proven. Recently, p53 recognition of regulatory enhancer elements within

the non-coding genome was identified in human fibroblasts [86]. p53 has been shown to regu-

late the expression of multiple genes over long distances via looping and binding to enhancers
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[85]. Originally, we showed that p53 is involved in DNA looping in vitro [87]. More experi-

ments with positioning of TAT and CON sequences have to be conducted to confirm this

hypothesis.

Genome organization and local DNA structural effects on gene expression are still not suffi-

ciently investigated. Our results show possible concomitant binding modes of p53, where one

of them depends on structures that may only be present transiently in the genome. Further

studies would provide us with better understanding of the local environment at promoters and

new modes of transcriptional regulation.

Conclusions

In summary, we show that p53 protein possessing intact C-terminus exhibits the ability of p53

to bind with high affinity to intermolecular and intramolecular T.A.T triplex DNA. Moreover,

T.A.T triplex influences transcription from a CON containing reporter and p53 T.A.T binding

was also detected in vivo by chromatin immunoprecipitation techniques. ABCG5, ENOX1,

INSR, MAPK9, MCC, NAT10 and NFAT5 were associated with p53, as potential novel p53 tar-

get genes with T.A.T motif in their promoter.

Supporting Information

S1 Fig. Protein analysis and comparison of binding of full length p53 to T.A.T triplex and

CON. (A) SDS-PAGE analysis of p53 proteins used in the study. The purity and appropriate

size of each proteins was analyzed by Coomassie blue staining of 12.5% SDS-PAGE gel. (B)

Full length p53 was bound to 1 pmol of 32P-labeled 50-mer oligonucleotides represented by

p53 nonspecific dsDNA (NON, lanes 1–5), p53 specific dsDNA with CON (CON, lanes 6–10)

and triplex (dT)50.(dA)50.(dT)50 (TAT, lanes 11–17) in the presence of DNA competitor (linear

plasmid pBSK/SmaI, 50 ng). The reactions were separated on 4% 0.5× TBM (2 mM MgCl2)

polyacrylamide gel (PAGE), 3h. Radioactively labeled DNA was detected by autoradiography.

B,C) Full length p53 was bound to 1 pmol of 32P-labeled 50-mer oligonucleotides represented

by p53 specific dsDNA with CON (CON, B) and triplex (dT)50.(dA)50.(dT)50 (TAT, C) in the

presence of DNA competitor (linear plasmid pBSK/SmaI, 20 ng). The reactions were separated

on 5% 0.5× TBM (2 mM MgCl2) PAGE, 1 h. Radiolabeled DNA was detected by autoradiogra-

phy.

(TIFF)

S2 Fig. Interaction of CTDBD with T.A.T triplex. The effect of C-terminal modifications

of p53 protein by Ab on T.A.T triplex recognition. (A) Scheme of p53 used in this study,

shown as boxes below the map of p53 domains. The evolutionarily conserved domains are

indicated: core DNA binding domain (CD; aa ~100–300), tetramerization domain (TD; aa

325–356) and basic C-terminal DNA binding domain (CTDBD; aa 363–382) and location of

p53 antibodies PA421, ICA9 and DO1 used in our study. (B) Effect of C-terminal modifica-

tions of p53 protein by Ab on T.A.T recognition. The antibodies (DO1, PAb421 and ICA9;

1.5 μg) were bound to p53 (300 ng) in Ab/p53 molar ratio 2/1 at RT for 15 min. Then 1 pmol

of 32P-labeled 50-mer oligonucleotides represented by p53 specific dsDNA with p53CON

(CON, lanes 1–5) and triplex (dT)50.(dA)50.(dT)50 (TAT, lanes 6–10) were added and mixtures

were incubated at 4˚C for 20 min. The reactions were separated on 4% 0.5× TBM (2 mM

MgCl2) PAGE at 4˚C. Radioactively labeled DNA was detected by autoradiography. Mouse

monoclonal anti-p53 antibodies (mAb) (DO1 (aa 20–25), Bp53 10.1 (aa 375–379), PAb421

(aa 371–380) and ICA9 (aa 388–393)) and anti-GST Ab (G1160, Sigma) were used.

(TIFF)
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S3 Fig. Non-B DNA structures analysis supercoiled plasmid DNA (pBSK, pPGM1,

pPGM2, pBA50, pPA50, pBAT34, pA69 and pPAT34) by S1 treatment, OsO4-bipy modifi-

cation and its combination with S1 treatment. (A,B,D,E) Scheme of non-B DNA structures

detection by S1 nuclease treatment described in [30]. scDNAs were treated with S1 nuclease

followed by ScaI digestion. Detection of two fragments indicates one major non-B DNA struc-

ture (cruciform or triplex) formation in the polycloning site in the case of pBA50 (A), pPGM2

(D, lane 12), pBAT34 (E, lane 4), and pAT34 (E, lane 8). But also pPGM1 (D, lane 8), pBA50

(B; E, lane 12), pPA50 (E, lane 16) and pBSK (D, lane 4) were sensitive to S1 nuclease treat-

ment; two pairs of fragments (black lines) were detected, indicating that all plasmids can form

non-B DNA structures with unpaired bases. (C) AFM visualization of intramolecular triplex in

pBA50, conditions as described in Fig 2. (F) Detection of non-B DNA modified with OsO4-

bipy by dot blot on nitrocellulose membrane with specific antibody against OsO4-bipy-DNA

adduct as described in [48]. pUC19 (vector only) and pA69 were modified by condition

described in [48]; (G) Detection of non-B DNA in plasmid DNA pre-incubated in 20 mM

TrisHCl pH8, 2mM MgCl2 without/with 100 mM NaCl by OsO4-bipy modification followed

by primer extension analysis of pBSK (1,2), PGM1 (3,4), PGM2 (9,10), pBA50 (11,12) plasmid

DNA, conditions described in [47]. Primer extension from T7 primer was used. See S1 File for

experimental details.

(TIFF)

S4 Fig. Comparison of p53 binding to scDNA with and without triplex forming sequence

(dA)69.(dT)69 by EMSA. Binding of p53 protein to pUC19 and pA69 detected by EMSA in

agarose gel. p53 protein was bound to scDNA (pUC19, 200 ng, lanes 1–5) and scDNA with

(dA)69(dT)69 (pA69, 200 ng, 6–10) in p53/DNA molar ratios 1–5 at 25˚C, EMSA was per-

formed at 4˚C.

(TIFF)

S5 Fig. AFM visualization of plasmids containing triplex-forming sequences and their

complexes with p53 proteins. (A) AFM image of scBA50 plasmid mounted in the presence of

5 mM MgCl2. Scale bar represents 200 nm. (B) Image of pA69 complexes with p53, proteins

were incubated with DNA in molar ratio 5/1 in DNA binding buffer and then loaded on mica

surface in the presence of 5 mM MgCl2. Scale bar represents 500 nm. (C) pA69 plasmid with

p53 proteins in 3D projection.

(TIFF)

S6 Fig. STRING-db analysis of the highest-scoring proteins of candidate p53 target genes.

The 43 highest-scoring proteins of candidate p53 target genes found in the in-silico study (red

and blue), together with p53 (yellow) and 10 most-related proteins (grey) from STRING-db,

organized into a network by common properties and interactions. The 16 proteins from our

study that are also part of well-connected networks are shown in blue. See S1 File for experi-

mental details.

(TIFF)

S1 File. Supplementary Methods.

(DOCX)

S1 Table. Sequences of DNA oligonucleotides, DNA plasmids and primers for ChIP and

qRT-PCR, separate file.

(XLSX)

S2 Table. Tabulated positions of identified p53CON and longest T.A.T triplex sequences

relative to the transcription start site of the given RefSeq transcript. Positions of lower
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stringency p53CON sequences with 2 mismatches are shown in parentheses. Genome coordi-

nates refer to human genome sequence hg38 annotation.

(XLSX)

S3 Table. Verification of candidate p53 target genes. In-silico candidate gene screening of

publicly available microarray and sequencing datasets and summarization of results of verifica-

tion by RT-qPCR. See S1 File for experimental details.

(XLSX)
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Abstract

Motivation: Poor protein solubility hinders the production of many therapeutic and industrially useful proteins.
Experimental efforts to increase solubility are plagued by low success rates and often reduce biological activity.
Computational prediction of protein expressibility and solubility in Escherichia coli using only sequence information
could reduce the cost of experimental studies by enabling prioritization of highly soluble proteins.

Results: A new tool for sequence-based prediction of soluble protein expression in E.coli, SoluProt, was created
using the gradient boosting machine technique with the TargetTrack database as a training set. When evaluated
against a balanced independent test set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of
0.62 exceeded those of a suite of alternative solubility prediction tools. There is also evidence that it could signifi-
cantly increase the success rate of experimental protein studies. SoluProt is freely available as a standalone pro-
gram and a user-friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/.

Availability and implementation: https://loschmidt.chemi.muni.cz/soluprot/.

Contact: jiri@chemi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Low protein solubility causes severe problems in protein science
and industry; insufficient protein solubility is probably the most
common cause of failure of protein production pipelines. The im-
portance of solubility is underlined by the findings of the large-
scale Protein Structure Initiative (PSI) project (Berman et al.,
2017), which sought to produce thousands of protein sequences
from different organisms, crystallize them and resolve their ter-
tiary structure. Unfortunately, in most cases it proved impossible
to produce the target proteins in soluble form. The inherent low
solubility of natural enzymes also limits the success of emerging
high-throughput pipelines that explore protein databases to iden-
tify novel enzymes with diverse functions (Hon et al., 2020;
Vanacek et al., 2018). Given the rapid growth of protein sequence
databases driven by the capabilities of next-generation sequencing
technologies, there is an urgent need to focus only on potentially
soluble targets to avoid wasting resources on hard-to-produce
orthologs. Solubility is thus a key attribute when choosing protein

targets for experimental characterization (Vanacek et al., 2018).
Strictly speaking, solubility is a thermodynamic parameter defined
as the protein’s concentration in a saturated solution in equilib-
rium with a solid phase under specific conditions. However, it is
challenging to quantitatively measure the solubility of large sets of
proteins (Kramer et al., 2012), so there is little quantitative ex-
perimental data on protein solubility. Moreover, this definition of
solubility is too narrow to encompass many of the practical prob-
lems that may occur during protein production with common ex-
pression systems. Therefore, inspired by existing tools
(Supplementary Table S1) (Agostini et al., 2014; Khurana et al.,
2018; Raimondi et al., 2020; Smialowski et al., 2012), available
data (Berman et al., 2017) and laboratory practice, we use a
slightly extended definition of protein solubility in this work.
Specifically, by solubility, we mean the probability of soluble pro-
tein (over)expression in Escherichia coli cells. The difference from
the classical thermodynamic solubility is in the perception of the
insoluble class. We assume that insoluble proteins were either not
expressed or were expressed in the insoluble form.

VC The Author(s) 2021. Published by Oxford University Press. 23

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(1), 2021, 23–28

doi: 10.1093/bioinformatics/btaa1102

Advance Access Publication Date: 8 January 2021

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/1/23/6070085 by guest on 19 August 2022



Solubility depends on many extrinsic and intrinsic factors.
Extrinsic factors are dictated by the choice of expression system and
the experimental conditions used in protein production. Expression
systems may be either in vivo or in vitro (Carlson et al., 2012;
Rosano and Ceccarelli, 2014). In vivo protein expression is induced
inside living cells of a host organism, whereas in vitro expression
relies on the use of cell-free translational systems. Solubility can be
increased by adjusting extrinsic solubility factors, especially by using
different mutated host strains, codon optimization, coexpression of
chaperones and foldases, lowering cultivation temperatures and
adding suitable fusion partners (Costa et al., 2014). However, tun-
ing the expression system or experimental conditions is not always
sufficient to confer solubility, and is not feasible in high-throughput
protein production pipelines. If extrinsic factors cannot be varied,
protein solubility will depend only on the intrinsic properties of the
protein sequence. Unfortunately, the relationship between a pro-
tein’s sequence and its solubility is poorly understood, mainly due to
a lack of reproducible quantitative solubility measurements (Kramer
et al., 2012). Recent protein engineering studies suggest that charged
amino acids on the protein surface are key intrinsic determinants of
solubility (Carballo-Amador et al., 2019; Chan et al., 2013; Sankar
et al., 2018). However, this knowledge cannot be directly used for
solubility prediction due to a lack of structural data. Despite the
continuous growth of structural databases (Burley et al., 2019), the
structures of proteins of interest are generally unknown, and the lim-
ited availability of template structures prevents their accurate com-
putational prediction.

The simultaneous effects of extrinsic and intrinsic factors make
solubility prediction challenging. For example, the prediction of
solubility from sequence data using machine learning is hindered by
the high level of noise in typical training datasets due to the influ-
ence of diverse extrinsic variables. Because the molecular mecha-
nisms governing protein solubility are poorly understood, recent
solubility prediction tools rely heavily on statistical analysis and ma-
chine learning, using previously reported experimental data to train
and validate model parameters. One of the most widely used data
sources is the TargetTrack database (Berman et al., 2017), formerly
known as PepcDB or TargetDB, which integrates information from
the Protein Structure Initiative projects. This database contains data
from over 900 000 protein crystallization trials involving almost
300 000 unique protein sequences, which are referred to as targets.
The database does not contain solubility data per se, but target pro-
teins can be considered soluble if they were successfully purified in
the experimental trials. A major limitation of this database is the
low quality of its annotations. For example, reasons for failure are
generally not provided for unsuccessful crystallization attempts.
Therefore, it is impossible to distinguish failures due to insolubility
from failures due to other problems later in the experimental pipe-
line. Second, the experimental protocols used for protein production
and crystallization are described in free text with no internal struc-
ture, making it hard to automatically extract information about ex-
perimental conditions and expression systems for a given target.
Filtering is therefore needed to reduce noise before using the
TargetTrack data for model training. However, the application of
stringent filtering rules to the target annotations can dramatically re-
duce the number of usable records.

eSOL is another well-known and commonly used solubility data-
base (Niwa et al., 2009, 2012) that contains experimentally meas-
ured solubilities for over 3 000 E.coli proteins produced in the
PURE (Shimizu et al., 2001) cell-free expression system. eSOL is an
impressive collection of highly homogenous data but has its own
limitations. First, it only contains data on proteins originating from
E.coli. Second, it has relatively little negative data; adding the three
main cytosolic E.coli chaperones (TF, DnaKJE and GroEL/GroES)
to the PURE expression system reduced the number of insoluble pro-
teins from 788 to 24 (Niwa et al., 2012). eSOL is a valuable source
of exact solubility data that were generated using a robust pipeline
and provide a good quantitative measure of thermodynamic solubil-
ity. However, these data cannot be used to assess solubility accord-
ing to our expanded definition, which also encompasses
expressibility.

The relationship between protein sequence and solubility has
been studied for over 30 years, leading to the development of several
predictive models and software tools. There are 11 such models or
tools that use definitions of solubility like that described above and
take protein sequences as their sole input. These are the revised
Wilkinson-Harrison model (rWH) (Davis et al., 1999; Wilkinson
and Harrison, 1991), SOLpro (Magnan et al., 2009), RPSP (Diaz
et al., 2010), PROSO II (Smialowski et al., 2012), ccSOL omics
(Agostini et al., 2012, 2014), ESPRESSO (Hirose and Noguchi,
2013), CamSol (Sormanni et al., 2015), Protein-Sol (Hebditch et al.,
2017), DeepSol (Khurana et al., 2018), SKADE (Raimondi et al.,
2020) and the Solubility-weighted index (SWI) (Bhandari et al.,
2020). However, the accuracy of these tools is limited, and there is
clear room for improvement. Additionally, these tools exhibit poor
generality when used to make predictions based on previously un-
seen data. A comprehensive review of advances in solubility predic-
tion, including predictors that use protein structures as inputs, was
published recently (Musil et al., 2019). Here, we present a novel ma-
chine learning based tool, SoluProt, for predicting soluble expression
from protein sequence data. SoluProt benefits from thorough dataset
pre-processing and predicts soluble expression more accurately than
previously reported methods.

2 SoluProt training and test set

We used the TargetTrack database to build the SoluProt training
set. Since this database does not directly provide solubility informa-
tion, we inferred solubility computationally, using an approach
similar to those adopted previously (Magnan et al., 2009;
Smialowski et al., 2012). A protein was considered soluble if it was
recorded as having reached a soluble experimental state or any sub-
sequent state requiring soluble expression (Supplementary Table
S2). If failed expression or purification was mentioned in the experi-
ment record’s stop status, the protein was labeled insoluble. In con-
trast to a previous approach (Smialowski et al., 2012), we required
an explicit stop status relating to insolubility to reduce the frequency
of incorrect classification of insoluble sequences. To improve the
quality of the training set, we also performed several additional steps
to clean the data.

Most importantly, we performed keyword matching combined
with manual checking of TargetTrack annotations to extract only
proteins expressed in the most common host organism, E.coli. This
was necessary because a protein soluble in one organism might be
insoluble in another. By focusing solely on the most common expres-
sion system, we reduced the noise in the training data. We also used
specific keywords to search the unstructured descriptions of experi-
mental protocols provided in the TargetTrack database
(Supplementary Table S3). Generic search phrases like ‘E.coli’ or
‘Escherichia coli’ were used to identify potential E.coli related pro-
tocols. These protocols were then manually checked and confirmed
(Supplementary Table S4). A full list of 248 TargetTrack protocols
signifying expression in E.coli is available at the SoluProt website.

We next identified transmembrane proteins in the dataset based
on direct annotations from the TargetTrack database and predic-
tions generated using TOPCONS (Tsirigos et al., 2015) with default
settings. The transmembrane proteins were then removed, along
with sequences shorter than 20 amino acids, and sequences with un-
defined residues. We also removed sequences that had been classi-
fied as insoluble but for which a protein structure was available in
the Protein Data Bank (PDB) (Berman, 2000). To this end, we com-
piled an E.coli PDB subset containing sequences of proteins whose
structures had been solved by NMR or X-ray crystallography and
which had been expressed in E.coli according to the PDB annota-
tions (64 416 sequences, downloaded April 4, 2018). Because both
NMR and X-ray crystallography require soluble proteins, any pro-
tein in this PDB subset can be considered soluble in E.coli. This step
reflects advances in molecular biology: methodological develop-
ments have made it possible to produce and crystallize some proteins
that were previously considered insoluble.

Finally, we reduced the sequence redundancy in the training set
by clustering to 25% identity using MMseqs2 (Steinegger and
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Söding, 2017) and retaining only representative sequences from
each cluster. This was done separately for positive and negative sam-
ples to avoid simplifying the prediction problem. We balanced the
number of soluble and insoluble samples such that both classes were
equally represented. Additionally, we balanced the sequence length
distribution so that length alone would not play a dominant role in
the predictions. Sequence length correlates with protein solubility—
larger proteins are usually less soluble. However, we wanted to sup-
press its influence in the model because we anticipate that SoluProt
would mainly be used to prioritize proteins of similar lengths, usual-
ly from a single protein family. A typical expected use case is that of
the EnzymeMiner web server (Hon et al., 2020) for automated min-
ing of soluble enzymes. A prediction model relying heavily on se-
quence length would not perform well in this use case.

The SoluProt test set was built from a dataset generated by the
North East Structural Consortium (NESG), which represents 9644
proteins expressed in E.coli using a unified production pipeline (Price
et al., 2011). The dataset contains two integer scores ranging from 0
to 5 for each target, indicating the protein’s level of expression and
the soluble fraction recovery. The reproducibility of the experimental
results in the dataset was validated by performing repeat measure-
ments for selected targets. The NESG dataset targets are included in
the TargetTrack database because the NESG participated in the PSI
project. However, the expression and solubility levels from the NESG
dataset were not included in the TargetTrack database; instead, they
were provided to us directly by the authors of the original study (W.
Nicholson Price II, personal communication). The high consistency
and quality of the NESG dataset make it suitable for benchmarking
purposes. We processed the NESG dataset using the same procedure
as the training set, although the computational solubility derivation
and expression system filtration steps were omitted because they were
pointless in this case. Instead, we transformed the solubility levels
into binary classes: all proteins with a solubility level of 1 or above
were considered soluble and all others insoluble.

Finally, we ensured that no pair consisting of a sequence from the
test set and a sequence from the training set had a global sequence iden-
tity above 25% as calculated using the USEARCH software (Edgar,
2010). This made the test set more independent because it ensured that
predictions were not validated against data similar to those used during
training. In total, 11 436 protein sequences remained in the SoluProt
training set and 3 100 in the independent SoluProt test set. Both data-
sets had equal numbers of soluble and insoluble samples with balanced
sequence length distributions (Supplementary Fig. S1). The datasets are
available at the SoluProt website. The dataset construction steps are
summarized in Supplementary Table S5.

3 Prediction model

The SoluProt predictor is implemented in Python using scikit-learn
(Pedregosa et al., 2011), Biopython (Cock et al., 2009) and pandas
(McKinney, 2010) libraries. We used a gradient boosting machine
(GBM) (Friedman, 2001) to generate the predictive model.
Prediction features were selected from a set of 251 sequence charac-
teristics that were divided into eight groups: (i) single amino acid
content (20 features), (ii) amino acid dimer content (210 features),
(iii), sequence physicochemical features (12 features, Supplementary
Table S6), (iv) average flexibility as computed by DynaMine (Cilia
et al., 2014) (1 feature), (v) secondary structure content as predicted
by FESS (Piovesan et al., 2017) (3 features), (vi) average disorder as
predicted by ESPRITZ (Walsh et al., 2012) (1 feature), (vii) content
of amino acids in transmembrane helices as predicted by TMHMM
(Krogh et al., 2001) (3 features) and (viii) maximum identity to the
E.coli PDB subset as calculated using USEARCH (1 feature). All
sequences equal to any sequence from the test set were excluded
from the E.coli PDB subset for the calculation of maximum identity.
The objective was to eliminate even the indirect presence of test set
sequences from model training. We standardized all features by sub-
tracting the mean and scaling to unit variance. The means and var-
iances were calculated using the training set.

We removed correlated features in two steps. First, we fitted a
GBM with default parameters using the full training set and all

features. Second, we calculated Pearson’s correlation coefficient for
each pair of features. If the correlation between any two features
exceeded 0.75, we removed the feature with the lesser importance in
the fitted GBM model. We also removed irrelevant features using
LASSO (Tibshirani, 1996). LASSO’s alpha parameter was optimized
to maximize the mean AUC of the GBM model with default parame-
ters over 5-fold cross-validation. The alpha parameter was varied
between 0.08 to 0 with a step size of 6.25�10�4; its optimal value
was 0.005. In total, 96 features were selected for inclusion in the
predictive model (Supplementary Table S7). The DynaMine, FESS
and ESPRITZ features were not included in the final feature set.

We next optimized the hyperparameters of the GBM model,
using an iterative 7-stage strategy to maximize the mean AUC over
5-fold cross-validation using the training set (Supplementary Table
S8). In each stage, one or two parameters were optimized using grid
search; other parameters were left either at their final values from
the previous stages or at the default value if the parameter had not
yet been optimized. The best GBM model achieved mean AUC val-
ues of 0.85 6 0.003 for the training part and 0.72 6 0.02 for the val-
idation part. Overall, the feature selection and hyperparameter
optimization had little effect on the mean AUC: without these meas-
ures, the mean AUC values for the training and validation sets were
0.83 6 0.003 and 0.72 6 0.02, respectively. The main benefit of the
feature selection and parameter tuning steps was that they reduced
the number of features and thus made the feature calculation step
roughly two times faster.

Finally, we used the best GBM hyperparameters to train the final
SoluProt model using the full training set. The resulting model had an
AUC of 0.84 and an accuracy of 76% for the full training set. The five
most important features according to the GBM are: (i) maximum iden-
tity to the E.coli PDB subset (14.5%), (ii) isoelectric point (6.2%), (iii)
predicted number of amino acids in transmembrane helices in the first
sixty amino acids of the protein (4.2%), (iv) lysine content (4.0%) and
(v) glutamine content (3.5%) (Supplementary Table S7).

4 Performance evaluation and comparison

We used the SoluProt test set to evaluate and compare SoluProt to
11 previously published tools. The evaluation relied on both
threshold-independent (area under the ROC curve) and threshold-
dependent metrics (accuracy, Matthew’s correlation coefficient and
confusion matrices). For the threshold-dependent metrics, we
applied a threshold of 0.5 or the thresholds recommended by the
authors of the corresponding method (Table 1). SoluProt achieved
the highest accuracy (58.5%) and the greatest AUC (0.62) of the

Table 1. Performance of various solubility predictors using the bal-

anced SoluProt test set of 3100 sequences

Method AUC T ACC MCC TP TN FP FN

SoluProt 0.62 0.50 58.5% 0.17 939 873 677 611

PROSO II 0.60 0.60 58.0% 0.17 630 1167 383 920

SWI 0.60 0.50 55.9% 0.13 1206 527 1023 344

CamSol 0.57 1.00 54.1% 0.08 676 1001 549 874

ESPRESSO 0.56 0.50 53.8% 0.08 1003 664 886 547

rWH 0.55 0.50 54.0% 0.08 670 1005 545 880

DeepSol 0.55 0.50 52.9% 0.09 230 1409 141 1320

Protein-Sol 0.54 0.45 51.6% 0.03 1056 544 1006 494

SOLpro 0.53 0.50 52.0% 0.04 654 959 591 896

SKADE 0.51 0.50 49.2% –0.03 159 1366 184 1391

ccSOL omics 0.51 0.50 50.8% 0.02 884 690 860 666

RPSP 0.50 0.50 49.8% 0.00 501 1044 506 1049

Note: The different definitions of solubility and target expression system

(Supplementary Table S1) should be considered when comparing the perform-

ance of individual tools.

AUC—area under the ROC curve, T—threshold for the soluble class,

ACC—accuracy, MCC—Matthew’s correlation coefficient, TP—true posi-

tives, TN—true negatives, FP—false positives, FN—false negatives.
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tested tools when evaluated against the SoluProt test set (Table 1
and Fig. 1),followed by PROSO II and SWI.

