
Mixed Reality in Semi-Autonomous
Systems

Habilitation Thesis

Ing. Vítězslav Beran, Ph.D.

Brno 2022

Abstract

This thesis presents research in the area of mixed reality application in natural human
interaction with semi-autonomous systems. It explores two areas of applications: pro-
gramming collaborative robots in particular and piloting UAVs. The goal of the research
is to find an appropriate way of communication between human and machine so that both
human and machine, given today’s technology, do the activity in which they are most ef-
fective and complement each other. The work does not focus on automatic methods of
data processing or autonomous decision-making but on human interaction with systems
for which today’s technologies allow a degree of autonomy. In the area of collaborative
robot programming, it introduces a new concept of programming in a shared 3D workspace
that aims to make this activity easier for less experienced programmers while reducing
the mental load on the user during this activity. The research results demonstrate their
application not only in academia but especially in industry, where the concept has al-
ready been successfully deployed. In the field of UAV piloting, the presented preliminary
research focuses on using mixed reality to enhance pilot orientation in the environment
and appropriate interaction when using the results of automatic sensor data analysis.

Keywords

Mixed Reality, Collaborative Robots, UAV, Spatial Programming, Spatial Augmented
Reality, Augmented Reality, Augmented Virtuality, Spatial Awareness, Drone Piloting,
Ergonomy, Safety

i

Acknowledgment

I would like to thank my advisor and mentor Pavel Zemčík, who started my academic
career and who always supported me in my work, and together with Pavel Smrž, they
constantly nudged me forward with their ideas and projects and supported me in building
my research group. Also to Michal Španěl, with whom I shared the joys and sorrows of our
scientific journey in the office, and Adam Herout, who patiently advised me on practical
scientific issues. Many thanks to my colleagues and co-authors with whom we conduct
our research in the presented area, especially Michal Kapinus, Daniel Bambušek, Zdeněk
Materna, my former colleague Alfredo Chavez Plascencia and a number of students. I
would like to thank my parents, who have always supported me on my life’s journey, and
especially my wife Eva, who has had to listen to dozens of hours of lamentations and
complaints over the years, and despite this, has always been a loving and patient support
in everything.

Over time, I was supported by a number of grant projects, in particular by the Ministry
of the interior and Ministry of Industry and Trade of the Czech Republic, EU ECSEL and
Technology Agency of the Czech Republic.

ii

Contents

1 Introduction 1

2 Background Technologies and Scientific Areas 4
2.1 Mixed Reality . 4
2.2 Collaborative robots and programming . 6
2.3 Unmanned Areal Vehicles (UAVs/drones) 8
2.4 Human-Computer Interaction Research . 11

3 Spatial Robot Programming 12
3.1 Modalities and their error effect . 15
3.2 2D GUI in 3D task space . 16
3.3 3D GUI in 3D task space . 21
3.4 VR vs. AR in Robot Spatial Programming 27

4 UAV Pilot Support by New UI Elements 29
4.1 Augmented Virtuality for Pilot Situational Awareness 31
4.2 Automatic Assistant for Safe Drone Control 35

5 Conclusions 38

References 40

Appendix: Selected publications 44
Simplified Industrial Robot Programming: Effects of Errors on Multimodal In-

teraction in WoZ experiment . 44
Using Persona, Scenario, and Use Case to Develop a Human-Robot Augmented

Reality Collaborative Workspace . 51
Interactive Spatial Augmented Reality in Collaborative Robot Programming:

User Experience Evaluation . 53
Combining Interactive Spatial Augmented Reality with Head-Mounted Display

for End-User Collaborative Robot Programming 61
End-User Robot Programming Case Study: Augmented Reality vs. Teach Pendant 69
Spatially Situated End-User Robot Programming in Augmented Reality 72
Improved Indirect Virtual Objects Selection Methods for Cluttered Augmented

Reality Environments on Mobile Devices 80
Augmented Reality Spatial Programming Paradigm Applied to End-User Robot

Programming . 85
ARCOR2: Framework for Collaborative End-User Management of Industrial

RoboticWorkplaces using Augmented Reality 111
How Do I Get There? Overcoming Reachability Limitations of Constrained

Robotic Workspaces in Augmented Reality Applications 123
Effective Remote Drone Control Using Augmented Virtuality 132

iii

1 Introduction

We live in a time when we are surrounded by machines – from mechanical to digital.
These machines have a purpose, a function that makes our lives easier – from physical
work to computational tasks. For humans to use machines, there has to be a way to
operate them, control them, and give instructions. At the same time, we need to know
the state the machine is in – to see the direction of movement, the temperature of the
motor, and the result of the calculation. This interface between man and machine is an
absolutely essential element for the effective use of machines by humans.

Nevertheless, what exactly does the term efficient mean in this context? Efficiency
can be viewed from many angles. It can be an amount of time it takes to perform the
desired task with a machine. For example, a machine may be able to perform its function
quickly, but the number of control steps or the time to operate the machine may be high,
and the speed advantage of the machine itself is reduced. There may also be several errors
in operating or monitoring the machine. Controls may be imprecise, the order of their
use unclear, and information from indicators and pointers challenging to interpret and
complex. All of this can lead to errors in operating the machine and frustration for the
user. It can also be a measurement of the mental load of an operator carrying out the
machine control. The many controls, indicators and pointers can be very burdensome and
exhausting for the machine user. This soon causes the user to lose focus and increases
the risk of injury or damage to the machine.

Today, the vast majority of mechanical machines are already equipped with measuring
sensors and some computer system that allows the measured data from both the machine
and its surroundings to be automatically processed and evaluated in a meaningful way.
The measurement results can then be presented to the user or used directly by the machine
for automatic self-control. The manufacturing industry today makes full use of automatic
machines. Yet it still needs humans for many tasks. Unfortunately, these tasks are
trivial in decision-making or creativity, primarily mechanical and repetitive. Creating
single-purpose machines is inefficient in many cases; the degree of variability of conditions
is higher and requires frequent changes. One solution may therefore be machines that
can be more easily adapted to a new task and operate in close proximity to a human –
something that most single-purpose automatic machines in the industry today do not allow
for safety reasons. These collaborative robots bring the possibility to make production
more accessible and cheaper by combining the capabilities of a human and a robot. The
robot performs monotonous, repetitive tasks, and the human makes decisions in uncertain
situations, modifies the robot’s actions or performs complex manipulation tasks for the
robot. To make this human-robot collaboration possible, it is necessary to have an interface
that allows human-robot communication in an efficient way. Communication here means
passing information about what exactly is to be done at what place in space, monitoring
the current activity of each involved subject, informing about the activity just underway
or planned, and indicating the system’s internal state.

Both the human and the robot work in a real environment, i.e. in 3D space. Therefore,
the ideal space for communication is their shared workspace where the activity is taking
place. This space is observable and measurable by both the human and the robot, and it
is the space where both can reach and do their activity. Current information technologies
already offer partial solutions to enable human interaction with the digital (virtual) world
in a 3D environment. Mixed reality is one such technology that brings the ability to
correctly display digital data (virtual world) into the real world. There are also several

1

technologies that allow the user’s actions to be tracked so that the user can interact with
the virtual world.

Both humans and robots, in their work, need to perceive and to some extent understand
the environment in which they are working, i.e. create some interpretation of the shared
environment (the human mental and the robot digital map of the environment), and then
share this interpretation with each other. Further, they need to communicate the process
of their or their joint work – the work process in the environment or the robot’s program.
It is essential that the human is then able to control and manipulate the knowledge and
plans that the robot creates and according to which it will make further decisions.

(a) Robot-operator observing the program for the PDB testing task
in augmented reality (Kapinus et al., 2022c).

(b) Drone pilot GUI application based on augmented virtuality (DroCo)1.

Figure 1: Examples of UI using mixed reality for human interaction with semi-autonomous
systems.

This work specifically explores the possibilities of using mixed reality for interaction
in 3D environments between humans and semi-autonomous systems. These are systems

1https://www.fit.vut.cz/research/product/647/

2

https://www.fit.vut.cz/research/product/647/

that are able to perceive their environment to some extent and control their actions semi-
autonomously based on predefined tasks. The essential thing is to find a natural and
effective way of communication between the human and the semi-autonomous system
(robot, UAV, etc.) so that the human can easily understand what the robot knows and
does and can effectively intervene and control its actions. In addition to the main focus
on human interaction with collaborative robots in mixed reality, the use of MR in the
field of piloting UAVs (or drones) is also presented (see illustrative images on Fig. 1).

This habilitation thesis is conceived as an annotated collection of previously published
articles of the Robo@FIT research group2 under my leadership and/or students’ work
under my supervision. I have selected the articles according to their relevance to my
research area concerning the use of mixed reality in semi-autonomous systems. The selec-
tion of specific articles is summarized in the introductory of Section 3 and Section 4. The
specific contributions of the articles are then presented in the individual subchapters. All
selected articles relevant to this thesis are then included in Appendix. In Section 2, where
I put the reader more in context, I briefly introduce the broader range of technologies and
scientific areas. The knowledgeable reader of the issues can skip this chapter.

2https://www.fit.vut.cz/research/group/robo/

3

https://www.fit.vut.cz/research/group/robo/

2 Background Technologies and Scientific Areas

In this chapter, I will introduce the reader to a number of technologies and scientific areas
that are key to research in the field of mixed reality and interaction with collaborative
robots or UAVs. The knowledgeable reader of the subject matter can skip this brief intro-
duction to the technological context and continue withSection 3. Most of the presented
areas are multi-disciplinary and encompass a range of other technical and scientific dis-
ciplines. The summary is intended to provide the reader with a concise introduction to
relevant approaches and technologies.

2.1 Mixed Reality

The digitisation of the real world has been going on since the first computers were built
in the 1950s. From office documents, digitisation has now reached the point where we can
digitise and simulate a large variety of different parts of the real world in near real-time.
So we have a vast amount of heterogeneous data available to us in digital form. In today’s
modern world, we are also surrounded by computers3 – from smart watches, cameras and
regular computers to vehicles, manufacturing machines, smart infrastructure, etc. From
the inception of computers to the present day, one research challenge still remains, how
to create an interface for humans to interact with this digital world (both data
and computing power) naturally and effectively. So that humans can easily and quickly
submit tasks and queries to computers and so that the results of the computer’s work can
be presented to the user in a clear and understandable way. Without realising it, we are
still using concept from the 70s (WIMP4) or 90s (post-WIMP5) today to communicate
with the digital world. New concepts for human-machine interaction that are still finding
their massive application include, among others, mixed reality.

Mixed reality technology6 is based on the idea of linking the real and digital worlds
by displaying virtual objects in such a way as to create the illusion of the existence of
these objects in the real world. The ratio of real and virtual worlds may vary (see reality-
virtuality continuum on Fig. 2). On the one hand, virtual reality (a completely artificial
world) can be supplemented with data from the real world (augmented virtuality). On
the other hand, the real world can be supplemented with virtual elements (augmented
reality). The key is that physical and digital objects coexist and interact with the user
in real-time. There is also a definition of mixed reality that extends it further and says
that the synthetic content and the real-world content are able to react to each other in
real-time, or other definitions like an extended reality (XR) that connects all AR, VR,
MR or spatial computing7.

Several technologies are available to implement mixed reality. The essential thing is to
know the location and direction of the user’s view (head pose or display device pose) in the
real world. The image of the virtual world must then be generated in such a way that the
user observing the scene of the real world, supplemented by the display or projection of the
image of the virtual world, obtains the illusion of the real occurrence of virtual objects in

3https://en.wikipedia.org/wiki/Ubiquitous_computing
4WIMP, stands for "windows, icons, menus, pointer", was developed at Xerox PARC in 1973, see

more at https://en.wikipedia.org/wiki/WIMP_(computing)
5Post-WIMP consider new conditions brought by mobile devices (small screen, gestures) (Nielsen,

1993)
6https://en.wikipedia.org/wiki/Mixed_reality
7https://en.wikipedia.org/wiki/Spatial_computing

4

https://en.wikipedia.org/wiki/Ubiquitous_computing
https://en.wikipedia.org/wiki/WIMP_(computing)
https://en.wikipedia.org/wiki/Mixed_reality
https://en.wikipedia.org/wiki/Spatial_computing

Figure 2: Reality-virtuality continuum (Milgram et al., 1994).

the real world. Among the main technologies providing the visualisation, we can name:
head-mounted displays (e.g. Hololens glasses), mobile devices or projected augmented
reality (see Fig. 3). A key aspect is a possibility of interacting with virtual objects in mixed
reality. Leaving aside very specific approaches and devices, widely used technologies for
interaction in MR are, e.g.: surface gestures (e.g. touch-screens, mobile devices, or any
flat surface covered by touch-sensitive foil), free-space gestures (HoloLens, Leap Motion
or similar), VR gloves, wearable sensors (e.g. Myo Armband) etc. (see Fig. 4).

Figure 3: Examples of augmented reality visualisation technologies (from left to right):
head-mounted display (Microsoft HoloLens), mobile device and projected AR.

Figure 4: Examples of user-input technologies (from left to right): surface gestures e.g.
on mobile devices8, free-space gestures e.g. by HoloLens9, VR gloves e.g. Meta proto-
type10and wearable sensors e.g. Myo Armband11.

8Photo by Tima Miroshnichenko from Pexels, https://www.pexels.com/photo/
person-holding-an-iphone-6474485/

9https://github.com/microsoft/MixedRealityToolkit-Unity/issues/4990
10Meta Reality Labs Research, Published on Nov 16, 2021 (e.g. https://www.protocol.com/

meta-haptic-gloves)
11Posted by Jack Donovan on Sep 5, 2014, https://blog.irisvr.com/blog/uncategorized/

vr-input-myo-armband

5

https://www.pexels.com/photo/person-holding-an-iphone-6474485/
https://www.pexels.com/photo/person-holding-an-iphone-6474485/
https://github.com/microsoft/MixedRealityToolkit-Unity/issues/4990
https://www.protocol.com/meta-haptic-gloves)
https://www.protocol.com/meta-haptic-gloves)
https://blog.irisvr.com/blog/uncategorized/vr-input-myo-armband
https://blog.irisvr.com/blog/uncategorized/vr-input-myo-armband

2.2 Collaborative robots and programming

The historical and current practice in production automation is to create a closed auto-
mated system where machines are more or less single-purpose. Such a solution is very
efficient in terms of work speed and accuracy. The key disadvantage is its almost zero
adaptability to other tasks. This approach is practical to large enterprises where the
production of a given product is expected to run for several years, and the investment in
the machinery will pay off. Small and medium-sized enterprises (SMEs) produce smaller
batches and therefore need a more general functionality solution that can often be recon-
figured to a new automated task. Collaborative robots (see examples on Fig. 5) are such
machines that can perform more general handling tasks (see the forecast for collaborative
robot applications on Fig. 6) and can also work closer to humans. Compared to conven-
tional robotic manipulators, they generally have less force, operate at lower speeds, have
rounded edges, and are equipped with technology that instantly stops the robot’s motion
in the event of an unplanned collision with a human or other objects.

Figure 5: Examples of collaborative robots (from left to right): Universal Robots (UR),
KUKA, FANUC a ABB Yumi.

Figure 6: Forecast for collaborative robot shipments by application12.

12https://www.roboticstomorrow.com/article/2021/02/the-collaborative-robot-market-2021%
E2%80%9328-grounds-for-optimism-after-a-turbulent-two-years/16190/, published by Maya
Xiao, Research Analyst, 2021

6

https://www.roboticstomorrow.com/article/2021/02/the-collaborative-robot-market-2021%E2%80%9328-grounds-for-optimism-after-a-turbulent-two-years/16190/
https://www.roboticstomorrow.com/article/2021/02/the-collaborative-robot-market-2021%E2%80%9328-grounds-for-optimism-after-a-turbulent-two-years/16190/

Although sales of collaborative robots are slowly increasing compared to conventional
robots (see Fig. 7), the deployment of collaborative robots in small and medium-sized
enterprises is still relatively slow. Indeed, the rapid reconfiguration of even such a system
still has many obstacles. One of them is the programming of the robotic system, which
requires professional programming skills. Enabling ordinary workers to program collabo-
rative robots (or to program in general) is the goal of a number of research efforts. Besides
traditional program source-code writing, some of the easier and more natural concepts
are already being used in practice (see Fig. 8), such as visual programming, kinesthetic
teaching or learning from demonstration (aka Programming by Demonstration).

95% 93% 92% 89% 87%

5% 7% 8% 11% 13%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2018 2019 2020* 2021* 2022*

Sh
ar
e

Traditional Cobots

Figure 7: Share of traditional and collaborative robot unit sales worldwide from 2018 to
202213.

(a) Visual programming in
Microsoft Robotic Developer
Studio14.

(b) Kinesthetic teach-
ing example.

(c) Programming by Learning (or Demonstra-
tion)15.

Figure 8: Examples of advanced approaches of robot programming.

Although research in the area of human-robot interaction in programming has pro-
duced some approaches that simplified and make programming more natural, such as

13https://www.statista.com/statistics/1018935/traditional-and-collaborative-robotics-share-worldwide/,
published by Martin Placek, Feb 25, 2021

14https://en.wikipedia.org/wiki/Microsoft_Robotics_Developer_Studio
15https://www.hes-so.ch/en/recherche-innovation/research-projects/

detail-projet-recherche/learning-from-demonstration-for-collaborative-robot

7

https://www.statista.com/statistics/1018935/traditional-and-collaborative-robotics-share-worldwide/
https://en.wikipedia.org/wiki/Microsoft_Robotics_Developer_Studio
https://www.hes-so.ch/en/recherche-innovation/research-projects/detail-projet-recherche/learning-from-demonstration-for-collaborative-robot
https://www.hes-so.ch/en/recherche-innovation/research-projects/detail-projet-recherche/learning-from-demonstration-for-collaborative-robot

visual programming, kinesthetic teaching or learning from demonstration, there are still
unresolved challenges on:

• enable programming of collaborative robots by the shop-floor worker,

• reducing the mental load of the robot operator,

• improving the orientation in the program,

• adapting the program to new conditions effectively,

• interacting naturally in real 3D space.

2.3 Unmanned Areal Vehicles (UAVs/drones)

Due to their high cost, unmanned areal vehicles (drones) were previously used mainly for
military purposes. Technological advances, which have significantly reduced production
costs and increased the safety of the operation of these machines (mainly by reducing
weight), have contributed to their spread to other industrial spheres. Today, UAVs can
be bought literally for a few bucks and operated even by children.

There are a number of different types of UAVs, which differ significantly in their
design (fixed-wing or rotor-craft) and thus in their flight characteristics – flight time,
manoeuvring limits, maximum payload, etc. (see Fig. 9). However, they also differ in
the range of degree of autonomy – from remotely piloted or semi-autonomous (containing
assistance functions) to fully autonomous.

Figure 9: Examples of typical UAVs: fixed-wing UAV (left) and quadrotor UAV (right).

Remote piloting uses a radio controller (RC) or virtual joysticks on the mobile device,
where the pilot uses direct sight of the drone for feedback and the now standard exten-
sion of video feed from the drone camera and flight information displayed on the mobile
device display or controller (Fig. 10(a)). Semi-autonomous systems, thanks to their abil-
ity to analyse their immediate surroundings (impact prevention, object avoidance), can
then fly along a specified trajectory (or checkpoints) autonomously (Fig. 10(b)), or use
the results of automatic sensor data analysis (e.g. positioning based on object tracking)
for interaction. Applications for the setup and control of monitoring missions of semi-
autonomous systems allow to monitor flight information and video transmission from
multiple drones and efficiently coordinate the whole squadron’s activity. Interaction with

8

these semi-autonomous systems consists of setting their planned path, setting synchroni-
sation elements when multiple drones are used in a single mission, etc., and this interaction
is done using a common GUI on mobile or desktop application.

(a) GUI with first-person view and sensory
data from flying drone16.

(b) GUI with virtual view based on off-line 3D maps,
control points and trajectories, extended by flying
data17.

Figure 10: Examples of GUI applications for drone pilots and operators.

UAVs can be very useful in situations where there is a need to explore hard-to-reach
locations quickly or deliver a package to such a location, monitor an activity from a safe
distance, or carry out an action in a hazardous area directly. An example of this would
be a rescue operation on a swollen river where drowning occurs. A drone can help to
map remote parts of the river quickly, locate the positions of drowning people, explore
access routes or even deliver rescue or medical aid. In these cases, an experienced pilot is
needed who can control the drone safely, even in situations where there is no direct visual
contact with the drone. However, such an operation can be mentally challenging even for
an experienced pilot, who must control a drone in a complex environment, not endanger
any persons and ideally not destroy the drone or close infrastructure.

Already in 2005, the Air Force Research Laboratory’s Human Effectiveness Directorate
(AFRL/HE) supported research addressing human factors associated with Unmanned
Aerial Vehicle (UAV) operator control stations. One of the ways was to use a synthetic
vision system that combined virtual vision data with live camera video presented on a
UAV control station display, e.g. (Calhoun et al., 2005) (see Fig. 11). The solution is
actually an augmented reality, where virtual information is constructed from databases
(e.g., terrain, cultural features, pre-mission plan, etc.), as well as numerous information
updates via networked communication with other sources and overlaid in real time onto
the dynamic camera video image display presented to operators. Synthetic vision overlay
technology is expected to improve operator situation awareness by highlighting key spatial
information elements of interest directly onto the video image, such as threat locations,
expected locations of targets, landmarks, emergency airfields, etc.