While the SoluProt test set is independent of the SoluProt train-
ing set, other tools’ training sets might overlap with our test set.
Therefore, we compared the SoluProt test set to the training sets of
DeepSol, SKADE, SWI and SOLpro to quantify their overlaps
(Table 2). DeepSol and SKADE have a common training set, which
showed the largest overlap (74.0%), followed by the SWI training
set (26.5%) and the SOLpro training set (15.5%). SWI benefits
from the overlap; it was the third-best tool in our comparison.
DeepSol and SKADE ranked 7th and 12th by accuracy with respect
to the SoluProt test set despite having the greatest proportion of test
sequences in their training set. This comparatively poor performance
can be partly explained by differences in solubility annotations be-
tween the DeepSol training set and the SoluProt test set (Table 2):
360 (11.6% of the total) sequences annotated as insoluble in the
DeepSol training set were annotated as soluble in the SoluProt test
set. The total number of disagreements (the sum of false positives
and false negatives) ranged from 336 to 551, depending on the
binarization threshold applied to the SoluProt test set
(Supplementary Table S9). No training set was published for
PROSO II; only an initial set of soluble and insoluble sequences
without pre-processing is available. However, the initial set exhibits
95.2% overlap with the SoluProt test set. Therefore, we expect the
overlap of the PROSO II training set to also be very high, like the
DeepSol training set. Unfortunately, the training sets of other previ-
ously developed tools have not been published, preventing a more
comprehensive comparison.

The absolute accuracy of the available solubility prediction tools
is low (below 60%), so there is clearly room for improvement.
Nevertheless, SoluProt and other tools can be useful for protein se-
quence prioritization (Fig. 2), i.e. for selecting a small number of
sequences for in-depth experimental characterization from a large
database of several hundreds or thousands of sequences.
Specifically, predicted solubility values can be used to select a lim-
ited number of high-scoring protein sequences. For example, if we
use SoluProt predictions to order the SoluProt test set and remove
all sequences bar the 10% with the highest scores, we get 232 true
positives, i.e. 49.7% more true positives than would be expected
with blind selection (155 true positives). This shows that despite
their limited accuracy, current solubility predictors are valuable for
protein sequence prioritization and can increase the success rate of
experimental protein studies.

5 Conclusions

We have developed a novel method and software tool, SoluProt, for
sequence-based prediction of soluble protein expression in E.coli.
The tool simultaneously predicts the solubility and expressibility of
the proteins under consideration. SoluProt achieved a higher accur-
acy (58.5%) and AUC (0.62) than a suite of alternative solubility
prediction tools when evaluated using the balanced independent
SoluProt test set of 3100 sequences. PROSO II, SWI and CamSol
were the next best tools, achieving accuracies of 58.0%, 55.9% and
54.1%, respectively. SoluProt also performed well in protein priori-
tization. The main strengths of SoluProt are that it was trained using
a dataset generated by thorough pre-processing of the noisy
TargetTrack data, and was validated using a high-quality independ-
ent test set.

Surprisingly, the recently reported DeepSol (Khurana et al.,
2018) and SKADE (Raimondi et al., 2020) tools, which are based
on deep learning methods, performed worse than the simpler and
mostly older methods PROSO II (Smialowski et al., 2012), SWI
(Bhandari et al., 2020) and CamSol (Sormanni et al., 2015) in our
comparison. This may be partly due to the overlap of their training
set with our test set and disagreements between these sets with re-
spect to the solubility of certain sequences.

The SoluProt predictor is available via a user-friendly web server
or as a standalone software package at https://loschmidt.chemi.
muni.cz/soluprot/. The SoluProt web server has already predicted
the solubility of over 4700 unique protein sequences in ten months
since its launch in February 2020. It has also been integrated into
the web server EnzymeMiner (Hon et al., 2020) for automated

Fig. 1. Receiver operating curves (ROC) calculated for the balanced SoluProt test set of 3100 sequences. The predictors are ordered by the area under the receiver operating

curve (AUC)

Table 2. Overlaps between the SoluProt test set and available train-

ing sets

Dataset Size Test set overlap TP TN FP FN

PROSO II initial 129643 2952 (95.2%) 951 1437 50 514

DeepSol/SKADE 69420 2294 (74.0%) 737 1130 67 360

SWI 12216 820 (26.5%) 537 210 53 20

SOLpro 17408 480 (15.5%) 178 120 39 143

Note: Two sequences were considered identical if their global sequence

identity reported by USEARCH was 100%. Differences in solubility annota-

tions for identical sequences were quantified using confusion matrix terms

(TP, TN, FP and FN). The solubility annotations of the SoluProt test set are

assumed to reflect the true solubilities of the proteins.

TP—true positives, TN—true negatives, FP—false positives, FN—false

negatives. a DeepSol and SKADE share the same training set.
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mining of novel soluble enzymes from protein databases (https://
loschmidt.chemi.muni.cz/enzymeminer/).
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ABSTRACT

Millions of protein sequences are being discovered
at an incredible pace, representing an inexhaustible
source of biocatalysts. Despite genomic databases
growing exponentially, classical biochemical char-
acterization techniques are time-demanding, cost-
ineffective and low-throughput. Therefore, computa-
tional methods are being developed to explore the
unmapped sequence space efficiently. Selection of
putative enzymes for biochemical characterization
based on rational and robust analysis of all available
sequences remains an unsolved problem. To address
this challenge, we have developed EnzymeMiner––a
web server for automated screening and annotation
of diverse family members that enables selection
of hits for wet-lab experiments. EnzymeMiner priori-
tizes sequences that are more likely to preserve the
catalytic activity and are heterologously expressible
in a soluble form in Escherichia coli. The solubil-
ity prediction employs the in-house SoluProt predic-
tor developed using machine learning. EnzymeMiner
reduces the time devoted to data gathering, multi-
step analysis, sequence prioritization and selection
from days to hours. The successful use case for the
haloalkane dehalogenase family is described in a
comprehensive tutorial available on the EnzymeM-
iner web page. EnzymeMiner is a universal tool ap-
plicable to any enzyme family that provides an inter-
active and easy-to-use web interface freely available
at https://loschmidt.chemi.muni.cz/enzymeminer/.

INTRODUCTION

There are currently >259 million non-redundant protein
sequences in the NCBI nr database (release 2020-02-10)
(1). Despite their enormous promise for biological and
biotechnological discovery, experimental characterization
has been performed on only a small fraction of the avail-
able sequences. Currently, there are about 560 000 protein
sequences reliably curated in the UniProtKB/Swiss-Prot
database (release 2020 01) (2).

The low ratio of characterized to uncharacterized se-
quences reflects the sharp contrast in time-demanding/low-
throughput biochemical techniques versus fast/high-
throughput next-generation sequencing technology.
Although more efficient biochemical techniques employing
miniaturization and automation have been developed
(3–5), the most widely used experimental methods do not
provide sufficient capacity for biochemical characterization
of proteins spanning the ever-increasing sequence space.
Therefore, computational methods are currently the only
way to explore the immense protein diversity available
among the millions of uncharacterized sequence entries.

Two different computational strategies are generally used
for exploration of the unknown sequence space. The first
strategy takes a novel uncharacterized sequence as input
and predicts functional annotations. The method involves
annotating the unknown input sequences by predicting pro-
tein domains (6), Enzyme Commission (EC) number (7)
or Gene Ontology terms that are a subject of the initia-
tive named the Critical Assessment of Functional Anno-
tation (8). These methods are often universal and applica-
ble to any protein sequence. However, they often lack speci-
ficity as the automatic annotation rules or statistical mod-
els need to be substantially general. A significant advantage
of these methods is their seamless integration into available
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databases. Submission of a query sequence to a database
is sufficient, with no need for running computation- and
memory-intensive bioinformatics pipelines locally. A model
example of this approach is the automatic annotation work-
flow of the UniProtKB/TrEMBL database (2).

The second strategy takes a well-known characterized se-
quence as an input and applies a computational workflow,
typically based on a homology search, to identify novel un-
characterized entries in genomic databases that are related
to the input query sequence (5,9). The homology search is
often followed by a filtration step, which checks the essen-
tial sequence properties, e.g. domain structure or presence
of catalytic residues. The main advantage of these methods
is the higher specificity of the analysis. A disadvantage is
that it may be complicated to apply the developed work-
flow to protein families other than those for which it was
designed. Moreover, these workflows typically require run-
ning complex bioinformatics pipelines and are usually not
available through a web interface.

The fundamental unsolved problem is how to deal with
the overwhelming number of sequence entries identified by
these methods and select a small number of relevant hits
for in-depth experimental characterization. For example, a
database search for members of the haloalkane dehaloge-
nase model family using the UniProt web interface yields
3598 sequences (UniProtKB release 2020 01). It is impos-
sible to rationally select several tens of targets for experi-
mental testing without additional bioinformatics analyses
to help prioritize such a large pool of sequences.

To address the challenge of exploring the unmapped en-
zyme sequence space and rational selection of attractive tar-
gets, we have developed the EnzymeMiner web server. En-
zymeMiner identifies novel enzyme family members, com-
prehensively annotates the targets and facilitates efficient
prioritization and selection of representative hits for experi-
mental characterization. To the best of our knowledge, there
is currently no other tool available that allows such a com-
prehensive analysis in a single easy-to-run integrated work-
flow on the web.

MATERIALS AND METHODS

EnzymeMiner implements a three-step workflow: (i) ho-
mology search, (ii) essential residue based filtering and (iii)
hits annotation (Figure 1). To execute these tasks, the server
requires two different types of input information: (i) query
sequences and (ii) essential residue templates. The query se-
quences serve as seeds for the initial homology search. The
essential residue templates, defined as pairs of a protein se-
quence and a set of essential residues in that sequence, allow
the server to prioritize hits that are more likely to display the
enzyme function. Therefore, the essential residues may be
the catalytic and ligand- or cofactor-binding residues that
are indispensable for proper catalytic function. Each essen-
tial residue is defined by its name, position and a set of al-
lowed amino acids for that position.

In the first homology search step, a query sequence is used
as a query for a PSI-BLAST (10) two-iteration search in
the NCBI nr database (1). If more than one query sequence
is provided, a search is conducted for each sequence sepa-
rately. Besides a minimum E-value threshold 10−20, the PSI-

BLAST hits must share a minimum of 25% global sequence
identity with at least one of the query sequences. Artifi-
cial protein sequences, i.e. sequences described by the term
artificial, synthetic construct, vector, vaccinia virus, plas-
mid, halotag or replicon, are removed. EnzymeMiner sorts
the PSI-BLAST hits by E-value and passes a maximum of
10,000 best hits to the next steps in the workflow. The de-
fault parameters for the homology search step, as well as the
other steps, can be modified using advanced options in the
web server.

In the second essential residue based filtering step, the ho-
mology search hits are filtered using the essential residue
templates. First, the hits are divided into template clusters.
Each cluster contains all hits matching essential residues of
a particular template. Essential residues are checked using
global pairwise alignment with the template calculated by
USEARCH (11). When multiple essential residue templates
match, the hit is assigned to the template with the highest
global sequence identity. Second, for each cluster, an ini-
tial multiple sequence alignment (MSA) is constructed us-
ing Clustal Omega (12). The MSA is used to revalidate the
essential residues of identified hits by checking the corre-
sponding column in the MSA. Sequences not matching es-
sential residues of the template are removed from the clus-
ter. Third, the MSA is constructed again for each template
cluster and the essential residues are checked for the last
time. The final set of identified sequences reported by En-
zymeMiner contains all sequences left in the template clus-
ters.

In the third annotation step, the identified sequences
are annotated using several databases and predictors: (i)
transmembrane regions are predicted by TMHMM (13),
(ii) Pfam domains are predicted by InterProScan (14), (iii)
source organism annotation is extracted from the NCBI
Taxonomy (15) and the NCBI BioProject database (16),
(iv) protein solubility is predicted by the in-house tool
SoluProt for prediction of soluble protein expression in Es-
cherichia coli and (v) sequence identities to queries, hits
or other optional sequences are calculated by USEARCH
(11). SoluProt is based on a random forest regression model
that employs 36 sequence-based features (https://loschmidt.
chemi.muni.cz/soluprot/). It has been shown to achieve an
accuracy of 58%, specificity of 73% and sensitivity of 44%
on a balanced independent test set of 3788 sequences (Hon
et al., manuscript in preparation). Alternative solubility pre-
diction tools are summarised in a recently published review
(17). It is not advised to use the solubility score for other
expression systems because it was trained solely on E. coli
data. We expect further intensive development of protein
solubility predictors in coming years and will ensure that
the solubility score in the EnzymeMiner stays at the cutting-
edge in terms of its accuracy and reproducibility.

The sequence space of the identified hits is visualized us-
ing representative sequence similarity networks (SSNs) gen-
erated at various clustering thresholds using MMseqs2 (18)
and Cytoscape (19). SSNs provide a clean visual approach
to identify clusters of highly similar sequences and rapidly
spot sequence outliers. SSNs proved to facilitate identifica-
tion of previously unexplored sequence and function space
(20). The SSN generation method used in EnzymeMiner
is inspired by the EFI-EST tool (21). The minimum align-
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Figure 1. The EnzymeMiner workflow. The workflow consists of three distinct steps: (i) sequence homology search, (ii) filtration of functional sequences,
and (iii) annotation of hits. These steps are executed consecutively and automatically. EnzymeMiner has only two required inputs: (i) query sequences, and
(ii) essential residue templates. The Other sequences are optional inputs that allow EnzymeMiner to calculate the sequence identity between these sequences
and all the hits. Input files are highlighted by a white background, tools and databases have a light blue background, outputs are highlighted by a yellow
background.

ment score to include an edge between two representative
sequences in an SSN is 40.

DESCRIPTION OF THE WEB SERVER

Job submission

New jobs can be submitted from the EnzymeMiner home-
page. EnzymeMiner provides two conceptually different
ways to define the input of the workflow: (i) using cu-
rated sequences from the UniProtKB/Swiss-Prot database
and (ii) using custom sequences. We recommend the
UniProtKB/Swiss-Prot option for users who do not have
in-depth knowledge of the enzyme family. In contrast, the
Custom sequences tab gives full control over the EnzymeM-
iner input––query sequences and essential residue templates
are specified manually by the user. This is recommended for
users who have good knowledge about the enzyme family
and want to provide additional starting information to ob-
tain refined results. The last option is a combination of both
approaches, where Swiss-Prot sequences can be pre-selected
first and then the input can be modified in the Custom se-
quences tab.

In the Swiss-Prot sequences tab (Figure 2A), sequences
from the Swiss-Prot database can be queried by Enzyme
Commission (EC) number. As a result, a table of all se-
quences annotated by the EC number and corresponding
SSN is generated. The table has four columns: (i) sequence
accessions hyperlinked to the UniProt database, (ii) number
of essential residues, (iii) sequence length and (iv) sequence
plot. The sequence plot summarizes two important features
of the sequence – positions of essential residues and identi-

fied Pfam domains. The positions of essential residues are
obtained from the Swiss-Prot database. The SSN visualizes
the sequence space of all the sequences in the current EC
group. Nodes represent Swiss-Prot sequences, whereas edge
lengths are proportional to the pairwise sequence identities.
Similar sequences are close to each other, whereas more dis-
tant sequences are not connected at all.

There are three strategies possible for selecting Swiss-Prot
sequences as the EnzymeMiner query: (i) select a row from
the sequence table, (ii) select a node in the SSN and (iii)
select cluster representatives by defining a sequence iden-
tity threshold. The sequence identity threshold buttons se-
lect cluster representatives at the given percentage thresh-
old. Using this feature, the user can automatically select a
small set of sequences that cover the whole known sequence
space of the current EC group. All selected Swiss-Prot se-
quences are used as a query in the homology search step
and also as essential residue templates for the filtration step.
To modify the selected sets of queries and essential residue
templates, the user can switch to the Custom sequences tab
and refine the selection manually.

EnzymeMiner results

The results page is organized into four sections: (i) job in-
formation box, (ii) download results box, (iii) target selection
table and (iv) sequence similarity network.

In the job information box, the user can find the job ID,
title, start time and status of the job. There is also a rerun
button for rerunning the same analysis without the need for
re-entering the same input. This feature is handy for peri-
odically mining new sequences as the sequence databases

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/W

1/W
104/5835821 by guest on 19 August 2022



Nucleic Acids Research, 2020, Vol. 48, Web Server issue W107

Figure 2. The EnzymeMiner graphical user interface showing example inputs and results for the haloalkane dehalogenase family (EC 3.8.1.5). (A) Inputs
based on curated sequences from the UniProtKB/Swiss-Prot database. The input sequences can be selected using: (i) the sequence table, (ii) the SSN or (iii)
the sequence identity threshold. (B) Target selection table. The table is organized into eleven sheets that summarize the results from different perspectives.
The table can be filtered using solubility and identity sliders, and transmembrane and extra domain exclusion switches.

grow. For example, there are hundreds of new hits for the
haloalkane dehalogenase family every year. In the down-
load results box, the user can download the results table in
XLSX format or tab-separated text format. A ZIP archive
containing all output files from the EnzymeMiner workflow
can also be downloaded.

The target selection table is the most important compo-
nent of the EnzymeMiner results (Figure 2B). It presents
all the putative enzyme sequences identified by EnzymeM-
iner and helps to select targets for experimental character-
ization. The table is organized into eleven sheets summa-
rizing the results from different perspectives. (i) The Se-
lected sheet shows all the sequences selected from individ-
ual sheets. It contains an extra column to track the argu-
ment used for the selection. By default, it is prefilled by
the name of the sheet from which the sequence was se-
lected, but it can be freely changed. (ii) The Full Dataset
sheet shows all identified sequences. (iii) The Extra domain
sheet shows sequences with extra Pfam domains found in
the sequence but not listed in the Primary domains selec-
tion box. (iv) The Organism sheet shows sequences with
known source organisms. (v) The Temperature sheet shows
sequences from organisms having extreme optimum tem-
perature annotation in the NCBI BioProject database, in-
cluding sequences from thermophilic or cryophilic organ-
isms. (vi) The Salinity sheet shows sequences from organ-
isms having extreme salinity annotation in the NCBI Bio-
Project database. (vii) The Biotic Relationship sheet shows
sequences from organisms having biotic relationship anno-
tation in the NCBI BioProject database. (viii) The Disease
sheet shows sequences from organisms having disease an-
notation in the NCBI BioProject database. (ix) The Trans-
membrane sheet shows sequences with transmembrane re-
gions predicted by the TMHMM tool. (x) The 3D Struc-
ture sheet shows sequences with an available 3D structure in

the Protein Data Bank (22). (xi) The Network sheet shows
sequences clustered into a selected sequence similarity net-
work node.

There are four options for filtering the identified se-
quences displayed in the target selection table. The first op-
tion is the minimum solubility slider. Sequences with lower
predicted solubility will be hidden. We recommend setting
the solubility threshold to >0.5 to increase the probabil-
ity of finding soluble protein expression in E. coli. We do
not recommend to set the solubility threshold too high be-
cause of possible trade-off between enzyme solubility and
activity (23). The second option is the identity range bar.
Only sequences with identity to query sequences in the spec-
ified range will be visible. The third option is to exclude
transmembrane proteins. We recommend removing these
sequences as they are usually difficult to produce and tend
to have lower predicted solubility. The fourth option is to
exclude proteins with an extra domain. Extra domains are
defined as domains found in the sequence but not listed in
the Primary domains selection box. We recommend avoid-
ing sequences with extra domains, but these sequences may
also show interesting and unusual biological properties. The
selection table can be sorted by clicking on a column header.
Holding ‘Shift’ while clicking on the column headers allows
sorting by multiple columns.

The SSN visualizes the sequence space of all identified
sequences. Both clusters of similar sequences and sequence
outliers can be easily identified. As there might be thou-
sands of sequences, the sequences are clustered at the iden-
tity threshold and only an SSN of the representative se-
quences is shown for performance reasons. Sequences hav-
ing greater sequence identity are consolidated into a sin-
gle metanode. Edges indicate high sequence identity be-
tween representative sequences of the connected metanodes.
Clicking on a metanode displays the Network sheet showing
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which sequences are represented by a particular metanode.
The SSN can be downloaded as a Cytoscape session file for
further analysis and custom visualization. Networks clus-
tered at different identities are available. The numbers of
nodes and edges are indicated for each identity threshold.
The SSN is interactively linked to the target selection table.
All nodes representing selected sequences are automatically
highlighted in the SSN.

Target selection

The target selection table and SSN facilitate the selection
of a diverse set of soluble putative enzyme sequences for
experimental validation. First, we recommend setting the
maximum sequence identity to queries to 90%. This will re-
move all hits that are very similar to already known proteins.
Second, we recommend selecting a few sequences from in-
dividual sheets to cover different phyla from the domains
Archea, Bacteria and Eukarya. The most exciting enzymes
might be from extremophilic organisms. Third, the SSN can
be used to check that the selection covers all sequence clus-
ters. Fourth, users can select sequences from all subfamilies
of the enzyme family of interest. The members of different
subfamilies can be easily recognized by the Closest query or
Closest known column in the selection table (note: requires
representative sequences of subfamilies as job input). Fifth,
the available filtering options can be used to (i) prioritize se-
quences with the highest predicted solubility, (ii) prioritize
sequences with known tertiary structures, (iii) eliminate pro-
teins with predicted transmembrane regions and (iv) elimi-
nate sequences with extra domains.

EXPERIMENTAL VALIDATION OF THE EnzymeMiner
WORKFLOW

The EnzymeMiner workflow has been thoroughly experi-
mentally validated using the model enzymes haloalkane de-
halogenases (5). The sequence-based search identified 658
putative dehalogenases. The subsequent analysis prioritized
and selected 20 candidate genes for exploration of their pro-
tein structural and functional diversity. The selected en-
zymes originated from genetically unrelated Bacteria, Eu-
karya and, for the first time, also Archaea and showed novel
catalytic properties and stabilities. The workflow helped to
identify novel haloalkane dehalogenases, including (i) the
most catalytically efficient enzyme (kcat/K0.5 = 96.8 mM−1

s−1), (ii) the most thermostable enzyme showing a melt-
ing temperature of 71◦C, (iii) three different cold-adapted
enzymes active at near to 0◦C, (iv) highly enantioselective
enzymes, (v) enzymes with a wide range of optimal opera-
tional temperature from 20 to 70◦C and an unusually broad
pH range from 5.7–10 and (vi) biocatalysts degrading the
warfare chemical yperite and various environmental pol-
lutants. The sequence mining, annotation, and visualiza-
tion steps from the workflow published by Vanacek and co-
workers (5) were fully automated in the EnzymeMiner web
server. The successful use case for the haloalkane dehaloge-
nase family is described in an easy-to-follow tutorial avail-
able on the EnzymeMiner web page. Additional extensive
validation of the fully automated version of EnzymeMiner,

experimentally testing the properties of another 45 genes of
the haloalkane dehalogenases, is currently ongoing in our
laboratory.

CONCLUSIONS AND OUTLOOK

The EnzymeMiner web server identifies putative members
of enzyme families and facilitates their prioritization and
well-informed manual selection for experimental character-
ization to reveal novel biocatalysts. Such a task is difficult
using the web interfaces of the available protein databases,
e.g. UniProtKB/TrEMBL and NCBI Protein, since addi-
tional analyses are often required. The major advantage of
EnzymeMiner over existing protein sources is the flexibility
of input and concise annotation-rich interactive presenta-
tion of results. The user can input custom queries and a cus-
tom description of essential residues to focus the search on
specific protein families or subfamilies. The output of En-
zymeMiner is an interactive selection table containing the
annotated sequences divided into sheets based on various
criteria. The table helps to select a diverse set of sequences
for experimental characterization. Two key prioritization
criteria are (i) the predicted solubility score, which can be
used to prioritize the identified sequences and increase the
chance of finding enzymes with soluble protein expression,
and (ii) the sequence identity to query sequences comple-
mented with an interactive SSN displayed directly on the
web, which can be used to find diverse sequences. Addition-
ally, source organism and domain annotations help to select
sequences with diverse properties. EnzymeMiner is a uni-
versal tool applicable to any enzyme family. It reduces the
time needed for data gathering, multi-step analysis and se-
quence prioritization from days to hours. All the EnzymeM-
iner features are implemented directly on the web server and
no external tools are required. The web server was opti-
mized for modern browsers including Chrome, Firefox and
Safari. An EnzymeMiner job can take a few hours or days to
compute, depending on the current load of the server. In the
next EnzymeMiner version, we plan three major improve-
ments. First, we will implement automated tertiary struc-
ture prediction based on homology modeling and threading
for all identified sequences. The structural predictions will
allow subsequent analysis of active site pockets/cavities and
access tunnels. Structural features will significantly enrich
the set of annotations and help to identify additional at-
tractive targets for experimental characterization. Second,
we will implement automated periodical mining. When en-
abled, EnzymeMiner will rerun the analysis periodically
and inform the user about novel sequences found since the
last search. Finally, we will implement a wizard for auto-
mated selection of hits based on input criteria provided by
a user.
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ABSTRACT

HotSpot Wizard is a web server used for the auto-
mated identification of hotspots in semi-rational pro-
tein design to give improved protein stability, cat-
alytic activity, substrate specificity and enantiose-
lectivity. Since there are three orders of magnitude
fewer protein structures than sequences in bioin-
formatic databases, the major limitation to the us-
ability of previous versions was the requirement for
the protein structure to be a compulsory input for
the calculation. HotSpot Wizard 3.0 now accepts the
protein sequence as input data. The protein struc-
ture for the query sequence is obtained either from
eight repositories of homology models or is mod-
eled using Modeller and I-Tasser. The quality of the
models is then evaluated using three quality assess-
ment tools––WHAT CHECK, PROCHECK and Mol-
Probity. During follow-up analyses, the system au-
tomatically warns the users whenever they attempt
to redesign poorly predicted parts of their homol-
ogy models. The second main limitation of HotSpot
Wizard’s predictions is that it identifies suitable po-
sitions for mutagenesis, but does not provide any
reliable advice on particular substitutions. A new
module for the estimation of thermodynamic stabil-
ities using the Rosetta and FoldX suites has been
introduced which prevents destabilizing mutations
among pre-selected variants entering experimental
testing. HotSpot Wizard is freely available at http:
//loschmidt.chemi.muni.cz/hotspotwizard.

INTRODUCTION

Proteins are macromolecules with many biological func-
tions. Apart from their irreplaceable role in all living or-
ganisms, they are also widely used in many fields, including
medicine (1), enzymology (2), synthetic biology (3) and ma-
terial science (4). Naturally occurring proteins often do not
meet the specifications for practical applications. Therefore,
protein engineers modify sequences to obtain enhanced
properties or completely new functions. Directed evolution,
which has been an extremely successful protein engineer-
ing technology, does not require a molecular understand-
ing of the impact of mutation on the protein structure (5).
Modified proteins are generated in iterative rounds of mu-
tation and screening or selection of the best hits that possess
the required property (6). The obvious disadvantage to this
method is that only a tiny fraction of all protein variants
contain the desired property. Analysis of libraries contain-
ing millions of mutants is costly and time-consuming. Semi-
rational protein engineering is an approach that implements
in silico identification of important regions of the protein so
that mutagenesis is better located, resulting in smaller high-
quality libraries (7). The key step to semi-rational protein
engineering is the selection of hotspot residues whose mu-
tations will bring the largest improvement to the target pro-
tein properties (8).

HotSpot Wizard 2.0 (9) is an interactive web server
used for the identification of hotspots in proteins by au-
tomated multi-step calculation and a comprehensive pre-
sentation of results. The tool makes protein design acces-
sible to researchers with no prior knowledge of bioinfor-
matics. After entering an input protein structure, 19 pre-
diction tools and 3 databases are used for protein annota-
tion. HotSpot Wizard then provides four different strate-
gies for selecting hotspots: (i) functional hotspots corre-
sponding to highly mutable residues located in the active site
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pocket or access tunnels, (ii) stability hotspots correspond-
ing to flexible residues, (iii) stability hotspots from back-to-
consensus analysis and (iv) correlated hotspots correspond-
ing to pairs of co-evolving residues. The users can design
a smart library based on naturally accepted substitutions
from phylogenetic analysis. HotSpot Wizard 2.0 (9) has
been used for over 10 000 protein structures by more than
1000 unique users since its release. For example, HotSpot
Wizard has been used for the design of smart libraries of
oxyhaemoglobin protein (10), for analysis leading to ther-
mostabilization of a xylanase (11) and for identification of
hotspots in a mutagenesis study of the transcription factor
DREB1A (12). Previous implementations of HotSpot Wiz-
ard had two major drawbacks: (i) a requirement for the ter-
tiary structure as essential input information and (ii) identi-
fication of positions for mutagenesis without quantification
of the effects of individual substitutions on protein stability.
HotSpot Wizard 3.0 shows dramatically enhanced usability
by overcoming both these key limitations.

There are about 135 000 protein structures available in the
RCSB Protein Data Bank (13), but there are more than 98
000 000 known protein sequences (14). Usage of HotSpot
Wizard 2.0 is limited to the proteins with an available 3D
structure. A solution to this problem is the prediction of
the protein structure from its sequence by comparative (ho-
mology) modeling or threading (15). Homology modeling is
based on the fact that members of a protein family with sim-
ilar sequences also have similar tertiary structures (16,17).
In HotSpot Wizard 3.0, it is possible to enter a sequence for
a protein and have its tertiary structure retrieved from the
repositories of models or constructed ad hoc. As the qual-
ity of the protein structure is critical for further structure
analyses carried out by HotSpot Wizard, a robust quality
assessment of the protein structure is provided using three
well-established tools. The current implementation of our
web server predicts hot-spots for mutagenesis and designs
smart libraries based on phylogeny, but does not provide
any quantitative analysis of individual substitutions, which
is important, for example, in studies analyzing structure–
function relationships. Moreover, screening or selection for
multiple mutations at several different positions can still be
time-consuming and so pre-selection of the most appropri-
ate mutations is desirable. To help our users rationally de-
crease the number of variants for experimental testing, pro-
tein stability prediction has been introduced to discard po-
tentially destabilizing mutations.

MATERIALS AND METHODS

Searches of structural databases and model depositories

The overall workflow of HotSpot Wizard 3.0 is outlined
in Figure 1. When a protein sequence is used as an input,
HotSpot Wizard: (i) searches experimentally determined
structures, (ii) searches computationally modeled structures
and (iii) constructs a homology model. The first step in
this workflow is searching the RCSB Protein Data Bank
(13). In this phase, only protein structures with a 100%
sequence identity match (or part of the sequence match-
ing the input with 100% sequence identity) are provided
as a starting structure for the analysis. If no such struc-
ture is found, the Protein Model Portal (18) is searched.

The Protein Model Portal collates models of protein struc-
tures from eight different resources: Center for Structures
of Membrane Proteins, CSMP (19), Joint Center for Struc-
tural Genomics, JCSG (20), Midwest Center for Structural
Genomics, MCSG (21), Northeast Structural Genomics
Consortium, NESG (22), New York SGX Research Cen-
ter for Structural Genomics, NYSGXRC (23), Joint Center
for Molecular Modeling, JCMM (24), ModBase (25) and
SWISS-MODEL Repository (26). HotSpot Wizard queries
the Protein Model Portal and then lists all available hits. Af-
ter selection of one of these models, the structure is down-
loaded directly to Hotspot Wizard from the repository.

Homology modeling

Whenever a homology model is not found or the user is not
satisfied with the quality of the models available in pub-
lic depositories, HotSpot Wizard carries out the homol-
ogy modeling during the phase 1 (Figure 1). There is a
wide range of homology modeling tools available. Twelve
tools were initially considered for our workflow: SWISS-
MODEL (27), Rosetta (28), Robetta (29), PHYRE2 (30),
Pcons (31), Modeller (32), I-Tasser (33), IntFold (34), IMP
(35), HHPred (36), RaptorX (37) and Sparks-X (38). These
tools were analyzed for their availability as well as per-
formance using Continuous Automated Model Evaluation,
CAMEO (18) and Critical Assessment of Protein Struc-
ture Prediction, CASP (39). These community-wide com-
parisons evaluate structure predictions with available exper-
imental data. Based on results from CASP and CAMEO,
six tools were selected for further consideration, installed
locally and tested (Modeller, Sparks-X, RaptorX, Rosetta,
I-Tasser and SWISS-MODEL). RaptorX is very accurate
with good coverage (i.e. percentage of submitted models,
which could be successfully modeled), but it uses the less ac-
curate Modeller for comparative modeling in its standalone
version. Sparks-X is very fast with good coverage, but the
version available for download does not provide modeling,
only template identification. I-Tasser is the slowest of all the
tools considered, but it is very accurate and is ranked the
best by CASP. Rosetta has good accuracy and coverage, but
it requires a template protein and an alignment as an input
defined by user. SWISS-MODEL is fast with good cover-
age, but it is not available as a standalone version. Modeller
is one of the fastest and the most robust tools with reason-
able accuracy for modeling cases with good templates. We
selected two tools for implementation with HotSpot Wiz-
ard: (i) I-Tasser, which is ranked the most accurate of all the
tools considered, but also very slow (∼3 days for an average-
sized protein) and (ii) Modeller, which is less accurate, but
very fast (∼5 min for an average-sized protein). Both tools
can be run in a fully automatic mode, or the template pro-
tein and/or the pairwise alignment can be entered as an in-
put information.

Quality assessment of the model

It is essential to assess the quality of the homology model
prior to its further use for identification of hotspots or for
the design of libraries. It is important to identify low qual-
ity models and the parts of the protein structure which were
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Figure 1. Workflow diagram of HotSpot Wizard 3.0. The workflow consists of four phases: (1) construction of a model of a structure, (2) annotation of a
protein, (3) identification of mutagenesis hot spots and (4) design of mutations and a smart library. Phase 1 is applied only when a sequence is submitted
as the input information. The new modules in version 3.0 are highlighted in red.

not modeled well. The results of today’s modeling tools are
far from perfect due to many difficulties with accurate pro-
tein structure prediction. Quality assessment is therefore an
essential part of the phase 1 of the HotSpot Wizard work-
flow (Figure 1). Several quality assessment tools were con-
sidered and three of them, providing diverse quality met-
rics, were implemented. PROCHECK (40) is used for anal-
ysis of protein backbone torsion angles using Ramachan-
dran diagrams and identification of the outliers from the
allowed values. MolProbity (41) provides several parame-
ters representing the quality of the whole structure as well as
individual residues (number of poor rotamers, Ramachan-
dran outliers, favored Ramachandran conformations, bad
bonds and bad angles in the protein). WHAT CHECK (42)
generates a detailed report about structure quality (checks
on secondary structure, coordinate problems, unexpected
atoms, B-factor, occupancy checks, nomenclature related
problems, geometric checks, torsion-related checks, bump
checks, packing, accessibility, threading, water, ion and hy-
drogen bond-related checks).

Mutation design based on thermodynamic stability

Mutation design is part of the phase 4 of the HotSpot Wiz-
ard computation (Figure 1). Force field calculations are
used for quantifying the change in protein thermodynamic
stability after mutation. Rosetta (43) is used to evaluate
��G between the wild-type and the mutant structures. Ei-
ther single-point or multiple-point mutants can be evalu-
ated. If the single-point mutations are pre-selected, multiple
mutant structures are evaluated according to the user’s se-
lected positions and intended amino acid substitutions. The
user can also select several mutations in a single round and
calculate the energy of combined multiple-point mutants.
For stability evaluation, FoldX (44) is first used for repairing
protein structure by filling in the missing atoms and patch-
ing the structure. Then, minimalization of the structure us-
ing Rosetta is carried out using default settings. After that,
a Rosetta stability calculation according to protocol 3 (45)
is carried out, which results in the prediction of ��G value
for each mutation.
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DESCRIPTION OF THE WEB SERVER

Sequence input and homology modeling

Initially, the user selects one of two types of input data: a
structure or a sequence (Figure 2A). If a sequence is se-
lected, there are three types of input. The user can either
manually enter the protein sequence, specify the UniProt
ID or upload the FASTA file. After entering the sequence,
the user is provided with the results from searching the Pro-
tein Data Bank or the Protein Model Portal. This result is
displayed in the form of a table (Figure 2B). In the case of
the Protein Data Bank results, PDB ID, resolution and the
link to the Protein Data Bank are provided. The user can
then pick one of the proteins and continue with the HotSpot
Wizard workflow. In the case of the results from the Pro-
tein Model Portal model provider, following information is
listed: (i) used template, (ii) sequence identity with a tem-
plate, (iii) range of the alignment, (iv) coverage and (v) reli-
ability of the model. Links to a model in the Protein Model
Portal and the template structure in the Protein Data Bank
are provided in the table. Coverage and reliability of the
models are represented by a color ranging from green to
red (Figure 2C). If the user selects a model with unsatisfac-
tory coverage (<80%) or insufficient reliability (low relia-
bility value), a warning is displayed. When a protein model
is selected which cannot be downloaded automatically, the
user is asked to download it manually and then upload it as
a structure for further analysis. The user can then select one
of the models provided and continue with the HotSpot Wiz-
ard workflow or, if none of the models is satisfactory, carry
out homology modeling and construct their own model. If
the user carries out homology modeling, several parame-
ters must be set first (Figure 2D). The user can select be-
tween Modeller, which is faster but less accurate, or I-Tasser,
which is more accurate but slow. The second important pa-
rameter that must be specified prior to calculation is either
automatic or manual identification of the template structure
and alignment. The template can be provided either by en-
tering the PDB ID or by uploading a PDB file. In the case
of the user entering the alignment, pairwise alignment of
the template and an input sequence in FASTA format must
be provided. The process of hotspot identification can then
begin after all these essential inputs have been defined.

Quality assessment of the model

Results of the quality assessment are shown in separate
windows consisting of three tabs containing various qual-
ity assessment analyses. The first tab shows the MolPro-
bity overall quality assessment table (Supplementary Fig-
ure S1A). In this table, the number and percentage of poor
rotamers, Ramachandran outliers, favored Ramachandran
conformers, bad bonds and bad angles are shown. Col-
ored highlights are used to distinguish between good and
unsatisfactory models. The second tab shows the MolPro-
bity quality assessment results for each residue, displayed
in the form of plots (Supplementary Figure S1B). A plot
of MolProbity Ramachandran scores and MolProbity ro-
tamer scores is given. In the last tab, there is a Ramachan-
dran plot for the protein created by PROCHECK with out-
lier residues highlighted (Supplementary Figure S1C). The

contents of all these tabs can be downloaded in PDF for-
mat together with a full quality assessment report created
by WHAT CHECK.

Mutations design based on stability

The stability changes introduced by specific mutations can
be accessed through a newly introduced Mutations design
module (Supplementary Figure S2A). There are three tabs
in the Mutation design window––the first for definition of
single-point mutants, the second for multiple-point mutants
and the third summarizing the status of submitted jobs.
In the case of single-point mutations, the user can select
particular amino acids for each of the selected hotspots.
The amino acid residues for mutagenesis can be selected
based on: (i) amino acid frequency, (ii) mutational land-
scape, (iii) physico-chemical properties or (iv) user selection
(Supplementary Figure S2B). After selection of the muta-
tions, the stability of each single-point mutation is evaluated
by the Rosetta software suite. The results are shown in the
table––stabilizing mutations are highlighted in green, desta-
bilizing mutations are highlighted in red (Supplementary
Figure S2C). There are two options for setting multiple-
point mutants. Either a particular amino acid can be se-
lected for each position in the multiple-point tab or the re-
sults table from a previous single-point calculation can be
used for recombination with the most promising substitu-
tions. In both cases, only a single substitution for each po-
sition can be selected (Supplementary Figure S2D). After
the calculation is finished, Hotspot Wizard reports the over-
all stability change as well as the decomposition of energy
terms, both of which provide excellent assistance for muta-
genesis experiments (Supplementary Figure S2E). The sta-
bility prediction can be downloaded in CSV format with
the sequence of designed mutants being provided in FASTA
format. These reports can also be generated in PDF or
HTML formats. The third tab shows a table with the his-
tory of previously evaluated stabilities for the job. For each
calculation, the job id, date and time of computation, sta-
tus of the job (failed or finished), mutation type (single-
point or multiple-point), selected positions and mutations
are shown (Supplementary Figure S2F). The results page
from any previous calculations can be revisited at any time.

EXPERIMENTAL VALIDATION

We have carried out validation of individual steps of the
workflow as well as thoroughly tested the final version of the
web server. The homology modeling tools were selected for
implementation based on the results of CAMEO compar-
ison (Supplementary Data 1). The reliability, coverage and
availability of a standalone version of all the software code
were considered during the selection process. The reliability
of the Rosetta protocol 3 employed in the Design module
was benchmarked against experimental stability data pre-
viously collected for multiple-point mutants in our labo-
ratory (46) as well as 1573 single-point mutants available
in the ProTherm and HotMuSiC databases (Supplemen-
tary Data 2). These tests confirmed a significant correla-
tion between half-lives and calculated changes in free energy
��G, as well as an ability of the fast protocol 3 to correctly
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Figure 2. Graphic user interface of the sequence input in the HotSpot Wizard 3.0. (A) Selection between structure and sequence input. (B) After entering
of the sequence, searching for existing structures in PDB database is performed. (C) If no existing structure is found, search in homology model databases
is performed. (D) Setting of homology modeling parameters––user can choose between Modeller and I-Tasser and eventually enter his own template or
sequence alignment.

classify stabilizing and destabilizing mutations. Function-
ality of the Mutation design module was validated by sat-
uration mutagenesis at the hotspot position L177 located
at the tunnel mouth of the haloalkane dehalogenase LinB
(47). Theoretical predictions correctly identified the vari-
ant L177W, which was found to be the most stable also
experimentally (Supplementary Data 3). At last, we used
the HotSpot Wizard 3.0 workflow for computational mu-
tagenesis of six residues lining the active site cavity and the

access tunnel of the haloalkane dehalogenases from non-
pathogenic and pathogenic bacteria Sphingobium japonicum
UT26 and Mycobacterium tuberculosis Rv2579, respectively
(48). Single-point mutations and combined sixfold mutants
were predicted using the automated protocols with crystal
structures and homology models (Supplementary Data 4).
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CONCLUSIONS AND OUTLOOK

HotSpot Wizard 3.0 is a new version of a popular web server
used for the automated prediction of hotspots and the de-
sign of smart libraries in semi-rational protein design. In
this version, homology modeling of the protein structure
dramatically increases the usability of the platform by in-
creasing the number of possible inputs and solves the lim-
itation imposed by the number of available experimental
structures. For homology modeling, Modeller and I-Tasser
are used. The quality of the models created is evaluated
using three different tools to identify wrongly modeled re-
gions, which should be used for further computational de-
sign only with extreme care. The users are automatically
warned whenever they attempt to redesign poorly resolved
regions, for example the residues lying outside allowed re-
gions of the Ramachandran plot. Rational design is further
supported by the novel Mutation design module employing
force field calculations for estimating the effect of substitu-
tion on protein thermodynamic stability. This new module
can dramatically reduce the number of variants selected for
experimental testing and can also help to pre-select muta-
tions for identified positions during construction of smart
libraries. In the future, we want to focus on more systematic
use of multiple structural data from the Protein Data Bank,
and on development of a novel engineering strategy for the
design of biocatalysts that catalyze specific chemical reac-
tions. Extensive databases searches will be coupled with the
computational design module for identification of the best
starting protein template for such an engineering exercise.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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ABSTRACT

There is a continuous interest in increasing pro-
teins stability to enhance their usability in numer-
ous biomedical and biotechnological applications. A
number of in silico tools for the prediction of the
effect of mutations on protein stability have been de-
veloped recently. However, only single-point muta-
tions with a small effect on protein stability are typi-
cally predicted with the existing tools and have to be
followed by laborious protein expression, purifica-
tion, and characterization. Here, we present FireProt,
a web server for the automated design of multiple-
point thermostable mutant proteins that combines
structural and evolutionary information in its calcu-
lation core. FireProt utilizes sixteen tools and three
protein engineering strategies for making reliable
protein designs. The server is complemented with
interactive, easy-to-use interface that allows users
to directly analyze and optionally modify designed
thermostable mutants. FireProt is freely available at
http://loschmidt.chemi.muni.cz/fireprot.

INTRODUCTION

Proteins are widely used in numerous biomedical and
biotechnological applications. However, naturally occur-
ring proteins cannot usually withstand the harsh industrial
environment, since they are mostly evolved to function at
mild conditions (1). Protein engineering has revolutionized
the utilization of naturally available proteins for different
industrial applications by improving various protein fea-
tures such as stability, activity or enantioselectivity to sur-
pass their natural limitations. Protein stability is generally
strongly correlated with its expression yield (2), half-life (3),

serum survival time (4) and performance in the presence of
denaturing agents (5). Thus, stability is one of the key de-
terminants of proteins applicability in biotechnological pro-
cesses.

In the ideal case, the saturation mutagenesis would be
applied to evaluate every possible mutation on every posi-
tion of the engineered protein (6). However, such a search
space would be enormous and the experimental evalua-
tion can delay the design of truly thermostable protein for
months or even years. Therefore, there are demands for ef-
fective and precise predictive computation of protein sta-
bility. To satisfy this goal a number of in silico tools have
been developed recently. Some of these tools such as EASE-
MM (7), I-Mutant (8) or mCSM (9) are based on ma-
chine learning techniques. Others are using so-called ener-
getic functions. These programs can be further categorized
into two groups. The first group utilizes a physical effective
energy function for simulating the fundamental forces be-
tween atoms and is represented by the programs like Rosetta
(10) and Eris (11). The second group is based on statistical
potentials for which the energies are derived from frequen-
cies of residues or atom contacts reported in the datasets
of experimentally characterized protein mutants, e.g. Pop-
MuSiC (12) and FoldX (13). However, due to the poten-
tially antagonistic effect of mutations, only single-point mu-
tations are usually predicted in silico and have to be fol-
lowed by laborious and costly protein expression, purifica-
tion and characterization. Single-point mutations typically
enhance the melting temperature of target proteins by units
of degree (3,14). A much higher degree of stabilization can
be achieved by constructing multiple-point mutants (15).
We have recently developed the FireProt (16), combining
energy- and evolution-based approaches for reliable design
of stable multiple-point mutants. The protocol includes sev-
eral preceding filters that accelerate the calculation by omit-
ting potentially deleterious mutations. FireProt is currently
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available only in a stand-alone format and requires exten-
sive experience in bioinformatics to carry out all necessary
steps of the work flow. Currently, we are aware of only one
server for design of stable multiple-point mutants - PROSS
(17), utilizing Rosetta modeling and phylogenetic sequence
information in its computation core.

Here, we present a web version of FireProt for the auto-
mated design of thermostable proteins. FireProt integrates
sixteen computational tools and utilizes both sequence and
structural information. FireProt web server provides users
with thermostable proteins, constructed by three distinct
strategies: (i) evolution-based approach, utilizing back-to-
consensus analysis; (ii) energy-based approach, evaluating
change in free energy upon mutation and (iii) combination
of both evolution-based and energy-based approaches. In
our view, it is very important to have this integrated ap-
proach, since phylogenetic analysis enables identification of
the mutations stabilized by entropy, which cannot be pre-
dicted by force field calculations (Beerens et al., under re-
view). The server allows users to include preferred muta-
tions into the thermostable protein, to generate correspond-
ing structures and sequences for gene syntheses. Compared
to the previously published FireProt protocol (16), mini-
mum effort and no bioinformatics knowledge is required
from users to calculate and analyze the results. Further-
more, all input parameters and computational protocols
were optimized to minimize otherwise highly time demand-
ing procedure. The server was complemented with a graph-
ical interface allowing users to directly analyze the protein
of interest and design multiple-point mutants.

MATERIALS AND METHODS

The basic workflow of FireProt strategy is outlined in Fig-
ure 1. In order to design a highly reliable thermostable
multiple-point mutant, a protein defined by the user is an-
notated using several prediction tools and databases (Phase
1). With this knowledge in hand, energy- and evolution-
based approach is applied to assemble a list of potentially
stabilizing single-point mutations (Phase 2). Finally, three
multiple-point mutants are generated in an additive man-
ner, while removing potentially antagonistic effects of mu-
tations (Phase 3).

Phase 1: Annotation of the protein

Initially, the user is requested to specify the protein struc-
ture, either by providing its PDB ID or by uploading a user-
defined PDB file. The biological assembly of the target pro-
tein is then automatically generated by the MakeMultimer
tool (http://watcut.uwaterloo.ca/tools/makemultimer/). Se-
quence homologs are obtained by performing a BLAST
search (18) against the UniRef90 database (19), using the
target protein sequence as an input query. Identified ho-
mologs are then aligned with the query protein using USE-
ARCH (20), while sequences whose identity with the query
is below or above the user defined thresholds (default: 30
and 90%) are excluded from the list of homologs. The
remaining sequences are clustered using UCLUST (20),
with a 90% identity threshold to remove close homologs.
The cluster representatives are sorted based on the BLAST

query coverage and by default, the first 200 of them are used
to create a multiple sequence alignment with Clustal Omega
tool (21). The multiple sequence alignment is used to: (i)
estimate the conservation coefficient of each residue posi-
tion in the protein based on the Jensen–Shannon entropy
(22); (ii) identify correlated positions employing a consen-
sual decision of the OMES (23), MI (24), aMIc (25), DCA
(26), SCA (27), ELSC (28), McBASC (29) and (iii) analyze
amino acid frequencies at individual positions within the
protein.

Phase 2: Prediction of single-point mutations

In accordance with the original FireProt protocol, poten-
tially stabilizing single-point mutations are identified via
two separate branches: one relying on the estimation of the
change of free energy upon mutation and second utilizing
back-to-consensus approach.

The first, energy-based approach is employing FoldX and
Rosetta tools that performed best on our testing dataset.
Preceding filters accelerate the calculation by omitting po-
tentially deleterious mutations. Prior to the identification of
the single-point mutations itself, the target protein structure
is amended and minimized. FoldX protocol is utilized to fill
in the missing atoms in the residues and patched structure
is consequently minimized with Rosetta minimization mod-
ule. Conserved and correlated positions are immediately ex-
cluded from further analysis. It was observed that func-
tional and structural constraints in proteins generally lead
to the conservation of amino acid residues (30–33). Simi-
larly, correlated residues ordinarily help to maintain pro-
tein function, folding or stability (34–36). Mutations con-
ducted on these positions are therefore considered unsafe
by current FireProt strategy, even though there is certainly
a space for more sophisticated treatment of correlated posi-
tions, which will be further developed in future versions of
FireProt server.

The remaining positions are subjected to saturation mu-
tagenesis by using FoldX tool. Mutations with predicted
ddG over given threshold (default: –1 kcal/mol) are steered
away and rest is forwarded to Rosetta calculations. Finally,
the mutations predicted by Rosetta as strongly stabilizing
(default cut-off: –1 kcal/mol) are tagged as potential candi-
dates for the design of the multiple-point mutants.

A high time demands of Rosetta analysis were one of
the most excruciating issues with the original FireProt pro-
tocol. Even with the application of filters over 100 muta-
tions was usually left for precise, but slow, Rosetta calcula-
tions. For this reason, we have evaluated several force fields
and Rosetta protocols with the newly assembled dataset
containing 1573 mutations from ProTherm database (37)
and HotMuSiC dataset (38). Based on the results of the
evaluations, the best trade-off between the time require-
ments and precision was selected. With Rosetta protocol 3,
we have achieved more than tenfold increase in calculation
speed while preserving high prediction accuracy. Details on
dataset construction and protocols evaluation can be found
in the Supplement 1 (Supplementary Tables S1–S5).

The second approach is based on the information ob-
tained from multiple sequence alignment. The most com-
mon amino acid in each position of protein sequence often
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Figure 1. Workflow of FireProt strategy.

provides a non-negligible effect on protein stability (39–42).
Therefore, FireProt implements majority and frequency ra-
tio approach to identify mutations at positions where the
wild-type amino acid differs from the most prevalent one.
By default, the single out mutations are located in the posi-
tions where the consensus residue is present in at least 50%
of all analyzed sequences (majority method) or where con-
sensus residue frequency is 40% and is at least five times
more frequent than the wild-type amino acid (frequency ra-
tio method). These thresholds were chosen in accordance to
the previously published HotSpot Wizard method (43). Se-
lected mutations are evaluated by FoldX and the stabilizing
ones are listed as candidate mutations for the engineering
of multiple-point mutant.

Phase 3: Design of thermostable protein

In total, three protein designs are provided by FireProt
strategy. The first design includes only the mutations from
energy-based approach, the second contains the mutations
suggested by the evolution-based approach and the third is
the combination of both. Naturally, because of potentially
antagonistic effects between individual mutations, we can-
not combine individual mutations blindly.