In addition to military purposes, drones are now used in a wide range of other ap-
plications, such as monitoring undergrowth fires, infrastructure inspection, surveillance,
package delivery, aerial photography and, last but not least, entertainment. Requirements

16https://www.dji.com/cz/downloads/djiapp/dji-go-4
17https://www.unmannedairspace.info/latest-news-and-information/

sph-engineering-launches-centralised-drone-flight-management-software/

9

https://www.dji.com/cz/downloads/djiapp/dji-go-4
https://www.unmannedairspace.info/latest-news-and-information/sph-engineering-launches-centralised-drone-flight-management-software/
https://www.unmannedairspace.info/latest-news-and-information/sph-engineering-launches-centralised-drone-flight-management-software/

Figure 11: Synthetic vision symbology added to simulated UAV gimbal video imagery
(symbology marking threat, landmarks, areas of interest and runway) (Calhoun et al.,
2005).

for low-risk or high-precision operations would be addressed by one or two extra cameras
monitoring the scene from different angles and distances. Inspiration in that direction
might be, e.g. work (Temma et al., 2019), presenting a third-person view solution using
a second drone, including innovative UI for spatial configuration of the second drone’s
position (see Fig. 12).

Figure 12: Demonstration of a third-person view solution using a second drone, includ-
ing innovative UI for spatial configuration of the second drone’s position (modified from
(Temma et al., 2019)).

In many cases, autonomous systems cannot be used safely (or legally), and drones’
remote control is required, often supplemented by semi-autonomous solutions. Besides the
research challenges in data processing, there is again an excellent scope for improving the
communication between the pilot and the machine (drone), and more precisely between
the pilot and generally some computing machine that analyses and evaluates the data
measured by the drone in real-time. Communication that will:

• facilitate the pilot’s control and reduce the risk of an accident by improving his
orientation in the real environment in which the mission takes place and in which
the drone moves,

10

• increase the distance at which the drone can be operated safely, and

• reduce the overall mental burden on the drone pilot.

2.4 Human-Computer Interaction Research

Man invents and creates machines. They have a function that benefits people. To make
good use of a given machine, man must control it. This is what the machine-human
interface is for. One such machine is a computer, which works with data in digital form.
The discipline of human-computer interaction is concerned with the design and use of
computer technology by human. A sub-discipline of the field is user-centred design, which
focuses on user needs and experience when designing interfaces. It offers tools and methods
to identify user needs by observing and analysing user behaviour, to process these needs
and derive user interface designs from them, create mock-ups (and then prototypes) of
new interfaces, perform tests on these mock-ups including evaluation of observed and
measured attributes, and make design modifications from the test findings.

Standard techniques then include personas, scenarios and use-cases. A persona is used
to describe a fictitious person who is an archetype of the user of the proposed interface.
It helps to create a clear and shared image of a typical user. It guides the selection of
different design options and elements of the proposed interface. The scenario is a story
describing the situation of the previously created persona, which must be specific to the
problem the proposed user interface intends to solve. The context described in the story
is more understandable and can be better followed for analysis and design. The use-case
is a description of specific events composed of a series of step-by-step actions towards the
desired goal.

In user testing of user interfaces, it depends on the goals that are required in a given
context. An essential attribute of user interfaces is the user’s mental workload when
interacting with the interface (NASA TLX (Hart and Staveland, 1988)). When designing
interfaces for new technologies or using new technologies for interaction, the level of user
expectation and then the user’s actual experience is often examined (SUXES (Turunen
et al., 2009). This method is particularly useful when dealing with multimodal systems.
In more general cases, it might sometimes be sufficient to find only the user experience
(UEQ (Schrepp, 2015)). In the case of new interface concepts, where it is difficult to
evaluate their properties by comparing them with another interface (which may not exist
at all), it is still necessary to evaluate the usability of the new solution (SUS (Brooke,
1996)). There are several testing protocols and questionnaires, even in specific domains
such as AR applications, e.g. HARUS (Santos et al., 2014). The methods mentioned
above are probably the most commonly used in the research area presented here.

This brief introduction to the context of the research introduced, in addition to partic-
ular semi-autonomous systems (collaborative robots and UAVs) and mixed reality tech-
nologies, especially the research methods in the field of human-computer interaction used
in the research presented further.

11

3 Spatial Robot Programming

If a robot is to be beneficial to man, man must somehow order it what action to perform.
The definition of the activity must contain, first of all, information about what the robot
is supposed to do, where it is supposed to do it, and how are the other specific parameters
of the particular operation set. An example is the grasp operation, where it is necessary
to specify where in space the robot is to grasp an object, but also what force to use to hold
it or from what direction to grasp it. This research focuses on working with collaborative
robots, so the following text reflects this context. Programming more extensive multi-
robot solutions is a topic not addressed in this research.

Apart from the standard way of defining robot actions, such as programming textual
source code, there are now various alternatives with their pros and cons, ranging from
visual programming and kinesthetic learning (see Fig. 8) to a dialog audio system, for
example. The resulting program for the robot is then a sequence of parameterised actions
in space. A human must communicate this program to the robot. Define the individual
actions and their locations in plain space, the parameters of each action, etc. However, the
user also needs to see what such an entire created program looks like, revise the actions
in the program, and edit all parts of the program.

This programming activity is often done on a desktop or laptop computer or a teach-
pendant18. Both of these approaches are effective for different needs. The teach pendant
is mainly used to manipulate the robot directly but also to create the actual program
itself. However, navigating the program is quite difficult. Applications for programming
robots on desktop computers are essential for programming larger complex units and
contain a large number of specific tools and functions – from custom programming to
modelling and simulation tools. The disadvantage is often the complexity of use for a
non-professional programmer and then the need to mentally map the robot model and
end-effector positions to a real 3D environment. This mental mapping of the program
into real 3D space happens not only during programming but especially when controlling
the robot while it is working or during the revision or adaptation of the program already
in the workplace. Then, an additional mental workload for the user arises due to the
constant context switching between the real 3D environment of the robot workplace and
the interactive device (monitor, keyboard or touch screen of the teach-pendant).

One way to solve some of the problems described above is to transfer programming
from the 2D GUI of the computer directly to the robot workspace. Working with the
program – creating, revising or modifying it – will take place in the real 3D environment
of the actual robot. This requires technology that allows digital data (the program) to be
represented and displayed in specific locations in the real world and to interact with this
representation. Augmented reality technology meets these requirements.

The following chapter is based on the results of our research and draws on the following
articles:

• Simplified Industrial Robot Programming: Effects of Errors on Multi-
modal Interaction in WoZ Experiment (Materna et al., 2016), explores and
extends the understanding of the impact of errors in 6 different modalities on user
experience and expectations in human-robot interaction context (Section 3.1).

• Using Persona, Scenario, and Use Case to Develop a Human-Robot Aug-
mented Reality Collaborative Workspace (Materna et al., 2017), introduces

18control panel for robot motion programming

12

the use of HCI methods in an HRI context (Section 3.2).

• Interactive Spatial Augmented Reality in Collaborative Robot Program-
ming: User Experience Evaluation (Materna et al., 2018), presents a solution
for displaying information in the context of a robot task, both in the programming
and processing phases (Section 3.2). It combines interactive spatial AR (ISAR),
kinesthetic teaching and object detection to relieve the user of the problem of context
switching between the computer and the robot environment without a hand-held
device (free-hand solution). The system usability score (SUS) of the new solution
is 75.80 (SD 8.90) compared to the reference (Huang and Cakmak, 2017) 66.75 (SD
16.95).

• Combining Interactive Spatial Augmented Reality with Head-Mounted
Display for End-User Collaborative Robot Programming (Bambušek et al.,
2019), seeks to address the limitations of interactive spatial AR (ISAR) technology
that cannot provide free-space 3D visualisation (Section 3.2). Knowing also the
limitations of HMD-based AR (limited field of view, single-user visualisation), we
design a new UI concept that overcomes the known limits of these technologies.
Experimental validation in a robot programming task demonstrates an improvement
in the usability of novel UI over stand-alone ISAR in qualitative measures by 33.84%
and quantitative measures by 28.46%.

• End-User Robot Programming Case Study: Augmented Reality vs. Teach
Pendant (Kapinus et al., 2020)19, presents a preliminary 2-condition (traditional
teach-pendant and ISAR) within-groups case study (Section 3.2). Preliminary re-
sults indicate the potential of our ISAR UI because all used standard metrics, ob-
jective (time to accomplish the task) and subjective (TLX, SUS and UEQ) metrics,
were better for our new ISAR solution.

• Spatially Situated End-User Robot Programming in Augmented Real-
ity (Kapinus et al., 2019), seeks solutions to UI limitations with SAR and HMDs
using AR on mobile devices. This loses the hands-free advantage, but mobile AR
brings many other benefits (especially speed and user experience) as shown by re-
search results, e.g. (Dass et al., 2018; Stadler et al., 2016; Magnenat et al., 2015). It
introduces a new concept of representing a robotic program in real 3D space (Sec-
tion 3.3). The potential of the new solution is demonstrated by an experimental
evaluation of the system usability score (SUS), where a score of 82.86 (SD=9.29) is
in class A and is at the 90–95th percentile (Sauro and Lewis, 2012) and low mental
load (NASA TLX) 27.38 (SD=9.41), which means that the workload was lower than
in at least 80% of studies analyzed (Grier, 2015).

• Improved Indirect Virtual Objects Selection Methods for Cluttered Aug-
mented Reality Environments on Mobile Devices (Kapinus et al., 2022a)19,
focuses on solving the problem of selecting virtual highly occluded objects with large
spatial distribution variability and heterogeneous size and appearance. Preliminary
results show a promising way of indirect selection that increases the selection accu-
racy (Section 3.3).

19Late-Breaking Report

13

• Augmented Reality Spatial Programming Paradigm Applied to End-User
Robot Programming (Kapinus et al., 2022b)20, addresses the problems of effec-
tive use of AR on mobile devices for user interaction in robot programming, GUI
ergonomics and precise positioning of virtual 3D points in real space. In addition
to the successful use of different interaction modes for improved GUI ergonomics,
the concept of accurate positioning of virtual objects using a combination of kines-
thetic teaching and relative positioning is a crucial attribute of the new prototype
(Section 3.3). The experiment was designed as a within-subject user study, compar-
ing the two different interfaces – new prototype and standard visual programming.
The task also included precise positioning of robot actions in real 3D space. Both
program orientation and new program-creating tasks were significantly faster using
the new prototype. According to subjective metrics, the new prototype is better,
but not significantly.

• ARCOR2: Framework for Collaborative End-User Management of Indus-
trial Robotic Workplaces using Augmented Reality (Kapinus et al., 2022c)20,
explores the usability of the new prototype in an industrial environment, including
the applicability of precise positioning, multi-user collaboration, the appropriate
level of abstraction for end-users, and the usability of the handheld AR modality
(Section 3.3). The evaluation on PCB testing use case was performed by three
experts and indicated the high potential of the solution.

• How Do I Get There? Overcoming Reachability Limitations of Con-
strained Robotic Workspaces in Augmented Reality Applications (Bam-
bušek et al., 2022)20, the research responds to situations in real industrial environ-
ments where not all parts of the scene are accessible, and programming in AR is
therefore limited. At the same time, it investigates the problem of user fatigue when
programming more complex programs in AR only. The new method uses VR in ad-
dition to AR and the ability to switch freely between each reality. This switching
negatively affected the mental workload of the user, but the physical workload was
statistically significantly lower when using both AR and VR, instead of AR only
(Section 3.4).

20publications submitted

14

3.1 Modalities and their error effect

When looking for a suitable way of direct human-robot interaction in a 3D working en-
vironment, it was first necessary to determine what modality is suitable for the user,
especially regarding the effect of the error rate of the particular modality on the user
experience and efficiency of use. This reasoning is based on the experience that, given
the maturity of modern technologies suitable for advanced UI in space and especially the
distractions in the real environment, UI cannot be expected to be error-free. Such errors
can be understood as, e.g. a wrongly represented gesture, an incorrectly selected virtual
element, etc. The experiment was conducted with three levels of error rate: 0% (ideal
unreachable condition), 10% (realistic condition) and 30% (worst case).

SAR21 technology was used for the experiment, complemented by kinesthetic teaching.
The UI elements that enabled the program’s manipulation and visualization elements
presenting the robot system’s knowledge of the scene were projected into the working
environment. The user could interact with the system using different modalities: touch
table-top, touch screen, gestures, 6D pointing device and direct robot-arm manipulation.
The experiment was implemented using a Wizard-of-Oz (WoZ) approach, where a hidden
operator implemented a simulated system response without the user’s knowledge. The
speech was not used due to the unsuitability of this modality in real robotic system
environments where high levels of noise and interference can be expected. The simulated
working environment for the implemented experiment can be seen in Fig. 13.

Figure 13: Prototype of the human-robot shared-space environment with augmented re-
ality user interface (Materna et al., 2016).

The 39 participants were divided into three groups. Each group did the same task but
with a different level of error rate. The results show that the number of interaction errors

21spatial augmented reality

15

does not substantially impact the preferred modality. On the other hand, however, the
results show (see Fig. 14) an expected trend of lower experience compared to expectations
when the interface error rate is higher. Preferred modalities are gestures and a 6D device,
such as a second touch table and touch screen. Objective measurements, e.g. speed of
task completion, show the same order of modalities. With a growing amount of errors, the
perceived intuitiveness of the modalities decreases, except for the touch display, where it
grows. This could be caused by the fact that the touch screen is the only control commonly
used by the participants.

Figure 14: User’s assessment on how the experience matched expectation (Materna et al.,
2016).

The most preferred (subjective measurement) and fastest (objective measurement)
modality was the 6D device. This is not to say that this modality is the best in general.
Each modality is suitable for different situations and requirements for the resulting inter-
active system. For example, kinesthetic learning (robot manipulation) turned out to be
the worst and slowest modality and yet it can be crucial for solving problems with accu-
rate 3D position input in space (discussed more in Section 3.3). Finding out the effect of
modality error rate on its usability by the user is essential in our further research, where
we need to know the limitations of each modality when designing a new concept.

3.2 2D GUI in 3D task space

The first concept, transforming the programming environment from a desktop computer to
a workspace, works with a scenario where the user needs to program a robotic manipulator
for pick&place tasks and specific operations at a particular location (e.g. glue application).
Thus, the user primarily needs to set locations in the workspace where to pick and place
objects and where to perform some machining operation. At the same time, specific

16

parameters need to be set for some operations. Furthermore, the example scenario works
with the constraint that the user should have his hands free and not have to wear extra
equipment.

Classic HCI methods are used in the analysis and scenario definition and are based
on common situations in the industry. The resulting scenario is then defined as follows
(Materna et al., 2017): The user will teach the collaborative robot to assist him in the task
of assembling aircraft service trolleys. He needs to show to the robot which parts are needed
in every step of assembling, where holes must be drilled, and what parts should be glued
together. At the same time, the persona was defined (Hartson and Pyla, 2012; Cooper and
Saffo, 1999): Jan, a 22 year old man, recently graduated at technical-based high school. He
works as an assembly worker at Clever Aero, a company focused on aircraft equipment.
He has no experience with robots, but he loves new technologies and he is really keen into
working with robots.

The constraints defined by the scenario lead to the use of SAR technology for com-
munication from the robot to the user, i.e. projecting the GUI onto the workstation’s
desktop. Based on previous research about preferred modalities and free-hand constraint,
a touch-table modality applied to the workbench is used to interact with the projected
GUI. A second modality, gestures, is also used for this interaction for experimental pur-
poses. The technology for tracking the position of the user’s hands and fingers evaluates
the pointing direction and the gesture stopping time. The detection results are mapped
to the pointer position in the GUI on the table. Kinesthetic learning is used to define the
spatial parameters of actions, where the user defines specific locations in space by placing
the end of the robotic manipulator (end-effector) at the desired location (see Fig. 15).
The concept assumes the system’s ability to recognize objects in the scene as well as
their type. It uses this information to define operations at a higher level of abstraction,
where a command can be given to the robotic system, e.g. pick up an object of a specific
type from a feeder. In experiments, this automatic object detection and classification
capability have been replaced by QR codes.

The design of the projected GUI reflects the needs to display both the program as a
sequence of actions and the details of the parameters of each action (see Fig. 16 (a-c)).
Furthermore, the ability to manipulate the program, from program management (running,
creating a copy, etc.) to action manipulation (reordering, creating duplicates, cancelling,
etc.). A key element of the designed GUI is the visualization and interaction with 2D
spatial information on the table in the working space. These elements (widgets) are used
to 1) edit the areas for picking up and placing objects, and 2) visualize the detected
objects, including their type (see Fig. 16 (d)).

Proposed concept reflects the main objective of the research to reduce the mental
demands and attention switches by centering all interaction in a shared workspace, com-
bining various modalities and enabling interaction with the system without any external
devices. The experiments focused both on the usability and user experience of this new
concept (Materna et al., 2018) and on a comparison with the now widespread method of
programming robots using the teach-pendant (Kapinus et al., 2020).

Non-expert users programmed a robot on a high level of abstraction and work within
the task context, free of any additional external devices and with immediate visual feed-
back. The intended workflow of the main task was that the user did the assembly while
the robot prepared the parts needed in the following steps itself in the background. The
program was divided into three blocks. Blocks 1 and 2 had the same structure and served
to prepare the parts for the sides of the stool (two legs, two connecting parts, application

17

bool applyGlue(objectType, polygon, positions) {

obj = findObjectInPolygon(detectedObjects,
 objectType,
 polygon);
 return glue(obj, positions);
}

Object detectionInteractive SAR Kinesthetic teaching

Instruction with parameters

Within-context programming Perception

Execution

Feedback

Figure 15: Illustration of program parameters definition (combination of manually set
parameters by the user with perceived information by the system) and its execution with
visual feedback (Materna et al., 2018).

(a) List of programs.
Green ones are ready
to run, red ones need
to set parameters.

(b) List of instruc-
tions. Green ones are
ready to run, red ones
need to set parame-
ters.

(c) A small dialog
shows if the robot
is able to detect an
object in the feeder
and allows the user to
save the arm pose.

(d) Polygon defining the area
on the table from which
the objects will be picked
up. The green outlines cor-
respond to detected objects.

Figure 16: Examples of different widgets from the prototype system (Materna et al.,
2018).

18

of glue). The purpose of two blocks was that the user might set parts within one block to
be supplied from, e.g. the left feeder, and in the other block from the right feeder. Block
3 served to prepare the connecting parts for the final assembly of the sides of the stool.
An example of human-robot interaction during the experiment is shown in Fig. 17.

(a) User selects in-
struction to be set
from list (pick).

(b) Object type is
set by touching its
outline.

(c) Robot arm is
used to teach detec-
tion position.

(d) Dialog shows
if robot is able to
detect object in
feeder.

(e) User saves po-
sition (confirmation
sound is played).

(f) User selects
follow-up instruc-
tion (place).

(g) User adjusts
place pose by
dragging it on the
table.

(h) Another pose,
first one also shown
for convenience.

(i) User tests pick
from feeder instruc-
tion.

(j) Test of place to
pose instruction.

Figure 17: An example of human-robot interaction during the experiment. In this case,
the user sets parameters for two pick from feeder instructions (one shown) and conse-
quent place to pose instructions (both shown). Then, instructions are tested. Two input
modalities are used: touch table and robot arm (Materna et al., 2018).

The conducted user experience tests proved the potential of this concept when all six
regular shop-floor workers were able to program the robot to prepare parts for a stool
assembly, collaborate with the robot, and adapt the program for an alternative product
within a reasonable time. The mean usability (SUS) rating was 75.80 (SD 8.90), while for
comparison, the system from (Huang and Cakmak, 2017) scored 66.75 (SD 16.95). The
mean mental load (TLX) was 33.3 (SD 8.8). No fundamental issues were found during
the experiment forcing us to reconsider the approach. However, the task state awareness,
in particular, has to be improved as well as support for the workspace layout. The
participants rated the system positively despite some minor usability issues and system
errors caused by its experimental nature.

Comparing a traditional method of programming an industrial collaborative robot
using a teach pendant, with a novel method based on augmented reality and interaction on
a high-level of abstraction brings necessary preparations to deal with different complexity,
level of abstraction (high for AR, low for pendant) and specifics of each method. In the
experiment, three participants programmed a visual inspection task (Kapinus et al., 2020).
The robot was instructed to pick the bottle opener from the table, put it in front of the
camera, trigger the inspection method and based on the inspection result, put the bottle
opener into one of the boxes on the table (an illustrative example is in Fig. 18). To make

19

Figure 18: Participant programs a visual inspection task using the proposed spatial aug-
mented reality interface (Kapinus et al., 2020).

Participant Ap Aa Bp Ba Cp Ca

Introduction [s] 359 179 449 311 185 174
Task [s] 562 189 749 309 510 146
TLX [0, 100] 72.22 36.11 44.44 27.78 33.33 19.44
SUS [0, 100] 52.50 82.50 42.50 80.00 70.00 90.00
UEQATT [−3, 3] −1.17 2.00 −0.17 1.83 1.83 2.50
UEQPRA [−3, 3] 0.25 2.08 −0.50 1.83 1.58 2.25
UEQHED [−3, 3] −0.25 2.12 −1.25 1.62 0.25 2.00

Table 1: Durations of introduction and programming for both (p)endant and (a)rcor
modality. Subjective metrics for each participant and both modalities. Higher means
better for all subjective metrics except TLX (Kapinus et al., 2020).

the comparison fairer, a few high-level functions such as pick, place or suction (on/off)
were prepared in advance in teach-pendant. The results indicated the potential of the
proposed solution (see Table 1), which was preferred by the participants over the tech-
pendant (based on system usability (SUS) and user experience (UEQ)), the task load was
also better (TLX). Also, it required less time to train as well as to program the visual
inspection task.

The results of the experiments led to further modifications of the proposed spatial in-
terface in AR and its integration into an industrial application22. In addition to practical
applications, new experiences regarding the benefits of different modalities and approaches
led the research to use other AR technologies and attempt to transfer the task of pro-
gramming the robot into 3D space.

An existing solution with SAR technology and a touchscreen on the workspace table
was also extended with augmented reality glasses, namely Microsoft HoloLens (Bambušek
et al., 2019). Main advantages of the proposed approach are the possibility to program
the collaborative workspace without the presence of the robot, its speed in comparison to
the kinesthetic teaching and an ability to quickly visualise learned program instructions

22https://www.testitoff.cz/en/

20

https://www.testitoff.cz/en/

in the form of virtual objects in 3D space enhancing the users’ orientation within those
programs (illustrative screenshots in Fig. 19). Visualisation of a partial robot simulation
directly in a 3D environment also significantly reduced the risk in testing the program.

Figure 19: Spectator’s view of the collaborative workspace, with projected user interface,
extended by virtual objects seen through the HMD – an illustrative example of setting
program parameters using the HMD gestures (left). Virtual gripper is rendered on a
set detection position along with the virtual object of specified type (pick from feeder
instruction) (right-top), and virtual object is rendered on a set place position (place to
pose instruction) (right-bottom) (Bambušek et al., 2019).

The new solution, which extended the existing system by using HMDs, brought im-
provements in pick and place tasks in qualitative measures by 33.84% and by 28.46% in
quantitative measures over the baseline SAR approach for both tasks (Bambušek et al.,
2019). Ongoing research has already focused on programming the robot entirely in a 3D
environment.

3.3 3D GUI in 3D task space

The main goal of our research was to fully transfer the interaction in robot programming
to a real 3D robot manipulator workstation. After experiences with different modali-
ties, program representation, user needs and expectations, key action parameters and
kinesthetic learning, the new concept of a user interface in 3D space was proposed using
augmented reality on mobile devices. The basic concept and representation of the program
were presented on a PCB testing23 task (see Fig. 20 right). The program is represented
as a set of points in 3D space, where each can contain one or more specific actions to be
performed by the robot at that point. The sequence of actions is then defined by logical
connections between the actions (see Fig. 20 left).

Experiments were conducted with seven users with no or very limited knowledge of
programming and augmented reality. A system usability scale (SUS) was in the range
of 80.8–84.0, that is rated by grade A and is at the 90–95th percentile. This shows

23printed circuit board testing

21

Figure 20: Illustrative representation of the robotic program as logical connections of
actions in space (left) and layout of real objects for use-case PCB testing (right) (Kapinus
et al., 2019).

promising potential for future research in this field and shows that the created prototype
user interface is highly usable. Although the mental workload (based on NASA-TLX
evaluation) in laboratory scenarios cannot be generalized directly to the workload in a
real environment, it still can be helpful to reveal potential issues. The mean TLX in our
experiment was 27.38 (SD=9.41), which means that the workload was lower than in at
least 80% of studies analyzed by Grier (Grier, 2015). The UEQ benchmark measured
the user experience. The system was overall rated as Excellent in all UEQ categories,
i.e. Attractiveness (mean score 1.93, SD=0.58), Pragmatic attributes (mean score 2.26,
SD=0.28) and Hedonic attributes (mean score 1.86, SD=0.72). We found no fundamental
problem during the experiment forcing us to reconsider the proposed approach. Although
participants observed or self-reported minor issues, all participants were able to complete
the task.

In the further development of the new concept, several key objectives were strongly
considered: efficiency of AR usage, ergonomics of the GUI on a mobile device, fast yet
accurate positioning in 3D and object selection in cluttered scenes.

The effective use of AR reflects the shortcomings of UI design in 3D, which can
lead to a situation where AR is used for minimal interaction (e.g. it only displays virtual
objects and allows their selection), but most of the interaction then takes place using
on-screen GUI elements (buttons, menus, form elements, etc.) in a head-up manner. The
desire to minimize on-screen controls and bring the maximum amount of interaction into
3D space has led to solutions based on various interface modes. Thus, the amount of
2D GUI elements on the screen is minimized to only buttons for switching modes and
then two context buttons implementing the execution of an action (select, manipulate,
insert, remove, etc.). The key element is the pointer, which is fixed in the middle of the
screen. This final solution is also influenced by the emphasis on the ergonomics of the
designed GUI. The user should focus on working with the virtual data in 3D space, not
on the GUI on the tablet. Therefore, the key GUI elements are designed to be operable
only with the thumbs of the hands and have a fixed location, changing only the function
of the two context buttons. The interaction then takes place mostly in 3D space with
virtual objects using the pointer and context buttons according to the current interface

22

mode. The schematic concept is illustrated in Fig. 21.

Figure 21: Schematic visualization of the user interface. The left side contains the main
menu allowing the user to select the appropriate interaction mode. In the middle is a
crosshair for indirect virtual object selection. On the right are two context-aware mode
buttons, easily reachable by the user’s thumb (Kapinus et al., 2022b).

Fast manipulation of virtual objects in 3D means such manipulation where the
position is determined by the movement of the mobile device and positioned by the user
based on the visualization of the object in AR. By this direct manipulation, objects can
be manipulated quickly and naturally, and their location in 3D space can be directly
observed. However, the accuracy of this manipulation is only indicative and can be
used, e.g., for rough 3D annotation of the environment. This is caused by the two main
coordinate systems of the whole concept:

1. the robot coordinate system, in which the locations of actions in space have to be
defined, and

2. the AR scene coordinate system of the mobile device, in which we visualize the
program in the 3D environment.

A straightforward way to register these two coordinate systems can be done, e.g. by
some easily locatable reference mark (e.g. QR code) whose location is known in the robot
coordinate system. However, this does not solve the problem of the inaccuracy of AR
on mobile devices, which is based on estimating the position of the mobile device camera
based on image analysis. All positions given by direct manipulation in AR are implicitly
inaccurate.

Precise manipulation, which is crucial in most robotics scenarios, is enabled by the
new concept under investigation in two ways. For both methods, kinesthetic learning is
the basis, where the position of the robotic manipulator’s end-effector is used to precisely
position the virtual object in the 3D scene. This is because its position is precise in the
robot’s coordinate system to which the program relates in 3D space (i.e., as precise as the
robotic manipulator’s precision). The precisely specified positions of virtual objects or 3D

23

spatial anchors in the scene then serve as reference points. The position of other virtual
objects can then be set precisely relative to these reference points. For this purpose, the
concept of a 3D manipulation gizmo (see Fig. 22) and a transformation menu (rotational
selection) are used to adjust the displacement in the selected axis. This translational GUI
element also includes a shift order switch to accelerate the shift by larger distances.

Figure 22: The schematic visualization of the precise manipulation tools available in the
transform mode. 3D widget, so-called gizmo, rendered over the manipulated object (left)
and the transform menu, with several interactive elements and rotary widget (Kapinus
et al., 2022b).

This new concept of spatial programming was experimentally compared with the visual
programming approach already frequently used today for collaborative robots (Dobot M1
Studio24) was chosen as a representative of this approach. The experiment was designed as
a within-subjects design with two conditions: C1 – a new concept of spatial programming,
and C2 – conventional visual programming approach with Blockly technology, which was
tested on 12 subjects of various ages, self-reported genders, and technical backgrounds.

Both mental load (TLX score) and usability (SUS questionnaire) were better for the
new concept (C1) than for the conventional (C2) (see Fig. 23(a)). However, differences are
not significant for both metrics according to paired t-test, so the research hypothesis that
the new interface (C1) is more usable than conventional (C2) and puts less task load on the
user, can not be confirmed. C1 usability was compared with a similar solution for virtual
object manipulation in AR (SlidAR (Polvi et al., 2016)) using HARUS method (Santos
et al., 2014), where it achieved better values, 82.9 vs. 76.3 (the higher, the better).

Objective measurements were performed on 3 types of tasks (see Fig. 23(b) and (c)):

1. visualization and program orientation (T2) – the measured data showed that
the new concept (C1) enables significantly faster program orientation and under-
standing,

24uses the Blockly technology, https://en.wikipedia.org/wiki/Blockly

24

https://en.wikipedia.org/wiki/Blockly

2. creating a new program (T3) – again, from the measured data it can be signif-
icantly demonstrated (according to the Wilcoxon test) that the new concept (C1)
allows creating a new program faster than using visual programming (C2) on a
desktop computer,

3. program adaptation (T4) – the use of the new concept (C1) was slightly faster,
moreover, in the C2 condition, participants did not fit the entire trajectory, and
therefore the difference becomes even larger as the number of points on the trajectory
increases.

The training phase for familiarization with both approaches was insignificantly worse
in time for the new concept (C1) than for conventional one (C2) (Fig. 23(b), T1). A
somewhat surprising subjective finding was that for fast (i.e. inaccurate) manipulation
of virtual objects in 3D space, users preferred kinesthetic learning (50%) over direct
manipulation by moving the mobile device in space (33%) (the remaining 17% preferred
the rotating widget). The new concept proved to be more time efficient in the given
scenario compared to visual programming on a computer.

TLX SUS HARUS

20

30

40

50

60

70

80

90

C1
C2

(a) The subjective measure-
ments. For the TLX, the lower
means better, for SUS and
HARUS25, the higher means
better.

T1 T3
400

600

800

1000

1200

1400

C1
C2

(b) Time (in seconds) needed to
complete T1 (training) and T3
(main) tasks.

T2 T4

50

100

150

200

250

300

350 C1
C2

(c) Time (in seconds) needed to
complete the T2 (visualization)
and T4 (adaptation) tasks.

Figure 23: Comparison of subjective and objective measurements (mean values and corre-
sponding 95 % confidence intervals) for conditions C1 (new concept) and C2 (conventional
visual programming) (Kapinus et al., 2022b).

When testing the proposed concept, it was found that when creating more complex
programs, the 3D scene in AR becomes cluttered with virtual objects representing the
program: spatial anchors, actions and logical connections. The study of existing solutions

25evaluation of the usability of AR in mobile devices (HARUS method (Santos et al., 2014)) was
evaluated only for the new concept (C1)

25

showed that the problem of selecting virtual objects within augmented reality on handheld
devices had been tackled multiple times. Still, evaluations were carried out on purely
synthetic tasks with uniformly placed homogeneous objects, often located on a plane and
with none or low occlusions. Conversely, the robotic program contains highly occluded
objects with large spatial distribution variability and heterogeneous size and appearance.
Two new methods were therefore designed to enable long-term usage with a tablet-like
device (Kapinus et al., 2022a). A preliminary evaluation of proposed methods suggested
that using indirect virtual object selection in cluttered AR on mobile devices
could help increase selection accuracy. The increase could be achieved primarily in
tasks with heavily cluttered environments, such as robot visual programming, AR-enabled
visualization of robotic trajectories, editor of robotics work-cells, or any other situated
visualization.

Finally, the research results were integrated into a single unit and supplemented with
technical functions to enable the results to be used in industry. In addition to purely prac-
tical functionalities, such as the possibility to integrate various external industrial robotic
and automation devices, there were also conceptual extensions, such as the possibility of
multi-user programming collaboration (see Fig. 24) or the generation of program source
code in Python for further modifications by experts.

(a) During hand teaching, the robot is locked by the user
and therefore unavailable for others, which is indicated
within the 3D scene.

(b) Multiple users collaborating on the task of
moving boxes between robots using a conveyor
belt.

Figure 24: Technically oriented evaluation of the collaborative-related functionality (Kap-
inus et al., 2022c).

The latest evaluation of the complete system was performed by three experts and
indicated the high potential of the solution. The framework, when adopted by a system
integrator and its customer, allows efficient collaboration between professional (robot)
programmers and end-users, who are domain experts (see Fig. 25). By allowing end-users
to set up a workplace, create or adapt the program, high flexibility needed for SMEs is
achieved. Moreover, as SMEs are able to perform program modifications/adjustments on
their own, expenses are reduced.

The gained experience also helped to at least partially answer the research long-term
research questions. Within the context of visual programming, it turned out that situ-
ated interaction could be realized using augmented reality and handheld devices, when
supported by specifically designed interfaces. The proposed solution overcome imprecise
registration of AR visualization by utilizing the robot’s precision and then by moving

26

(a) Render of a PCB testing workplace
with the Ensenso 3D camera for bin-
picking, 6 DoF Aubo i5 robot, 2 DoF
custom-build robot, functional tester, bar-
code reader, and printer, source, and target
boxes.

(b) A user observing the program for the PDB testing
task on real 3D working space.

Figure 25: Experimental PCB testing workplace (Kapinus et al., 2022c).

virtual objects relatively to precisely obtained positions (even if the visualization might
be slightly shifted or not fully stable), because the spatial relations between objects are
kept and users can manipulate objects with arbitrary precision.

3.4 VR vs. AR in Robot Spatial Programming

Experimental experience has shown two general drawbacks when using AR for program-
ming. One is fatigue when performing some of the more tedious operations, such as setting
action parameters or precise positioning. This was expected and is a known problem when
using AR. For these operations, it would be more comfortable for the user to sit down,
put the tablet down and adjust parameters and precise positioning already outside of
AR. The second problem was, less expected, that in some cases it was necessary to look
at the scene from an angle that was not possible to implement in practice (e.g. due to
space constraints of the machine, poorer accessibility of important locations in space due
to density and overlapping of real objects, etc. (see example on Fig. 26(a)). And also
one more aspect led to a new extension of the concept. Working in AR on a monoscopic
display impairs the user’s spatial perception and the user then needs to view the scene
from two angles simultaneously in some situations.

This observation led to the extension of the concept to include the possibility of work-
ing only in virtual reality (VR). It was necessary to extend the interface with a new
element of a virtual camera that the user could move freely either by moving the tablet
but in a different coordinate system (without reference to the real 3D space) or by using
GUI elements (see Fig. 26(b)). The rest of the interaction then remains the same. Thus,
the user can explore and modify the scene without having to connect to the real space
(e.g., sitting down without getting tired hands) or take advantage of the offset view of the
scene and explore and modify the scene from different angles than the real world would
allow in AR.

27

(a) A user is trying to fit the grey object onto
the red one, which is occluded by the real-world
environment.

(b) Moved camera to the physically inaccessible
position to get a better view of the scene in VR
mode.

Figure 26: An example of a fitting task in AR and VR mode (Bambušek et al., 2022).

Experiments were then focused on the extent to which the ability to work in VR under
limited spatial conditions was exploited. The task was the spatial annotation of objects
that could not be bypassed and thus seen from the other side. Twenty subjects performed
the task under 2 conditions – AR only and the possibility of using both AR and VR
(within-subject experiment). Although some results were affected by the inappropriate
implementation of GUI elements for controlling the virtual camera (which affected the
mental workload), the physical workload was statistically significantly lower when using
both AR and VR. Since the task execution time was the same in both conditions and the
concept of using VR was positively accepted by the users, this extension can be evaluated
as the right direction (Bambušek et al., 2022). The room for improvement then remains
a more appropriate implementation of the virtual camera control to make this task more
natural and not unnecessarily burden the user.

28

4 UAV Pilot Support by New UI Elements

UAVs are an area that has seen significant growth in recent years. Technological de-
velopments have brought about a considerable proliferation of these devices in both the
private and industrial domains. One of the areas where UAVs are now beginning to be
used successfully is in monitoring or rescue operations by police or emergency services.
Research and development in this area focus on aspects ranging from legislation and air
traffic management, to adverse weather conditions or technological challenges. My re-
search focuses on UI and specifically on the possibilities of using mixed reality to reduce
the drone pilot’s mental workload and the risk of a drone collision with the environment.

The tasks in which rescue and police forces use drones today often require a situation-
specific expert – an intervention commander, an operator of some other equipment (e.g.,
a crane), a medic, a structural engineer, etc., who needs to see some specific remote or
inaccessible location. However, this expert cannot pilot the drone with sufficient safety
and quality; therefore, another person needs to be involved- an experienced drone pilot.
In some situations, even a professional pilot can have a problematic situation in various
tasks where piloting a drone is a mentally challenging operation.

Of course, the difficulty of piloting depends on the specific situation – weather condi-
tions, safety constraints, infrastructure complexity, etc. A common legal requirement is
direct visual contact (the pilot must see the drone). In addition to the information about
the exact position of the drone thanks to GPS and IMU sensors, the video transmission
from the drone camera to the pilot’s display and various distance measurements from
additional sensors on the drone helps to control accuracy.

Present UAV systems (drones), both rotorcraft and fixed-wing, have the capability to
carry a variety of sensors as well as additional handling elements. The computing power
of embedded devices today offers processing and automatic analysis of signals directly
on board the drone. The control of the UAV can then be implemented semi or fully
autonomously. Legislation, varying by country, often does not allow autonomous control.
However, in many use cases, the autonomous capabilities of these systems cannot even be
used and require pilot control. Automatic methods of processing drone sensor data are
primarily used offline; the information is aggregated from the stored data only after the
flight is completed.

Many papers inspire my research in this area. Three specific problem areas of flight
are already defined by Mouloua (Mouloua et al., 2001): workload, situational awareness
and teamwork issues. They address these areas from the perspective of flight system
designers, who must appropriately address these human error factors and provide rec-
ommendations for maximizing UAV operator efficiency, identifying key human factors,
ergonomic recommendations, and implications for making piloting more effective. Sys-
tem monitoring, checking error messages or visually checking status indicators require
the full attention of the pilot (or operator) and can become repetitive over time, leading
to performance degradation and operational errors. This dynamic model of stress and
attention is addressed in detail in paper (Hancock and Warm, 1989). The relationship
between the degree of autonomy and UX is addressed, e.g. in paper (Christ et al., 2016),
where it was shown, in addition to the case study, that the level of autonomy has various
influences on UX, particularly in situations with the high perceived workload. Recent
research (Agrawal et al., 2020) describes a procedure to involve the target users in the
design process (here emergency services in tasks like fire surveillance and search and res-
cue). For my research, this work inspires designing for situational awareness (SA) using

29

a scenario-driven, participatory design process.
Research in the use of mixed reality for UI in industrial applications could help answer

two key questions.

1. What information or results of autonomous methods that could process sensory data
in an online (real-time) manner would facilitate drone piloting and thus reduce the
mental workload of the pilot without reducing the pilot’s attention?

2. How to effectively communicate these results to the drone pilot?

Thus, the research goal is not to replace the pilot but to use the results of the automatic
processing of sensor data from the drone to facilitate piloting, enable safe piloting even
for less experienced pilots and reduce the mental burden on pilots in general. I do not
aim to replace today’s traditional controls by, e.g. gestures (Teixeira et al., 2014) and
force pilots to control the drone in a different way, but to keep the procedures and skills
learned today and only extend and improve the use of current technologies.

Mixed reality technology offers a visual combination of virtual and real data and
interaction with them. Virtual data can be of different kinds: data acquired earlier
(3D model of infrastructure, results of weather simulations, etc.), meta-data acquired in
real-time (location, video data, 3D reconstruction of the environment, occupancy map,
distance measurements, positions of external objects in the mission (vehicles, drones,
people), etc.), but also user meta-data (control points, danger areas, planned mission
trajectory or other spatial annotations). Thus, the research question is what data to
use and how to use it to reduce the risks of drone piloting and the mental load of the
pilot during the operation. This is done not only by visualizing this data but also by
appropriately incorporating automatic assistant features during piloting. To ensure that
the pilot is always the only central command and control element in the system but is
sufficiently oriented to be able to focus more on the analysis and evaluation of the situation
and less on the actual piloting.

The following chapter is based on the preliminary results of my research and draws on
the following works:

• Effective Remote Drone Control Using Augmented Virtuality, Sedlmajer
et al. (2019), presents preliminary experiments with a new UI of pilot application
solving the limitations of pilot spatial awareness. The novelty is combining virtual
and real data using augmented virtuality instead of augmented reality, which gives
the pilot the freedom to move the virtual camera around the scene without losing
awareness of the actual situation (video stream from the drone camera). Based on
this original concept, both HW experimental device (Plascencia and Beran, 2018)
was created, which is an open solution and allows the development and testing
of automatic machine learning methods directly on the drone, and SW framework
(Plascencia et al., 2019) and SW application with GUI for pilots (DroCo26), which
serves as a basis for further experiments and research in cooperation with the rescue
and police forces of the Czech Republic (Section 4.1).

• Safe drone exploration with clever trajectory movement, student’s diploma
thesis (Ferencz, 2022)27, presenting novel idea to solve the problem with pilot focus
when flying search and monitoring mission in a complex environment. The control

26https://www.fit.vut.cz/research/product/647/
27supervised by the author of this thesis

30

https://www.fit.vut.cz/research/product/647/

assistant pulls the drone back to a manually pre-set safe trajectory. The pilot thus
does not have to concentrate on keeping the drone in a secure area but can entirely
focus on the mission task, e.g. taking pictures of objects of interest, without losing
manual control of the drone (Section 4.2).

4.1 Augmented Virtuality for Pilot Situational Awareness

When controlling a drone, the pilot has several options for situational awareness: direct
visual contact with the drone, a map view of the drone’s position, information from sensors
(e.g. height above ground), collision reports, and live video feed from the drone’s camera.
Existing SW solutions are designed to manage multiple drones in search and rescue (SAR),
police and security operations from anywhere in the world. The single command centre
brings together all video streams, 3D maps, placemarks and other incoming drone data
to provide real-time situational awareness (see examples in Fig. 10). The interfaces allow
users to simultaneously view multiple video streams along with a 3D map of the mission
terrain with the actual coordinates of the drones. Both the operator and the pilots can
manually control the drones when needed, as well as add placemarks for particular areas
with attached geolocation and inspection images.

(a) Sky Viper Flight Simulator28. (b) DJI GO simulator29.

Figure 27: Example of third-person view in flight simulators.

Inspired by a study of the issue led to the design of a new user interface concept for the
drone pilot, which would allow visualising the broader context of the situation by using
the third-person view (see Fig. 27) and looking around the scene. The new concept, which
aims to increase the pilot’s situational awareness and thus reduce his mental load, is also
based on a spatial combination of different data sources, but instead of augmented reality,
it will use augmented virtuality. The scene that is visualised to the pilot primarily contains
existing available (off-line) data from the location, e.g. 3D models of the infrastructure
(buildings, maps, etc.). However, this data may not be up-to-date and does not contain
objects occurring in the scene in real time. Therefore, the scene is supplemented with
spatially registered (on-line) live data – video transmission from the camera on the drone,
height information, etc. (see Fig. 28).