To avoid possible clashes, FireProt strategy is trying to
minimize antagonistic effects by utilizing Rosetta. In the
first step, all pairs of single-point mutations within the range
of 10 Å are evaluated separately for energy- and evolution-
based approach. Once change in free energy is obtained for
all residue pairs, FireProt starts to introduce them into the
multiple-point mutant in the order based on their predicted
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stability, excluding the mutations that are colliding with al-
ready included mutations. Algorithm stops once there are
no mutations left or the stabilizing effect of analyzed pair
drops below defined threshold.

Upon the completion of previous step, procedure is re-
peated this time considering only the pairs between the
mutations chosen for the construction of energy- and
evolution-based mutants. Finally, structures of all three mu-
tants are modeled using the Rosetta protocol 16.

DESCRIPTION OF THE WEB SERVER

Input

The only required input to the web server is a tertiary struc-
ture of the protein of interest, provided either as a PDB ID
or a user-defined PDB file. The user can then choose a pre-
defined biological unit generated by the MakeMultimer tool
or manually select chains for which the calculation should
be performed. The calculations can be configured in either
basic or advanced mode.

In the basic mode, user is allowed to change the setting of
BLAST search and alignment construction. The advanced
mode expands the list of modifiable parameters by the ones
connected with: (i) the identification of consensus residues
by majority and frequency ratio approach, (ii) the thresh-
olds used by FoldX and Rosetta prediction tools and (iii)
the decision threshold employed in the consensual analysis
of correlated positions. Advanced mode allows expert users
to fine-tune the parameters of calculation according to stud-
ied systems. However, the presented default values are op-
timized to provide reliable results for most of the systems
and we therefore do not advice their change in the general
scenarios.

Output

Upon submission, a unique identifier is assigned to each job
to track the calculation and the ‘Results browser’ informs
the user about the status of the individual steps in the Fire-
Prot workflow (Figure 2B). Once the job is finished, users
can either directly download the results in the .zip archive or
navigate themselves into the ‘Results page’ for further anal-
ysis. The ‘Results page’ is intuitively organized into several
panels as described below.

Protein visualization. The wild-type and the mutant struc-
ture is interactively visualized in the web browser (Fig-
ure 2D) utilizing the Jsmol applet (http://wiki.jmol.org/
index.php/JSmol). Users can switch between different pro-
tein visualization styles and also highlight selected amino
acids in the protein structure. Residues that were included
into energy-based mutant are colored in orange, evolution-
based mutations are in blue and all other residues are in
gray. User selected residues that were not part of any mu-
tant are underlined in red.

Mutant overview. The ‘Mutant overview’ panel is orga-
nized into four tabs (Figure 2A). The first three tabs pro-
vide information about mutations included into combined,
energy-based and evolution-based mutant. The checkbox,

allowing users to visualize the chosen residues in Jsmol ap-
plet, can be found in each row together with all data rele-
vant for a given computational approach. The last tab con-
tains the list of all residues in the wild-type structure. While
‘wild-type’ tab is active, the wild-type structure is visualized
in Jsmol applet instead of the mutated one and the user is
allowed to introduce user-defined mutations into multiple-
point mutant via the ‘plus’ icon in the last column.

General information. The ‘FireProt protocol design’ panel
provides users with general information about the target
protein and the designs constructed by FireProt strategy,
such as a number of mutations and estimated change in free
energy (Figure 2C).

Mutant designer. The ‘Mutant designer’ panel allows the
user to design own multiple-point mutant by managing mu-
tations divided into energy- and evolution-based subset. If
all mutations in the subset have their predicted energy val-
ues assigned, a total change in Gibbs free energy is im-
mediately estimated assuming simple additivity. Users can
also generate an amino acid sequence from the designed
multiple-point mutant that combines mutations included
into energy- and evolution-based subsets. All prepared de-
signs can be downloaded in one .zip archive (Figure 2E).

EXPERIMENTAL VALIDATION

The original FireProt strategy was experimentally veri-
fied with three proteins (haloalkane dehalogenase DhaA,
PDB ID 4E46; � -hexachlorocyclohexane dehydrochlori-
nase LinA, PDB ID 3A76; and fibroblast growth factor
2, PDB ID 4OEE) and provided respective stabilization of
proteins �Tm = 25, 21 and 15◦C (Table 1). The original
protocol was modified to enable fully automated calcula-
tion at the reasonable time, while maintaining high pre-
diction accuracy (Supplementary Table S6). Prediction of
eight multiple-point mutants using this modified protocol
was validated using the data of FRESCO (44) and identi-
fied mutations were compared with another online protein
stabilization tool PROSS (17). FireProt and PROSS showed
similar predictive power, correctly identifying 29 and 20 po-
tentially stabilizing positions, respectively (Supplementary
Table S7).

CONCLUSIONS AND OUTLOOK

FireProt is a web server that provides users with a one-
stop-shop solution for the design of thermostable multiple-
point mutant proteins. In comparison with the standalone
FireProt strategy (16), all default parameters and compu-
tational protocols were optimized to increase the calcula-
tion speed, while maintaining the prediction accuracy. The
designs produced by the FireProt workflow were exper-
imentally verified and thus users can obtain highly reli-
able thermostable proteins with minimal experimental ef-
fort. The server is complemented by an easy-to-use graphi-
cal interface that allows users to interactively analyze indi-
vidual mutations selected as a part of energy- or evolution-
based approach together with the ability to design their own
multiple-point mutants on top of our robust strategy.
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Figure 2. FireProt’s graphical user interface showing the results obtained for the haloalkane dehalogenase DhaA (PDB ID: 4e46). (A) The ‘Mutant
overview’ panel provides a list of mutations introduced into protein structure. (B) The ‘Report’ panel shows the status of calculation in the individual
steps of the computational pipeline. (C) The ‘Protocol design’ panel provides general information about FireProt designs. (D) The JSmol ´Viewer´ allows
interactive visualization of the protein. (E) The ‘Mutant designer’ panel enables manual adjustment of a new combined mutant.

Table 1. Experimental validation of FireProt strategy

Protein Energy-based mutations Evolution-based mutations �Tm [◦C]
PDB ID

4E46 8 3 +25
3A76 4 3 +21
4OEE 4 2 +15
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The automation of the whole procedure makes the pro-
cess of the design of thermostable proteins accessible to
users without any prior expertise in bioinformatics since it
eliminates the need to select, install and evaluate tools, op-
timize their parameters, and interpret intermediate results.
However, the energy-based approach of the FireProt strat-
egy depends on the quality of provided protein structure
and therefore the prediction accuracy might be compro-
mised in the case of low-resolution structures or homology
models.

In the future, we plan to implement new strategies such as
a design based on the analysis of correlated positions that
would contribute to the construction of the final combined
mutant, elimination of highly flexible regions and introduc-
tion of disulfide bridges. Also, we plan to equip FireProt
with several new filters, e.g. exclusion of the amino acids lo-
cated in the close neighborhoods of the active sites or the
ones participating in oligomerization.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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digIS: towards detecting distant 
and putative novel insertion sequence elements 
in prokaryotic genomes
Janka Puterová and Tomáš Martínek*  

Background
Insertion sequence elements (IS elements) are the smallest and most abundant auton-
omous transposable elements in prokaryotic genomes, usually ranging from 700 bp 
to 3 kbp. However, there are exceptions, and some IS families (Tn3) can contain ele-
ments having a length greater than 5 kbp. ISs are widespread in prokaryotic genomes 
and may occur in high copy numbers. They play an essential role in genome evolution, 

Abstract 

Background: The insertion sequence elements (IS elements) represent the smallest 
and the most abundant mobile elements in prokaryotic genomes. It has been shown 
that they play a significant role in genome organization and evolution. To better under-
stand their function in the host genome, it is desirable to have an effective detection 
and annotation tool. This need becomes even more crucial when considering rapid-
growing genomic and metagenomic data. The existing tools for IS elements detection 
and annotation are usually based on comparing sequence similarity with a database of 
known IS families. Thus, they have limited ability to discover distant and putative novel 
IS elements.

Results: In this paper, we present digIS, a software tool based on profile hidden 
Markov models assembled from catalytic domains of transposases. It shows a very 
good performance in detecting known IS elements when tested on datasets with 
manually curated annotation. The main contribution of digIS is in its ability to detect 
distant and putative novel IS elements while maintaining a moderate level of false 
positives. In this category it outperforms existing tools, especially when tested on large 
datasets of archaeal and bacterial genomes.

Conclusion: We provide digIS, a software tool using a novel approach based on 
manually curated profile hidden Markov models, which is able to detect distant and 
putative novel IS elements. Although digIS can find known IS elements as well, we 
expect it to be used primarily by scientists interested in finding novel IS elements. The 
tool is available at https://github.com/janka2012/digIS.
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structure, and host-genome adaptability. Due to their movement ability, IS elements rep-
resent mutagenic agents and can: cause modulation of expression of neighboring genes, 
affect virulence, change xenobiotic or antimicrobial resistance, or modulate metabolic 
activities. Detailed information on IS element function in host genomes can be found in 
recent reviews [1, 2].

Typically, IS elements consist of one or two open reading frames (ORFs) encoding a 
transposase (Tpase), a product necessary for transposition within a particular genome or 
horizontally between genomes (in plasmids). They are flanked by short terminal inverted 
repeats (IRs) and direct repeats (DRs). Transposases occurring in IS elements include five 
groups named after amino acid residues located at their conserved catalytic domain that 
catalyzes the transposition: DDE, DEDD, HUH, Tyrosine (Y), and Serine (S). IS elements 
with DDE transposase are the most abundant, and their conserved catalytic domain 
has a typical secondary structure β1− β2− β3− α1− β4 − α2/3− β5− α4 − α5/6 . 
Classification of IS elements into families is based mainly on Tpase structure, but other 
features such as IRs and DRs are also considered. Up to now, 29 IS families have been 
identified [1].

ISfinder [3] is a human-curated database and the most comprehensive source of 
known IS elements at present. Currently, the database contains more than 5000 entries 
and is updated regularly. As an extension of the ISfinder database, the authors imple-
mented an ISbrowser interface [4] for visualization of IS elements inside genomes, and 
they prepared a benchmark dataset, consisting of 118 manually annotated prokaryotic 
genomes (as of November 2017), that is often used for assessment of IS detection tools 
performance. Another data source focused on mobile genetic elements, including manu-
ally annotated insertion sequences, is ACLAME database [5]. Unfortunately, this data-
base has not been updated since 2009.

Even though the databases of known IS elements are growing, we are probably far 
from having a complete knowledge of all IS families and their structures. Therefore, for 
a better understanding of the IS elements function and their role in genome evolution, 
it is desirable to have an effective tool capable of not only annotating known families but 
also detecting new ones. This need becomes even more crucial when considering rapid-
growing genomic and metagenomic data.

At present, there are several tools available for the detection of IS elements in prokary-
otic genomes. Some of them are designed for searching in raw sequenced data (ISQuest 
[6], ISMapper [7], ISseeker [8], panISa [9]), and the others require assembled sequences 
(IScan [10], ISsaga [11], OASIS [12], ISEScan [13], TnpPred [14]). Almost all tools utilize 
a homology-based approach and are dependent on a source of known IS elements (they 
use a reference database either for verifying their results or for building searching pro-
files). Only the panISa tool detects IS elements solely based on structural features, such 
as an alignment of DR regions, and does not require a reference database.

Homology-based methods can be further divided into two main categories: (1) 
sequence-based and (2) profile-based methods. The first category is represented by tools 
IScan, OASIS, ISQuest, and ISseeker, which utilize the ISfinder database as a reference 
library in combination with BLAST software [15] to find close homologs. These tools 
are often used in annotation pipelines, where outputs with a high level of confidence are 
required.
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The latter category includes ISsaga, TnpPred, and ISEScan. They take advantage of 
interpolated Markov models or profile hidden Markov models (pHMMs), which pro-
vide a more sensitive search, and detect remote homology sequences. ISsaga utilizes 
GLIMMER [16] and detects ORFs of IS elements or their fragments using an opti-
mized interpolated Markov model built from the ISfinder database. TnpPred is focused 
on transposases detection (not full-length IS elements) and provides pHMMs for 19 of 
29 IS families only. ISEScan uses 621  pHMMs built automatically from Tpases in the 
ACLAME database, but 355 of them are made up of one sequence only. Based on the 
configuration, ISEScan searches for whole Tpases or allow the presence of fragments.

Both sequence-based and profile-based tools can find new members of existing 
IS families, as they usually share significant sequence similarity either at the DNA or 
Tpase/ORF level. Profile-based methods are able to find remote members with lower 
similarity, which can represent hitherto undiscovered families—distant putative novel IS 
elements. However, the reliable identification of new IS families and their members is 
still challenging even for existing profile-based tools. It is mainly due to the Tpase struc-
ture, which comprises of several, often variable, domains. A search for the whole Tpase 
(ISEScan) is quite specific and unable to uncover novel IS elements with a distinct Tpase 
structure. On the other hand, allowing for fragments (ISEScan, ISsaga, and TnpPred) 
may result in many hits having significant similarity to a specific part of a completely dif-
ferent protein (i.e., false positives in terms of tool evaluation).

In this paper, we address the aforementioned challenge using a novel approach to 
detecting distant members of known IS families and putative novel IS elements. The fun-
damental idea is to search for the most conserved part of Tpase—the catalytic domain. 
The search is based on manually curated pHMMs with noise cutoff thresholds. Utilizing 
this approach, we can detect both known and putative novel IS elements with a mod-
erate level of false positives while maintaining high sensitivity. The proposed method 
is implemented as digIS software and released as open-source at https://github.com/
janka2012/digIS. The installed tool, including all dependencies, is also available as a 
docker image at https://hub.docker.com/r/janka2012/digis.

Implementation
digIS is a command-line tool developed in Python. It utilizes several external tools such 
as BLAST [15], HMMER [17], and Biopython library [18]. As an input, digIS accepts 
contigs in FASTA format. Optionally, the user can provide a GenBank annotation file for 
a given input sequence(s). This annotation is later used to improve the classification of 
identified IS elements (see “Output classification” section).

Firstly, we built a library of manually curated pHMMs, corresponding to Tpase cata-
lytic domains of individual IS families. As a source of sequences, we used the ISfinder 
database, and for each pHMM, we identified the noise cutoff threshold.

Then, the digIS search pipeline operates in the following way: 

1 The whole input nucleic acid sequence is translated into amino acid sequences (all 
six frames).

2 The translated sequences are searched using manually curated pHMMs.
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3 Found hits, referred to as seeds, are filtered by domain bit score and e-value. Those 
that overlap or follow one another within a certain distance are merged.

4 Each seed is matched against the database of known IS elements (ISfinder) and its 
genomic positions are extended according to the best hit.

5 Extended seeds are filtered by noise cutoff score and length. Duplicates, correspond-
ing to the same IS element, are removed.

6 Remaining extended seeds are classified based on sequence similarity and GenBank 
annotation (if available) to assess their quality.

7 Finally, the classified outputs are reported in the CSV and GFF3 format.

The overall digIS workflow is depicted in Fig. 1, and the individual steps are described in 
detail in the following sections.

Building profile hidden Markov models for the transposase catalytic domain of individual 

IS families

Tpase sequences were obtained from the ISfinder database. For each IS family, the 
pHMM was created as follows: (1) the longest ORF sequence, representing Tpase and 
its catalytic domain, was chosen for each IS element1, (2) a multiple sequence alignment 
(MSA) for a set of Tpases belonging to the same family was created by Clustal Omega 
[19] and visualized using Jalview [20], (3) for each MSA, a protein secondary structure 
of the transposase was predicted using JPred4 [21] and used to determine the bound-
aries of the conserved catalytic core; the MSA was refined based on the positions of 
the catalytic residues (usually DDE), and the catalytic domain was manually cut using 
these determined boundaries, (4) such a manually modified MSA was used to construct 
resultant pHMM using hmmbuild from the HMMER package.

Since IS3, IS4, and IS5 families contain multiple subfamilies, a separate model was 
constructed for each of them. Moreover, IS5/IS5 and IS5/None subfamilies showed 
various sequence patterns (e.g., long insertions, deletions), and therefore several models 
were built for them concerning these patterns. MSAs with highlighted sequence groups 
used to construct these models are available in Additional files 1 and 2. For the ISNCY 
family, models were built for IS1202 and ISDol1 subfamilies only, since other subfamilies 
did not contain a sufficient amount of sequences. We required the models to be assem-
bled from at least ten sequences to have a generalizing ability to find distant Tpases. 
Altogether, 50 pHMMs were constructed.

The remaining sequences of IS5 and ISNCY subfamilies representing outliers/distant 
sequences were cut with regard to the catalytic residues and secondary structure. They 
were used later as individual protein sequences in phmmer search. Overall, 70 outlier 
sequences were collected.

To eliminate false-positive hits reported by HMMER using pHMMs and still have 
the ability to detect distant and novel IS elements, a domain noise cutoff thresh-
old—which represents a bit score of the highest-scoring known false positive—was 

1 Various IS families carry Tpase consisting of multiple ORFs. These ORFs are present in the ISfinder database in both 
individual and fusion forms. As duplicated sequences may lead to a bias in pHMMs, only the longest ORF sequence was 
used.
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determined for each pHMM as follow: First, a database of manually curated protein 
sequences from Archaea and Bacteria kingdoms was collected from SwissProt [22] 
and RefSeq [23] databases (records labeled as ‘REVIEWED’), resulting in 353051 and 
232157 records (accessed on 11 March 2019), respectively. Setting this threshold is a 
common practice and is used, for example, in models stored in Pfam [24] database. 
Then, each pHMM was queried against this reference protein database employing 
hmmsearch with default settings. Finally, reported hits were sorted in a descending 

generate outputs

Genome GenBank
annotation

GenBank 
annotation
provided?

HMMER
hmmsearch
--domT 0.0

HMMER
phmmer

Input genome
(multi fasta)

catalytic domains 
pHMMs

translate into protein sequences
(all six frames)

individual catalytic
domains of outliers

merge hits within max_distance
merge overlapping hits with min_overlap

seed extension by flank region 
of size ORF_context

seed extension by flank region
of size IS_context

BLASTX BLASTNISFinder ORFs 
(Tpases only, protein)

ISFinder full-length 
IS elements (DNA)

No

classification based on GenBank
(no annotation, IS-related, other annotation)

Extension stage

Yes

Seeding stage

Classification stage

CSV/GFF3 Summary
statistics

Preprocessing

filter by domain e-value set to�0.001

Filtering stage filter by domain noise cutoff
remove duplicates

filter by length

Fig. 1 Workflow of digIS. digIS components and workflow, grey rectangles represent external tools, rounded 
rectangles represent input data, white rectangles represent digIS components
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order based on the reported per-domain bit score and evaluated manually to estimate 
the bit score from which false positive hits were prevalent.

Searching for IS elements in the input sequence

In the beginning, the whole input nucleic acid sequence is translated into amino acids 
(all six frames). Then, the search process operates in two steps: 

1 Seeding: The input genome is scanned using pHMMs and individual sequences 
representing Tpase catalytic domains. Each occurrence with a satisfactory score is 
labeled as a seed.

2 Extension: The genomic position of seeds identified in the previous step are extended 
based on the similarity boundaries with Tpases and IS elements from the ISfinder 
database.

In the Seeding stage, digIS utilizes hmmsearch from the HMMER3 package to query 
pHMMs against the translated sequences with an enabled domain threshold (–domT 
argument) set to 0.0 to report domain hits with a non-negative bit score only. After-
wards, digIS employs phmmer to query individual protein sequences against the 
translated sequences. The resulting hits are post-processed and filtered by a domain 
conditional e-value set to 0.001. Next, neighboring records, detected by the same model 
within a certain distance (700 bp2) on the same strand, are merged. This approach allows 
insertions or variable segments inside catalytic domains that are typical for some Tpases 
[25]. Next, overlapping records found by different models are merged, since there exists 
a sequence similarity in the catalytic domain among different Tpases, or a putative novel 
catalytic domain might be composed of different parts of known domains.

Please note that digIS scans the whole input sequence, instead of just open reading 
frames (ORFs), to not omit some coding regions.

During the next stage (Extension), the genomic position of each seed is identified 
in the original nucleic acid sequence and extended with context_orf and context_dna 
(upstream and downstream flank regions of a length 1600 bp3, and 14000 bp4, respec-
tively), see Fig. 2. Next, the extended seed is matched against sequences of known Tpases 
(ORF level) and IS elements (DNA level), extracted from the ISfinder database, using the 
BLASTX and BLASTN tools. Finally, the seed’s original position is adjusted (extended) 
according to the best BLAST hits’ positions.

As the output of the Extension stage, the digIS tool reports: (1) position at DNA level 
if the similarity with a known IS element was found using the BLASTN tool; or (2) posi-
tion at the ORF level if the similarity with a known Tpase was found using the BLASTX 
tool; or (3) position of the catalytic domain otherwise found during the Seeding stage.

2 Merge distance 700 bp was identified based on the longest gaps within the models (see Additional file  3 for more 
details).
3 ORF context size 1600 bp was identified based on the length of the longest transposase ORF in the ISfinder database 
divided by 2, multiplied by 3 (conversion from amino acids to nucleotides) and rounded up to the nearest hundredth
4 DNA context size 14000  bp was identified based on the length of the longest IS element in the ISfinder database 
divided by 2 and rounded up to the nearest hundredth
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Output filtering

To eliminate the number of reported false positives, digIS filters the hits with a score 
below the previously estimated noise cutoff threshold, and it removes duplicate records 
covering the same genomic region. Lastly, hits having less than 150 bp (50 aa) in length 
are filtered out.

Output classification

To help the user assess the quality of found IS elements, each output hit is supple-
mented by information about sequence similarity with known IS elements and Tpases 
extracted from the ISfinder database. The similarity is calculated as a percentage of iden-
tity between the extended seed and a known IS element or Tpase sequence, measured 
according to the database item’s length.

In case the GenBank annotation is provided as an optional input5, the classification 
process is further extended, and each digIS hit is classified based on the overlap with 
GenBank annotation records into the three categories using following rules applied in 
the subsequent order:

• IS-related—hit overlaps with a GenBank record of type: (1) mobile element or mobile 
element type, (2) repeat region, coding sequence (CDS), gene, or miscellaneous fea-
ture annotated as transposase, resolvase, recombinase, recombination/resolution, 
insertion element, mobile element, transposon, transposable element, DDE, or the 

ORF1 ORF2

IS element

orf_context orf_context
seed

IS_context IS_context

ORF DB

BLASTX

BLASTN

IS DB

Best hits
query seed

subject1

subject2
subject3

subject4

DNA

Fig. 2 Seed extension process. The seed matches the catalytic domain of the putative IS element in the 
input genomic sequence. This seed is extended with upstream and downstream flank regions of orf_context 
and IS_context size, respectively, and is searched against the database of known Tpase/ORFs and IS elements, 
respectively. Only the best hits, including the whole original seed, are considered for extension. Position of 
the seed is changed (extended) according to the best hit

5 GenBank annotation is a result of a complex process [26] that utilizes sources of manually curated data and automati-
cally predicted ones with a high level of confidence.
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annotation contains a name of known IS family or subfamily [27, 28]. A hit classified 
into this category has high confidence to be a true IS element.

• no annotation—hit does not overlap with any GenBank record or overlaps with a 
record annotated as a hypothetical protein, predicted protein, unknown, or domain 
of the unknown function (DUF). The hit in this category can be seen as an unknown 
protein or protein, where the annotation pipeline did not achieve a sufficient level of 
confidence. Typically, distant or putative novel IS family members may belong to this 
category.

• other annotation—otherwise. The hit in this category is probably not an IS element, 
because it overlaps and shares significant similarity with a different protein.

Since the previous analysis of GenBank annotation revealed that some IS element trans-
posases were misannotated as integrases [6, 12], we classify all hits annotated as inte-
grases and at the same time having significant identity to a known IS element in the 
ISfinder database (at ORF or DNA level), as IS-related as well.

The latest version of the GenBank annotation was newly expanded to include frag-
ments of IS elements marked as ’pseudo’ with the notation ’incomplete’ [26]. To preserve 
a conservative approach and high confidence, these records are ignored when classifying 
hits.

digIS output files

The digIS tool generates the following output files: (1) a CSV and GFF3 file containing 
all found IS elements and their attributes such as sequence ID, genomic location, strand, 
accuracy, score, sequence similarities with known IS elements (at ORF and DNA level), 
and classification according to GenBank annotation (if provided); (2) a summary file 
containing numbers of IS elements per individual families, overall numbers of base pairs 
and a percentage of an input sequence occupied by IS elements. FASTA sequences of 
found IS elements can be extracted using the GFF3 file and BEDTools [29] (see instruc-
tions on the GitHub repository).

Results
The performance of the digIS tool was evaluated on different datasets and compared with 
related tools. Specifically, we chose ISEScan (version 1.6), OASIS (version released 18th 
September 2012), and ISsaga (version with the last update on 20th January 2020). Other 
state-of-the-art tools were excluded for various reasons. ISMapper, ISseeker, ISQuest, 
and panISa are designed for IS elements detection in raw sequence reads. TnpPred is 
available online only, and it is limited to protein sequences with a maximum length of 
5000 amino acids. Even though the TnpPred pHMMs are available for download, it is 
unclear what kind of parameters or filtration mechanisms should be used during the 
search. Finally, we excluded IScan, because we were not able to install it, including all 
necessary dependencies.

All tools were run with default or recommended settings. Additionally, ISEScan was 
executed with two settings: (1) default configuration with the removeShortIS option ena-
bled, when IS elements shorter than 400 bp or single copy IS elements without perfect 
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IRs are filtered out; and (2) with removeShortIS turned off when all hits are reported 
(hereinafter referred to as ISEScan–fragments).

We faced several issues when evaluating the tools. At first, the definition of a true 
positive hit was ambiguous as different tools reported different types of outputs. Some 
tools reported entire IS elements at the DNA level (ISEScan and OASIS) or their frag-
ments (ISEScan–fragments). Other tools reported individual ORFs or fragments thereof 
(ISsaga), while the proposed digIS tool reported outputs at one of three levels (catalytic 
domain, ORF, or DNA). Moreover, for tools reporting ORFs or fragments, it is common 
that several hits correspond to the same IS element from the reference dataset.