Some of this live data are processed in real-time to extract information about objects
in the scene (3D occupancy map, object detection, object classification, etc.). Further-
more, existing objects that can locate themselves (rescuers, firefighters etc., wearing GPS

28https://apps.apple.com/us/app/sky-viper-flight-simulator/id1135441810
29https://www.dji.com/cz/simulator

31

https://apps.apple.com/us/app/sky-viper-flight-simulator/id1135441810
https://www.dji.com/cz/simulator

Figure 28: Concept of controlling the drone from the third person view. The virtual screen
(with the video feed) moves in front of the drone at a certain distance and is synchronised
with the physical gimbal configuration (Sedlmajer et al., 2019).

locator) and share this information with the visualisation system, might be integrated into
the scene also. Finally, user spatial data such as mission control points, safe trajectories,
danger zones in the area of operation, etc. are integrated into the scene in this way. Since
the concept is based on a virtual data scene, where the drone is visualised as a virtual ob-
ject based on its location information, and to which live data from the real scene is added,
this system can be classified as augmented virtuality. Thus, this integrated system allows
the creation of supporting navigation and orientation functions and widgets for the pilot,
such as distance indicators to various nearby measured objects (see red octagon represent-
ing the close distance to neighbour objects in Fig. 29), navigation and distance indicators
to external objects communicating with the system and locating themselves in the area
(other drones, vehicles, persons) or spatial instructions from third parties (intervention
commander, pilots of other drones, ground troops, etc.) (see Fig. 30). The new concept
allows the pilot to move the camera freely around the scene and change the view of the
piloted drone (without losing the live video feed from the drone camera), allowing him
to gain better spatial situational awareness. Local distances to objects, navigation along
the planned flight path, location of other units, instructions from the action commander,
etc. then also increase the logical situational awareness and together reduce the mental
load on the pilot.

Another way to increase situational awareness and, most importantly, to increase the
accuracy of piloted operations is to use more drones. An example could be a situation
where a drone, carrying e.g. a critical consignment on an overhead device, has to be very
precisely guided to a specific location (e.g. without endangering a distant person or to
safely insert the consignment into the target object). In these situations, the choice of
a second drone as an additional source of information for the pilot (especially visual –
video transmission) is suggested. When using multiple drones, it is essential to 1) find

32

Figure 29: Screenshot from an application with GUI (DroCo) using augmented virtuality
to implement a third-person view with live transmission of real video-data and GUI ele-
ments visualising estimated distances to virtual objects.

Figure 30: Screenshot of the DroCo application with descriptions of the GUI elements
and functions of the new GUI concept for the drone pilot (here without the image of live
data from the drone).

33

a suitable way to set up the spatial configuration of the drones and then 2) enable safe
autonomous flight of the drones in the squad.

Our ongoing research explores situations where a third-person view of a piloted drone
can be most beneficial (e.g., precision operations in a remote location, flying through
complex environments (forest, industrial infrastructure), reversing, etc.). An example
of a video-transmission for the pilot of ongoing experiments is shown in Fig. 31. The
experiments are conducted in the form of Wizzard-of-Oz, i.e. the additional drones are
manually piloted in the experiments.

(a) Video-transmission of the main piloted drone – missing vi-
sual information about objects on the left (street lamp) or right
(tree-trunk).

(b) Video-transmission from the second drone realizing the third-person view.

Figure 31: Excerpt from the realization of experiments analyzing the benefit and appli-
cability of the TPV concept in piloting drones in complex environments.

The goal of my further research is, therefore, to let the pilot control two (or more)

34

drones as one unit, where the formation of drones behaves autonomously (keeps in a
specified formation, maintains the direction of the camera’s view regardless of its position,
etc.). In addition to the UI for the pilot, which must efficiently allow to configure the
behaviour of the whole unit, other aspects of such a solution are essential – monitor the
space around the unit so that individual drones can navigate themselves to safe locations
or automatically plan the movement of all drones. That is, everything to allow the pilot to
monitor only his mission target or to let a less experienced pilot to handle such a mission.
This is the direction in which my research is going.

4.2 Automatic Assistant for Safe Drone Control

Suppose the aim is to facilitate the pilot’s activities during reconnaissance or surveillance
actions, given the legislative restrictions on an autonomous flight. In that case, there is
room for a solution that leaves the drone’s control to the pilot but makes it as easy as
possible. For example, when the pilot’s goal is to explore a given area, but it contains lo-
cations with a high risk of drone movement (presence of people, dangerous infrastructure,
or just an increased risk of collision with objects or infrastructure). It is then desirable
that the pilot focuses on the critical goal of exploring the area instead of being highly
focused on piloting the drone in dangerous locations. The proposed method is based on
the assumption that the pilot or operator can manually specify areas or trajectories in
advance for the safe movement of the drone. In this case, a method can be developed to
revise the pilot’s manual control in real-time based on the specified trajectories and the
actual drone movement (direction, speed, acceleration). The pilot will thus control the
drone’s movement, for example, only along a specified trajectory (forward/backwards) or
in an area that will not allow it to fly out of a given safe area. The safe areas can be
specified manually (e.g. safe area away from crowds, trajectory over a road) or automat-
ically (analysis of previously flown missions, e.g. in complex industrial infrastructure).
According to the mission parameters (risk), deviating from the specified trajectory to a
safe extent will be possible. Still, the drone will keep itself as close as possible to the
pre-specified safe position (illustration in Fig. 32).

Figure 32: Illustration of automatic assistant functionality for drone control correction.
The red arrow shows the direction and speed of the pilot manual command to the drone,
and the green arrow shows the desired safe direction and speed of the drone after the
correction when the assistant is active (Ferencz, 2022).

So far, this concept of an automatic assistant for correcting the drone control has
been implemented in a fundamental version in a simulated environment (Ferencz, 2022)25.

35

Keeping the drone in a safe area is based on a predefined safe flight trajectory. The model
predicts the future position xt+∆t of the drone based on the position xt in current time t,
velocity vt and pilot control commands to drone (acceleration at). Next, both a correction
vector ct and a predicted correction vector ct+∆t are computed. The correction vectors
pull the drone back to a safe position on the trajectory.

The position and velocity of the drone are expressed by the equations for the change
of particle position in time:

xt+∆t = xt + vt ·∆t+
1

2
at ·∆t2 (1)

Correction vectors ct, resp. ct+∆t are computed by a stiffness function S modelling
the imaginary spring pulling the drone back to the safe trajectory based on the L2 dis-
tance between the actual, respective predicted drone positions, and ideal positions on the
trajectory pt, resp. pt+∆t:

ct = S(d(xt, pt)) · (xt − pt) (2)

ct+∆t = S(d(xt+∆t, pt+∆t)) · (xt+∆t − pt+∆t) (3)

The resulting corrected acceleration acorrectt is then a linear combination:

acorrectt = w0 · at + w1 · ct + w2 · ct+∆t, (4)

where wi are weights (
∑

i wi = 1) controlling the assistant behaviour. The assistant
finally remaps the corrected acceleration into drone control commands so that the drone
does not fly out of the safe area and gets as close to the safe trajectory as possible. The
desired behaviour of the assistant to keep the drone safe is shown in Fig. 33.

.

.

p0

p1
p2

p3

xt+t

pt

pt+t

ct+t

ct

at

at
correct

xt

vt

Figure 33: Simple implementation of control assistant keeping the drone close to the safe
trajectory (modified (Ferencz, 2022)).

A prototype of the assistant was implemented in the AirSim30 simulated environment
for experimental purposes. The experimental task mimics the real exploration needs in an
environment with limited drone motion. The pilot is tasked to take photos of particular
objects (cars) in a predefined area while keeping the drone position only in the safe zone
(above the road). A schematic view of the experiment is outlined in Fig. 34.

30https://microsoft.github.io/AirSim/

36

https://microsoft.github.io/AirSim/

Figure 34: Schematic view of the experiment with the safe area for drone movement
(trajectory) and target objects to be photographed indicated (Ferencz, 2022).

The pilot experiment compares not only objective measurements, such as the time of
the entire mission or the time spent outside the safe zone but also subjective measure-
ments, which is the quality of the photos taken of the desired objects for further use or
analysis. The first, however, statistically insignificant results show the benefit of the con-
cept with respect to keeping the drone in safe positions (time outside the safe zone was
55% of the total flight time without the assistant versus 5% with the assistant). However,
subjective measurements of the photographs’ quality show the concept’s shortcomings. It
is difficult (and sometimes impossible) for the pilot to take the necessary pictures of the
desired object due to the restriction of the drone’s movement when using the assistant,
which does not release the drone out of the safe zone. Thus the pilot does not get to the
position where he would take the photo from the desired angle. The solution is to extend
the UI to temporarily disable the assistant or, which can be considered a safer solution,
to adjust the assistant’s severity according to the level of risk in a given location. Further
research in this direction is currently underway.

37

5 Conclusions

In an era when we are increasingly surrounded by systems that can perceive our real
world and perform various spatial operations in it (to some extent independently based
on their observations and understanding), it is crucial to be able to communicate our
needs with these systems appropriately, effectively and naturally our needs. We must
know what these systems plan to do in our real world, we must know the extent to which
these systems understand and navigate our real world, we must be able to easily and
quickly correct and adjust their perception and plan, and in many situations, we must
directly control these machines. Since this is a communication of spatial information,
mixed reality seems to be one of the appropriate technologies for this communication. It
offers the possibility to visually connect the digital world of machines with our real world.

Two domains are selected as offering or directly requiring direct human interaction
with a semi-autonomous system: collaborative robots and drones. In both cases, the
system user must communicate the desired mission plan. What is to be done and where.
In both cases, the user needs to see how the semi-autonomous system perceives the real
world, based on which it then decides what to do. In both cases, the real data and the
results of the automatic processing and evaluation of the measured data need to be clearly
visualized so that the user can orient himself and control the situation. In both cases, the
user must be able to modify and refine the plan quickly and easily.

In the collaborative robot scenario, these requirements were addressed by creating a
new concept that brings the programming of collaborative robots from a personal com-
puter or teach-pendant directly into the robot’s shared workspace. The new proposed
2D concept uses Interactive Spatial Augmented Reality (ISAR) to project the GUI on
the working environment and detects hand gestures from the touch-sensitive table top.
The solution relieves the user of the problem of context switching between the computer
and the robot environment without a hand-held device (free-hand solution). The new
ISAR concept proved on the System Usability Scale (SUS) better performance at 75.80
(SD 8.90) than the existing reference solution (66.75 (SD 16.95)). The extension of our
ISAR system by HMD-based AR brought the free-space 3D visualization and improved
the usability even more by 33.84% in qualitative measures, resp. 28.46% in quantitative
measures. Comparison with the standard teach-pendant approach also confirmed better
results in all used standard metrics; both objective (time to accomplish the task) and
subjective (TLX, SUS and UEQ) metrics were better for our new ISAR solution.

Spatially Situated End-User Robot Programming, the new concept design fully in 3D
based on hand-held mobile AR, overcomes the UI limitations of ISAR (and HMD) system.
The program is visualized as a logical sequence of actions in the working space. From
spatial positions and action parameters to logical connections between actions, the user
can work directly in the robot’s actual 3D working environment. In the design of the GUI
in AR, the focus was on ergonomics when using mobile devices and especially on reduc-
ing the user’s mental load when programming or adapting the program. Experimental
results confirmed the potential of this new concept targeted to shop-floor workers with
no special education in programming. The potential of the new solution is demonstrated
by an experimental evaluation of the system usability score (SUS), where a score of 82.86
(SD=9.29) is in the class A (the 90–95th percentile) and low mental load (NASA TLX)
27.38 (SD=9.41), which means that the workload was lower then in at least 80% of studies
analyzed. This concept has also been successfully deployed in the real application in the
industry.

38

The second investigated scenario is the use of mixed reality in piloting UAVs. Here,
the focus is on reducing the mental workload of the pilot by increasing his spatial orien-
tation and making better use of automatic data analysis. The concept is based on prior
knowledge of the scene (e.g. 3D infrastructure), where the pilot is actually moving in a
virtual scene but supplemented with real data (camera image from the drone, 3D recon-
struction of the environment in real-time, drone position and movement or flying data).
The novelty is in a combination of virtual and real data using augmented virtuality in-
stead augmented reality that brings the pilot the freedom of moving the virtual camera
around the scene without losing awareness of the actual situation. This concept allows the
pilot to simultaneously visualize not only the position and movement of other objects in
the scene (other drones, ground units, restricted zones, etc.) but also manual annotations
(planned mission, instructions from the chief commander or spatial notes from pilots).
This information can also correct the drone pilot’s flight commands, e.g., to more easily
stay on the planned flight trajectory, avoid collisions with real objects that may be out of
the flight direction, etc. In cooperation with the police and rescue services of the Czech
Republic, this research is still ongoing, and although the results in this direction are still
preliminary, it can be expected that mixed reality technologies will be beneficial here as
well.

The results of our and other research on using mixed reality for human interaction
with semi-autonomous systems confirm that this technology is beneficial in reducing the
communication barrier between human and machine. When used appropriately, it leads
in selected scenarios to a reduction of the user’s mental load in controlling these systems
and facilitates the orientation and revision of plans in the digital world of machines.

39

References

Agrawal, A., Abraham, S. J., Burger, B., Christine, C., Fraser, L., Hoeksema, J. M.,
Hwang, S., Travnik, E., Kumar, S., Scheirer, W., Cleland-Huang, J., Vierhauser, M.,
Bauer, R., and Cox, S. (2020). The next generation of human-drone partnerships: Co-
designing an emergency response system. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA.
Association for Computing Machinery.

Bambušek, D., Materna, Z., Kapinus, M., Beran, V., and Smrž, P. (2019). Combining
interactive spatial augmented reality with head-mounted display for end-user collabo-
rative robot programming. In 2019 28th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), pages 1–9. Institute of Electrical and
Electronics Engineers.

Bambušek, D., Materna, Z., Kapinus, M., Beran, V., and Smrž, P. (2022). Handheld aug-
mented reality: Overcoming reachability limitations by enabling temporal switch to vir-
tual reality. In HRI ’22: Proceedings of the 2022 ACM/IEEE International Conference
on Human-Robot Interaction, pages 698–702. Association for Computing Machinery.

Brooke, J. (1996). "SUS-A quick and dirty usability scale." Usability evaluation in indus-
try. CRC Press. ISBN: 9780748404605.

Calhoun, G., Draper, M., Abernathy, M., Delgado, F., and Patzek, M. (2005). Synthetic
vision system for improving unmanned aerial vehicle operator situation awareness. Pro-
ceedings of SPIE - The International Society for Optical Engineering, 5802.

Christ, P. F., Lachner, F., Hösl, A., Menze, B., Diepold, K., and Butz, A. (2016). Human-
drone-interaction: A case study to investigate the relation between autonomy and user
experience. In Hua, G. and Jégou, H., editors, Computer Vision – ECCV 2016 Work-
shops, pages 238–253, Cham. Springer International Publishing.

Cooper, A. and Saffo, P. (1999). The Inmates Are Running the Asylum. Macmillan
Publishing Co., Inc., USA.

Dass, N., Kim, J., Ford, S., Agarwal, S., and Chau, D. H. P. (2018). Augmenting coding:
Augmented reality for learning programming. In Proceedings of the Sixth International
Symposium of Chinese CHI, ChineseCHI ’18, pages 156–159, New York, NY, USA.
ACM.

Ferencz, A. (2022). Bezpečný průzkum dronem s využitím chytrého pohybu po trajek-
toriích. Master’s thesis, Brno University of Technology, Faculty of Information Tech-
nology.

Grier, R. A. (2015). How high is high? a meta-analysis of nasa-tlx global workload
scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
59(1):1727–1731.

Hancock, P. and Warm, J. (1989). A dynamic model of stress and sustained attention.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 31.

40

Hart, S. G. and Staveland, L. E. (1988). Development of nasa-tlx (task load index):
Results of empirical and theoretical research. In Hancock, P. A. and Meshkati, N.,
editors, Human Mental Workload, volume 52 of Advances in Psychology, pages 139–
183. North-Holland.

Hartson, R. and Pyla, P. (2012). The UX Book: Process and Guidelines for Ensuring a
Quality User Experience. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition.

Huang, J. and Cakmak, M. (2017). Code3: A system for end-to-end programming of
mobile manipulator robots for novices and experts. HRI ’17, page 453–462, New York,
NY, USA. Association for Computing Machinery.

Kapinus, M., Bambušek, D., Materna, Z., Beran, V., and Smrž, P. (2022a). Improved
indirect virtual objects selection methods for cluttered augmented reality environments
on mobile devices. In HRI ’22: Proceedings of the 2022 ACM/IEEE International
Conference on Human-Robot Interaction, pages 834–838. Association for Computing
Machinery.

Kapinus, M., Beran, V., Materna, Z., and Bambušek, D. (2019). Spatially situated end-
user robot programming in augmented reality. In 2019 28th IEEE International Confer-
ence on Robot and Human Interactive Communication (RO-MAN), pages 1–9. Institute
of Electrical and Electronics Engineers.

Kapinus, M., Beran, V., Materna, Z., and Bambušek, D. (2022b). Augmented reality
spatial programming paradigm applied to end-user robot programming. Virtual Reality.
Submitted.

Kapinus, M., Materna, Z., Bambušek, D., and Beran, V. (2020). End-user robot pro-
gramming case study: Augmented reality vs. teach pendant. In Companion of the 2020
ACM/IEEE International Conference on Human-Robot Interaction, pages 281–283. As-
sociation for Computing Machinery.

Kapinus, M., Materna, Z., Beran, V., and Bambušek, D. (2022c). Arcor2: Framework for
collaborative end-user management of industrial robotic workplaces using augmented
reality. Journal of Intelligent & Robotic Systems. Submitted.

Magnenat, S., Ben-Ari, M., Klinger, S., and Sumner, R. W. (2015). Enhancing robot
programming with visual feedback and augmented reality. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education, pages
153–158. ACM.

Materna, Z., Kapinus, M., Beran, V., and Smrž, P. (2017). Using persona, scenario,
and use case to develop a human-robot augmented reality collaborative workspace.
In ACM/IEEE International Conference on Human-Robot Interaction, pages 201–202.
Association for Computing Machinery.

Materna, Z., Kapinus, M., Beran, V., Smrž, P., and Zemčík, P. (2018). Interactive spatial
augmented reality in collaborative robot programming: User experience evaluation. In
RO-MAN 2018 - 27th IEEE International Symposium on Robot and Human Interactive
Communication, pages 80–87. Institute of Electrical and Electronics Engineers.

41

Materna, Z., Kapinus, M., Španěl, M., Beran, V., and Smrž, P. (2016). Simplified indus-
trial robot programming: Effects of errors on multimodal interaction in woz experiment.
In 25th IEEE International Symposium on Robot and Human Interactive Communica-
tion, RO-MAN 2016, pages 200–205. Institute of Electrical and Electronics Engineers.

Milgram, P., Takemura, H., Utsumi, A., and Kishino, F. (1994). Augmented reality: A
class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence
Technologies, 2351.

Mouloua, M., Gilson, R., Kring, J., and Hancock, P. (2001). Workload, situation aware-
ness, and teaming issues for uav/ucav operations. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 45.

Nielsen, J. (1993). Noncommand user interfaces. Commun. ACM, 36(4):83–99.

Plascencia, C. A. and Beran, V. (2018). Experimental flying platform. Technical report.

Plascencia, C. A., Beran, V., and Sedlmajer, K. (2019). Drone sensory data processing
for advanced drone control for augmented reality. Technical report.

Polvi, J., Taketomi, T., Yamamoto, G., Dey, A., Sandor, C., and Kato, H. (2016). Sli-
dar: A 3d positioning method for slam-based handheld augmented reality. Computers
Graphics, 55:33–43.

Santos, M. E., Polvi, J., Taketomi, T., Yamamoto, G., Sandor, C., and Kato, H. (2014).
A usability scale for handheld augmented reality.

Sauro, J. and Lewis, J. R. (2012). Quantifying the User Experience: Practical Statistics
for User Research. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition.

Schrepp, M. (2015). User experience questionnaire handbook.

Sedlmajer, K., Bambušek, D., and Beran, V. (2019). Effective remote drone control using
augmented virtuality. In Proceedings of the 3rd International Conference on Computer-
Human Interaction Research and Applications 2019, pages 177–182. SciTePress - Sci-
ence and Technology Publications.

Stadler, S., Kain, K., Giuliani, M., Mirnig, N., Stollnberger, G., and Tscheligi, M. (2016).
Augmented reality for industrial robot programmers: Workload analysis for task-based,
augmented reality-supported robot control. In Robot and Human Interactive Commu-
nication (RO-MAN), 2016 25th IEEE International Symposium on, pages 179–184.
IEEE.

Teixeira, J. M., Ferreira, R., Santos, M., and Teichrieb, V. (2014). Teleoperation using
google glass and ar, drone for structural inspection. In 2014 XVI Symposium on Virtual
and Augmented Reality, pages 28–36.

Temma, R., Takashima, K., Fujita, K., Sueda, K., and Kitamura, Y. (2019). Third-
person piloting: Increasing situational awareness using a spatially coupled second drone.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology, UIST ’19, page 507–519, New York, NY, USA. Association for Computing
Machinery.

42

Turunen, M., Hakulinen, J., Melto, A., Heimonen, T., Laivo, T., and Hella, J. (2009).
SUXES - user experience evaluation method for spoken and multimodal interaction. In
Proc. Interspeech 2009, pages 2567–2570.

43

Appendix: Selected publications

44

Simplified Industrial Robot Programming: Effects of Errors on
Multimodal Interaction in WoZ experiment

Zdeněk Materna, Michal Kapinus, Michal Španěl, Vı́tězslav Beran, and Pavel Smrž

Abstract— This paper presents results of an exploratory study
comparing various modalities employed in an industrial-like
robot-human shared workplace. Experiments involved 39 par-
ticipants who used a touch table, a touch display, hand gestures,
a 6D pointing device, and a robot arm to show the robot how to
assemble a simple product. To rule out a potential dependence
of results on the number of misrecognized actions (resulting,
e.g., from unreliable gesture recognition), a controlled amount
of interaction errors was introduced. A Wizard-of-Oz setting
with three user groups differing in the amount of simulated
recognition errors helped us to show that hand gestures and
6D pointing are the fastest modalities that are also generally
preferred by users for setting parameters of certain robot
operations.

I. INTRODUCTION

Industrial robots were traditionally used mainly in a large-
scale production. This was primarily due to the large price
of the automation and low flexibility requiring long and
costly adaptation for new products. Recently, EU-supported
projects as SMErobotics1 and EuRoC2 emerged to support
development of easily reconfigurable cognitive robots able
to achieve flexibility required for small to medium scale
manufacturing. Such flexibility must be supported by easy
to use and effective human-robot interaction substituting
traditional ways of programming industrial robots requiring
expert-level knowledge.

Our long-term goal is to create a shared-space environment
similar to the experimental setup shown in Figure 1 where
a human operator can cooperate with a semi-autonomous
cognitive robot using multi-modal interaction and augmented
reality: ARTable. The robot within the envisioned solution
could be programmed once and then perform independently
or it may continuously provide assistance to the operator.
There was a research on what modalities are appropriate for
what most common operations [1] in such a system. As a
first step towards ARTable we were interested in how various
modalities would perform in a similar experiment however
under realistic conditions. Therefore we designed a WoZ
experiment where input modalities were not always working
perfectly and participants had to face interaction errors. The
aim of the experiment was to uncover whether there is
dependence between preference for using particular modality
for setting particular parameter and amount of experienced
interaction errors. Secondarily, we were interested in how

All authors are affiliated with the Brno University of Tech-
nology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Bozetechova 1/2, Brno, 612 66, Czech Republic. Contacts:
imaterna, ikapinus,spanel,beranv,smrz@ f it.vutbr.cz

1http://www.smerobotics.org
2http://www.euroc-project.eu/index.php?id=challenge 1

Fig. 1: Prototype of the human-robot shared-space environ-
ment with augmented reality user interface (image edited).

task completion times will be influenced by used modality
and amount of errors as a time-effective human-robot inter-
action will be of paramount importance for a practical usage
of such system. Video summary of the experiment can be
seen at https://youtu.be/LtiDc3pGjug.

II. RELATED WORK

Robot manipulators used to be programmed by experts at
a low level making them less flexible to production changes.
Recently, approaches allowing high-level programming by
end users appeared. One of these approaches is programming
by demonstration [2] also referred to as kinesthetic teaching
[3], where an operator programs a robot by positioning its
end-effector while learning poses [4] and/or forces [5]. Ex-
isting solutions can be divided into those allowing so called
offline programming where a robot is programmed once [6],
[7], those allowing a continuous human-robot collaboration
[8] and those allowing both [9] modes. The interface may
be for instance projected [10] or integrated into a hand-held
device with augmented reality [6], [7]. Interaction also may
happen in a virtual reality [9]. Alternatively to positioning a
robot’s end-effector, a human operator may demonstrate the
task by actually performing it [11] or by giving high-level
instructions using one [8] or more modalities [6].

Errors in interaction can be according to [12] divided into
following types: misunderstandings, non-understandings and

45

misconceptions. For our experiment, we choose to simulate
misunderstandings with third-turn repair of the errors. Deal-
ing with errors is often limited to resolving problems during
program execution [13]. The experiment with social robot
programming [14] where gesture and speech-based interfaces
and even the robot’s software were not perfectly reliable has
shown importance of the provided feedback. However, those
errors were not simulated and thus their amount was not
controllable. The framework to support WoZ studies from
[15] allows to insert given amount of random misrecognition
errors, however it is limited to the speech-based interfaces.

Misunderstandings may be caused by a non-perfect input.
For instance the pointed object estimation from [16] is
reported to have 83% success rate despite usage of a prior
information about location of the objects. Another approach
to detection of pointing directions [17] achieved ±10◦ angu-
lar and 93% distance error. The speech recognition system
from [18] achieved 16% error in a noisy environment with
background TV or radio. It can be speculated that amount
of errors would be higher in an industrial environment.

III. USER STUDY DESIGN

The main goal of this study was to find out how errors
affect user preference of input modality while programming
a robot. We were interested in three industrial use cases:
assembly, pick&place and welding of points and seams.
These use cases were transformed into a simple product man-
ufacturing scenario, better fitting our laboratory settings. A
Wizard-of-Oz approach was utilized to avoid implementation
specific errors. Without participant’s knowledge, a man in a
separated room (wizard) observed the scene through a set
of cameras and simulated system responses and a feedback.
Moreover, WoZ allowed us to simulate certain amount of
errors in interaction.

The experimental setup consisted of a table with a top-
mounted Kinect v2 sensor and a projector, a robotic platform
(PR2) and a touch screen computer besides the table. All
sensors were used only for surveillance purposes. During the
experiment, the robot was immobile but it helped to create
impression of a real robotic workspace.

A simple GUI was created to give users feedback through
the projector mounted above the table. There was a bounding
box around each object on the table and a label with its
name. The selected object was highlighted and points and
lines on the objects (selected by a user) were displayed in
a different color. The user interface contained a back button
used for stepping back, when the system made an error. The
button was projected on the table as a red arrow for each
modality except the touch screen (there was an on-screen
one). Moreover, there was an area dedicated to projecting
additional information, animations etc.

A. Input Modalities

Touch table (A) An object is selected by clicking on its
projected description. Welding points and seams are selected
on a projected image of the object. Assembly constraints are
not set with this modality.

Touch screen (B) An object is selected by clicking on
it on a screen. Welding points and seams are selected on
a zoomed picture of the object. Assembly constraints are
not set with this modality. Theoretically there should not
be errors in determination of user intention (e.g. where user
clicked), but in such a complex system, there could always
raise an error, or a user can accidentally click on a wrong
place.

Gesture (C) Objects and welding points are selected by
pointing on them with the index finger. Welding seams are
selected by hovering over a desired seam with the index
finger. A gesture used to specify assembly constraint was
up to the user. Hand gesture recognition and hand pointing
direction recognition is widely studied problem [19], [20].
Recent research shows that 75 to 98% recognition rate is
achievable [16], [17].

6D pointing device (D) Similar to C, but instead of
the index finger a 6D pointing device was used. Although
detection of pose and orientations of this device is more
precise and robust than detection of a hand, there still may
be errors caused by a user, who can point on a wrong object,
or point imprecisely.

Direct robotic arm programming (E) Selecting of ob-
jects and welding points and seams was done by pointing on
them with a robot’s gripper. Just like the 6D pointing device,
determining of pose and orientation of a robotic arm is very
precise, due to reading arms actuators’ internal state, but it
can suffer from the same user errors.

Compared to [1], a direct robotic arm programming and a
touch table were added. A speech was considered inappropri-
ate as it is probably not sufficiently robust for noisy industrial
environments. Our goal was to perform experiment under
realistic conditions and we expected participants (mostly uni-
versity students) to not believe speech programming without
predefined vocabulary could work. Moreover, in [1] speech
was the lowest rated modality.

Direct robot arm programming (kinesthetic teaching) is
commonly used [3], [21], however we are using this tech-
nique in a different manner (e.g. selecting objects instead
of teaching robot how to grasp them). Touch-sensitive table
could be an advantageous alternative to a touchscreen in an
industrial environment, as the feedback, system information
and interaction with system is held in the user’s working
space and due to the fact, a user is not forced to divide
attention between more places.

B. Tasks

Each participant was told to program the robot to make a
simple assembly and packing in a scenario imitating the most
common industrial tasks. The scenario was divided into four
tasks, each consisting of ten steps (setting ten parameters) in
total:

• Assembly: select two objects (e.g. plastic cover and
aluminum profile) and set an assembly constraint(s)
(e.g. cover orientation)

• Pick&place: select an object and select a place where
to put it

46

• Welding point: select an object, select four points on its
top side (to glue stickers in our scenario)

• Welding seam: select an object, select four edges on its
top side (to seal boxes with tape)

Each task consisted of ten steps meaning that participant
had to set ten parameters: i.e. five times select an object and
place where to put it in the pick&place task or select and
object and according of its type select one or two assembly
constraints in assembly task (see Figure 2). According to
participant’s group, there were zero, one and three (i.e. 0, 10
and 30%) errors in each task. For instance, in 30% error-level
group the system randomly misrecognized three parameters
from ten during each of the four tasks. The errors were
generated automatically by our WoZ application and were
not influenced by the wizard. Order of tasks and steps was
the same for all participants.

We see 0% error rate (used for experiment in [1]) as
an ideal state however hardly achievable with most of the
modalities. 10% seems to be a current realistic level. 30%
was selected as the worst case scenario. We assume it to be
the worst error ratio probably acceptable by users.

C. Methodology

The SUXES evaluation method for subjective evaluation
of multimodal systems has been adopted [22]. It is based
on collecting user’s expectation and experience and provides
means to analyze various interaction methods. The method-
ology divides experiment into following four phases:

1) Background Information: The experiment is briefly
introduced to the subject by a conducter, who is with the
subject during the whole experiment. Then, a background
information about subject (i.e. age, technical knowledge etc.)
is collected.

2) User Expectation: The conductor introduces the shared
workspace, all input modalities and the feedback provided by
the projector. The subject is allowed to ask questions and to
try any modality. Then the subject fills in the questionnaire
about his or her expectations based on the introduction.

3) Experiment and User Experience: The conducter
guides the subject through four strictly defined tasks: the
subject is told what is the current task and step and what to
do when error occurs. The task itself is performed solely by
the participant. Each subject performs those four tasks with
all five modalities (with exception of assembly task, where
modalities A and B are skipped). The order of modalities
is random for each subject to prevent a learning effect.
After that, the subject answers the same questions as in the
previous step.

4) Feedback: The subject answers questions about the
system using Likert scale rating (see Figures 3 and 4). Most
of the subjects also filled valuable fulltext responses.

D. Participants

The experiment has been conducted with 39 participants
assigned randomly into three groups. There were eleven
males and two females in each group. Participants were
mainly university students and researchers with mean age

of 23.7 (CI: 22.5 to 24.9) years. Most of them (30) marked
themselves as PC experts and at the same time beginners
(23) or advanced (15) in robotics. Majority of participants
knew what a touchless interface stands for but never used
one (31), some indicated that they already used this kind of
interface (7) and only one did not know something like this
exists.

The whole experiment took approximately 45 minutes for
each participant and the interaction itself was recorded by a
video camera. Participants’ answers have been collected into
a spreadsheet.

IV. RESULTS

Participants from all groups (0, 10 and 30% of interaction
errors) ordered modalities according to their preference for
setting a given parameter before (expectation) and after the
experiment (experience). Mean of the order from expectation
phase is denoted as rB and from experience phase as rA.
Statistically significant differences between rB and rA within
one group were tested using paired t-test (pt p). Differences
for a particular modality across the groups were tested
using Kruskal–Wallis test with Dunn’s multiple comparisons
test pWd . The same test was also used to compare task
completion times. Confidence level of 95% was used for all
tests. Experience from all participants (all groups) is denoted
as rAo.

A. Parameters

From the Table I showing users’ self-reported data it can
be seen for which modality and which parameter there were
significant differences between rB and rA. Moreover, it can be
seen which modality was the most preferred for a given task
regardless the amount of errors (rAo). It should be noted that
rB of C differs between 0% and 30% groups (pWd = 0.028).

Considering the number of significant differences between
rB and rA from all groups, C and D were ranked significantly
better six times, B and E were both worse once and A was
worse four times. There are no significant differences in
rB between groups meaning that participants from different
groups had similar expectations (with one exception of C
in 0% group, parameter select an object). Moreover, there
are also no differences in rA. From these results it seems
that number of errors in interaction does not have strong
impact on preferred modality. In other words, participants
from different groups had similar expectations (rB) as well
as experience (rA). Overall, it seems that participants mostly
preferred modalities C, D, followed by A, B and the least
preferred was E. Figure 3 shows how participants evaluated
expectation and experience for all modalities overall (regard-
less task).

B. Task Completion Times

Before performing a task the participants were told all
relevant information. During the task, only the next step
was reminded by the conducter. When beginning the task
a participant pressed the ”Start” button and then the ”Stop”
one when finished. We use time between those presses as

47

(a) User selects plastic cap to be
assembled with aluminum pro-
file.

(b) User performs step back as
a tape was selected instead of
the profile.

(c) Now the intended object
(profile) was selected.

(d) Animation shows how the
robot understood user’s assem-
bly demonstration.

Fig. 2: An example of a typical interaction for the assembly task using the robot arm as an input modality.

modality group select an object select a place select a point select a line assembly constraint
rB rA pt p rAo rB rA pt p rAo rB rA pt p rAo rB rA pt p rAo rB rA pt p rAo

A
0% 3.7 3.3 -

3.3
4.3 3.2 0.015

3.5
3.0 2.9 -

3.2
3.2 3.1 -

3.3
2.8 NA -

NA10% 4.4 3.4 0.012 4.6 3.9 - 3.5 3.1 - 3.8 3.3 - 2.9 NA -
30% 4.1 3.3 0.0024 4.6 3.5 <0.001 2.9 3.5 - 3.0 3.4 - 2.4 NA -

B
0% 3.2 2.1 0.02

2.9
2.8 2.1 -

2.7
3.2 2.3 -

2.8
2.9 2.3 -

2.9
3.2 NA -

NA10% 3.7 3.1 - 3.1 2.9 - 3.5 2.9 - 3.7 3.2 - 3.0 NA -
30% 4.2 3.5 - 3.3 3.2 - 3.5 3.2 - 3.2 3.2 - 2.9 NA -

C
0% 4.2 4.2 -

3.8
3.7 3.7 -

3.6
2.7 3.7 0.021

3.6
3.0 3.8 -

3.7
3.9 4.0 -

4.110% 2.9 3.6 - 2.9 3.5 - 2.4 3.9 0.0031 2.8 3.9 0.012 3.6 4.5 0.035
30% 2.7 3.6 0.046 2.7 3.6 0.027 2.9 3.3 - 3.4 3.4 - 3.8 3.9 -

D
0% 2.3 3.5 <0.001

3.3
2.5 3.6 0.0045

3.4
3.7 4.0 -

3.7
3.6 3.7 -

3.5
2.3 3.5 0.011

3.410% 2.1 3.4 0.0018 2.5 3.5 0.012 3.6 3.9 - 3.2 3.4 - 1.9 3.9 <0.001
30% 2.7 3.1 - 2.9 3.0 - 3.8 3.2 - 3.5 3.5 - 2.2 2.9 -

E
0% 1.7 1.9 -

1.7
1.7 2.5 -

1.9
2.4 2.1 -

1.7
2.2 2.2 -

1.6
2.8 2.6 -

2.610% 2.0 1.5 - 2.0 1.4 - 2.0 1.3 - 1.6 1.2 - 3.6 2.5 0.021
30% 1.4 1.5 - 1.5 1.7 - 1.9 1.9 - 1.9 1.5 - 3.7 2.9 -

TABLE I: Participants ordered modalities for each parameter separately from the most preferred (5) to the least (1) before
(rB) and after (rA) the experiment. Where significant difference was found between rB and rA p-value is given. rAo stands
for preference after the experiment regardless of the group (0, 10 or 30%).

an objective measure. The Table II shows those times as
well as found significant differences between groups for each
modality. Differences between modalities are noted below.

The assembly task (consisting of select an object and
assembly constraint parameters) was performed only using
C, D and E modalities. In all groups there are significant
differences between C and E (0%: pWd = 0.003, 10%:
pWd < 0.001, 30%: pWd < 0.001) and between D and E (0%:
pWd = 0.034, 10%: pWd < 0.001, 30%: pWd = 0.002).

The pick&place task consisted of setting select an object
and select a place parameters. In all groups there are signifi-
cant differences between E and each of rest of the modalities
(with max. pWd = 0.049).

The welding point task consisted of setting select an object
and select a point parameters. In 0% group, time for B differs
from C (pWd = 0.0091) and D (pWd = 0.023). E differs
from C and D (pWd < 0.001). In 10% group, time for A,
C and D differs from E (pWd < 0.001). The 30% group
shows differences between E and A (pWd = 0.0018) and C,
D (pWd < 0.001).

The welding seam task consisted of setting select an object
and select a line parameters. In 0% group, there is significant

difference only between C and E (pWd = 0.0029). 10% group
shows difference between E and A, C, D (pWd < 0.001) and
30% group between E and A (pWd = 0.0105), B (pWd =
0.014), C, D (pWd < 0.001).

For most of the tasks C and D were the fastest modalities
followed by A and B. E seems to be unsuitable to the sort
of tasks as those in this experiment as even 10% of errors
affects performance in three of four tasks. It seems that for
other modalities a little amount of errors does not play crucial
role.

C. System Opinion

The last phase of the SUXES evaluation contains opinion
questions. We used the same questions as in [1], with
addition of those related to the erroneous behavior (see
Figure 4).

Regardless of the group, participants were satisfied with
ease of completing the tasks and with time needed to do so.
Participants also claimed it was not difficult to understand
how to use different modalities. The results are highly similar
to those of [1].

48

m
od

.

gr
ou

p assembly pick&place welding point welding seam
mean

time [s]
significant
differences

mean
time [s]

significant
differences

mean
time [s]

significant
differences

mean
time [s]

significant
differences

A
0% NA

-
34.7 (27.9, 41.5)

0/30: 0.0017
10/30: 0.038

36.8 (31.2, 42.4)
0/30: 0.003

10/30: 0.0022

33.6 (26.1, 41.0)
0/30: <0.001
10/30: 0.0056

10% NA 37.4 (33.5, 41.3) 35.2 (31.6, 38.9) 37.0 (33.4, 40.5)
30% NA 47.5 (42.3, 52.6) 49.1 (43.8, 54.4) 53.13 (47.6, 58.6)

B
0% NA

-
32.8 (28.7, 36.8)

0/30: <0.001
10/30: 0.04

38.4 (34.6, 42.1)
0/30: <0.001
10/30: 0.0047

36.9 (31.7, 42.1)
0/30: <0.00110% NA 41.2 (36.9, 45.4) 41.6 (37.3, 45.9) 44.2 (41.2, 47.2)

30% NA 52.3 (47.1, 57.4) 54.5 (50.1, 58.9) 53.6 (48.0, 59.3)

C
0% 54.8 (46.2, 63.5)

0/30: 0.03
28.0 (25.7, 30.3)

0/30: <0.001
28.3 (24.8, 31.8)

0/30: <0.001
10/30: 0.033

27.6 (24.6, 30.6)
0/30: <0.001
10/30: 0.019

10% 60.4 (47.9, 73.0) 33.7 (29.4, 38.0) 31.9 (27.6, 36.2) 34.8 (30.9, 38.7)
30% 70.5 (61.8, 79.2) 40.9 (37.0, 44.8) 41.2 (36.3, 46.1) 47.4 (41.1, 53.7)

D
0% 61.5 (45.4, 77.6)

0/30: 0.03
10/30: 0.044

28.8 (25.1, 32.5)
0/30: <0.001
10/30: 0.0037

29.3 (25.1, 33.4)
0/30: <0.001
10/30: 0.002

31.0 (26.6, 35.4)
0/30: <0.001
10/30: 0.0023

10% 61.0 (50.8, 71.2) 32.3 (29.8, 34.9) 31.9 (28.6, 35.3) 36.7 (32.2, 41.1)
30% 88.0 (69.3, 106.6) 43.9 (39.1, 48.6) 44.5 (40.6, 48.3) 52.8 (47.9, 57.7)

E
0% 90.2 (71.2, 109.2)

0/10: 0.013
0/30: <0.001

43.7 (40.5, 46.9)
0/10: 0.0059
0/30: <0.001

42.9 (38.1, 47.7)
0/10: 0.014

0/30: <0.001

42.6 (35.7, 49.4)
0/30: <0.001
10/30: 0.044

10% 129.6 (112.2, 146.9) 60.6 (54.9, 66.2) 58.9 (54.1, 63.6) 58.4 (52.7, 64.1)
30% 156.7 (127.6, 185.8) 75.3 (69.2, 81.4) 83.0 (68.2, 97.8) 85.1 (68.9, 101.3)

TABLE II: Task completion mean times (with 95 % confidence intervals) for all modalities, groups and tasks. For each
modality, significant differences between times are noted where found in form of groupx/groupy : pWd .

Fig. 3: User’s assessment how experience matched expecta-
tion.

Most of the subjects rated modalities C and D similar,
however had a stronger believe in 6D pointing device as
they expect it to be more precise than gesture, despite there
was the same amount of errors. Participants were also often
distracted by the fact, that feedback was always projected on
the real objects on the table and not on the place they were
working with. Especially, for B most of them would prefer
feedback (e.g. selected object) to be shown on the screen and
not only on the table. This was however done by purpose,
to ensure each modality has exactly the same feedback and
participants were noticed about this in advance.

In questions related to erroneous behavior a difference can
be seen between error groups. With a growing amount of the
errors, perceived intuitiveness of the modalities decreases,
except for the touch screen, where it grows (see Figure 4).
This could be caused by the fact, that the touch screen is the

Fig. 4: System opinion

only control commonly used by the participants. Moreover,
the back button was on the screen, so the participants were
not forced to think about how to press projected button as
for other modalities. Modalities B and E were in general
evaluated as the least intuitive. Participants stated that with
growing amount of errors, programming was significantly
harder and that errors in communication complicated pro-
gramming.

A few of the participants found out that errors were made
by purpose or that some parts of system were simulated.
However, according to feedback and discussion with partic-
ipants, none of them found out the experiment was WoZ.