Considering these facts and in an effort to evaluate the tools fairly, reported hits were 
classified as follows: A hit is considered as a true positive (TP) if it overlaps with any 
item in the reference dataset, and the length of the overlapping region is ≥ 100 bp6. If 
multiple hits overlap with the same IS element in the reference dataset, then all of these 

No reference IS element

ORF DB

BLASTX

BLASTN

IS DB

Best hits

query 1

subject

DNA

ORF1 ORF2

Reference IS element

orf1 orf2

fragment 1

DNA

fragment 2
Single

TP
Tool

outputs

orf1 orf2

fragment 1 fragment 2
Single

FP

query 2

a

b

Fig. 3 Definition of true positive and false positive with respect to the tools reporting IS element’s fragments 
or ORFs. a Definition of true positive: A hit is considered as a true positive (TP) if it overlaps with any item in 
the reference dataset. If multiple hits overlap with the same IS element in the reference dataset, then all of 
these hits count as one hit only. b Definition of false positive: Each reported hit of the tool is matched against 
the database of known IS elements (ISfinder), and if several adjacent hits map to the same IS element at DNA 
or ORF level, then these hits are counted as only one merged FP

6 Usually, an overlap based on a percentage of the reference IS element length is used in other studies, but when allowing 
for fragments, this criterion is not applicable. The requirement for at least 100 bp overlap seems to work well, even when 
two neighboring IS elements overlap.
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hits count as one hit only (as shown in Fig. 3a). A false negative (FN) is defined as a ref-
erence dataset element without sufficient overlap with at least one reported hit. A false 
positive (FP) represents a reported hit without sufficient overlap with at least one item 
from the reference dataset.

It turns out that some reference datasets may not be complete. For example, if a new IS 
element is discovered, it is not included in a previously published dataset. A hit match-
ing this new IS element is considered as an FP, even if it was identified correctly by the 
tool (see “Evaluation on the benchmark ISbrowser and E.  coli datasets” section). The 
number of FPs is then even higher for tools reporting ORFs or fragments of the same IS 
element. To minimize this side effect, each FP was compared with a database of known 
IS elements (ISfinder). If several adjacent FPs mapped to the same IS element at DNA or 
ORF level (as shown in Fig. 3b), they were counted as one merged FP (mFP).

Evaluation on the benchmark ISbrowser and E.coli datasets

The first evaluation of the selected tools was performed on two benchmark datasets 
(1)  a  human-curated dataset from ISbrowser, and (2) the IS element annotation of 
Escherichia coli strain K-12 substr. MG 1655 genome [30]. The ISbrowser dataset com-
prises an annotation of 118 prokaryotic genomes (as of November 2017); 58 of them 
contain full-length IS elements, including 36 prokaryotic genomes and 22 plasmids. 
E.coli strain K-12 is one of the most well-understood model organisms [31] and is fre-
quently used in microbial studies. The dataset of annotated IS elements for E.coli was 
obtained from the ISEScan publication (Supplementary Materials, Table  5) since Eco-
Gene 3.0 [31], a source devoted to the structural and functional annotation of E.coli 
strain K-12, was unavailable at the time of manuscript preparation. This dataset consists 
of 49 IS elements of which 40 are full-length.

Results for the ISbrowser and E.coli datasets are shown in Table  2. Surprisingly, all 
tools showed a relatively high number of FPs and corresponding FDR (in the range from 
8 to 24%). Therefore, we analyzed the FPs in more detail as follows: First, FPs represent-
ing fragments/ORFs of the same IS element were merged as described at the beginning 
of this section. Then, for each merged FP (mFP), the similarity with known IS elements 
in the ISfinder database was measured and by using the GenBank annotation it was clas-
sified into IS-related, no annotation, or other annotation category as described in “Out-
put classification” section. Based on these results, a histogram was plotted depicting the 
number of mFPs as a function of similarity at both ORF and DNA levels. Finally, each 
bar in the histogram was divided according to the classification based on the GenBank 
annotation. These histograms represent an effective way to visualize the outputs of indi-
vidual tools, including the identification of areas in which the tool makes errors. Please, 
see Additional file 4: “ISbrowser dataset” section.

In summary, many mFPs correspond to the hits that are highly likely to represent true 
IS elements that are not yet included in manually curated datasets. This behavior can 
be caused by the fact that the human-curated, whole-genome annotation might not be 
updated as often as databases of known IS elements. The exact numbers of true IS ele-
ments are unknown even in human-curated datasets and may evolve over time. There-
fore, the common performance metrics, such as the confusion matrix, can not evaluate 
the tool quality fairly.
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To address this issue, we decided to classify mFP hits further to distinguish between 
those representing IS elements with a high level of evidence and improbable/not IS ele-
ments. For these purposes, we used the GenBank annotation, which resulted from a 
conservative approach combining manually curated data and automatically predicted 
ones with a high level of confidence. Each mFP hit was classified according to the rules 
described in the “Output classification” section. Therefore, mFPs classified as IS-related 
can be highly likely considered as IS elements or their parts. Similarly, mFPs classified as 
other annotation can be regarded as improbable or not IS elements since they include 
parts that have been conservatively identified as other protein products.

The remaining hits classified as no annotation can be seen as unknown IS elements 
or those where the GenBank annotation pipeline has not achieved a sufficient level of 
confidence. To evaluate these outputs, additional information about sequence similar-
ity with the database of known sequences (ISfinder) was used. Since the IS elements 
are divided into several independent families, it is difficult to find the exact boundary 
between IS and non-IS elements for mFPs. It is more appropriate to divide them into 
three categories:

• Intra-family member—a hit having similarity to the extent that is typical for mem-
bers belonging to the same family.

• Inter-family member—a hit having similarity that is common among members of dif-
ferent families.

• Improbable member—a hit having similarity lower than usual among family mem-
bers.

Although there may be several ways to categorize mFPs into these groups, we have cho-
sen a more straightforward approach by defining two similarity thresholds (at the ORF 
and DNA level) that divide hits into these three categories. To determine the thresholds, 
a database of known IS elements (ISfinder) was used, the sequence similarities common 
within existing families and among them were measured, and these values were aver-
aged. The resulting thresholds and their interpretations are given in Table 1. A detailed 
description of the procedure and the measured data is available in Additional file 5.

In summary, using the GenBank annotation and sequence similarity, the mFPs were 
classified into three categories according to the following rules:

• IS element with a high level of evidence (eIS)—a hit classified as IS-related based on 
the GenBank annotation, or a hit classified as no annotation based on the GenBank 
and Intra-family member based on the sequence similarity.

• Distant or putative novel IS element (pNov)—a hit classified as no annotation based 
on the GenBank and Inter-family member based on the sequence similarity.

Table 1 Thresholds for classification based on the sequence similarity

Level/interpretation Improbable member Inter-family member Intra-family member

IS element SeqID < 50% 50% < SeqID ≤ 70% 70% < SeqID

Tpase/ORF SeqID < 25% 25% < SeqID ≤ 45% 45% < SeqID
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• Improbable or not an IS element (nIS)—a hit classified as other annotation based 
on the GenBank annotation, or a hit classified as no annotation based on the Gen-
Bank and Improbable member based on the sequence similarity.

Distribution of mFP entries into these three categories is presented in Table  3, col-
umns labeled as Detailed classification of mFPs. It can be seen that a large part of the 
hits initially classified as mFPs falls into the category IS element with a high level of 
evidence. Together with previously identified TPs, they represent the total number of 
IS elements with a high level of evidence (teIS). Consequently, only the hits in the nIS 
category are considered to be incorrectly identified by the tool (i.e. false positives). 
Based on these new metrics, the putative novel discovery rate (pNovDR), and nIS 
discovery rate (nISDR) were calculated representing the proportion of putative novel 
and improbable/not IS elements in reported outputs, respectively. Finally, the pNov/
nIS ratio was calculated to express how many putative novel elements are found per 
single incorrectly identified hit.

We presume that these modified metrics reflect the tools’ performance better since 
they address the issue of incomplete reference datasets. Concurrently, they are based 
on sequence similarity information with known IS elements (ISfinder) and state-of-
the-art annotations with high confidence (GenBank). We are aware of possible discus-
sions and alternatives towards defined classification rules and similarity thresholds. 
However, if they are applied to all tools equally, they can bring a more reliable image 
of their performance.

The results in Table 3 related to the ISbrowser dataset show that:

• The tools that detect both full elements and fragments (ISsaga and ISEScan–frag-
ments) can find the highest number of teISs. On the other hand, the reported hits 
include the highest number of nISs. The overall nISDR is around 9%, and the ratio 
between pNovs and nISs is low (0.15 and 0.22).

• OASIS found the lowest number of teISs and nISs (nISDR is 1.15%), making it 
the most conservative tool of all. OASIS found only the hits with a high level of 
confidence. The output primarily includes records of known IS elements, whereas 
putative novel elements are rare (0.69%).

• ISEScan is the second most conservative tool in terms of the number of teISs and 
nISs. Surprisingly, it found even less pNovs compared to the OASIS tool.

• With respect to the number of teISs and nISs, digIS falls in the middle between 
conservative (OASIS and ISEScan) and fragment-reporting tools (ISEScan–frag-
ments and ISsaga) representing a tool with good sensitivity (0.82) and low nISDR 
(3.58%). Moreover, the number of pNovs is even higher than for ISEScan–frag-
ments. Although ISsaga found one-third more pNovs than digIS, it was at the cost 
of three times more nISs.

The tools show a similar performance on the E.coli dataset. However, some charac-
teristics are violated; for instance, none of the tools found any putative novel element, 
and nISDR is more than double for most tools. These discrepancies are primarily 
caused by a too small E.coli dataset (a single genome with less than 50 IS elements), 
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where some of the metrics are calculated from fewer than ten items. Similar distor-
tion can also be seen in the ISbrowser dataset, where the numbers of pNovs and nISs 
are too small for the OASIS tool. It results in a disproportionately high pNov/nIS 
ratio.

Evaluation on the NCBI Archaea and Bacteria datasets

In the next step, tools were evaluated on much larger datasets to verify the characteris-
tics observed in Table 3 and to specify those affected by the small number of samples. We 
prepared two additional datasets containing complete archaeal and bacterial genomes 
from the NCBI GenBank database [32]. In the case of Archaea, all 341 genomes available 
in the database were used (accessed on 15th June 2019). In the case of Bacteria, 2500 
from 14418 available genomes were randomly selected (see Additional file 6 for detailed 
information about these datasets). Since OASIS could not process 25 bacterial genomes, 
these were excluded. Altogether, 2475 bacterial genomes were evaluated.

Unlike the ISbrowser and E.coli datasets, the manually curated positions of IS ele-
ments are not available. Therefore, all hits reported by the tools were considered as FPs 
and the detailed classification process of FPs described in “Evaluation on the benchmark 
ISbrowser and E. coli datasets” section was applied. To verify the accuracy of this eval-
uation method, it was applied to the ISbrowser dataset first. Table  4 shows the num-
ber of hits found by the tool (N), the number of merged FPs (mFPs), the output of the 
classification process (number of eISs, pNovs, and nISs), and an assessment in terms of 
pNovDR, nISDR, and pNov/nIS ratio. As the number of TPs is not available, the teIS is 
reduced to eIS.

By comparing the evaluation results for the ISbrowser dataset with and without 
human-curated annotation (Tables 3, 4), certain differences can be seen. Detailed analy-
sis revealed that these changes arose primarily because the ISbrowser reference dataset 
contains not only full-length elements, but also annotated fragments of various lengths 
(a total of 127 fragments). If a tool finds some of these fragments, they are distributed 
among the categories eIS, pNov, and nIS based on the GenBank annotations and simi-
larities with the ISfinder database. This behavior causes the number of pNovs and nISs 
to increase at the expense of the total number of eIS. As a side effect, the pNovDR, 
nISDR, and pNov/nIS ratio are slightly higher. The small changes can also be observed in 
the histograms (see Additional file 4: “ISbrowser dataset without reference” section), but 
their overall character remains the same. Considering these subtle differences, it is pos-
sible to conclude that the above-described classification allows us an assessment of the 
tool performance, even when the manually curated annotation is not available.

The results on large NCBI GenBank Archaea and Bacteria datasets in Table  4 con-
firmed the tools’ characteristics seen on the ISbrowser dataset. Only the following differ-
ences were observed:

• The proportion of nISs in the outputs is higher compared to the ISbrowser dataset. 
For ISEScan and digIS, the nISDR is approximately twice as large on the Archaea 
dataset. ISsaga achieved the highest nISDR (around 20%) for both Archaea and Bac-
teria datasets. A detailed analysis of the hits revealed that this is primarily due to 
the higher number of items classified as other annotation. A list of the most com-
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mon GenBank record products that overlapped with these hits is given in Additional 
file 7.

• Larger NCBI datasets enabled to assess the ratio between pNov and nIS for OASIS 
more accurately, as it was affected by a small number of items in the E.coli and 
ISbrowser datasets before. This ratio decreased significantly to 0.27 and 0.21. Also, 
the number of pNovs found by OASIS is no longer higher than those found by the 
ISEScan tool.

• The histograms depicting the similarity of the outputs with the ISfinder database and 
their classification according to the GenBank annotation show the same character-
istics as for the ISbrowser dataset, except for minor deviations (see Additional file 4: 
“NCBI Archaea and Bacteria datasets without reference” section).

In summary, tools that also detect fragments (ISsaga and ISEScan–fragments) can iden-
tify the most eISs, but at the cost of a large number of nISs. On the other side of the 
spectrum are conservative tools (OASIS and ISEScan), which show the lowest numbers 
of nISs, but also eISs. The performance of the proposed digIS tool in terms of eISs is 
closer to fragment-reporting tools, and at the same time, it achieves the number of nISs 
closer to conservative tools. Moreover, digIS is dominant in finding distant/putative 
novel IS elements with respect to the numbers of nISs (pNov/nIS ratio). This feature is 
significant, especially on large datasets (NCBI GenBank Archaea/Bacteria), where the 
digIS tool shows the best performance. Please note that digIS found even more putative 
novel elements than the ISEScan–fragments in these datasets.

Discussion
In this work, we focused on the detection of putative novel IS elements and aimed to 
find the sequence and structural features common to more IS families. The Tpases are 
generally considered as the most conserved parts of IS elements. Their structural vari-
ability is used as a major feature for their classification into the families [1]. On the other 
hand, the Tpase catalytic domain and its secondary structure are often preserved among 
the families [25]. Unfortunately, the accuracy of state-of-the-art tools for secondary 
structure prediction is not sufficient when applied to a single sequence and MSA is usu-
ally required for a more accurate prediction [33].

For this reason, we decided to make a compromise between detecting the general 
structure and sequence features. We built the library of manually curated pHMMs of a 
catalytic domain only (not whole transposase). The results of comparing digIS with other 
tools confirmed that the search based on the catalytic domain is sufficiently specific for 
the area of IS elements. The number of IS elements with a high level of evidence is com-
parable to fragment-reporting tools, while many improbable/not IS elements are filtered 
out. To better understand the effectiveness of the catalytic-domain-search technique 
compared to using the pHMM of the whole Tpase sequence, we performed a detailed 
analysis of individual tools’ outputs. We focused on hits classified as “other annotation” 
according to the GenBank annotation, i.e., the records erroneously identified by the tool 
as IS elements or their parts. We analyzed overlapping GenBank records for these hits 
and created a histogram showing the number of occurrences for each type of protein or 
product (see Additional file 7).
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From the generated histograms, it can be observed that digIS generally reports a small 
number of records classified as “other annotation”, which is comparable to conservative 
tools such as OASIS or ISEScan (see Additional file 7; Tables 1, 2, 3). On the other hand, 
tools that also report fragments (ISsaga and ISEScan–fragments) show a large number 
of these hits. If we focus on the annotations of these records, it can be seen that they 
usually represent products functionally related to transposases or parts thereof, such as 
DNA-binding protein, ATP-binding protein, transcriptional regulator, or helix-turn-helix 
domain-containing protein. In addition, both fragment-reporting tools (ISsaga and ISES-
can–fragments) cover a large number of products that were not observed by other tools, 

Table 2 Performance of  OASIS, ISEScan, ISEScan-fragments, ISsaga, and digIS on manually curated 
datasets

TP, FN, and FP represent the number of True Positives, False Negatives, and False Positives, respectively; Se is sensitivity; FDR 
is False Discovery Rate.

Tool TP FN FP Se FDR (%)

Dataset ISbrowser (N = 1192)

 OASIS 791 401 77 0.66 8.87

 ISEScan 925 267 94 0.78 9.22

 ISEScan-fragments 1077 115 248 0.90 18.71

 ISsaga 1135 57 363 0.95 24.23

 digIS 979 213 194 0.82 16.54

Dataset E. coli (N = 49)

 OASIS 26 23 4 0.53 13.33

 ISEScan 43 6 8 0.88 15.69

 ISEScan-fragments 45 4 18 0.92 28.57

 ISsaga 48 1 29 0.98 37.66

 digIS 43 6 11 0.88 20.37

Table 3 Detailed analysis of false positives of digIS, ISEScan, OASIS, and ISsaga on manually curated

N represents the number of outputs found by the tool; mFP represents the number of False Positives after merging 
fragments or ORFs referencing the same IS element; eIS, pNov, and nIS represent the number of mFPs classified into 
categories IS element with a high level of evidence, Distant or putative novel IS element, and Improbable or not an IS 
element, respectively; pNovDR is putative Novel Discovery Rate; nISDR is Improbable or not an IS element Discovery Rate, 
and pNov/nIS shows the ratio between the number of putative novel IS elements and improbable or not an IS elements.

Tool Common 
metrics

Detailed classification 
of mFPs

Modified metrics

TP FP mFP eIS pNov nIS teIS pNovDR (%) nISDR (%) pNov/nIS

Dataset ISbrowser (N = 1192)

 OASIS 791 77 75 59 6 10 850 0.69 1.15 0.60

 ISEScan 925 94 94 69 3 22 993 0.29 2.16 0.14

 ISEScan-fragments 1077 248 239 103 18 118 1179 1.37 8.97 0.15

 ISsaga 1135 363 323 148 31 144 1282 2.13 9.88 0.22

 digIS 979 194 194 130 22 42 1108 1.88 3.58 0.52

Dataset E. coli (N = 49)

 OASIS 26 4 4 4 0 0 30 0.00 0.00 0.00

 ISEScan 43 8 7 3 0 4 46 0.00 8.00 0.00

 ISEScan-fragments 45 18 17 6 0 11 51 0.00 17.74 0.00

 ISsaga 48 29 28 10 0 18 58 0.00 23.68 0.00

 digIS 43 11 11 6 0 5 49 0.00 9.26 0.00



Page 16 of 20Puterová and Martínek  BMC Bioinformatics          (2021) 22:258 

including digIS, such as chromosomal replication initiator protein DnaA, DNA replica-
tion protein DnaC, or primosomal protein DnaI. Detailed analysis revealed that portions 
of these proteins have significant sequence similarity to the coding segments of IS ele-
ments of the IS21 family (see Additional file 7). These examples show that searching for 
any fragments of IS elements can lead to a large number of false hits, which the applica-
tion user must manually check. On the other hand, focusing the search on the catalytic 
domain can effectively filter these hits and, unlike conservative methods reporting full-
length elements only, it provides a space for searching for putative novel IS elements.

When comparing the tools without a manually curated reference dataset or an incom-
plete one, the histogram—showing the number of outputs depending on the similar-
ity to the database of known elements (ISfinder) and GenBank annotation—is a useful 
indicator of the tool’s quality. It offers an independent view of the characteristics of the 
outputs and clearly shows, for example, the degree of tool conservation or tendency to 
detect other genes, that is typical for fragment-reporting tools (ISsaga and ISEScan–
fragments). It also allows the identification of various anomalies in the GenBank annota-
tion itself (see Additional file 4).

Despite the histogram’s benefits, it does not allow us to easily quantify and com-
pare the performance of the tools. The comparison is possible only if the outputs are 
classified into distinct categories such as TPs, TNs, FPs, FNs using manually curated 
benchmark datasets. In this paper, we were the first to point out the drawbacks of 
this approach when applied to existing tools for IS elements detection. We addressed 

Table 4 Performance of digIS against ISEScan, OASIS, and ISsaga on NCBI GenBank datasets

N represents the number of outputs found by the tool; mFP represents the number of False Positives after merging 
fragments or ORFs referencing the same IS element; eIS, pNov, and nIS represent the number of mFPs classified into 
categories IS element with a high level of evidence, Distant or putative novel IS element, and Improbable or not an IS 
element, respectively; pNovDR is putative Novel Discovery Rate; nISDR is Improbable or not an IS element Discovery Rate, 
and pNov/nIS shows the ratio between the number of putative novel IS elements and improbable or not an IS elements.

Tool N Detailed classification of mFPs Modified metrics

mFP eIS pNov nIS pNovDR (%) nISDR (%) pNov/nIS

Dataset ISbrowser (N = 1192)

 OASIS 895 852 828 10 14 1.17 1.64 0.71

 ISEScan 1006 993 954 9 30 0.91 3.02 0.30

 ISEScan-fragments 1326 1283 1089 41 153 3.20 11.93 0.27

 ISsaga 1786 1459 1188 75 196 5.14 13.43 0.38

 digIS 1170 1157 1051 50 56 4.32 4.84 0.89

Dataset NCBI Archaea (341 genomes)

 OASIS 5885 5789 5382 100 307 1.73 5.30 0.33

 ISEScan 8404 8266 7532 207 527 2.50 6.38 0.39

 ISEScan-fragments 12,016 11,550 9622 472 1456 4.09 12.61 0.32

 ISsaga 17,698 14,788 10,946 822 3020 5.56 20.42 0.27

 digIS 10,607 10,548 8640 728 1180 6.90 11.19 0.62

Dataset NCBI Bacteria (random selection of 2475 genomes)

 OASIS 88,552 87,428 83,992 1176 2260 1.35 2.58 0.52

 ISEScan 111,974 110,357 102,266 3274 4817 2.97 4.36 0.58

 ISEScan-fragments 151,540 145,248 119,392 6096 19760 4.20 13.60 0.31

 ISsaga 217,345 181,880 136,903 8479 36,498 4.66 20.07 0.23

 digIS 134,851 132,877 118,805 6722 7350 5.06 5.53 0.91
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the issue of different outputs of individual tools (full-length elements vs. fragments/
ORFs). Based on a detailed analysis (see Additional file  4), we have shown that the 
benchmark datasets themselves are not complete, and therefore their use may skew 
the evaluation results.

To overcome these issues, we have chosen an alternative classification of the tools’ 
outputs that relies on GenBank annotation and sequence similarity with the data-
base of known elements (ISfinder). This approach allowed us to identify a group of 
IS elements with a high level of evidence (eIS) and a group of Improbable or not IS 
elements (nIS) in the category of presumed false positives. Also, since the boundary 
between these two groups is not strictly defined, there is a space for the putative novel 
IS elements group (pNov), which is the main interest of this article. We are aware that 
the definition of these categories is unambiguous and should be replaced by a high-
quality and consistently maintained benchmark dataset in the future. On the other 
hand, the boundary between the groups of pNovs and nISs will probably be the sub-
ject of debate for a long time, as its precise definition would require a knowledge of all 
non-IS elements.

We experimented, for example, with a different definition of pNov and its effect 
on tools performance. Currently, pNov is defined as a sequence without a suffi-
ciently specific GenBank annotation, having the sequence similarity that is common 
among members of different IS families. Without further restrictions, this category 
may include, for example, the found accessory genes or some of the transposase’s 
variable domains. To make sure that the found hit is highly likely functional from a 
transposition point of view, it would be appropriate to require the presence of Tpase 
and its catalytic domain. Therefore, an analysis of the pNov hits was performed and 
those that overlap with the catalytic domain of any known IS element were identified 
(see Additional file 8). This analysis showed that many hits fall outside the catalytic 
domain, especially for fragment-reporting tools (ISsaga and ISEScan–fragments). If 
the tools were evaluated according to this stricter definition, then the proposed digIS 
would achieve the best results in the detection of pNovs on an absolute scale.

We analyzed the coverage of pNovs by individual tools to identify which of them are 
reported by several tools simultaneously or, conversely, exclusively by a specific tool. 
We also measured pNovs regarding their proximity to existing families of IS elements 
to reveal a possible preference of the tool to search for pNovs in a certain part of the 
sequence space (see Additional file 8). It turned out that various tools have a prefer-
ence to search pNov elements close to various IS families. For example, digIS found 
the most pNovs close to the ISH3 family while ISsaga found the most pNovs close to 
the IS5 family. In summary, it can be concluded that no tool would include all pNov 
outputs of other tools.

Finally, we performed an analysis of the found pNovs to verify that they met the com-
mon characteristics of IS elements, such as multiple occurrences in the genome, or the 
presence of IR and DR regions. Using clustering, we found groups of similar hits, then 
performed their multiple sequence alignment, and identified IR and DR regions. Based 
on a manual inspection of selected clusters, we have identified four novel IS elements, 
of which the first two can be found by competing tools and the other two represent new 
ones found exclusively by the digIS tool (see Additional file 9).
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Conclusions
In this paper we present a novel approach for IS elements detection, that is implemented 
in the form of digIS tool. It combines searching for the catalytic domains of transposases 
and additional filtering mechanisms that allows to detect not only known IS elements, 
but also distant putative novel IS elements. Simultaneously, it eliminates a large number 
of false hits that are typical for fragment–reporting tools.

Comparison with other state-of-the-art tools, such as ISsaga, OASIS, and ISEScan, on 
different datasets (E.coli, ISbrowser, NCBI GenBank Archaea/Bacteria) confirmed that 
digIS can find the majority of known ISs and shows the best ratio between putative novel 
elements and improbable/not IS elements. This makes it the right choice for scientists 
who are interested in finding new IS elements.

Finally, we would also highlight the technical aspects of the developed software. digIS 
is one of the few tools that still works and is ready for future use in the form of a Docker 
image. Simultaneously, it does not limit the user in the number of sequences to be ana-
lyzed or other search parameters, as is the case of web-based tools. digIS is ready to run 
in a grid-computing and cloud environment, which is very important for scalability. The 
transparency and credibility of the tool are further supported by the open-source code 
on GitHub (Table 4).

Abbreviations
bp:: Base pair; CDS:: Coding sequence; DR:: Direct repeat; DUF:: Domain of unknown function; eIS:: IS element with a 
high level of evidence; FN:: False negative; FP:: False positive; IR:: Inverted repeat; IS:: Insertion sequence; kbp:: Kilobase 
pair; MSA:: Multiple sequence alignment; mFP:: Merged false positive; nIS:: Improbable or not an IS element; nISDR:: 
Improbable/not an IS element discovery rate; ORF:: Open reading frame; pNov:: Putative novel; pNovDR:: Putative novel 
discovery rate; pHMM:: Profile hidden Markov model; TP:: True positive; teIS:: Total number of IS element with a high level 
of evidence.
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Abstract

Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental

industry asa sourceofoil,minerals andvitamins. In this study,weanalyzed the transposable elements andsatellites in itsgenome.We

carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new

bioinformaticsapproachforadvancedsatelliteDNAanalysis andshowedthatabout25%of thegenomeconsistsof satelliteDNAand

about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping

revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites

were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and

45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the

seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degen-

eration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes.

Key words: sex chromosomes, genome composition, chromosomal localization, repetitive DNA.

Introduction

Seabuckthorn (Hippophae rhamnoides) is a hardy, deciduous

dioecious shrub belonging to the Elaeagnaceae family with a

natural habitat extending widely across Europe and Asia. It is

used in traditional Chinese, Tibetan and Siberian medicine and

has special characteristics exploitable in biotechnology, phar-

maceutical and cosmetic sciences, as a source of oil, minerals

and vitamins. The size of seabuckthorn genome is ~2.55 Gbp/

2C (Zhou et al. 2010) but there is a dearth of information on

its composition. The ribosomal DNA ITS regions were com-

pared among H. rhamnoides ssp chinensis from different geo-

graphical areas of China and showed distinct genetic variation

(Chen et al 2010). RAPD markers (Sharma et al. 2010) were

identified with the aim of determining the sex of individuals.

Cytogenetic analysis is represented only by the older works of

Shchapov (1979) and Rousi and Arohonka (1980) who both

determined the diploid chromosome number 2n = 24.

Shchapov (1979) revealed the small Y and large X chromo-

somes. Seabuckthorn transcriptome has been analyzed re-

cently providing a resource for gene discovery and

development of molecular markers (Ghangal et al. 2013).

Sex chromosomes have evolved repeatedly and indepen-

dently in the plant kingdom with different age and degree of

degeneration shown in various dioecious species (Ming et al.

GBE
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2011; Hobza and Vyskot 2015; Charlesworth 2016). The evo-

lution of the Y chromosomes is characterized by gene erosion/

loss and accumulation of repetitive DNA (Kejnovsky et al.

2009). The most studied dioecious model species with hetero-

morphic sex chromosomes are white campion (Silene latifolia,

Kejnovsky and Vyskot 2010), sorrel (Rumex acetosa, Steflova

et al. 2013; R. hastatulus, Hough et al. 2014), ivy gourd

(Coccinia grandis, Sousa et al. 2013), and members of the

Cannabaceae family (Humulus lupulus, Divashuk et al. 2011;

H. japonicus, Alexandrov et al. 2012; Cannabis sativa,

Divashuk et al. 2014).

The majority of large plant genomes are formed of repet-

itive DNA, mostly by transposable elements and tandem re-

peats (satellite DNA). The processes of repetitive DNA

amplification and elimination are only partially understood.

Turnover of repeats is high and corresponds only to million

of years (Lim et al. 2007). The localization of repetitive DNA on

sex chromosomes is different from that of autosomes, reflect-

ing different repeat dynamics, especially on the nonrecombin-

ing regions of the Y chromosomes (Kejnovsky et al. 2009).

Satellite DNA has mostly discrete localization in the genome

and some satellites are thus Y chromosome-specific (Mariotti

et al. 2009). In contrast, transposable elements have more

homogenous distribution and are only slightly enriched on

the Y chromosome (Charlesworth 1991; Cermak et al.

2008) or alternatively absent on the Y chromosome as

shown in Silene latifolia (Cermak et al. 2008; Kubat et al.

2014) and Rumex acetosa (Steflova et al. 2013) despite their

presence in the rest of genome. The striking example is the

large Y chromosome of the dioecious plant Coccinia grandis

showing accumulation of transposable elements, satellites,

and organellar DNA (Souza et al. 2016). One review published

recently discusses the role of repetitive DNA in the evolution of

sex chromosomes and includes a database of transposable

elements of dioecious plants (Li et al. 2016a, 2016b).

In this study, we analyzed the transposable elements and

satellites in the seabuckthorn genome and determined the

chromosomal localization of these repeats. We showed that

seabuckthorn has an XY system with large X and small Y

chromosomes.

Materials and Methods

Illumina Sequencing

DNA isolation from male (Pollinator 1) and female (cv

“Botanicheskaya lyubitelskaya”) plants was carried out accord-

ing to Doyle and Doyle (1990). One Illumina MiSeq sequencing

run was performed for each male and female genomic DNA.

The voucher specimen of the plants used in the study was kept

for record in the herbarium (AT) of Department of Botany and

Breeding of Horticultural Crops of the Russian State Agrarian

University – MTAA (Voucher No.5470). Sequencing reads were

analyzed by quality control tool FastQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/; last accessed

January 4, 2017) followed by quality filtering based on the

sequence quality score, adaptors trimming, filtering out short

or unpaired sequences and trimming all reads to lengths of

230 nucleotides using the Trimmomatic tool (Bolger et al.

2014), leading to 1,848,543 male and 1,863,670 female

paired-end reads. Quality-filtered reads were randomly sam-

pled to 415,650 paired-end reads for both male and female

individuals and the reads were merged together (totally

1,662,600 reads). As the nuclear DNA content of H. rham-

noides reported in Zhou et al. (2010) was determined to be

~2.61/2C pg (without detailed specification of male or female)

we converted it to genome size (in bp) using following formula

(Doležel et al. 2003): g = DNA content (pg) � (0.978 � 109),

resulting into ~2.55 Gbp/2C, our samples represent ~30% of

haploid genome. Genome coverage was calculated as follow:

cov = (r� l)/g, where r corresponds to number of reads used in

our analysis, l to read length and g to haploid genome size of

H. rhamnoides.

Repeat Identification and Annotation

In order to identify repetitive sequences in the H. rhamnoides

genome we employed comparative graph-based clustering

analysis of sequenced reads by RepeatExplorer pipeline (Novak

et al. 2013). Only clusters containing at least 0.01% of all clus-

tered reads were considered and they corresponded to 58.5%

of the genome. These were further manually characterized

based on the similarity search results from RepeatMasker

(http://www.repeatmasker.org; last accessed January 4, 2017)

against Viridiplantae database and blastn and blastx (Altschul

et al. 1990) against GenBank nr (Benson et al. 2009), which are

part of the RepeatExplorer output. Cluster shapes were also

used for repeat identification as tandem repeats with monomer

longer than read length have typical donut-shaped clusters

(Novak et al. 2010). Additionally, advanced analysis of satellite

sequences, described in the section Satellite DNA sequences

analysis, was used in the manual annotation of clusters.

Structural Annotation of LTR Retrotransposons

We reconstructed several Ty3/Gypsy and Ty1/Copia retrotran-

sposons. The reconstruction comprised several steps. First,

clusters belonging to particular element were visualized

in SeqGrapheR (https://cran.r-project.org/web/packages/

SeqGrapheR/index.html; last accessed January 4, 2017) pro-

gram and contigs which together covered the whole elements

were selected. These contigs were searched for occurrences of

protein domains (GAG, RT, RH, AP, INT) by querying them to

CDD (Marchler-Bauer et al. 2015). We then did multiple se-

quence alignment to create a consensus sequence of these

contigs using progressive pairwise alignment implemented in

Geneious 8.1.7 (http://www.geneious.com; last accessed

January 4, 2017, Kearse et al. 2012). If necessary, resulting

alignments were manually modified with respect to the order

Puterova et al. GBE
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of domains for particular type of transposable element. The

consensus sequence of reconstructed elements was then

searched for the structural motif characteristics (ORFs and

LTRs). Possible ORFs were detected by ORF Finder

(https://www.ncbi.nlm.nih.gov/orffinder/; last accessed

January 4, 2017). LTRs were determined on the basis of

shape of a cluster and the element’s coverage. Male and

female coverage of reconstructed elements was determined

by mapping reads which formed a current element to its con-

sensus sequence using BowTie2 tool (Langmead and Salzberg

2012). Structural features and male and female coverage of

reconstructed elements were visualized by custom R script and

graph layouts of reconstructed elements were depicted by

SeqGrapheR.

Phylogeny and Classification

Firstly, we created custom databases of plant LTR retrotranspo-

son RT domains from sequences available in TREP (Wicker et al.

2002) and GyDB (Llorens et al. 2011) databases, independently

for Ty3/Gypsy and Ty1/Copia retrotransposons. Contigs corre-

sponding to retrotransposons were examined for the presence

of a reverse transcriptase domain and Ty3/GypsyandTy1/Copia

cores of RT domains were trimmed from these contigs based

on the exact localization designated by CDD (Marchler-Bauer

et al. 2015). Cores of RT domains were aligned by MUSCLE

algorithm (Edgar 2004) together with our custom-made data-

base of RT domains, and the resulting multiple sequence align-

ment was used as an input to create Neighbor-Joining tree

(Saitou and Nei 1987) with Jukes-Cantor distance model

usingGeneious8.1.7 (http://www.geneious.com; last accessed

January 4, 2017, Kearse et al. 2012).

Preparation of Chromosomes and Probes and
Fluorescence In Situ Hybridization

For chromosome preparations vegetatively propagated for

commercial use, male (“Pollinator 1” and “Pollinator 3”)

and female (cv “Lomonosovskaya” and cv “Botanicheskaya

ljubitelskaya”) plants were used. Plant material was kindly

provided by Dr G. Boyko, Lomonosov Moscow State

University. The root tips were harvested separately from the

individual male and female plants grown in pots. The har-

vested root tips were immediately pre-treated with a 2 mM

aqueous solution of 8-hydroxyquinoline for 6 h at 20 �C. A 3:1

ethanol/glacial acetic acid (v/v) mix was used for fixation.

Meristems 2 mm long were cut from the fixed root tips and

digested in 10ml enzyme solution [0.5% cellulase Onozuka

R-10 (Serva, Germany) and 0.5% pectolyase Y-23 (Seishin

Corp., Japan)] in 10 mM citrate buffer (pH = 4.9) for 2.5 h at

37 �C. The suspended cells were used for chromosome prep-

aration as described by Kirov et al. (2014). The quality of

spreads was assessed microscopically using phase-contrast

and only preparations with at least 20 well-spread metaphases

were used.

Probes for fluorescence in situ hybridization were gener-

ated using PCR-DIG Labeling Mix PLUS (Roche Diagnostics

Gmbh) or by Biotin-11-dUTP 1/3 PCR labeling Mix (ZAO

Sileks, Moscow). Primers for RT domain of selected transpos-

able elements and determined monomer sequence of satel-

lites were designed by Primer3 tool (Untergasser et al. 2012),

were synthesized by ZAO “Syntol” (Moscow). These are avail-

able in supplementary table S1, Supplementary Material

online. The pTa71 (45S rDNA) and pCT4.2 (5S rDNA) clones

labeled by DIG-Nick translation kit were also used (Gerlach

and Bedbrook 1979; Campell et al. 1992).

FISH experiments were performed as described in

Alexandrov and Karlov (2016). For digoxigenin and biotin de-

tection, slides were incubated with anti-DIG-FITC conjugate

(Roche) and/or streptavidin-Cy3 conjugate (Sigma). The chro-

mosomes were counterstained with DAPI (2 mg/ml) and

mounted in Vectashield (Vector). An AxioImager M1 fluores-

cent microscope (Zeiss) was used to observe metaphase plates

with fluorescent signals that were photographed with a

monochrome AxioCam MRm CCD camera and visualized

using Axiovision software (Zeiss).

Satellite DNA Sequences Analysis

As the seabuckthorn genome is abundant in satellite DNA and

manual inspection would be exhaustive, we developed a

custom bioinformatics approach which extended the basic

analysis of RepeatExplorer tool. As an input the satellite clus-

ters identified by RepeatExplorer are required. It is highly rec-

ommended to do manual inspection of these clusters and

verify their structure and interaction with other clusters

based on similarities among other clusters and pair-end

reads connections. Our approach consisted of three basic

steps.

(i) Detection of satellite monomers: First, assembled contigs
of selected clusters were extracted from RepeatExplorer
output and for each contig the monomer length was es-
timated from the distribution of distances between the
same k-mers. The resulting monomer sequence was
then extracted from the most covered part of the contig
of previously determined length. Only the monomers with
clearly distinguishable length, longer than 100 bp and
reaching average coverage 50x and more were taken
into account.

(ii) Estimation of satellite families composition in genome and
their annotation: First, all to all monomer similarity was
calculated. In order to do alignment of tandemly repeated
monomers correctly (offsets between monomers are not
known) we used one monomer as a subject and two
copies in a row of the second monomer as a query. The
similarity between monomers was then determined based
on semiglobal alignment. To estimate the composition of
satellite families in the genome, we clustered the mono-
mer’s similarity matrix using UPGMA method. The result-
ing dendrogram was then inspected by the user and cut
off at the level that best discriminated the individual
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families (usually 70-85% of monomer identity). Identified
families were visualized by the algorithm described by
Fruchterman and Reingold (1991) implemented in
igraph library and only connections that exceeded speci-
fied cut-off were considered and depicted. Secondly, to
annotate identified families, all monomers were searched
for similarity hits with sequences in the public nucleotide
database and PlantSat database (Macas et al. 2002) using
blastn (Altschul et al. 1990) with word size set to 11. Only
results with an e-value lower than 10� 20 were considered
as significant. Finally, to depict satellite diversity inside the
family, we chose the most covered monomer as a refer-
ence and mapped all reads belonging to the family onto
its reference using BWA-MEM mapping tool (Li 2013).
Conservation of different parts of the monomer was de-
picted using sequence logo created by WebLogo (Crooks
et al. 2004) tool.

(iii) Visualization of satellite families homogeneity: First, the
relative abundance of male and female reads was calcu-
lated in each tandem repeat family. This enabled us to
predict their presence in sex chromosomes. We visualized
the satellite homogeneity using the following procedure:
reads from each identified family were merged together
and sampled randomly to limit the maximum number of
reads to speed up the following analysis. Similarity of sam-
pled reads from all families was calculated using the
megablast tool (Camacho et al. 2009) that performed
all against all sequence comparison. Pairs of reads that
met specific similarity threshold (70% sequence identity
over at least 55% of sequence length) were further used
for graph construction and visualization. Male and female
reads were distinguished by color (male—blue, female—
red), tandem repeat families were highlighted by different
colors and the algorithm by Fruchterman and Reingold
(1991) was used to depict the results. Additionally,
graphs for selected families were refined with similarity
thresholds ranging from 70% to 95% sequence identity
to show satellite composition more clearly. Each satellite
falling within individual satellite family was marked by a
different color.

Results

Genomic Composition

We performed one Illumina MiSeq platform sequencing run

for each male and female genomic DNA followed by graph-

based clustering of reads and characterization of repetitive

sequences by RepeatExplorer (Novak et al. 2013). All 223 clus-

ters (with more than 167 reads) contained 973,049 reads

corresponding to 58.5% of genome (fig. 1) and their identi-

fication showed that dominant (first) clusters corresponded to

satellite DNA followed by Ty3/Gypsy and Ty1/Copia LTR retro-

transposons. One cluster (CL97) corresponded to 5S rDNA,

two clusters (CL40, CL71) to 45S rDNA and 15 clusters to

chloroplast DNA (cpDNA). Although the majority of chloro-

plast DNA reads probably originated from contaminating

cpDNA, some proportion could come from nuclear cpDNA

insertions (NUPTs).

We identified main types of repetitive DNA and their

genome proportions in male and female individuals

(table 1). All transposable elements represented together

24% of male and 23% of female genome. Ty1/Copia

retrotransposons formed 12%, Ty3/Gypsy retrotranspo-

sons 11% and DNA transposons 1.5% of male genome.

The most abundant among Ty1/Copia retrotransposons

were Angela/Tork and Ale/Retrofit, among Ty3/Gypsy ret-

rotransposons Athila and chromoviruses dominated. No

LINE elements were found in the whole seabuckthorn

genome. Satellites together comprised about 27% of

male and 24% of female genomes. The 45S rDNA

formed 0.7% of both male and female genomes and 5S

rDNA represented 0.2% of both male and female

genomes.

Transposable Elements

To determine the phylogenetic relationships of Ty1/Copia and

Ty3/Gypsy retrotransposons, we aligned their reverse tran-

scriptase (RT) domains from individual clusters and con-

structed the phylogenetic trees. Both Ty3/Gypsy (fig. 2A)

and Ty1/Copia (fig. 2B) trees contained families identified in

our clusters (in red) mixed with representatives of known sub-

families of Ty1/Copia or Ty3/Gypsy from other plant species (in

black). Among Ty3/Gypsy retrotransposons, we identified five

clusters containing Athila subfamilies, one CRM subfamily,

one Galadriel, one Reina and one Tat/Ogre subfamily (fig.

2A). Among Ty1/Copia retrotransposons, we found four sub-

families of Ale/Retrofit, four Angela/Tork subfamilies, one

Maximus/SIRE subfamily, two TAR subfamilies and two

Ivana/Oryco subfamilies (fig. 2B). The Angela/Tork and Ale/

Retrofit subfamilies showed higher variability while Athila sub-

families were homogenous. Highest homogeneity were

shown by chromoviruses where all reads were assembled

into a single cluster for CRM, Galadriel and Reina families

(fig. 2A).

We reconstructed the structure of the main Ty3/Gypsy

and Ty1/Copia subfamilies (fig. 3) and identified all main

features such as gag and pol genes (with all domains) and

long terminal repeats (LTRs). In some retrotransposons

(CL6, CL16) LTR regions were assembled into one long

terminal repeat while in other clusters (CL7, CL27) right

and left LTR were distinguished. This may be a conse-

quence of lower or higher mutual diversity of LTRs in

one element, and could correspond to age differences of

elements. Graph layouts (right part of fig. 3) show the

variability of specific parts of elements as well as alterna-

tive variants of elements, e.g., potential spliced variant

(Novak et al. 2010). The similar coverage of elements by

male and female reads indicates that elements are present

on all chromosomes without accumulation/absence on
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the X or Y chromosome. Some elements had uninter-

rupted ORF corresponding to gag and pol (CL7, CL27,

and CL43) and hence they can be active. Interruption of

ORFs in other elements may have been caused by assem-

bling errors during reconstruction (CL6, CL16, and CL37).

Satellite DNA

We developed a new bioinformatics approach for detailed

analysis of satellite DNA in genomes. This method includes:

(i) identification of satellite monomers based on distribution of

distances of k-mers in assembled contigs, (ii) clustering of

monomers allowing identification and annotation of satellite

families in genome, and (iii) visualization of satellites homoge-

neity and male/female composition allowing better prediction

of their localization with respect to sex chromosomes.

Detailed description of the whole procedure is available in

the section Materials and Methods and in supplementary

figure S4, Supplementary Material online.

We utilized this approach for analysis of the seabuckthorn

genome, but it is generally applicable in genomic studies of

other species as well. As an input we used the 38 largest

manually inspected satellite clusters from RepeatExplorer

output extended by five smaller clusters with potentially inter-

esting chromosomal localization (X, Y chromosomes). All clus-

ters were grouped into 12 main superclusters that correspond

to the 12 main families of satellite DNA in the seabuckthorn

genome. Satellites were named HRTR1-HRTR12 (supplemen-

tary fig. S1, Supplementary Material online and table 2). Copy

number of individual satellite families was determined based

on following formula: cn = [(s x l)/m]/cov, where s represents

number of reads of individual satellite family, l corresponds to

FIG. 1.—Repeat composition of clusters and their genomic proportions. Each column corresponds to one cluster and repeat types are distinguished by

colors. The height of columns represents number of reads in each cluster, the width of column indicate genomic proportion of cluster.

Table 1

Repeat Composition in Hippophae rhamnoides Genome

Classification Genome

Proportion (%)

Repeat Type Super

Family

Family Male Female

LTR

retroelements

Ty1/Copia Angela/Tork 4.83 4.90

Ale/Retrofit 4.93 4.38

TAR 1.34 1.06

Maximus/SIRE 0.44 0.57

Ivana/Oryco 0.25 0.23

Total Ty1/Copia 11.79 11.15

Ty3/Gypsy Athila 6.39 5.36

Chromovirus—CRM 2.98 3.58

Chromovirus—Galadriel 1.28 0.80

Chromovirus—others 0.27 0.31

Chromovirus—Reina 0.06 0.04

Tat/Ogre 0.05 0.05

Total Ty3/Gypsy 11.04 10.15

DNA transposons 1.52 1.46

Total transposable

elements

24.35 22.76

Pararetrovirus 0.48 0.59

rDNA 45S 0.77 0.69

5S 0.20 0.16

Satellites 26.92 23.74

All repetitive

elements

52.72 47.94

Unclassified 6.96 11.39

Low/single copy 38.96 39.50

Plastids 1.36 1.17

NOTE.—Types of repetitive DNA and their genome proportions.
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FIG. 2.—Phylogenetic trees of Hippophae rhamnoides Ty3/Gypsy (A) and Ty1/Copia (B) retrotransposons based on reverse transcriptase sequences. RT

domains of retrotransposons reconstructed from Illumina reads in this study are in red, representative RT domains of retrotransposons from other plant

species (from TREP and GyDB) are in black. Individual families are highlighted by different colors.
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FIG. 3.—Comparison of structure of selected retrotransposon families in Hippophae rhamnoides. Graphs of coverage by male (in blue) and female (in

red) genomic reads are showed under the structure of Ty3/Gypsy (A, B) and Ty1/Copia (C–F) elements shown in phylogenetic tree (fig. 2). Graph layouts on

the right are visualized by SeqGrapheR program (http://cran.rproject.org/web/packages/SeqGrapheR/index.html). Protein domains and possible LTRs are

distinguished by colors, found possible different three ORFs are marked by grey rectangles and orange line represents sequence for probes used for FISH.
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read length, m represents estimated monomer length for sat-

ellite family and cov is genome coverage. Sequence logos

show the monomer sequences of the main satellites and the

sequence variability (supplementary fig. S2A–L,

Supplementary Material online). Only HRTR1 and HRTR12

showed significant similarity hits with blast nucleotide (nr/nt)

database (to previously deposited microsatellite markers of

H. rhamnoides). There were no significant hits with PlantSat

database for all satellite groups.

Based on our detailed analysis of HRTR6 and HRTR7, shar-

ing small part of monomers (supplementary fig. S3C,

Supplementary Material online), we decided to retain them

as two separate tandem repeat families instead of one. These

two families were very divergent and each showed variability

in monomer’ length (HRTR6: 730–810 bp, HRTR7: 475–

830 bp). Monomers in each family had a common sequence

(HRTR6: 198 bp, HRTR7: 493 bp) while other parts of mono-

mers were significantly different from each other. For this

reason, we only created sequence logos for the shared part

of monomers for each family (supplementary fig. S2F and G,

Supplementary Material online).

Male versus Female Comparison

To compare male and female genomes and to predict which

repetitive DNA is specific for or accumulated on the X and Y

chromosomes, we plotted the numbers of male versus female

reads corresponding to individual clusters (fig. 4). This analysis

involvedall 223 clusters. The majority of clusters was located on

the diagonal and these corresponded to transposable ele-

ments, rDNA and some satellites. However, some clusters

containing satellites were enriched or even specific for males

and represented potential Y-specific repeats. Other repeats,

mostly satellites, were more abundant in females which

could reflect their enrichment or specific localization on the X

chromosome.

The greatest differences in composition of male and female

reads were observed in satellites (five clusters located in the left;

fig. 4). Detailed analysis showed that one of these (CL123—

HRTR12) formed an isolated family composed of male reads

only which suggests its localization only on the Y chromosome

(fig. 5). The other four male biased satellites represented either

a variant of a specific widespread cluster with Y chromosome

presence (CL99 and CL144—HRTR2) or a satellite with a minor

presence on the Y chromosome (CL150—HRTR1 and CL132—

HRTR3). Eight satellites containedmore female than male reads

(2:1) indicating its localization on the X chromosome (female

has two X chromosomes, male only one). HRTR2 satellite also

containedmore female thanmale readsbut the ratiowas1.3 to

1 which could be explained by the localization on both sex

chromosomes with greater abundance on the X than on the

Y chromosome (fig. 5). Most other satellites had similar abun-

dance of male and female reads, suggesting their localization

(at least mostly) on autosomes.

Chromosomal Localization of Transposable Elements
and Satellites

For determination of the chromosomal localization of trans-

posable elements and satellites in seabuckthorn, we prepared

probes representing reverse transcriptase region of individual

TE families or part of a satellite monomer (supplementary fig.

Table 2

Main Satellite Families in Hippophae rhamnoides Genome

Name Number of Reads Localization Monomer Length M (%) F (%) Copy Number

HRTR1 129843 Strong signal on six pairs of small autosomes and weak

signal on one pair of small autosomes

363 59.90 40.10 82270

HRTR2 60455 X and Y chromosome and weak signal on one pair of

large and one pair of small autosomes

541 43.03 56.97 25702

HRTR3 46881 Dispersed signal on two large autosomal pairs 656 49.60 50.40 16437

HRTR4 27219 One pair of large and one pair of small autosomes 720 51.30 48.70 8695

HRTR5 23060 One pair of small autosomes 819 57.61 42.39 6476

HRTR6 19415 Three pairs of small autosomes 198a 53.67 46.33 5784b

HRTR7 14861 One pair of large autosomes and one pair of small

autosomes

493a 68.38 31.62 4828b

HRTR8 12570 X chromosome and weak signal on one pair of small

autosomes

826 35.06 64.94 3500

HRTR9 11155 One pair of small autosomes 354 69.52 30.48 7248

HRTR10 7476 Centromere of one pair of small autosomes 940 49.80 50.20 1829

HRTR11 4088 One pair of small autosomes 643 66.78 33.22 1462

HRTR12 1718 Y chromosome 257 100.00 0.00 1538

NOTE.—Names, monomer lengths, copy numbers, chromosomal localizations, and genome proportions.
aShared length of the monomer in the family.
bEstimated based on average monomer length. 772bp for HRTR6 and 708bp for HRTR7.
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S1, Supplementary Material online) and used them for fluo-

rescence in situ hybridization (FISH). In all FISH experiments we

used both male (Pollinator 1, Leningradskaya region) and

female (cv “Botanicheskaya lyubitelskaya”) metaphases

from plants that was used for sequencing. FISH experiments

were also expanded to male (“Pollinator 3” Kaliningrad

region) and female (cv “Lomonosovskaya”). In all ecotypes,

we got the same results with X and Y.