V. CONCLUSIONS

The aim of the conducted experiment was to explore
how different modalities used for setting common parameters

49

when programming a robot cope with interaction errors. Par-
ticipants were divided into three groups according to amount
of simulated errors. Their ranking of the modalities before
and after the experiment as well as answers from feedback
phase were analyzed as subjective measures. Moreover, task
completion times were recorded and analyzed as an objective
measure.

The gesture and 6D pointing device modalities were the
most preferred and fastest modalities in all groups. Touch-
sensitive table and display were in general preferred similarly
and similar task completion times were obtained. With
respect to the task completion times as well as feedback
from participants (system opinion) the robot arm seems to
be inappropriate as a pointing device for tasks as those in
this study and its usage should be reconsidered. It seems
that order of preferred input modalities for a given task is
not affected by amount of interaction errors. Obtained results
support our prior speculation of 10% to be an acceptable
level of errors and 30% to be a worst case scenario as
especially task completion times grow dramatically.

According to the results, multi-modal interaction based on
gestures with complementary usage of a 6D pointing device
seems to be promising. We also see touch-sensitive table as a
perspective modality however it will be necessary to improve
interaction and solve setting more complicated parameters
as the assembly constraint. The robot arm has advantage
of no additional cost however, its usage is physically more
demanding than other modalities and for our use-case with
relatively simple tasks it had no added value. However, for
different types of tasks, e.g. requiring high precision, it could
be more useful.

It should be noted that our study simulated the same
amount of errors for all modalities. In practice, it can be
expected that for instance robot arm modality will be less
error-prone than gesture recognition.

As a future work, we will extend the ARTable prototype.
The projected interface will provide more information and be
fully interactive in conjunction with a touch-sensitive table.
Instead of a touch display, a hand-held device or a see-
through video glasses with augmented reality will be used.
We will also experiment further with robot arm as it could
be useful for complex tasks.

ACKNOWLEDGMENTS

This work was supported by The Ministry of Educa-
tion, Youth and Sports of the Czech Republic from the
National Programme of Sustainability (NPU II); project
IT4Innovations excellence in science - LQ1602.

REFERENCES

[1] S. Profanter, A. Perzylo, N. Somani, M. Rickert, and A. Knoll,
“Analysis and semantic modeling of modality preferences in industrial
human-robot interaction,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ Int. Conference on, Sept 2015, pp. 1812–1818.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer Handbook of Robotics. Springer,
2008, pp. 1371–1394.

[3] C. Schou, J. S. Damgaard, S. Bogh, and O. Madsen, “Human-robot
interface for instructing industrial tasks using kinesthetic teaching,” in
Robotics (ISR), 2013 44th Int. Symposium on. IEEE, 2013, pp. 1–6.

[4] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-
based visual programming language for mobile manipulation tasks,”
in Robotics and Automation (ICRA), 2015 IEEE Int. Conference on.
IEEE, 2015, pp. 5537–5544.

[5] F. J. Abu-Dakka, B. Nemec, A. Kramberger, A. G. Buch, N. Krüger,
and A. Ude, “Solving peg-in-hole tasks by human demonstration and
exception strategies,” Industrial Robot: An Int. Journal, vol. 41, no. 6,
pp. 575–584, 2014.

[6] A. Perzylo, N. Somani, S. Profanter, M. Rickert, and A. Knoll,
“Multimodal binding of parameters for task-based robot programming
based on semantic descriptions of modalities and parameter types,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
Workshop on Multimodal Semantics for Robotic Systems, Hamburg,
Germany, 2015.

[7] J. Lambrecht, M. Kleinsorge, M. Rosenstrauch, and J. Krüger, “Spatial
programming for industrial robots through task demonstration,” Int J
Adv Robotic Sy, vol. 10, no. 254, 2013.

[8] J. Norberto Pires, J. Norberto Pires, G. Veiga, and R. Araújo,
“Programming-by-demonstration in the coworker scenario for smes,”
Industrial Robot: An Int. J, vol. 36, no. 1, pp. 73–83, 2009.

[9] K. R. Guerin, S. D. Riedel, J. Bohren, and G. D. Hager, “Adjutant:
A framework for flexible human-machine collaborative systems,” in
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Int.
Conference on. IEEE, 2014, pp. 1392–1399.

[10] A. Gaschler, M. Springer, M. Rickert, and A. Knoll, “Intuitive robot
tasks with augmented reality and virtual obstacles,” in Robotics and
Automation (ICRA), 2014 IEEE Int. Conference on. IEEE, 2014, pp.
6026–6031.

[11] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities
and object affordances from rgb-d videos,” The Int. J of Robotics
Research, vol. 32, no. 8, pp. 951–970, 2013.

[12] G. Hirst, S. McRoy, P. Heeman, P. Edmonds, and D. Horton, “Re-
pairing conversational misunderstandings and non-understandings,”
Speech communication, vol. 15, no. 3, pp. 213–229, 1994.

[13] A. B. Beck, A. D. Schwartz, A. R. Fugl, M. Naumann, and B. Kahl,
“Skill-based exception handling and error recovery for collaborative
industrial robots,” in Procs. FinE-R Workshop, 2015, pp. 5–10.

[14] C. Breazeal, C. D. Kidd, A. L. Thomaz, G. Hoffman, and M. Berlin,
“Effects of nonverbal communication on efficiency and robust-
ness in human-robot teamwork,” in Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ Int. Conference on. IEEE, 2005,
pp. 708–713.

[15] S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay, N. Aboobaker,
and A. Wang, “Suede: a wizard of oz prototyping tool for speech user
interfaces,” in Procs. of the 13th annual ACM symposium on User
interface software and technology. ACM, 2000, pp. 1–10.

[16] M. Pateraki, H. Baltzakis, and P. Trahanias, “Visual estimation of
pointed targets for robot guidance via fusion of face pose and hand
orientation,” Computer Vision and Image Understanding, vol. 120, pp.
1–13, 2014.

[17] D. Shukla, O. Erkent, and J. Piater, “Probabilistic detection of pointing
directions for human-robot interaction,” in Digital Image Computing:
Techniques and Applications (DICTA), 2015 Int. Conference on.
IEEE, 2015, pp. 1–8.

[18] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[19] S. S. Rautaray and A. Agrawal, “Vision based hand gesture
recognition for human computer interaction: a survey,” Artificial
Intelligence Review, vol. 43, no. 1, pp. 1–54, 2012. [Online].
Available: http://dx.doi.org/10.1007/s10462-012-9356-9

[20] J. Suarez and R. R. Murphy, “Hand gesture recognition with depth
images: A review,” in RO-MAN, 2012 IEEE, Sept 2012, pp. 411–417.

[21] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations,”
in Procs. of Robotics: Science and Systems, Berkeley, USA, July 2014.

[22] M. Turunen, J. Hakulinen, A. Melto, T. Heimonen, T. Laivo, and
J. Hella, “Suxes-user experience evaluation method for spoken and
multimodal interaction.” in INTERSPEECH, 2009, pp. 2567–2570.

50

Using Persona, Scenario, and Use Case to Develop a
Human-Robot Augmented Reality Collaborative Workspace

Zdeněk Materna, Michal Kapinus, Vítězslav Beran, Pavel Smrž
Brno University of Technology, Centre of Excellence IT4Innovations

Manuel Giuliani, Nicole Mirnig, Susanne Stadler, Gerald Stollnberger, Manfred Tscheligi
University of Salzburg, Center for Human-Computer Interaction

ABSTRACT
Up to date, methods from Human-Computer Interaction
(HCI) have not been widely adopted in the development
of Human-Robot Interaction systems (HRI). In this paper,
we describe a system prototype and a use case. The proto-
type is an augmented reality-based collaborative workspace.
The envisioned solution is focused on small and medium
enterprises (SMEs) where it should enable ordinary-skilled
workers to program a robot on a high level of abstraction
and perform collaborative tasks effectively and safely. The
use case consists of a scenario and a persona, two methods
from the field of HCI. We outline how we are going to use
these methods in the near future to refine the task of the
collaborating robot and human and the interface elements
of the collaborative workspace.

1. INTRODUCTION
With the emergence of affordable industrial collaborative

robots it seems likely that SMEs soon will widely adopt such
robots in order to achieve higher precision for specific tasks,
free experienced employees from monotonous tasks, and in-
crease productivity.

In a large-scale production, robots are usually programmed
by an expert. For SMEs, batches are smaller and products
may even be customized for a particular contract. Due to
this, it would be beneficial to enable ordinary-skilled work-
ers to program robots easily, without robot-specific knowl-
edge. In this work, we present a new approach for simple
robot reprogramming. The approach uses augmented reality
(AR) to visualize the current program and the state of the
robot’s learning or execution, detected objects, instructions
to a user etc. We describe an existing prototype1, a use
case of aircraft trolleys assembly and how we will apply HCI
methods, in particular narrative scenarios and personas, in
further development.

1The source code and technical documentation is available
at https://github.com/robofit/ar-table-itable.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HRI ’17 Companion March 06-09, 2017, Vienna, Austria
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4885-0/17/03.

DOI: http://dx.doi.org/10.1145/3029798.3038366

(a) (b)

Figure 1: Experimental setup (a): PR2 robot, top-mounted
Kinect 2 and projector, table with AR markers. User inter-
action (b): adjusting place pose for the grasped object.

2. BACKGROUND
There exist various approaches to the problem of making

robot programming viable for non-expert users, e.g., kines-
thetic teaching [7] or visual programming [1]. Part of this
problem is also the selection of suitable input modalities [6]
and modalities for providing feedback to the user. One of the
output modalities may be AR based on a hand-held device
[8] or projected onto the workplace [4].

Scenarios are narrative stories about specific people and
their activities in a specific work situation and context [5].
They describe key usage situations and they cover a mul-
titude of aspects such as involved agents, user goals and
background, work practices, system responses, tasks, con-
text, and difficulties. Cooper et al. [3] developed the con-
cept of personas to represent the hypothetical archetypes of
users. Personas are not actual users but they represent spe-
cific users with their characteristics and work role [5]. They
are given a name, a life, and a personality to make them
concrete and appear real. Personas are an ideal instrument
to design for the most relevant and common user classes.

Up to now, there are only few instances, where HCI meth-
ods were used in the field of HRI. For instance [2] uses sce-
narios and personas in the context of industrial robot pro-
gramming.

3. AUGMENTED REALITY COLLABORA-
TIVE WORKSPACE

The open source experimental setup uses the intrinsically
safe PR2 robot as a demonstrator of a near-future collabo-
rative robot and is centered around a table (see Figure 1a)

201

51

where the HRI occurs. The interaction consists of program-
ming a robot and collaboration on a programmed task. It
happens through an interface projected onto the table us-
ing pointing gestures as an input modality (see Figure 1b
or video2). The user is tracked by a Kinect sensor on the
robot’s head. Skeleton tracking is used to extract informa-
tion about the user’s position and pointing direction. Ges-
tural control was chosen based on results of our previous
experiment [6], where it was the fastest and highest ranked
modality. We deal with uncertainty of pointing by high-
lighting pointed area on the table (circle of given radius)
which serves as a visual feedback to the user. When this
area visually collides with e.g. a highlight area of an object,
the object is preselected. If the object is preselected for a
certain time, it is selected. Objects in the scene are tracked
using a top-mounted camera and AR codes on them. AR
codes are also used for calibration of the whole system.

The interface contains various elements to visualize state
of the robot and task as e.g. the currently loaded program.
A robot’s program is displayed to the user during both learn-
ing and task execution phases. Currently, the system sup-
ports basic instructions as get ready (move robot arms to
a default pose) or pick and place (pick concrete object or
object of given type from specified polygon and place it on
given pose). The program structure is so far coded sepa-
rately while program parameters (e.g. object type and place
pose for pick and place instruction) are set by the user - the
interface allows the user to select a program, set or adjust
its parameters and then to collaborate on a programmed
task with the robot. During program execution, the cur-
rent program item is highlighted as well as e.g. objects to be
manipulated by the robot.

4. USER-CENTERED DESIGN: USE CASE,
SCENARIO AND PERSONAS

Based on our experiences from previous projects and dis-
cussions with industrial partners, we have defined our sce-
nario as follows: The user will teach the collaborative robot
to assist him in the task of assembling aircraft service trol-
leys. He needs to show to the robot which parts are needed
in every step of assembling, where holes must be drilled, and
what parts should be glued together.

We also defined a persona, who will act as a user in our use
case: Jan, a 22 year old man, recently graduated at technical-
based high school. He works as an assembly worker at Clever
Aero, a company focused on aircraft equipment. He has no
experience with robots, but he loves new technologies and he
is really keen into working with robots.

These tools needs to be refined according to the demo-
graphic data, which has to be collected by observing and
interviewing actual workers in real factories. Those data
will then be transformed into well-defined persona(s), sce-
nario and a use case, in order to update our current setup
according to our personas’ needs.

5. CONCLUSION AND FUTURE WORK
In our opinion, methods from HCI provide valuable tools

to inform and improve HRI. With our paper, we recommend
using methods such as scenarios, use cases and personas.

2https://youtu.be/yYNpKEClclA

Such instruments enable HRI solutions to better integrate
user needs such as methods for simplified programming.

In the next step, we will include the results from using
these methods (scenario, use case, persona) on our collabo-
rative workspace.

In order to fulfill the defined use case and the correspond-
ing scenario, it is now necessary to implement new robot in-
structions based on kinesthetic teaching as gluing and drilling.
As the task is quite complex, it is inevitable to display the
robot’s program in addition to showing work instructions
for users. The design elements as well as input methods of
the user interface are adapted according to the needs of the
refined personas. E.g. as our preliminary persona Jan often
works with touch-based interfaces (phone, tablet) we will
add a touch-sensitive layer on the worktable as an alterna-
tive input modality. We focus on making the system easily
deployable, with multiple sensors and projectors. The user
is enabled to switch between various interfaces based on the
current task.

These system improvements result directly from our de-
ployment of HCI methods in HRI. Having said this, we en-
courage other research groups to take a similar approach.

6. ACKNOWLEDGMENTS
This research was supported by the IT4IXS IT4Innovations

Excellence in Science project (LQ1602).

7. REFERENCES
[1] Sonya Alexandrova, Zachary Tatlock, and Maya

Cakmak. Roboflow: A flow-based visual programming
language for mobile manipulation tasks. In ICRA,
pages 5537–5544. IEEE, 2015.

[2] Petra Björndal, Mikko J Rissanen, and Steve Murphy.
Lessons learned from using personas and scenarios for
requirements specification of next-generation industrial
robots. In HCII, pages 378–387. Springer, 2011.

[3] Alan Cooper et al. The inmates are running the
asylum:[Why high-tech products drive us crazy and how
to restore the sanity]. Sams Indianapolis, IN, USA:,
2004.

[4] Andre Gaschler, Maximilian Springer, Markus Rickert,
and Alois Knoll. Intuitive robot tasks with augmented
reality and virtual obstacles. In ICRA, pages
6026–6031. IEEE, 2014.

[5] Rex Hartson and Pardha S Pyla. The UX Book:
Process and guidelines for ensuring a quality user
experience. Elsevier, 2012.

[6] Zdeněk Materna, Michal Kapinus, Michal Španěl,
Vı́tězslav Beran, and Pavel Smrž. Simplified industrial
robot programming: Effects of errors on multimodal
interaction in woz experiment. In RO-MAN, pages
200–205. IEEE, 2016.

[7] Casper Schou et al. Human-robot interface for
instructing industrial tasks using kinesthetic teaching.
In Robotics (ISR), 2013 44th Int. Symposium on, pages
1–6. IEEE, 2013.

[8] Susanne Stadler, Kevin Kain, Manuel Giuliani, Nicole
Mirnig, Gerald Stollnberger, and Manfred Tscheligi.
Augmented reality for industrial robot programmers:
Workload analysis for task-based, augmented
reality-supported robot control. In RO-MAN, New
York, USA, August 2016. IEEE.

202

52

Interactive Spatial Augmented Reality
in Collaborative Robot Programming:

User Experience Evaluation

Zdeněk Materna, Michal Kapinus, Vı́tězslav Beran, Pavel Smrž, and Pavel Zemčı́k

Abstract— This paper presents a novel approach to inter-
action between human workers and industrial collaborative
robots. The proposed approach addresses problems introduced
by existing solutions for robot programming. It aims to reduce
the mental demands and attention switches by centering all in-
teraction in a shared workspace, combining various modalities
and enabling interaction with the system without any external
devices. The concept allows simple programming in the form
of setting program parameters using spatial augmented reality
for visualization and a touch-enabled table and robotic arms
as input devices. We evaluated the concept utilizing a user
experience study with six participants (shop-floor workers). All
participants were able to program the robot and to collaborate
with it using the program they parametrized. The final goal
is to create a distraction-free, usable and low-effort interface
for effective human-robot collaboration, enabling any ordinary
skilled worker to customize the robot’s program to changes in
production or to personal (e.g. ergonomic) needs.

I. INTRODUCTION

Contemporary collaborative robots are collaborative in the
sense that for human workers, it is safe to work alongside
them. However, human-robot interaction is very limited if it
exists at all: The behavior of the robot is pre-programmed
without cognition of an environment, a user, tools, or the
parts necessary for a given task. The robots are programmed
by domain experts using specialized devices and an expert is
needed even for small changes in the program. It is expected
that, in the near future, collaborative robots will be cheaper
and thus more affordable for small and medium-sized enter-
prises (SMEs). In such companies, all of the aforementioned
issues will be even more prominent. As robots in SMEs will
have to deal with higher product variability (smaller batches,
customization) it would be beneficial to allow workers with
no specific skills to make changes in a robot’s program. At
the same time, it will be necessary to support a close human-
robot collaboration, as with rising cost of human labor, it
might be expected that a trend will occur to offload non-
ergonomic or repetitive parts of the workflow to robots. In
order to allow this, robots will have to perceive and interact.

In this work, we present a novel approach to programming
collaborative robots based on cognition, spatial augmented
reality (SAR) and multimodal input and output. In order
to make programming as simple as possible, programming

All authors are affiliated with the Brno University of Tech-
nology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Bozetechova 1/2, Brno, 612 66, Czech Republic. Contacts:
imaterna, ikapinus, beranv, smrz, zemcik@fit.vutbr.cz

Fig. 1. Setup of the novel interactive system concept where all the
interaction elements (visualization and control) are gathered in a shared
workspace (example of setting program parameters using a robotic arm and
gestures; image edited).

takes place on a high level of abstraction where no robot-
specific knowledge is necessary. Our intention was to make
interaction with robots easy, fun, safe and effective.

In order to evaluate the approach, we developed a proof
of concept system (see Fig. 1)1 and carried out initial user
experience testing. The purpose of the testing was to discover
whether there are some fundamental usability issues related
to the approach as well as to find out issues related to the
current implementation. In the experiment, the robot played
the role of a worker’s assistant, preparing parts for assembly
in a fictional SME.

II. RELATED WORK

Various approaches exist aimed at the simplification of
robot programming or to support human-robot collabora-
tion on a joint task. One of the techniques used to make
programming robots more suitable for non-expert users is
programming by demonstration. For instance, the approach
proposed in [1] was rated by non-expert users as highly
intuitive. However, the tasks are quite simple and there is

1The code is available at https://github.com/robofit/artable.

53

no feedback for the user. In [2], kinesthetic teaching is used
in conjunction with an iconic based programming to enable
users to create and edit non-trivial programs. While the usage
of a graphical user interface (GUI) on a standard monitor
adds more control over the program and provides feedback,
it also leads to attention switches.

The system described in [3] uses behavior trees to rep-
resent the program and was successfully deployed at an
SME. The program itself is created on the monitor. The
parameters of the program could be set using GUI, object
recognition or kinesthetic teaching. The usage of behavior
trees leads to high flexibility and the creation of reusable
pieces of programs; however, it also inevitably leads to a
more complicated GUI. Similarly, the system described in [4]
enables users to create complex programs using kinesthetic
teaching and object recognition. However, three different
GUIs and voice input are involved. Moreover, its target user
group consists of general programmers.

The previous approaches share a common disadvantage:
The inability to show information within a task context. On
the other hand, [5] uses physical blocks to create a program
which is highly intuitive (requires no training), although it is
limited to trivial tasks. Recently, augmented reality (AR) has
been used to show important information within a task con-
text. Probably the most common approach is to use a hand-
held device. In [6], the authors recruited robot programmers
and evaluated a tablet-based AR interface for programming
abstracted industrial tasks. From the results, it seems that the
usage of an AR may lead to a decrease in the workload and
higher motivation to perform accurately. However, the usage
of a tablet prevents the usage of both hands. A head-mounted
display frees the user’s hands and according to [7] might
lead to faster task completion times and higher accuracy.
Unfortunately, the currently available devices have a limited
field of view. Also, a head-mounted display probably would
not be suitable for long-time usage. On the other hand, SAR
is able to show information in context, does not require any
hand-held devices, is suitable for long-term usage, and is
visible to anyone. It was recently used to implement an
interactive work desk [8], show instructions to workers [9],
or to show robotic data and learn trajectories [10].

To the best of our knowledge, there is currently no existing
interactive system targeting all of the following important
issues:

• problems with attention switching when a monitor or a
hand-held device is used to visualize the programming
interface and system status during operation,

• too much information is presented to the user, leading
to a higher mental workload,

• external devices are needed to fully interact with the
robotic system (during both the programming and pro-
cessing phases),

• low level of abstraction allowing only medium-expert
users to program the robot.

bool applyGlue(objectType, polygon, positions) {

obj = findObjectInPolygon(detectedObjects,
 objectType,
 polygon);
 return glue(obj, positions);
}

Object detectionInteractive SAR Kinesthetic teaching

Instruction with parameters

Within-context programming Perception

Execution

Feedback

Fig. 2. Illustration of program parameters’ definition (combination of
manually set parameters by the user with perceived information by the
system) and its execution with visual feedback.