FISH with satellite DNA showed various localization pat-

terns on metaphase chromosomes of H. rhamnoides (fig. 6).

The HRTR2, HRTR8 and HRTR12 show the sex specific or ac-

cumulation pattern of hybridization, while for HRTR3, HRTR4,

HRTR5, HRTR6, HRTR7, HRTR9, HRTR10, and HRTR11 the hy-

bridization patterns was the same for male as well as for

female. The HRTR1 satellite hybridized mainly to heterochro-

matic arms of six pairs of small autosomes and weakly on one

more pair of small autosomes (fig. 6A and B). In addition, a

weak signal was detected distal to centromere on one arm of

one large chromosome (chromosome X) in male (fig. 6A) and

two large chromosomes in female (fig. 6B). The HRTR2 satel-

lite gave a strong FISH signal on one large chromosome (chro-

mosome X) and on one small chromosome (chromosome Y)

in male (fig. 6C) and a strong FISH signal on two large chro-

mosomes (chromosome X) in female (fig. 6D). Also a weak

signal on the centromeric region of a pair of large and a pair of

small autosomes was detected in both sexes. The HRTR3 sat-

ellite was localized on two large autosomal pairs with the FISH

signal dispersed along these chromosomes (fig. 6E). The

HRTR4 localized on one pair of large and on one pair of

small autosomes (fig. 6F). The HRTR5 signal was detected

on one pair of small autosomes only (fig. 6G). HRTR6 gave a

strong signal on one autosomal pair and a weaker signals on

two autosomal pairs (fig. 6H). The HRTR7 showed two sites of

hybridization on one arm of a pair of large autosomes and on

the centromeric region of a pair of small autosomes (fig. 6I).

The HRTR8 hybridized mainly to the one large chromosome

FIG. 4.—Comparison of repeats in male and female of Hippophae rhamnoides. Number of male versus female reads corresponding to individual clusters.

Each circle in plot represents one cluster. Repeat types are marked by different color. Clusters in left upper part of graph are enriched (or specific) for males

and thus potentially located on the Y chromosome while clusters in the right bottom part are enriched in female and thus potentially located on the X

chromosome.
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(chromosome X) in male (Fig. 6J) and to the two large chro-

mosomes (chromosomes X) in female (fig. 6K). A weak signal

was also detected on one pair of small autosomes. The

HRTR9, HRTR10, and HRTR11 were localized on one pair of

small autosomes each (fig. 6L–N). The HRTR12 hybridized

specifically to the small chromosome (Y chromosome)

(fig. 6O) in male and no signal was detected in female (fig.

6D). The FISH signal intensity from HRTRs on X chromosomes

varied depending on genotype.

Localization of the HRTR1 and the Y-specific (HRTR12), X-

accumulated (HRTR8) and X and Y-accumulated (HRTR2)

satellites on sex chromosomes was demonstrated by bicolor

FISH using combinations of these probes and is summarized in

a scheme (fig. 7). This together with specific or enriched rep-

resentation of clusters in male and female (figs. 4 and 5),

clearly demonstrates that H. rhamnoides has heteromorphic

sex chromosomes (XY system) with large X and the small Y

chromosomes.

We also mapped ribosomal genes. 45S rDNA was localized

on one pair of small autosomes (fig. 8A) and 5S rDNA was

localized on another pair of autosomes (fig. 8B). FISH with

probes derived from transposable elements showed that

FIG. 5.—Visualization of male/female reads homogeneity in satellite families. Graph nodes correspond to sequenced reads and edges connect over-

lapping reads with more than 70% of sequence identity over at least 55% read length. Distances between reads are inversely proportional to their sequence

similarity. Male reads are labeled by blue and female reads by red color. Individual families are highlighted by different colors. Please note HRTR12 family that

is composed of male reads only assuming to be Y-specific.
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FIG. 6.—Localization of main satellite families on metaphase chromosomes of Hippophae rhamnoides using fluorescence in situ hybridization. The name

of satellite family and sex of individual are indicated inside each figure. Blue are DAPI stained chromosomes, red and green signals show chromosomal

localization of satellite families. Bar indicates 5 mm.
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FIG. 7.—FISH and scheme of four satellites on sex chromosomes. The HRTR1, Y-specific HRTR12, X-accumulated HRTR8, sex chromosome-accumulated

HRTR2.
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three of four studied groups of TEs are present mainly in

subtelomeres of all chromosomes (fig. 8D–F) and only the

CRM retroelements (CL4) that was localized in the centro-

meric region of all chromosomes (fig. 8C).

Discussion

We present the first comprehensive analysis of seabuckthorn

(H. rhamnoides) genome. We found that about one quarter of

the genome is composed of TEs and another quarter of sat-

ellite DNA which is comparable to other plant genomes.

Nevertheless, the seabuckthorn genome contains an unusu-

ally large number of different satellites (table 2, 12 main

tandem repeats) compared with most other plant genomes

(Mehrotra and Goyal 2014). Moreover, some satellites evolve

rapidly into new variants. In particular, HRTR2 and HRTR3 sat-

ellite superclusters are comprised of a number of smaller clus-

ters where each cluster represents an individual satellite

(supplementary fig. S3, Supplementary Material online).

Thus, the number of different satellites may be even higher

if more strict criteria were used for tandem repeat classifica-

tion. Transposable elements are represented by all main

families of both Ty3/Gypsy and Ty1/Copia retrotransposons

(fig. 2) with chromoviruses (CRM and Galadriel) and TAR fam-

ilies dominating (table 1). Most transposable element families

are represented by only one or two clusters indicating their

long term presence without changes in sequence or structure.

Only Athila, Angela, Tork and Ale/Retrofit retrotransposons

are found in multiple clusters (data not shown) suggesting

higher divergence. Well preserved long ORFs in some TEs in-

dicate the recent amplification/younger age and low level of

degeneration of these elements. All in all, high variability of

some satellites and TE families indicate high tempo of their

diversification in the seabuckthorn genome, while other re-

peats remain relatively conserved. Nevertheless, this conclu-

sion should be verified by comparative analysis of at least two

closely related species. Recent analysis by Macas et al. (2015)

showed that it is not transposable elements but satellites that

are the most variable repeats among closely related species of

Fabae genus.

Comparison of numbers of male and female reads consti-

tuting satellite superclusters, enabled us to predict satellites

localized on the Y chromosome, X chromosome, on both

sex chromosomes or on autosomes as each specific ratio of

FIG. 8.—Localization of transposable elements and rDNA on metaphase chromosomes of Hippophae rhamnoides using fluorescence in situ hybridi-

zation. The name of transposable element family (together with the number of corresponding cluster) or type of rDNA cluster is inside each figure. Blue are

DAPI stained chromosomes, red signal shows chromosomal localization of selected transposable elements and 45S and 5S rDNA. Bar indicates 5 mm.
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abundance of male and female reads in a cluster corre-

sponded to specific chromosomal distribution. Our FISH results

showed that this prediction works well in most cases as ver-

ified by satellites accumulated on the X chromosome (HRTR8)

and both X and Y chromosomes, and specific for the Y chro-

mosome (HRTR12) and for autosomes (HRTR1, 3, 4, 5, 6, and

10). It is a question whether or not the higher number of

different satellites in the seabuckthorn genome than in the

majority of plant genomes (Mehrotra and Goyal 2014) some-

how correlates with the presence of sex chromosomes repre-

senting a specific genomic context, each shaped by different

evolutionary forces.

The localization of satellites is remarkable and shows that

satellites are gathered not only on the nonrecombining region

of the Y chromosome but some are specific for the X chro-

mosome or for both sex chromosomes. They are gathered in

heterochromatic parts of sex chromosomes what can reflect

possible role of satellites in heterochromatinization. The list of

chromosomal localization of satellites and TEs in dioecious

plants was recently presented by Li et al. (2016a). Although

Y chromosome divergence and specific repeat composition is

a generally accepted feature, an accumulation of X-specific

repeats during plant sex chromosome evolution has been sug-

gested only by limited number of studies (Hobza et al. 2004).

As satellites localized on either X or Y chromosomes are mu-

tually different, we prefer the explanation that these satellites

originated and expanded on the sex chromosomes long after

the X–Y divergence. Therefore, it would be interesting to

compare X and Y-linked variants of HRTR2 satellite and, if

present, to assess the extent of X- and Y-linked satellite

divergence.

The localization of transposable elements mainly in sub-

telomeres is a feature characteristic of the seabuckthorn

genome. However, transposable elements are accumulated

in subtelomeres in other plant species too (Zhang and

Wessler 2004), and, among dioecious plants, subtelomeric

localization was shown in Retand retrotransposon in Silene

latifolia (Kejnovsky et al. 2006). Retrotransposons are found

in or around centromeres as well (Miller et al. 1998;

Neumann et al. 2011).

Our results clearly confirm the existence of the XY system in

seabuckthorn found by Shchapov (1979) and they show that

the Y chromosome is small and the X chromosome large. We

mention in passing the work of Truta et al. (2011) who initially

found a large Y chromosomes and small X chromosome in

three Romanian seabuckthorn genotypes that later investiga-

tion of Romanian genotypes failed to confirm (Dr. Elena Truta,

Institute of Biological Research Iasi, Romania, personal com-

munication, June 15, 2016). Another cytogenetic study on

seabuckthorn using C-banding that unfortunately showed

only female karyotype without marking sex chromosomes

(Rousi and Arohonka 1980).

Estimationoftheageofsexchromosomes isnotyetpossible

in this species because no X- and Y-linked genes are known. It

remains a question whether the large size difference between

XandYchromosomes,thesmallsizeoftheYchromosomeand

accumulation of different satellites on both sex chromosomes

indicates greater age of these sex chromosomes or not. It is

remarkable that another genus of the Elaeagnaceae family—

Shepherdia (Elaeagnaceae contains three genera—

Elaeagnus, Hippophae, and Shepherdia) contains only three

species that are all dioecious (Veldkamp 1986). Moreover, the

Elaeagnaceae family belongs to the order of Rosales contain-

ing other plants with heteromorphic sex chromosomes like

Humulus and Cannabis. Although karyotypes were described

in Elaeagnus (2n = 28 in E. angustifolia) and Shepherdia

(2n = 26 in S. argentea and 2n = 22 in S. canadensis), the sex

chromosomes were not revealed (Rousi and Arohonka 1980).

Therefore, it is not possible to draw conclusions about the for-

mation or age of sex chromosomes during phylogeny.

The small Y chromosome containing several satellite DNA

and a large X chromosome revealed in seabuckthorn resemble

the mammalian sex chromosomal system. To the best of our

knowledge, such a system is very rare among plants. Sex chro-

mosomes in plants are mostly evolutionarily young—e.g.,

Silene latifolia (6 Ma, Kubat et al. 2014), Rumex acetosa

(12–13 Ma, Navajas-Perez et al. 2005), or Coccinia grandis

(3 Ma, Sousa et al. 2013)—and only sex chromosomes of

Marchantia polymorpha are thought to be older (Yamato

et al. 2007). A small Y chromosome and the large X chromo-

some were revealed in Humulus lupulus (Shephard et al. 2000;

Karlov et al. 2003) and also in gymnosperm species Cycas

revoluta (Segawa et al. 1971). The small size of the seabuck-

thorn Y chromosome may be caused by the loss of DNA which

indicates that the Y chromosome could be in a shrinkage

phase of evolution [reviewed in Hobza et al. (2015)] and

thus could represent a rare example of an evolutionarily old

plant sex chromosome. This assumption is supported by the

FISH results which indicate that the large part of the Y chro-

mosome arm that is homologous to the arm of the X chro-

mosome, carrying HRTR8, was lost (fig. 7).

In this study, we developed and used a new bioinformatics

approach for analysis of satellite DNA allowing prediction of

satellite monomers, their grouping into clusters corresponding

to main satellite families in the genome and visualization of

their male/female homogeneity. This enabled prediction of

satellite localization with respect to the sex determination

system in species studied.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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Abstract

Background: Transposable elements form a significant proportion of eukaryotic genomes. Recently, Lexa et al.
(Nucleic Acids Res 42:968-978, 2014) reported that plant long terminal repeat (LTR) retrotransposons often contain
potential quadruplex sequences (PQSs) in their LTRs and experimentally confirmed their ability to adopt four-stranded
DNA conformations.

Results: Here, we searched for PQSs in human retrotransposons and found that PQSs are specifically localized in the
3’-UTR of LINE-1 elements, in LTRs of HERV elements and are strongly accumulated in specific regions of SVA
elements. Circular dichroism spectroscopy confirmed that most PQSs had adopted monomolecular or bimolecular
guanine quadruplex structures. Evolutionarily young SVA elements contained more PQSs than older elements and
their propensity to form quadruplex DNA was higher. Full-length L1 elements contained more PQSs than truncated
elements; the highest proportion of PQSs was found inside transpositionally active L1 elements (PA2 and HS families).

Conclusions: Conservation of quadruplexes at specific positions of transposable elements implies their importance
in their life cycle. The increasing quadruplex presence in evolutionarily young LINE-1 and SVA families makes these
elements important contributors toward present genome-wide quadruplex distribution.

Keywords: G4 quadruplex, Retrotransposons, Genome

Background
Transposable elements (TEs) are abundant inhabitants of
eukaryotic genomes, representing e.g. about 50% of the
human genome and up to 90% in some plant species. Long
terminal repeat (LTR) retrotransposons aremost common
in plant genomes while animal genomes, including the
human genome, are often flooded by non-LTR retrotrans-
posons. Most of the human genome is transcribed and
TEs therefore greatly contribute to cellular transcriptome
and proteome [1,2]. Recent insertions of TEs underlie the
variability of human populations and can cause several
human diseases [3,4]. Somatic retrotranspositions occur
during neuronal development [5,6] and tumorigenesis [7].
During the last two decades, it became widely accepted
that TEs, as an inherently dynamic genome component,

*Correspondence: kejnovsk@ibp.cz
†Equal Contributors
2Department of Plant Developmental Genetics, Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno,
Czech Republic
Full list of author information is available at the end of the article

have an important role in both cell functioning [8] and
genome evolution [9,10].
Human LTR retrotransposons are represented by

endogenous retroviruses (HERV) but their activity is cur-
rently very limited: most HERVs were inserted into the
genomes of our ancestors earlier that 25 mya [11]. LTR
retrotransposons have LTR sequences at both ends, carry
GAG and POL genes and several regulatory regions like
promoter located inside LTR, primer binding site (PBS)
and polypurine (PPT) sites where reverse transcription of
the first and second strand of DNA starts, respectively.
The majority of human TEs result from the present and
past activity of non-LTR retrotransposons, including the
LINE-1, Alu and SVA elements [8]. LINE-1 (long inter-
spersed element 1, or L1) have two ORFs coding for RNA
binding protein (ORF1) and endonuclease and reverse
transcriptase (ORF2). ORFs are flanked with 5’-UTR and
3’-UTR regions. There are at least 850,000 L1 copies in
the human genome [12]. Alu elements are about 300 bp
long and have dimeric structure formed by the fusion of

© 2014 Lexa et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.
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two monomers derived from 7SL RNA gene. Alus were
active over the past 65 mya and the human genome con-
tains more than 1 million copies. SVA elements are about
2 kb long and are composed of a hexamer repeat region,
VNTR region, an Alu-like region, a HERV-K10-like region
and polyadenylation signal ending with oligo(dA)-rich tail.
SVAs were active throughout the last 25 mya of hominoid
evolution and have about 3,000 copies [13]. Both Alu and
SVA are trans-mobilized by the L1 machinery [14].
Molecular processes participating in the retrotranspo-

son life cycle are regulated both by enzymes encoded by
these elements themselves and by several host factors.
It is probable that the activity of retrotransposons can
also be affected by the changes of DNA conformation
that are known to influence many molecular processes
(for review see [15]). Formation of multi-stranded DNA
structures, namely quadruplex DNA, is probably involved
in dimerization of the HIV-1 genomic RNA molecules
found in virus particles [16]. Similarly, long polypurine
tract (PPT) located in 3’-UTR of L1 retrotransposons,
where reverse transcription of the second cDNA strand
starts, can form intrastrand quadruplex [17]. Relationship
between quadruplexes and transposons can be seen in the
cleavage of quadruplexes by RAG1 protein during translo-
cations in human lymphomas [18] because RAG1 protein
evolved from transposase of the Transib family of DNA
transposons [19].
Recently, we found [20] that potential quadruplex

sequences (PQSs) are often located inside LTRs of plant
LTR retrotransposons at specific distances from their pro-
moter indicating a possible effect of quadruplexes on
transcription. Quadruplexes were better preserved in evo-
lutionary young elements which supports their functional
role [20,21]. Similar observation was made by Savage
et al. [22] who found that younger human SVA elements
contain more PQS sequences than older SVA elements
but the ability of candidate sequences to adopt quadru-
plex conformation was not experimentally confirmed.
Although quadruplexes were found in many regions of
human genome, especially in promoters [23-25], system-
atic analysis of quadruplexes in all main types of human
retrotransposons was lacking.
In this study, we searched for PQS sequences in human

LINE-1, HERV, SVA and Alu elements. We analyzed the
prominent regions of their location as well as the effect of
element age and localization on chromosomes. The ability
of candidate motifs to adopt quadruplex was verified by
circular dichroism and gel electrophoresis.

Results
Potential quadruplex-forming sequences are located in
specific regions of human transposable elements
We analyzed the localization of PQSs inside main
groups of human transposable elements (TEs), namely

in LINE-1, Alu elements, HERV retrotransposons and
SVA elements. We searched for the (GnXnGnXnGnXnGn)
motif representing potential G-quadruplex cluster inside
894,717 LINE-1 elements, 1,051,161 Alu elements,
38,578 HERV and 5,001 SVA elements or their frag-
ments. Altogether, we found 264,711 PQS in all
annotated repeats or their 200 bp flanking sequence
(186,507 in plus strands, 78,204 in minus strands). Of
those, 183,967 were associated with the four studied
classes (136,977 in plus strands, 46,990 in minus
strands).
The overall highest abundance of PQSs was observed

in SVA (PQS was in 36.2% of elements) followed by LINE-1
(PQS in 7.7% of elements) and HERV elements (PQS in
4.8% of elements). The occurrence of PQSs was lowest
in Alu elements (in 1.1% of elements) (a complete list
of TE families that contribute more than 1% of PQSs
present in the entire genome is available as Additional
file 1), showing PQS distribution and frequency in Repeat-
Masker subfamilies of Alu, ERVL-MaLR, ERVL, ERV1,
haT-Charlie, L1, L2, MIR and SVA elements). In LINE-1
elements, PQSs were located almost exclusively in the 3’-
UTR region. Only very low numbers of PQSs were found
outside this region (Figure 1a). HERV LTR retrotrans-
posons contained PQSs along the whole element with
accumulation in LTR regions (Figure 1b). In SVA ele-
ments, PQSs were specifically located in Hex region in
minus strand and along the larger VNTR region in plus
strand (Figure 1c). The occurrence of PQSs inside Alu
elements was low throughout most of element length
(Figure 1d). There was only one peak of PQS in the
left part of left monomer (50 bp from the 5’-end). All
mentioned PQS peaks were above the Markov model
random background threshold, with SVA-VNTR region
being much closer to it than the other PQSs, as expected
for a long G-rich tandem repeat.
We analyzed the abundance of PQSs in LINE-1, HERV,

SVA and Alu elements separately on the Y and X chromo-
somes and on autosomes. In four main types of elements,
the number of quadruplexes was measured on both plus
and minus strands for respective chromosomes. The dis-
tribution of PQSs along all elements slightly differed
between chromosomes being more similar in autosomes
and X chromosome and different in the Y chromosome
where peaks of PQSs were located in different parts
of elements than in autosomes and the X chromosome
(Figure 1). The most striking difference between PQS dis-
tribution or frequency was observed in the SVA family
of transposable elements, where those on the Y chromo-
some had a reduced PQS content (Figures 1c and 2b).
Intriguingly, we noticed an increased occurrence of PQSs
in the ORF2 region of LINE-1 elements from chromo-
some X and Y compared to their autosome counterparts
(Figure 1a).
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Figure 1 Occurrence of PQSs along human LINE-1 (a), HERV (b), SVA (c) and Alu (d). The density of PQS clusters containing a minimum of four
adequately spaced GGG groups in the sense strand (PQS3+, upper lines) and antisense strand (PQS3-, lower lines) visualized along LINE-1 (a), HERV
(b), SVA (c) and Alu elements (d). Sliding window covered between 40-120 bp of the element length. Frequency represents the number of PQSs in
such window in the entire family. Green boxes show annotation with main structural components from typical full-length elements (ORF - open
reading frame, LTR - long terminal repeat, Hex - hexamer tandem repeat with a CCCTCT consensus, TR/VNTR - SVA tandem repeats with a period of
approximately 36, A - polyA tail, L and R MONOMER - 7SL RNA-derived monomer). Chromosomes are visualized separately where autosomes are in
yellow, X chromosomes in red and Y chromosomes in blue. The dashed red line shows PQS frequency in randomized control sequences generated
by an equivalent 2nd-order Markov chain model. The black triangles on the right show reference densities of PQS sites in the entire human genome
recalculated into the coordinates of the given family.

We clustered PQSs from individual families to deter-
mine the most common patterns of guanines. We have
chosen 2 specific motifs for each TE type among the

most common PQS motifs and used them for DNA con-
formational studies (Table 1). The selected sequences
originated from the 5’-UTR and 3’-UTR regions of
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Figure 2 The abundance of PQSs inside LINE-1, SVA and Alu elements related to the element length, activity or age. (a) The abundance of
PQSs inside all LINE-1, full-length LINEs and active LINEs (L1HS and L1PA2) located on autosomes and X and Y chromosomes. (b) The abundance of
PQSs inside SVA of different age (oldest SVA-A to youngest SVA-F) located on autosomes and the X and Y chromosomes. (c) The abundance of PQSs
upstream inside and downstream of Alu elements of different age (oldest Alu-J, middle-aged Alu-S and youngest Alu-Y) located on autosomes and
the X and Y chromosomes.

LINE-1, LTR and gag-pol gene of HERV, Hex and VNTR
regions of SVA and left part of the left monomer of Alu
(Figure 1a-d).

The abundance of PQSs in the neighborhood of
transposable elements
We compared the abundance of PQSs inside and in the
vicinity of LINE-1, HERV, SVA and Alu elements. In
full-length LINE-1 elements, the density of PQSs was
markedly higher inside elements than in element vicinity.
The greater abundance of PQSs inside LINE-1 elements
compared to the element vicinity was observed only in
plus strand while the neighborhood contained more PQSs
than element whenminus strand was analyzed (Figure 3a).

Elements with the 3’-UTR PQS were much less likely
to have the PQSs in the 3’ downstream flanking region
(data not shown). In HERV elements, many more PQSs
were present inside elements than in their neighbor-
hood, especially when full-length elements were taken
into account (Figure 3b). High enrichment of elements
compared to their neighborhood was also observed in
SVA elements (Figure 3c). This trend was stronger in
plus than in minus strand. In minus strand, SVA con-
tained more PQSs upstream than downstream of ele-
ments. Alu elements differed from LINE-1, HERV and
SVA. The density of PQSs inside Alu elements was
lower than in regions located upstream and downstream
(Figure 3d).
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Table 1 Oligonucleotides used in this study

Number Name Sequence Length [nt]

1 L1_1 TAGGTGCTC GGGG TCA GGGG TCA GGGG TCA GGG ACCCACTTG 42

2 L1_2 ATCACACTCT GGGG TGTTGT GGG T GGGGGG A GGGGGG AGGATAGCATT GGG AGATATACC 60

3 HERV_1 AAAGAGTCA GGG AA GGG AGATAA GGG T GGGG CCGTTTTAT 40

4 HERV_2 TAAATTGCT GGG CA GGGGGGG A GGG CTAGTCACG 34

5 SVA-A_HEX GGAGATCAA GGG AAA GGGGG AGA GGG AGA GGG AGAGGCCAA 41

6 SVA-CF_VNTR CGCCCGTCC GGG A GGG AGGT GGGGGGGG TCAGCCCCC 37

7 SVA-C_HEX GGAGACCGT GGGG AGA GGG AGA GGG A GGGGG AGAGGAGAC 40

8 SVA-BF_VNTR GCCCCGTCC GGG A GGG AGGT GGGGGGG TCAGCCCCC 36

9 SVA-F_HEX GGAGAGAGA GGG AGA GGG AGA GGG AGA GGG AGA GGG AGAGTGCTG 45

10 SVA-F_VNTR GTGCCATCC GGG A GGG AGGT GGGGGGG TCAGCCCCC 36

11 ALU-S_1 CCAGCACTTT GGG AGGCC GGG T GGG T GGG TCACCTGAGG 39

12 ALU-S_2 CCAGCACTTT GGG A GGG T GGG T GGG TGGATCACTT 35

Names and the sequences of oligonucleotides are shown. Clusters of three or more guanines are shown as bold.

The abundance of PQSs within transposable elements of
different age and activity
We compared the PQS abundance in all LINE-1 elements,
full-length LINE-1 and transcriptionally active LINE-1
families (L1HS and L1PA) [26]. We found that full-
length LINEs contained much more PQSs than truncated
LINE elements (Figure 2a). Among full-length elements,
the transcriptionally active L1HS and L1PA2 families
contained more PQSs than was the average abundance
of PQSs inside full-length LINEs. Truncated L1HS and
L1PA2 homologues contained much less PQSs. These
trends were observed both on autosomes and on X and Y
sex chromosomes.
We analyzed the abundance of PQSs inside SVA ele-

ments of different age - SVA-A (oldest family) to SVA-F
(youngest family). We found that the abundance of PQSs
was higher in younger elements (SVA-D, SVA-E and
SVA-F) than in older elements (SVA-A, SVA-B and
SVA-C) and this trend was same both in autosomes and
sex chromosomes (Figure 2b). The abundance of PQSs
was highest inmiddle-aged SVA elements (Figure 2b). The
PQSs were common in the central part of elements in
plus strand. Detailed analysis revealed that in older ele-
ments, the PQS abundance in the central part of plus
strand decreased and predominated in the left part of SVA
in the minus strand (not shown). The peak of PQSs in
SVA-E present on the Y chromosome was caused by the
low number of elements and the SVA-F elements even
absented on the Y chromosome.
We made similar analysis of Alu elements where Alu-J

are oldest, Alu-S are middle-aged and Alu-Y are youngest
elements. We found that in contrast to LINE-1 and SVA,
the age did not markedly affect the abundance of PQSs
inside Alu elements. There is a slight PQS-increasing
trend with age in the main families, however the youngest

subfamilies (AluYg6, Ya5) [27] are also depleted of PQSs
(Figure 2c). Because Alu elements havemore PQSs in their
vicinity than inside elements (Figure 3) we also analyzed
the upstream and downstream regions. We found that
older Alu elements contained more PQSs than younger
elements in their downstream regions (Figure 2c). The
PQS abundance did not differ markedly between auto-
somes and sex chromosomes, a small decrease in PQSs
on the Y chromosome was registered (Figure 1d). The
most active families of Alu (AluYg6 and AluYa5) had lower
abundance of PQSs than average Alu-Y elements.

PQSs can form quadruplexes as revealed by circular
dichroism
WeprobedDNA conformational properties of 12 oligonu-
cleotides (Table 1) representing PQSs obtained from SVA,
HERV, LINE-1 and Alu elements by circular dichro-
ism (CD). We tested their ability to form quadruplex
structures upon increasing concentration of potassium
ions.
First, wemeasured CD spectra of PQSs originating from

SVA elements because they contain PQSsmore often than
any other human TEs. We divided SVA elements into
three families with different age - oldest SVA-A family,
middle-aged SVA-C family and youngest SVA-F family -
and for each family we analyzed the ability of one Hex
region and one VNTR region to adopt a quadruplex struc-
ture. VNTR consensus sequences in older families were
always present in younger families as well, therefore we
used consensus sequences common for multiple famil-
ies - SVA-BF for families B to F and SVA-CF for families
C to F. Only SVA-F VNTR oligonucleotide was specific
for the youngest SVA family. As shown in Figure 4a, the
positive CD band at about 260 nm, which is characteris-
tic of the presence of a parallel quadruplex [28], increased
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Figure 3 The density of PQSs inside TEs and in TEs vicinity. The number of PQSs per 100 bp of zone located inside, upstream and downstream
of LINE-1 (a), HERV (b), SVA (c) and Alu elements (d). For each element type PQS in plus strand (upper row) and minus strand (lower row) are
shown. We analyzed either all elements (left figures) or only full-length elements (right figures).

steeply and at lower potassium concentrations with
SVA-F (youngest) than with SVA-C (Figure 4a). Much
less increase in this band and only at the highest
K+ concentrations used was observed with the older
SVA-A family and the common consensus oligonu-
cleotides SVA-BF and SVA-CF. Similarly, the thermal
stability of quadruplexes was highest in SVA-F and low-
est in SVA-A (not shown). Native gel electrophoresis at
150 mM K+ showed that Hex region of three groups
of SVA adopted bimolecular quadruplexes (Figure 4b).
VNTR region provided CD spectra of the B-DNA type
at low K+ concentrations marked out by low amplitudes
and a slightly predominating 260 nm band, which is char-
acteristic of duplexes of G-rich and C-rich DNA strands
[29]. These monomolecular structures (Figure 4b) may
thus correspond to hairpins containing rather accidental,
namely G.C, base pairs. The increase in the 260 nm band
with increasing K+ concentration indicating quadruplex

formation was again most obvious with SVA-F and less so
with SVA-BF and SVA-CF. The quadruplexes were formed
non-cooperatively and not much willingly.
PQSs originating from the LINE-1 elements were

selected from the 5’-UTR and 3’-UTR regions (Figure 1).
The PQSs from the 5’-UTR (labelled as L1_1) provided
CD spectrum corresponding to antiparallel quadruplex
(Figure 5a), while the CD spectrum of the PQS from
3’-UTR (labelled as L1_2) corresponded to that of the
parallel-stranded quadruplex (Figure 5a). Native PAGE
revealed that both the anti-parallel L1_1 and the par-
allel L1_2 quadruplexes were monomolecular at low as
well as at room temperature (Figure 5b). Antiparal-
lel folding of the L1_1 quadruplex was enabled by the
sufficiently long (trinucleotide) loops between all four
G blocks.
Two PQSs were selected fromHERV elements. The first

PQS corresponded to a minor PQS peak in the LTR in the
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Figure 4 Circular dichroismmeasurements and gel electrophoreses of PQSs from SVA elements of different age. (a) CD spectra of SVA-A,
SVA-C and SVA-F (shown in Table 1) obtained at various concentrations of potassium ions and at various temperatures are marked by different colors.
The peak at 265 nm corresponds to a parallel-stranded quadruplex. Sketches correspond to themost probable folding of the dominating quadruplex
structure according to CD and electrophoretic results. (b) Native gel electrophoreses of SVA PQS in the presence of 150 mM KCl at 20°C or 1°C.

minus strand (HERV_1) and the second PQS originated
from the gag-pol region of the minus strand (HERV_2,
Figure 1). CD measurements indicated gradual forma-
tion of parallel-stranded quadruplexes with both PQSs
(Figure 5a). Native PAGE revealed that a monomolec-
ular quadruplex structure dominated in both, HERV_1
and HERV_2 at room temperature, while a bimolecular
quadruplex, in addition to two types of monomolecular
ones, were formed by HERV_1 at low temperatures
(Figure 5b).
In Alu elements, two PQSs (Alu-S_1 and Alu-S_2) were

selected for CD measurements, both from the left part
of left monomer located in plus strand (Figure 1). Both
PQSs corresponded to the middle-aged Alu elements

(Alu-S). Although CD spectra of both oligonucleotides
indicated the formation of parallel-stranded quadruplex,
the spectral changes induced by the increasing potassium
concentration were gradual and limited in the case of
Alu-S_1. This along with the shoulder on the long wave-
length part of the positive 260nm CD band (B-DNA dis-
plays a positive maximum around 280nm) indicates that
a substantial part of Alu-S_1 sequence formed a hairpin.
Alu-S_2 formed the quadruplex at much lower potassium
concentration (Figure 5a) and the transition was highly
cooperative. The quadruplex was parallel and intramolec-
ular in the same way as was the quadruplex of Alu-S_1
(Figure 5b). Note that the mobility of the studied quadru-
plexes is slower than would correspond to their length



Lexa et al. BMC Genomics 2014, 15:1032 Page 8 of 12
http://www.biomedcentral.com/1471-2164/15/1032

Figure 5 Circular dichroismmeasurements and native gel electrophoreses of PQSs from LINE-1, HERV and Alu elements. (a) CD spectra of
the oligonucleotides (shown in Table S1) obtained at various concentrations of potassium and at various temperatures are marked by different
colors. The peak at 265 nm indicates formation of the parallel-stranded quadruplex while maximum at 295 nm corresponds to an
antiparallel-stranded quadruplex. Sketches correspond to the most probable folding of the dominating quadruplex structure according to CD and
electrophoretic results. (b) Native gel electrophoreses of LINE-1, HERV and Alu PQS in the presence of 150 mM KCl at 20°C or 1°C.

markers. This is usually the case with the heavy G-rich
strands. Moreover, the mobilities of the intramolecular
qudruplexes differ (more than follows from their lengths),
which may be partly a consequence of their distinct com-
pactness, and mainly, by distinct hindering effects of the

overlapping nucleotides not involved in the quadruplex
structure. In addition, we measured PQSs selected from
older and younger Alu families (Alu-J and Alu-Y, respec-
tively) but we found no correlation between susceptibility
to form quadruplex and the age of Alu elements.
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Discussion
We found that potential quadruplex-forming sequences
are located in specific regions of human transposable
elements and experimentally verified the ability of such
sequences to adopt quadruplex DNA conformation. Full-
length and active L1 elements and younger SVA elements
had a larger number of PQSs. The propensity of these
sequences to form quadruplex and quadruplex stability
(not shown) were higher than in older elements. Alu
elements contained PQSs not inside but in their neigh-
borhood where more PQSs were present in downstream
regions of older elements.
Two available counts of G4-quadruplexes in the entire

human genome found about 375,000 PQSs [24,30]. This
allows us to express our numbers as proportions of mobile
element PQSs to whole-genome PQS content with a value
of 71%. The four main classes of elements studied here
carry 49% of total predicted PQSs. These numbers reflect
the current human genome sequencing and annotation
status and are very likely to miss potential PQSs in cen-
tromeres, telomeres or other difficult-to-map regions of
the human genome.
Our results are in agreement with Savage et al. [22]

who also found that the youngest SVA (SVA-E, SVA-F)
contained more quadruplexes than older elements. Such
age-dependent distribution of PQSs (Figure 2) can be
explained by the action of constraints leading to fixation
of quadruplexes in recent and active elements while non-
active older elements accumulate mutations that hinder
quadruplex formation. Moreover, we found that quadru-
plexes are present in the central part of SVA elements in
plus strand and in the left part of minus strand. If the
localization of quadruplexes in plus strand has negative
effect on transcription and their presence in minus strand
has a positive effect [15,21], then the potential evolu-
tionary balancing of quadruplexes abundance (an increase
or a decrease) in complementary strands could regulate
element activity over time.
The greater abundance of PQSs (that are GC-rich)

in the neighborhood of older Alu elements is proba-
bly related to generally high GC-content of isochores
containing older Alus [31]. Surprisingly, despite the age-
dependent increase of GC-content of Alu neighborhood,
the abundance of PQSs inside Alu elements was very
low (Figure 3) and did not increase with the element age
(Figure 2).
We have shown that PQSs are strongly accumulated

in 3’-UTR of LINE-1 elements. Quadruplexes located in
3’-UTR can have an effect on target-primed reverse tran-
scription (TPRT) that starts at the 3’ end. Quadruplexes
formed either by RNA template or by the growing first
DNA strand can represent a barrier for reverse transcrip-
tion. However, quadruplex DNA can regulate not only
the transposable element itself but can also influence

neighboring genes as was proposed recently by Kejnovsky
and Lexa [21]. Because SVA elements are preferentially
located inside genes or in their neighborhood [22] we sug-
gest that recent SVA elements could spread quadruplex
motifs close to genes or into genes and in this way they
regulate expression of these genes. The regulatory poten-
tial of quadruplexes inside TEs decreases as the element
gets older and is eroded by mutations and rearrange-
ments. In this way, quadruplexes can enlarge the potential
of transposable elements to respond to environmental
challenges as was suggested by McClintock [32] long time
ago.
Quadruplexes carried by TEs can also affect other cel-

lular processes like replication or epigenetic regulation. It
is remarkable that quadruplexes are located close to the
LINE-1 poly(dA) tail that represents the labile region of
duplex DNA. Other labile (AT-rich) regions are repre-
sented by replication origins and, surprisingly, also here
quadruplexes are located [33]. Because quadruplexes also
represent barriers for replication, or at least can slow it
down, the spreading of PQSs by retrotransposons can also
contribute to the regulation of replication speed. In addi-
tion, the quadruplexes can represent epigenetic marks in
large introns that contain repetitive DNA and are also AT-
rich [21,34]. Moreover, if non-B DNA conformations are
nucleosome-free [35,36] and some transposable elements
are preferentially inserted into naked DNA [37], then one
would expect that such regions could represent sites for
nested insertions, at least in some TE families.
Several proteins were shown to bind quadruplex DNA

[15,38]. For example, p53 protein, that has binding sites
inside human Alu and L1 elements [39,40], can strongly
bind quadruplex DNA [41]. Another example is the
recombination and repair protein Ku70 that was shown
to bind cDNA of Ty1 yeast retrotransposons [42] and has
high affinity to quadruplex DNA [43]. In this context, it is
interesting that human LINEs havemany Ku70/80 binding
sites [44].
Taken together, the remarkable ability of some proteins

to bind both TEs and quadruplex DNA underlining the
relationship of these unusual DNA conformations with
transposable elements as well as the higher abundance
of PQSs inside younger, full-length and active elements
indicates the role of quadruplexes in TE spreading. Such
a role can consist in negative or positive regulation of
TE activity, e.g. in response to current intracellular ionic
conditions influencing the stability of quadruplexes. In
the long-term perspective, quadruplexes can represent an
evolutionary feedback suppressing non-controlled ampli-
fication of active elements.

Conclusions
The results suggest that activity of transposable ele-
ments, especially LINE-1 and SVA elements, contributes
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towards genome-wide quadruplex distribution in human.
Conservation of quadruplexes at specific positions
implies their function either in the life cycle of trans-
posable elements or host genome maintenance, or both.
All tested PQSs were able to form quadruplex struc-
ture in vitro, albeit with differing willingness, strand
orientation and molecularity. LINE-1 and SVA fami-
lies displayed an age-dependent pattern with younger
elements containing a higher number of more stable
quadruplexes. Further studies should be done to deter-
mine how the conserved elements are selected for during
evolution.

Methods
Search for potential quadruplex-forming sequences inside
transposable element
Repetitive sequences in the human genome were col-
lected using UCSC Table Browser data [45]. The
repeats from Repeat Masker track [46] (RepeatMasker,
www.repeatmasker.org) from the hg38 version of the
human genome were extended 200 bp in both directions
and exported from Table Browser in FASTA format. The
header of each sequence contained the precise position
of each sequence in the hg38 assembly of the human
genome, including the harboring chromosome. It also
identified the class and family of element by name as
returned by Repeat Masker. These identifiers were used in
assigning data and results to repeats, chromosomes or to
calculate whether a detected feature was inside or outside
the studied repetitive region. A feature was considered to
be inside only if one of its ends localized to the TE proper
(not the flanking region). This dataset also includes trun-
cated or fragmented sequences. In selected analyses, we
used full-length elements, using only TEs that were longer
than two thirds of a typical representative, resulting in the
following thresholds [given in bp]: L1 - 4,700, Alu - 250,
SVA - 1,600, HERV (ltr) - 300, HERV (internal) - 2000.
The collected sequences were scanned for the occur-

rence of the typical PQS3 pattern GGG-N1−7-GGG-
N1−7-GGG-1−7-GGG on both strands and labelled
PQS3+ and PQS3-, respectively. The scan used a Perl
script based on the regular expressions used in our pre-
vious study [20], recording the position and identity of
each PQS3 pattern for subsequent counting and plotting.
To verify that PQS frequency is not simply determined by
the overall GC-content of the respective region, we calcu-
lated the expected number of PQSs in a random sequence
generated by a second-order Markov model. This model
was derived from the original sequence in windows of 150
bp as described previously [20,23].

CD spectroscopy and polyacrylamide gel electrophoresis
High-quality oligonucleotides (lyophilized) were pur-
chased from Generi Biotech (Hradec Králové, Czech

Republic) and dissolved in 1mM sodium phosphate buffer
with 0.3 mM EDTA (pH 7.0) to obtain final stock con-
centration 100 OD.ml−1. Chemicals of analytical grade
(Sigma-Aldrich) and deionized water (18×106 ohm resis-
tance, Elga) were used for buffers. The exact oligonu-
cleotide concentration was determined by absorbance
measurements of appropriately diluted samples at 90°C in
the above buffer using Unicam 5625 UV/VIS spectropho-
tometer and molar extinction coefficients calculated
according to Gray et al. [47]. Before anymeasurements the
DNA samples were denatured for 2min at 90°C and slowly
cooled to room temperature.
CD measurements were done using a Jasco 815 dichro-

graph in 1 cm Hellma cells, placed in a temperature-
controlled holder. Circular dichroism was expressed as
the difference in the molar absorption of the left-handed
and right-handed circularly polarized light, �ε in units
of M−1cm−1. The molarities (M) were related to nucle-
osides. Experimental conditions were changed directly
in the cells by adding concentrated solutions of potas-
sium chloride and the final sample concentration was
corrected for the volume increase. All the presented
K+ dependences were measured at 20° and 1°C.
Native polyacrylamide gel electrophoresis was per-

formed in a temperature-controlled electrophoretic appa-
ratus (SE-600; HoeferScientific). The gel concentration
was 16% (29:1 monomer to bis ratio; Applichem). Two
micrograms of oligonucleotide dissolved in 10 mM potas-
sium phosphate and 135 mM potassium chloride were
loaded into each lane. Samples were electrophoresed in
70 mM concentration of K+ ions at 20°C for 18 h at
30V or at 1°C for 18 h at 55V. Gels were stained with
Stains All (Sigma) after electrophoresis and scanned using
the Personal Densitometer SI, model 375-A (Molecular
Dynamics).

Additional file

Additional file 1: A detailed visualization of PQS coverage of main
human transposable element families and subfamilies.
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Information Technology, Božetěchova 1/2, 61266 Brno, Czech Republic.
4Department of CD Spectroscopy of Nucleic Acids, Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno,
Czech Republic. 5Laboratory of CD Spectroscopy of Nucleic Acids and
Proteins, CEITEC - Central European Institute of Technology, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic.

Received: 18 August 2014 Accepted: 29 October 2014
Published: 27 November 2014

References
1. Gotea V, Makalowski W: Do transposable elements really contribute

to proteomes?. Trends Genet 2006, 22:260–261.
2. Britten R: Transposable elements have contributed to thousands of

human proteins. Proc Natl Acad Sci USA 2006, 103:1798–1803.
3. Kazazian JHH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis

SE: Haemophilia a resulting from de novo insertion of l1 sequences
represents a novel mechanism for mutation in man. Nature 1988,
332:164–166.

4. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein
B, Nakamura Y: Disruption of the apc gene by a retrotransposal
insertion of l1 sequence in colon cancer. Cancer Res 1992, 52:643–645.

5. Bailie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F,
Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC,
Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ:
Somatic retrotransposition alters the genetic landscape of the
human brain. Nature 2011, 479:534–537.

6. Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ,
Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA: Single-neuron
sequencing analysis of l1 retrotransposition and somatic mutation
in the human brain. Cell 2012, 151:483–496.

7. Lee E, Iskow R, Yang L, Gokcumen O, Gokcumen O, Haseley P, Luquette
LJr, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA,
Kucherlapati R, Lee C, Kharchenko PV, Park PJ: Landscape of somatic
retrotransposition in human cancers. Science 2012, 337:967–971.

8. Babatz TD, Burns KH: Functional impact of the humanmobilome. Curr
Opin Genet Dev 2013, 23:264–270.

9. Cordaux R, Batzer MA: The impact of retrotransposons on human
genome evolution. Nat Rev Genet 2009, 10:691–703.

10. Biemont C, Vieira C: Junk dna as an evolutionary force. Nature 2006,
443:521–524.

11. Mayer J, Meese E: Human endogenous retroviruses in the primate
lineage and their influence on host genomes. Cytogenet Genome Res
2005, 110:448–456.

12. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K,
Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A,
Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim
J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos
R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the
human genome. Nature 2001, 409:860–921.

13. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA: Sva
elements: a hominid-specific retroposon family. J Mol Biol 2005,
354:994–1007.

14. Mills RE, Bennett EA, Iskow RC, Devine SE:Which transposable elements
are active in the human genome? Trends Genet 2007, 23:183–191.

15. Bochman M. J, Paeschke K, Zakian VA: Dna secondary structures:
stability and function of g-quadruplex structures. Nat Rev Genet 2012,
13:770–780.

16. Sundquist WI, Heaphy S: Evidence for intrastrand quadruplex
formation in the dimerization of human immunodeficiency virus 1
genomic rna. Proc Natl Scad Sci USA 1993, 90:3393–3397.

17. Howell R, Usdin K: The ability to form intrastrand tetraplexes is an
evolutionary conserved feature of the 3’ end of l1 retrotransposons.
Mol Biol Evol 1997, 14:144–155.

18. Nambiar M, Goldsmith G, Moorthy BT, Lieber MR, Joshi MV, Choudhary B,
Hosur RV, Raghavan SC: Formation of a q-quadruplex at the bcl2

major breakpoint region of the t(14;18) translocation in follicular
lymphoma. Nucleic Acids Res 2011, 39:936–948.

19. Kapitonov VV, Jurka J: Rag1 core and v(d)j recombination signal
sequences were derived from transib transposons. PLoS Biol 2005,
3:181.

20. Lexa M, Kejnovsky E, Steflova P, Konvalinova H, Vorlickova M, Vyskot B:
Quadruplex-forming sequences occupy discrete regions inside
plant ltr retrotransposons. Nucleic Acids Res 2014, 42:968–978.

21. Kejnovsky E, Lexa M: Quadruplex-forming dna sequences spread by
retrotransposons may serve as genome regulators.Mobile Genet
Elements 2014, 4:101.

22. Savage AL, Bubb VJ, Breen G, Quinn JP: Characterization of the
potential function of sva retrotransposons to modulate gene
expression patterns. BMC Evol Biol 2013, 13:101.

23. Huppert JL, Balasubramanian S: Q-quadruplexes in promoters
throughout the human genome. Nucl Acids Res 2005, 35:406–413.

24. Huppert JL, Balasubramanian S: Prevalence of quadruplexes in the
human genome. Nucl Acids Res 2007, 33:2908–2916.

25. Lam EYN, Beraldi D, Tannahill D, Balasubramanian S: G-quadruplex
structures are stable and detectable in human genomic dna. Nat
Commun 2013, 4:1796.

26. Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, Devine SE:
Recently mobilised transposons in the human and chimpanzee
genomes. Am J HumGenet 2006, 78:671–679.

27. Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O,
Devine SE: Active alu retrotransposons in the human genome.
Genome Res 2008, 18:1875–1883.

28. Vorlickova M, Kejnovska I, Sagi J, Renciuk D, Bednarova K, Motlova J, Kypr
J: Circular dichroism and guanine quadruplexes.Methods 2012,
57:64–75.

29. Kypr J, Kejnovska I, Renciuk D, Vorlickova M: Circular dichroism and
conformational polymorphism of dna. Nucl Acids Res 2009,
37:1713–1725.

30. Todd AK, Johnstone M, Neidle S: Highly prevalent putative quadruplex
sequence motifs in human dna. Nucl Acids Res 2005, 33:2901–2907.

31. Eyre-Walker A, Hurst LD: The evolution of isochores. Nat Rev Genetics
2001, 2:549–555.

32. McClintock B: The significance of response of the genome to
challenge. Science 1983, 226:792–801.

33. Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Mechali M: New
insights into replication origin characteristics in metazoans. Cell
Cycle 2012, 11:658–667.

34. Gelfman S, Cohen N, Yearim A, Ast G: Dna-methylation effect on
cotranscriptional splicing is dependent on gc architecture of the
exon-intron structure. Genome Res 2013, 23:789–799.

35. Wong HM, Huppert JL: Stable g-quadruplexes are found outside
nucleosome-bound regions.Mol Biosyst 2009, 5:1713–1719.

36. De S, Michor F: Dna secondary structures and epigenetic
determinants of cancer genome evolution. Nat Struct Mol Biol 2011,
18:950–956.

37. Gangadharan S, Mularoni L, Fain-Thornton J, Wheelan SJ, Craig NL: Dna
transposon hermes inserts into dna in nucleosome-free regions in
vivo. Proc Natl Acad Sci USA 2010, 107:21966–21972.

38. Whitehouse I, Owen-Hughes T: Atrx: put me on repeat. Cell 2010,
143:335–336.

39. Cui F, Sirotkin MV, Zhurkin VB: Impact of alu repeats on the evolution
of human p53 binding sites. Biol Direct 2011, 6:2.

40. Harris CR, DeWang A, Zupnick A, Normart R, Gabriel A, Prives C, Levine AJ,
Hoh J: p53 responsive elements in human retrotransposons.
Oncogene 2009, 28:3857–3865.

41. Quante T, Otto B, Brazdova M, Kejnovska I, Deppert W, Tolstonog GV:
Mutant p53 is a transcriptional co-factor that binds to g-rich
regulatory regions of active genes and generates transcriptional
plasticity. Cell Cycle 2012, 11:3290–3303.

42. Dawns JA, Jackson SP: Involvement of dna end-binding protein ku in
ty element retrotransposition.Mol Cell Biol 1999, 19:6260–6268.

43. Paramasivan M, Membrino A, Cogoi S, Fukuda H, Nakagama H, Xodo LE:
Protein hnrnp a1 and its derivate up1 unfold quadruplex dna in the
human kras promoter: implications for transcription. Nucl Acids Res
2009, 37:2841–2853.



Lexa et al. BMC Genomics 2014, 15:1032 Page 12 of 12
http://www.biomedcentral.com/1471-2164/15/1032

44. Katz DJ, Beer MA, Levorse JM, Tilghman SM: Functional characterization
of a novel ku70/80 pause site at the h19/igf2 imprinting control
region.Mol Cell Biol 2005, 25:3855–3863.

45. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent
WJ: The ucsc table browser data retrieval tool. Nucleic Acids Res 2004,
32(Database issue):493–496.

46. Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer
TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS,
Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA,
Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ: The ucsc genome
browser database: 2014 update. Nucleic Acids Res 2014, 42:764–770.

47. Gray DM, Hung SH, Johnson KH: Absorption and circular dichroism
spectroscopy of nucleic acid duplexes and triplexes.Methods
Enzymol 1995, 246:19–34.

doi:10.1186/1471-2164-15-1032
Cite this article as: Lexa et al.:Guanine quadruplexes are formed by specific
regions of human transposable elements. BMC Genomics 2014 15:1032.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Introduction
	Secondary DNA structures
	Introduction
	State of the art
	Research objectives

	Research summary
	Identification of potential triplex-forming sequences
	Identification of potential quadruplex-forming sequences
	Additional biological studies
	List of publications

	Conclusions
	Future work

	Research impact

	Protein engineering
	Introduction
	Rational selection methods
	State of the art
	Research summary

	Rational protein design
	State of the art
	Research summary

	List of publications
	Conclusions
	Future work

	Research impact

	Repetitive DNA sequences
	Introduction
	Tandem repeats
	Transposable elements
	Study of repetitive sequences

	State of the art
	Assembly-based approaches
	Assembly-free approaches
	Research objectives

	Research summary
	digIS - novel approach for detection of distant Insertion Sequence elements
	Novel approach for detailed analysis of satellite DNA
	Additional studies
	List of publications

	Conclusions
	Future work

	Research impact

	Bibliography
	Included Papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Paper VII
	Paper VIII
	Paper IX
	Paper X
	Paper XI
	Paper XII