III. PROPOSED APPROACH

We propose and initially evaluate a novel approach to col-
laborative robot programming with the following attributes
(see also Fig. 2):

• avoiding switching of the user’s attention during pro-
gramming and cooperation by placing all the interaction
elements in a shared workspace,

• decreasing the mental demands on the users by present-
ing the relevant information according to the current
context,

• avoiding the usage of further external devices to interact
with the system by making the shared workspace itself
interactive,

• allowing non-expert users to work with the system by
utilizing a high level of abstraction to program a robot.

Based on literature review and the current state of the
technology, we see SAR as the most suitable instrument
to visualize a user interface within a task context. While
previous research has shown that gesture control is the
preferred input modality for setting the parameters of com-
mon industrial tasks, we decided to use a touch-enabled
table, which was also rated highly [11], and which is much
more reliable. Moreover, together with SAR, it creates a
similar user experience to tablets and smart phones, the usage
of which is well-known to the general public. For tasks
requiring 3D data input, the robot’s arms could be used.

The user interface should be minimalistic, as the interface
elements have to share space with real-world objects in the

54

workspace: Tools, parts, etc. However, the design of the
elements should allow convenient touch control. Depending
on the state of the task, only the relevant information should
be shown to lower the cognitive load [12]. The interface
should clearly indicate the current state of the system,
including an explicit representation of the robot’s program
and the context of the current program instruction (what
happened before it and what is going to happen after it).
Additional modalities, such as sound or light, could be used
to for instance attract attention in special cases.

In order to make programming as well as the user interface
as simple as possible, we decided to use complex instructions
with a high amount of underlaying autonomy, at the price of
lowering expressivity (see Fig. 2). While theoretically, with
the system from [3] one can create complex instructions
from basic ones, it also makes the user interface complex
and the program representation complicated. For instance,
one has to set several poses, specify open and close gripper
commands, etc. We believe that, for the sake of simplicity,
the user should be abstracted from such low-level commands
and the robot should perform them automatically.

To achieve a high level of abstraction and effective collab-
oration, the robot needs to perceive its surroundings as well
as track its human coworker(s) and plan motions according
to the current situation.

IV. PROOF OF CONCEPT SYSTEM

To evaluate the proposed approach, a proof of concept
system has been developed. The system allows end-user
programming of selected industrial tasks.

A. Setup

The experimental setup (see Fig. 1) was designed to be
easy to deploy and modular. It is centered around a standard
workshop table equipped with a capacitive touch foil. On the
sides, two speaker stands are placed, connected by a truss.
The truss is equipped with an Acer P6600 projector. There
is a Microsoft Kinect V2 camera on each stand for object
detection and calibration of the system. On one stand, there
is an additional Kinect for user tracking. Each stand has its
own processing unit (Intel NUC) where the projector and
sensors are connected (in the study, only one projector was
utilized). The unit is connected to the central computer using
a wired network. The system is designed to be modular in a
way so that it supports 1..n stands.

As a demonstrator of a near-future collaborative robot,
we use the intrinsically safe PR2. The robot provides an
additional set of sensors (Kinect and cameras on the head,
cameras in the forearms). There is also a physical stop button
under the table which shuts down the robot’s motors.

B. System design

The system’s state and behavior are defined and controlled
by the central node and it can be manipulated by an arbitrary
number of user interfaces. For instance, we currently use two
interfaces: GUI projected on the table and a sound interface,

providing audio feedback (e.g. confirmation of action, errors,
etc.).

All parts of the system must be mutually calibrated first.
Calibration of the Kinects utilizes an AR tracking library2

to detect three markers placed on the table. One marker
serves as an origin of the coordination system; the two
others determine the X and Y axes. The PR2 robot is
calibrated in the same way, using a head-mounted Kinect. To
calibrate the projectors, a checkerboard pattern is displayed
by each projector, and its corners are detected using already
calibrated Kinects. In order to calibrate the touch-enabled
surface, the points are projected on the table and the user
has to click them. Then, homography is computed and used
to convert the internal coordinates of the touch device into
the common coordinate system.

Each of the objects used in our study has a set of two AR
tags printed on the body, and multimarker detection is used
to gain a unique ID of the object and its pose. Each object
has an object type and a bounding box defined.

The manipulation pipeline is based on MoveIt! [13] and a
library for grasp planning3.

C. Program representation

The program in our system is a set of instructions, col-
lected into blocks. Each program contains 1..n blocks; each
block contains 1..n instructions. Every instruction execution
can result in success (e.g. a successfully picked up object)
or failure (e.g. failed to apply glue). Based on this result, the
next instruction is determined. With this approach, simple
branching and cycling of the program are possible (e.g.
picking up objects from a feeder until the picking up failed,
i.e. until there are no objects left). For an example of a
program structure in the form of a graph, see Fig. 5.

Contrary to the conventional methods of programming
robots, no precomputed joint configurations or arm paths
are stored. By combining the perception capabilities of the
system and on-the-fly motion planning, we do not rely on
e.g. storing exact object positions.

It can be expected that the parameters of the program will
be changed more often than the structure of the program.
For this reason, we have divided the programming process
into two parts. First, an empty template is created offline.
This template can be seen as a description of an industrial
technological process. It contains a set of instructions with
defined transitions; however, without parameters. Thus, the
template can be created once and later be adapted to conform
to different products by setting instruction parameters.

D. Supported instructions

The system currently supports the following parametric
instructions: pick from polygon (to pick up an object from
a table), pick from feeder (to pick up parts from a gravity
feeder), place to pose (to place a previously picked-up object
on a selected place on the table) and apply glue (simulated

2http://wiki.ros.org/ar_track_alvar
3https://github.com/davetcoleman/moveit_simple_

grasps

55

Program list

Program 5
Training - pick from polygon, place

Program 6
Training - pick from feeder, place

Program 7
Training - glue application

Run Edit Template

(a) List of programs. Green ones
are ready to run, red ones need to
set parameters.

Program 6, block 1

1 | PICK FROM FEEDER
 Object type: wood_46_300
 Pose has to be set.
 Success: 2, failure: 0

2 | PLACE TO POSE OBJECT FROM STEP 1
 Object type: wood_46_300 (same as in 1)
 Success: 3, failure: 0

3 | PICK FROM FEEDER (copy of 1)
 Object type: wood_46_300
 Pose has to be set.
 Success: 2, failure: 0

Edit Run On S On F

Back to blocks

(b) List of instructions. Green
ones are ready to run, red ones
need to set parameters.

Program 6, block 1

1 | PICK FROM FEEDER
 Object type: wood_46_300
 Pose has to be set.
 Success: 2, failure: 0

2 | PLACE TO POSE OBJECT FROM STEP 1
 Object type: wood_46_300 (same as in 1)
 Success: 3, failure: 0

3 | PICK FROM FEEDER (copy of 1)
 Object type: wood_46_300
 Pose has to be set.
 Success: 2, failure: 0

Done Run On S On F

Back to blocks

Save gripper pose

Right arm (0) Left arm (1)

(c) A small dialog shows if the
robot is able to detect an object in
the feeder and allows the user to
save the arm pose.

PICK AREA

ID: 2005 ID: 2008

(d) Polygon defining the area on the table
from which the objects will be picked up.
The green outlines correspond to detected
objects.

Fig. 3. Examples of different widgets from a proof of concept system.

gluing). Each of these instructions has certain parameters to
be set by the user.

The object type must be set for all of these instructions.
For the pick from polygon and apply glue, a polygon defining
the area of interest on the table has to be set, so that the
user can limit objects of the given type affected by the
instructions.

For the pick from feeder, a pre-picking pose (see Fig. 4(c)),
used for object detection, has to be set using the robot’s
arm. While executing this instruction, the robot moves to
the stored pose, observes the objects with its forearm camera
and picks up the closest object in the direction of the gripper.
For apply glue, the poses where the glue is supposed to be
applied have to be set using an arbitrary arm of the robot.

There are also a couple of non-parametric instructions: get
ready, wait for user, and wait until user finishes. The first
one moves the robot’s arms to their default position. The
other instructions allow the synchronization of the system
and the user. The wait for user instruction will pause the
program execution until the user is in front of the table, while
wait until user finishes will pause the program until the user
finishes current interaction with the objects on the table. In
our experiments, the behavior of these two instructions was
simulated and controlled by the Wizard of Oz approach.

E. User Interaction

The interaction between the user and the system is cur-
rently achieved using three modalities: GUI projected on
the touch-enabled surface (which serves as an input for the
system and feedback for the user), kinesthetic teaching (input
to the system only), and sound (feedback for the user only).

The GUI is composed of various widgets. The list of
programs (see Fig. 3(a)) shows all the programs stored in
the system. The color of each entry suggests whether the
program has set all the parameters (green; only these can
be started) or some of them are not set (red). Any program
can be templated (it is duplicated as a new program, with

no parameters set) or edited (the user may set or adjust its
parameters). During the program editation, the user can see a
list of blocks of the selected program and can edit a selected
block or get back to the list of programs.

When editing a block of a program, the list of instructions
is shown (see Fig. 3(b)). The selected instruction is always
in the middle (with exception for the first and the last one)
so the user can see its context. Similarly to the program
list, each instruction has either a red or a green background,
indicating whether it has all the parameters set. When all
the parameters have been set, the selected instruction can be
executed. Moreover, a gray instruction background suggests a
non-parametric instruction. There are also buttons to navigate
through the program, to select an instruction following either
the successful or failed execution of the current instruction.

When a program has been executed, the list of instructions
differs slightly. All the instructions are grayed out and are
not interactive, and the buttons for pausing and stopping the
program are displayed. The instruction detail shows: The
type of the instruction (e.g. pick from feeder), the parameters
(e.g. object type) and transitions for success and failure.

The user is notified about the state of the system and the
errors, as well as the currently available actions, using a
notification bar shown next to the front edge of the table.

It is important for the user to know the state of the
system, so for every detected object an outline and ID are
displayed (see Fig. 3(d)). The type of the object is displayed
upon clicking on the outline. For the purpose of setting the
parameters, more information is shown, such as a polygon
defining the area on the table, the outline of the object
showing the position for object placement, etc. The same is
also shown during the program execution, so the user knows
in advance what object the robot will work with.

Various dialogs exist which allows the user to specify
additional information. For instance, while programming an
pick from feeder instruction, the user has to specify a pre-
pose for object detection by manipulating the robot’s arm

56

and then confirming the position using a dialog. The pose is
saved after pressing a button corresponding to the arm used
(see Fig. 3(c)). The whole procedure is shown in Fig. 4 (a-e).

F. Known Limitations

The main input modality – touch foil – is prone to false
readings when metal objects are placed on it, which makes
it unsuitable for certain industrial settings. In the future, it
might be replaced with or complemented by a vision-based
approach (e.g. one from [8]). 3D interaction is currently
limited to the kinesthetic teaching of positions, with no
means for their later visualization.

V. EVALUATION

In order to evaluate the proposed approach and to discover
the main usability issues of the early prototype, a user
experience testing was carried out4. Prior to the experiment
itself, a pilot experiment with three subjects (faculty staff)
took place, which helped us to verify the functionality of the
prototype and to create the final experiment design.

As measures, we choose a combination of qualitative and
quantitative data. Self-reported data were obtained using
a questionnaire consisting of the System Usability Scale
(SUS) [14], NASA Task Load Index (TLX) [15] in its raw
form (simplified, with a scale in the range [1..7]) and a
custom questionnaire focusing on the specifics of the system.
We recorded the task completion times and the corresponding
number of moderator interventions as quantitative data.

A. Experiment protocol

The experiment protocol consisted of four phases. None of
the phases of the experiment was time-limited. There were
one moderator and one operator in a separate room in charge
of system monitoring, data recording, and WoZ (used solely
to simulate user activity recognition).

1) Introduction: At the beginning of the experiment, the
participants signed an informed consent form. They were told
a story about a fictional SME producing wooden furniture:
“The company cannot afford a dedicated robot programmer,
so it bought a collaborative robot programmable by any
ordinary skilled worker. The robot will serve as an assistant
preparing the parts for the workers who will do the assem-
bly.” They were given information about safety, the parts of
the workspace (interactive table, robot, feeders with furniture
parts), and basic usage of the interface.

2) Training: The training phase consisted of three simple
programs demonstrating the supported instructions. No spe-
cific product was assembled in this phase. The parameters of
each program were first set by the participant and then the
program was executed. During the execution, errors (e.g. a
missing object) were intentionally invoked in order to gain
familiarity with the error resolution dialog. In this phase,
the moderator proactively helped the participants to complete
the tasks and answered all the questions. A short practice of
the think-aloud protocol followed. After that, the participants

4Overview of the experiment: https://youtu.be/cQqNLy6mE8w.

were told to set the parameters of those three programs
independently while thinking aloud.

3) Main task: The assembly process of a target product (a
small stool) was explained and the participants assembled it
manually. Next, the structure of the corresponding program
and the expected workflow were explained.

After the questions were answered, the participants started
working. When finished, they started the program and collab-
orated with the robot on the task of producing a stool. Two
stools were produced and the participants were told that there
was a demand to adapt a product - to produce a higher stool.
After the parameters of the program had been adapted, they
produced one more.

4) Feedback: After finishing the tasks, an open discussion
took place. The participants were asked for their impressions,
additional questions, etc. Then, they were asked to fill in the
questionnaire.

B. Stool assembly

The intended workflow of the main task is that the user
does the assembly while the robot prepares the parts needed
in the next steps “on background”. The program is divided
into three blocks (see Fig. 5). Blocks 1 and 2 have the same
structure and serve to prepare the parts for the sides of the
stool (two legs, two connecting parts, application of glue).
The purpose of two blocks is that the user might set parts
within one block to be supplied from e.g. the left feeder and
in the other block from the right feeder. Block 3 serves to
prepare the connecting parts for the final assembly of the
sides of the stool.

C. Participants

In cooperation with an industrial partner (ABB Brno),
six regular shop-floor workers of various ages, genders and
technical backgrounds were selected (out of 27 volunteers)
to take part in our study. These participants will be labeled as
Participants A, B, C, D, E and F. Five of them work in quality
control; one (E) works as a mechanic. The demographic data
of the participants can be seen in Table I.

VI. RESULTS

The section provides results of the experiment.

A. Qualitative and quantitative data

Table II shows the results per participant. The mean time
to complete the main task was 2711 s (SD 620 s) with 11.7
(SD 6.7) moderator interventions. The main task consisted
of setting the following instructions: 5x pick from feeder (2
parameters), 12x place to pose (1 parameter), 2x apply glue
(4 parameters), resulting in settings of 30 parameters in total.
The mean time for program adaptation task was 1053 s (SD
215 s). It consisted of setting: 2x pick from feeder, 2x apply
glue, and optionally, adjustment of place poses (based on
previously set poses), resulting in at least 12 parameters in
total. These times include the delays caused by system errors
(unreliable object detection, unstable manipulation pipeline,
etc.). The mean SUS rating was 75.8 (SD 8.9), while for

57

(a) User selects instruction to
be set from list (pick).

(b) Object type is set by
touching its outline.

(c) Robot arm is used to
teach detection position.

(d) Dialog shows if robot is
able to detect object in feeder.

(e) User saves position (con-
firmation sound is played).

(f) User selects follow-up in-
struction (place).

(g) User adjusts place pose
by dragging it on the table.

(h) Another pose, first one
also shown for convenience.

(i) User tests pick from feeder
instruction.

(j) Test of place to pose in-
struction.

Fig. 4. An example of human-robot interaction during the experiment. In this case, the user sets parameters for two pick from feeder instructions (one
shown) and consequent place to pose instructions (both shown). Then, instructions are tested. Two input modalities are used: touch table and robot arm.

part. gender age education experience with robots attitude towards new technology
A F 57 vocational (technical) none skeptical
B M 46 secondary (technical) seen robot at least once neutral
C F 27 secondary (economics) none neutral
D M 33 secondary (technical) seen robot at least once early adopter
E M 24 secondary (technical) works on workplace with robots but not next to them neutral
F M 34 undergraduate (technical) none skeptical

TABLE I
DEMOGRAPHIC DATA OF THE PARTICIPANTS.

comparison, the system from [4] was scored 66.75 (SD
16.95). The mean TLX was 33.3 (SD 8.8).

From the custom questions (see Table III) it seems that
the participants in general liked interacting with the system
and felt safe; however, they were confused from time to time.
However, during the experiment, in most cases it was enough
to tell them to check the notification area and they were able
to continue afterwards.

B. Programming

Observation of the users has shown that the current
visualization of the robot program is probably not suffi-
cient, as it often took considerable time to realize what
was currently being programmed, especially for the case
of repeating sequences of program items (e.g. pick from
feeder, place to pose, pick from feeder, place to pose). Not
fully consistent terminology (e.g. program instruction was
sometimes referred to as item and sometimes as step) may
have contributed to this. Probably because of the similar
appearance, for some participants it was difficult at the
beginning to distinguish between a program block and a
program instruction.

Probably the most common issue during programming was
the participant forgetting to press the Edit button in order to

switch from the view-only mode to the parameter settings
mode for the selected instruction. The participants often tried
to adjust for example place pose and were confused as to
why it was impossible. Also, it was often unclear that it
is only possible to execute individual instructions. Initially,
two participants thought that the instructions (displayed in
the program visualization) were for them, so they should
perform e.g. pick from feeder. One participant asked if there
are also assembly instructions for the workers.

There have been cases where the user accidentally changed
the selected object type. Despite the fact that this was covered
during training, some of the participants thought that the
object type is selected when they put an object of that type
on the table. It seems that although the objects of a selected
type were highlighted differently (with a green outline), most
of the participants only guessed what type was selected, or
rather, checked it in the program visualization where the
information was in textual form.

C. Individual instructions

1) Pick from feeder: Participants were often confused,
as it was required to select the object type on the table
and then to use a robot arm to set the pose enabling the
detection of parts in the feeder. We noticed cases where the

58

Block 3
Connecting parts

Block 1
Side 1

Block 2
Side 2

Step 1
WAIT UNTIL USER FINISHES

Step 2
PICK FROM FEEDER

Step 3
PLACE TO POSE

 from step 2

Step 4
PICK FROM FEEDER

copy of step 2

Step 5
PLACE TO POSE

 from step 4

Step 6
PICK FROM FEEDER

copy of step 4

Step 8
PICK FROM FEEDER

copy of step 4

Step 7
PLACE TO POSE

 from step 6

Step 9
PLACE TO POSE

 from step 8

Step 10
GET READY

Step 1
WAIT UNTIL USER FINISHES

Step 2
PICK FROM FEEDER

Step 3
PLACE TO POSE

 from step 2

Step 4
PICK FROM FEEDER

copy of step 2

Step 5
PLACE TO POSE

 from step 4

Step 6
PICK FROM FEEDER

Step 7
PLACE TO POSE

 from step 6

Step 8
PICK FROM FEEDER

copy of step 6

Step 9
PLACE TO POSE

 from step 8

Step 10
APPLY GLUE

to 2 poses

Step 11
GET READY

Step 1
WAIT UNTIL USER FINISHES

Step 2
PICK FROM FEEDER

Step 3
PLACE TO POSE

 from step 2

Step 4
PICK FROM FEEDER

copy of step 2

Step 5
PLACE TO POSE

 from step 4

Step 6
PICK FROM FEEDER

Step 7
PLACE TO POSE

 from step 6

Step 8
PICK FROM FEEDER

copy of step 6

Step 9
PLACE TO POSE

 from step 8

Step 10
APPLY GLUE

to 2 poses

Step 11
GET READY

Program end

Program start

Fig. 5. Stool production program. The green edges represent on success
transition, while the red ones represent on failure. The grey edges show
dependencies. In the case of apply glue, there is a loop. The robot applies
glue to one object in a specified area. If an object is found, the program flow
continues to the on success instruction - it tries to apply glue to another
object. If there is no object without glue applied, the flow continues to
on failure (next instruction).

participant tried to select an object by knocking on it (instead
of clicking on its outline), both on the object on the table
and in the feeder. The participants commonly skipped the
object selection, grabbed the robot arm and tried to set the
pose, even above the object on the table, despite the fack that
they were learning picking from feeder. After pressing Edit,
dialog buttons for saving the arm pose (grayed-out at the
time) were sometimes used “to select arm” before any other
interaction. Most users took a new part from the feeder and
put it on the table when they needed to select the object type
even though there were already objects of that type that could
have been used for this purpose. When adapting the program,
it happened twice, that the participant by mistake set the
position for the other feeder (e.g. the instruction originally
used the left feeder, and they switched to the right one). This
would mean that the robot would not be able later to place
the object, as the following place pose (on the opposite side
of the table) would be out of its reach.

2) Place to pose: Common sources of problems were un-
reachable place poses, or place poses too close to each other,
which prevented the robot from placing parts successfully.
The only possibility was to find out by trial and error. For all

the participants, it was difficult initially to handle separated
translation (by dragging) and rotation (using a pivot point).
Some of them intuitively attempted to use multi-touch ges-
tures (not supported by the interface thus far), including one
participant who does not own any touch devices. Although
the initial position of the place pose was in the middle of
the table, some participants had trouble finding it, especially
if there were many objects around. Some of them tried to
drag the outline of a detected object or even placed an object
into the outline of the place pose. Visualization of the place
poses from other instructions (differentiated by a dotted line
and a corresponding instruction number) were confused a
few times with the current place pose and the users tried to
move them.

For successful collaboration with the robot, it was nec-
essary to organize the workspace so that the robot could
prepare the parts for the next steps, while the user did the
assembly. Only Participant B explicitly thought about orga-
nization of the workspace. The others had minor problems
with it or required help. Participant C placed the parts in
a very chaotic way. The participants were explicitly told
during training that they may move widgets (e.g. program
visualization) across the table; however, most of them did
not use it and rather adjusted the place poses so that they
did not collide with the widget.

3) Glue application: The most common issues were ob-
ject type selection (attempts to select using the robot’s arm)
and difficulties with the number of actually stored poses
(shown textually). The fact that it is necessary to store
required poses only with regard to the one object and the fact
that the robot will do it in the same way for other objects in
a given area was also generally unclear.

D. Program execution

During the program execution, errors occurred relatively
often, especially when the robot tried to place an object;
erroneous detection prevented it from doing so. In the event
of an error, a dialog appeared and sound was played. Most
issues were solved just by pressing the Try again button. The
participants were explicitly told to pay attention to errors.
Some of the participants reacted immediately, others after
some time and one seemed to ignore the errors and had to
be told to solve them. Once in a while it was necessary to
warn a participant that he or she was blocking the robot by
occupying part of the table where the robot was meant to
place parts.

E. General findings

No one complained about imperfections of the projection
(shadows, inaccurate registration), low readability of the text,
interface response times, etc. Each participant had an issue
at least once with a non-touchable margin of the interactive
table, which was not indicated by the projected interface.
There were also issues with pressing the buttons twice, where
user tried, for example, to select an instruction which was
immediately unselected. While inactive buttons were grayed

59

Measure A B C D E F
System Usability
Scale

87.5 67.5 77.5 75.0 85.0 62.5

Simplified TLX 25.0 33.3 30.6 22.2 41.7 47.2
time to set program
(s)

3849 3025 2618 2217 2661 1897

interventions 21 7 20 12 6 4
time to adapt pro-
gram (s)

1088 1447 1118 958 738 968

interventions 11 4 12 2 2 2

TABLE II
QUALITATIVE MEASURES, TASK COMPLETION TIMES (STOOL PROGRAM)

AND NUMBER OF MODERATOR INTERVENTIONS (INCLUDING

ANSWERING QUESTIONS).

Statement A B C D E F
Collaboration was effective. 5 4 5 5 4 4
I felt safe. 4 5 5 5 5 5
Robot motions were uncomfortable. 2 1 1 1 1 1
It was easy to see what the robot was
about to do.

4 5 5 4 4 2

The robot hindered me at work. 1 2 1 1 1 1
I watched every movement of the
robot.

3 1 2 3 4 2

Learning the robot using its arm was
intuitive.

4 4 5 5 5 4

Learning the robot using the interactive
table was intuitive.

4 4 5 5 5 3

Interactive table shows all necessary
information.

5 2 5 5 5 4

Sometimes I did not know what to do. 5 5 4 2 4 4

TABLE III
CUSTOM QUESTIONNAIRE, 1 - TOTALLY DISAGREE, 5 - TOTALLY AGREE

out, most users tried to press them anyway when they thought
they should work.

With many objects on the table or during the stool assem-
bly, there was considerable visual clutter. Interestingly, no
one mentioned it. Difficulties with moving interface elements
(e.g. place pose) across longer distances were observed,
especially if there were many objects on the table. Again, no
one complained or asked if there was an alternative method
to dragging.

As a complementary modality, there were sounds (confir-
mation, warning, error). Only Participant B explicitly appre-
ciated it.

Regarding safety, only Participant A once noted that a
particular movement was probably not safe. No one used
the emergency stop button.

VII. CONCLUSIONS

In this work, we targeted problems of the existing solutions
in the area of interaction between the human workers and the
industrial collaborative robots, particularly in the context of
programming robots in SMEs. The proposed and tested in-
teraction system is an attempt to reduce the mental demands
and attention switching by centering all interaction elements
in the shared workspace. This is achieved by the interactive
SAR (combination of projection and a touch-enabled table)
and kinesthetic teaching. Non-expert users program a robot
on a high level of abstraction, and work within the task
context, free of any additional external devices and with
immediate visual feedback.

The conducted user experience tests proved the potential
of our concept when all six regular shop-floor workers
were able to program the robot to prepare parts for a stool
assembly, to collaborate with the robot, and to adapt the
program for an alternative product within a reasonable time.

During the experiment, no fundamental issues forcing us
to reconsider the approach were found. However, the task
state awareness in particular has to be improved as well as
support for the workspace layout. The participants rated the
system positively despite a number of minor usability issues
and system errors caused by its experimental nature.

In addition to the revision of the interface to solve the
usability issues, we plan to investigate multi-touch support,
group operations, intelligent placement of user interface
elements, and visualization of robot reachability.

ACKNOWLEDGMENTS

The work was supported by Czech Ministry of Educa-
tion, Youth and Sports from the National Programme of
Sustainability (NPU II) project ”IT4Innovations excellence
in science - LQ1602”.

REFERENCES

[1] E. M. Orendt, M. Fichtner, and D. Henrich, “Robot programming by
non-experts: Intuitiveness and robustness of one-shot robot program-
ming,” in RO-MAN. IEEE, 2016, pp. 192–199.

[2] M. Stenmark, M. Haage, and E. A. Topp, “Simplified programming of
re-usable skills on a safe industrial robot: Prototype and evaluation,”
in HRI. ACM, 2017, pp. 463–472.

[3] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework for
end-user instruction of a robot assistant for manufacturing,” in ICRA.
IEEE, 2015, pp. 6167–6174.

[4] J. Huang and M. Cakmak, “Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts,” in HRI.
ACM, 2017, pp. 453–462.

[5] Y. S. Sefidgar, P. Agarwal, and M. Cakmak, “Situated tangible robot
programming,” in HRI. ACM, 2017, pp. 473–482.

[6] S. Stadler, K. Kain et al., “Augmented reality for industrial robot
programmers: Workload analysis for task-based, augmented reality-
supported robot control,” in RO-MAN. IEEE, 2016, pp. 179–184.

[7] E. Rosen, D. Whitney et al., “Communicating robot arm motion
intent through mixed reality head-mounted displays,” arXiv preprint
arXiv:1708.03655, 2017.

[8] R. Xiao, S. Hudson, and C. Harrison, “Supporting responsive cohab-
itation between virtual interfaces and physical objects on everyday
surfaces,” HCI, vol. 1, no. 1, p. 12, 2017.

[9] M. Funk, “Augmented reality at the workplace: a context-aware
assistive system using in-situ projection,” 2016.

[10] F. Leutert, C. Herrmann, and K. Schilling, “A spatial augmented reality
system for intuitive display of robotic data,” in HRI. IEEE Press,
2013, pp. 179–180.

[11] Z. Materna, M. Kapinus et al., “Simplified industrial robot program-
ming: Effects of errors on multimodal interaction in woz experiment,”
in RO-MAN. IEEE, 2016, pp. 200–205.

[12] D. Wurhofer, V. Fuchsberger et al., “Insights from user experience
research in the factory: What to consider in interaction design,”
in Human Work Interaction Design. Work Analysis and Interaction
Design Methods for Pervasive and Smart Workplaces. Springer, 2015,
pp. 39–56.

[13] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” Robotics &
Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[14] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[15] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” Advances in
psychology, vol. 52, pp. 139–183, 1988.

60

Combining Interactive Spatial Augmented Reality with Head-Mounted
Display for End-User Collaborative Robot Programming

Daniel Bambušek, Zdeněk Materna, Michal Kapinus, Vı́tězslav Beran and Pavel Smrž

Abstract— This paper proposes an intuitive approach for
collaborative robot end-user programming using a combination
of interactive spatial augmented reality (ISAR) and head-
mounted display (HMD). It aims to reduce user’s workload
and to let the user program the robot faster than in classical
approaches (e.g. kinesthetic teaching). The proposed approach,
where user is using a mixed-reality HMD – Microsoft HoloLens
– and touch-enabled table with SAR projected interface as input
devices, is compared to a baseline approach, where robot’s
arms and a touch-enabled table are used as input devices.
Main advantages of the proposed approach are the possibility
to program the collaborative workspace without the presence
of the robot, its speed in comparison to the kinesthetic teaching
and an ability to quickly visualize learned program instructions,
in form of virtual objects, to enhance the users’ orientation
within those programs. The approach was evaluated on a set of
20 users using the within-subject experiment design. Evaluation
consisted of two pick and place tasks, where users had to start
from the scratch as well as to update the existing program.
Based on the experiment results, the proposed approach is
better in qualitative measures by 33.84 % and by 28.46 % in
quantitative measures over the baseline approach for both tasks.

I. INTRODUCTION

As industrial collaborative robots are getting more afford-
able, it is likely that small and medium enterprises (SMEs)
will soon adopt such robots in order to increase productivity.
However, in such enterprises, production batches are smaller
and products may be customized for a specific contract.
This requires reprogramming robots for particular tasks,
which could be challenging due to necessity of robot-specific
knowledge. Thus it would be beneficial to enable ordinary-
skilled worker to program these robots easily. Therefore,
we created a prototype of a human-robot collaborative
workspace – the ARCOR [1], which presents a novel ap-
proach to programming robots based on cognition, spatial
augmented reality and multimodal input and output1.

This work extends our previous solution that was depen-
dent on a robot’s presence when programming the workspace
and was able to convey 2D visualization only. Integration
of the head-mounted display (HMD) adds the possibility to
quickly and easily visualize 3D information as e.g. pick and
place positions2 (see Figure 1). Moreover, it has a potential
to at least partially eliminate the problem which occurred
during the experiment from [1] where users had troubles with
orientation in individual programs of the ARCOR system.

All authors are affiliated with the Brno University of Tech-
nology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Bozetechova 1/2, Brno, 612 66, Czech Republic. Contacts:
bambusekd, imaterna, ikapinus, beranv, smrz@fit.vutbr.cz

1github.com/robofit/arcor
2github.com/xBambusekD/ar2cor

Fig. 1: Spectator’s view of the collaborative workspace, with
projected user interface, extended by virtual objects seen
through the HMD. Example of setting program parameters
using the HMD gestures.

Regarding the end-user programming, we focused mainly
on simplifying the pick&place task, lowering its time to
completion and the user task load.

The presented extension of the ARCOR also addresses
the case of SMEs where there are more workspaces than
robots. Robots are then moved between them in order to
work on a workspace-specific task. To minimize enterprise
losses inflicted by robot’s idle time, it would be advantageous
to enable workers to program the workspace even though the
robot is currently working elsewhere.

II. RELATED WORK

Recently, variety of solutions allowing end users to pro-
gram robots based on AR were published. Those were based
on a handheld device [2]–[4], a HMD [5], [6] or a camera-
projector solution [7]–[9]. When designing the AR interface,
perceptual issues as e.g. a limited field of view, a depth
ordering and occlusion introduced by the selected technology
and used method has to be taken into account [10]. Despite
the above-mentioned problems, the AR has potential to
improve HRI. For instance, it could help to avoid context
switches which are normally inevitable when the user has
to observe the real environment and the robot as well as
the video interface [5]. Another usage could be to convey
the robot’s intents, especially for appearance-constrained
robots [6]–[8] not able to convey those by other means.

Nowadays, spatial augmented reality (SAR) seems to
be a highly promising method enabling users to interact

61

with the robot within the task-context. For instance, its use
was investigated to program a mobile welding robot [11]
or in a long-term study focused on projecting assembly
instructions [9]. In contrast with handheld devices, SAR
has following advantages: both hands are free, projection
is visible by anyone, no physical load caused by need of
holding the device. On the other hand, it cannot provide free-
space 3D visualization.

For unconstrained 3D interaction, HMD with integrated
gesture recognition and self-localization capabilities could
be used, as e.g. Microsoft HoloLens, which was a first self-
contained and un-tethered device of this type. The existing
solutions based on HoloLens HMD include functionality as
e.g. setting of trajectory waypoints [12], previewing robot
motions [13], [14], or programming of a simple pick and
place task [15]. In various experiments, interfaces based
on HoloLens were in many aspects (task completion times,
intuitiveness, physical effort) found superior to 2D inter-
faces [13], [16] or to kinesthetic teaching [12]. However, for
robotic applications, HoloLens limited scanning accuracy of
1-2mm and precision of 3-5mm [15] has to be taken into
account. Moreover, interfaces has to be designed with its
narrow field of view (FoV) in mind. Although the usage of
HMD similarly to SAR frees users’ hands, there is question
of its long-term use suitability: perceived discomfort, or
possible health risks.

In our approach, the HMD is used as an extension to
the existing ISAR-based (interactive SAR) user interface,
where it aims to provide means for effective 3D interaction
(instead of kinesthetic teaching) and visualization (which
was previously not possible at all). Up to our knowledge,
this unique combination of the two AR techniques was not
so far described in the literature. It enables us to overcome
shortcomings of particular modalities and provides seamless
interactive environment for letting unskilled users to program
complex robotic tasks.

III. PROPOSED MIXED REALITY INTERFACE

The baseline approach of the end-user robot programming
uses the ISAR in a combination with kinesthetic teaching
(ISAR-KT). We use the kinesthetic teaching only for setting
the target pose, while the robot computes trajectory to it
by itself according to the current state of the workspace.
In order to fulfill outlined goals (remove robot dependency,
reduce programming completion time and user’s task load),
we replaced the kinesthetic part with the HMD. Thus, we are
proposing an approach that uses a combination of the ISAR
with HMD (ISAR-HMD)3.

A. Setup

The ARCOR setup, that we created, consists of a pro-
jector, which projects a user interface onto a touch-enabled
table that forms the ISAR, two Microsoft Kinect sensors,
two speakers placed beneath the table and a robot. As a
demonstrator of a collaborative robot, the PR2 is used. For

3Video of the proposed approach: https://youtu.be/MNXhqpFBy9Y.

rosbridge

HoloLens NUC 1
(rosmaster)

NUC 2

NUC 3

shared ROS
environment

PR2

I/O devices
(Kinects, touch-table,

projector, monitor,
speakers,..)

Fig. 2: ARCOR architecture. Intel NUCs are used as process-
ing units, communicating together via local network. The
whole system runs on Ubuntu along with ROS. Microsoft
HoloLens communicates with the ROS environment via the
rosbridge API.

a computational power, three processing units (Intel NUC)
connected into a wired network, are used. The base setup is
described in more detail in [1].

In order to overcome the inherent limitations of the
ISAR-based solution, a HMD (Microsoft HoloLens 1) was
integrated, which serves for visualization and interaction
in 3D, whereas ISAR could still be used for tasks where
2D interaction is sufficient. The HoloLens communicates
with the main processing unit, which runs on the Ubuntu
14.04 along with ROS Indigo, via the rosbridge API (see
Figure 2). Since there are individual sensing units – Kinects,
robot, HoloLens – they all need to be calibrated with respect
to a common point (corner of the table). The calibration
procedure is based on detection of a known AR marker.

Projected user interface offers various widgets. Most
crucial is a program list, where all stored programs are
displayed. User can either edit parameters for already set
program or template selected program, which will create a
new instance of it with empty parameters. Each program can
be composed of multiple blocks, where each block has a set
of instructions for which the parameters, like pick position,
object type, place position, etc. needs to be set.

B. Problems to Solve in the Pick&Place Use Case

We focused mainly on simplifying the pick&place learning
procedure. More specifically, on a scenario where user wants
to set the robot to pick an object from the feeder and place
it on the table.

In order to properly program this task in the ARCOR
setup, the user has to set three main parameters – detec-
tion position, object type and place position. Due to the
HoloLens limited scanning accuracy (1-2mm), its preci-
sion (3-5mm) [15] and a possible inaccurate user input,

62

robot’s cognitive abilities (attached forearm cameras) are
used, which are able to find the object of specified type from
the detection position in order to determine precise picking
position.

Since the proposed solution (ISAR-HMD) is aiming on
elimination of robot’s presence, the user uses only touches
of the touch-enabled table and gestures of the HMD for
interaction with the system. Without the kinesthetic teaching
and with the goal of keeping the ISAR-HMD as simple as
possible, we needed to solve:

• How to efficiently select the object type to be picked
up.

• How to set the detection position, from which the robot
will be able to detect and pick up the object.

• How to set the place position and its rotation.

C. Solution to the Pick&Place Use Case

Based on the results from [14], a heading-based selection,
where user is using his gaze for targeting (indicated with
virtual cursor) and a hand for the selection gesture (HoloLens
Air tap – equivalent of mouse click), is used.

For a sake of efficiency (lowering the number of actions
the user has to take), setting the picking instruction (named
pick from feeder in the ARCOR system) and setting the
placing instruction (named place to pose in the ARCOR
system) is tied together to form a fluent procedure.

All visible objects in the scene are detected and registered
(Kinect sensors), making them interactive for the HMD.
While the user is gazing at such detected object during setting
the detection position, visual feedback – in a form of virtual
robot gripper rendered with 0.3m offset from the HMD’s
cursor – is provided. This gripper, which is automatically
positioned against the side of the object the user is looking at,
is indicating current detection position directly in the scene.
When colored green, the robot will be able to detect and pick
up the object, when colored red, the robot will not be able
to do so.

Final stage of setting the object type and the detection
position is merged into one action – HoloLens Air tap gesture
(equivalent of mouse click) on desired object in feeder. As
the object is detected, the system automatically recognizes
and saves the type of it, and as the HMD is calibrated with
respect to the ARCOR system, the position and rotation of
the virtual gripper is transformed to the ARCOR coordinate
system and saved as the detection position.

Since the setting of the pick from feeder instruction is tied
up with the setting of the place to pose instruction, a virtual
object of the type the user selected in the previous step is
created and attached to the end of user’s gaze in order to
create the illusion of naturally picking an object from the
feeder and placing it on the table (we are benefiting from
the HoloLens spatial mapping abilities, where the attached
virtual object can collide with the real environment). For
this purpose, we chose the click-attach-click approach (click
on the object, attach the virtual one, click on the table to
release it) rather than the drag&drop, because the virtual
object could easily lost from the user’s sight or the hand

tracking of the HoloLens could easily lost (because of the
limited FoV for hand recognition).

After placing the virtual object onto the table inside the
reach zone of the robot (visualized by the SAR projection),
virtual spheres, for setting the rotation, are displayed. By
dragging them, the rotation is set.

The procedure of setting the pick&place program using
the ISAR-HMD can be summarized into following steps:

1) Click on the Edit button of the pick from feeder instruc-
tion in the projected interface.

2) Look at desired object placed in the feeder, position the
virtual robot gripper to desired detection pose and click
on it (Air tap).

3) Position attached virtual object on the table and click
when satisfied with the position.

4) Adjust the rotation by dragging displayed spheres
around the virtual object.

5) Click on the tick button in the HoloLens or on the Save
button of the projected interface to confirm and save the
place position.

Whole procedure of setting the pick&place program using
the ISAR-HMD is shown in the Figure 6.

Programming procedure, when using the ISAR-KT, is
similar in the projected interface related steps – 1 and 5.
In the step 2, user has to physically move the robot’s gripper
to desired detection position. As the arm is in interaction
mode, its forearm cameras are on, seeking for any visible
objects. If any are visible, the robot recognizes the type of
the closest one. When the user is satisfied with the set object
type and detection position, he saves it using the Save button
of the projected interface. Thus pick from feeder instruction
is set. Learning of the following place to pose instruction
needs to be called manually. Robot’s reach zone as well as
interactive bounding box representing the place position are
displayed. User drags the bounding box outline and blue
point situated in its corner in order to set the place position
and its orientation (steps 3-4). The procedure is shown in the
Figure 5.

It has to be mentioned, that ISAR projections are synchro-
nized with HMD’s virtual objects and vice versa. Meaning
that the user can whenever decide, if he wants to set the
place positions using the touches on the table or gestures
in HoloLens. It is also possible to put aside the HMD at
anytime and continue the programming using the ISAR-KT
approach.

D. Main Benefits

In a scenario, where company has multiple workspaces
but limited number of collaborative robots that are moved
between those workspaces, it would be time consuming to
edit current programs at individual workspaces, because the
need of robot’s presence if kinesthetic teaching is applied.
However, using our solution, the robot is not needed. Workers
can effectively set programs in advance anytime, without the
need of stopping the production of a current batch.

Thanks to the combination of the HMD with the ISAR,
others are partially able to see directly in the scene in

63

Fig. 3: Visualization of instructions with already set param-
eters. Left: Virtual gripper is rendered on a set detection
position along with the virtual object of specified type (pick
from feeder instruction). Right: Virtual object is rendered on
a set place position (place to pose instruction).

realtime, what the user with the HMD put on is currently
doing, which is not possible without any additional device
(hand-held device, another pair of HMD, or HMD’s stream).
Moreover, the ISAR extends the HMD’s limited FoV by 2D
projections. As far as we know, no one ever combined those
two augmented reality approaches.

If the program is set, the user can see a virtual gripper
rendered directly on the detection position along with the
virtual object, that is going to be picked, in case of pick from
feeder instruction, or rendered virtual object on the place
position in case of place to pose instruction (see Figure 3).
This is beneficial if the user just wants to preview the
program without running it. It could also positively impact
the users’ orientation within set programs.

We used a text-to-speech utility in order to play system
related notifications, warnings and errors to users in their
native language through the HoloLens embedded speakers.
This could be beneficial for new users of our system.

IV. EXPERIMENT DESIGN

In order to evaluate the proposed ISAR-HMD solution, an
experiment was designed, where the solution was compared
to the baseline ISAR-KT approach. Both approaches were
tested on a set of 20 participants using the within-subject
design methodology. Order of conditions was randomized to
mitigate possible bias caused by a learning effect.

As measures, we chose a combination of three standard-
ized questionnaires – the System Usability Scale (SUS) [17],
NASA Task Load Index (TLX) [18] and the User Experience
Questionnaire (UEQ) [19]. We also measured task comple-
tion times.

A. Hypotheses

As the main motivation for this work is to introduce
a novel approach of teaching robots that could replace
the kinesthetic teaching, we assume that our ISAR-HMD
solution will be quicker, less demanding and more preferred
by users than the ISAR-KT. Therefore, we set following three
hypotheses:

(i) The ISAR-HMD approach is faster than the ISAR-KT
approach.

Group ID: 2
Right feeder

Group ID: 1
Left feeder

Item ID: 1
PICK FROM FEEDER
object type: Short leg

Item ID: 2
PLACE TO POSE
object from step 1

Item ID: 3
PICK FROM FEEDER
object type: Stretcher

Item ID: 4
PLACE TO POSE
object from step 3

Item ID: 5
GET READY

Item ID: 1
PICK FROM FEEDER
object type: Short leg

Item ID: 2
PLACE TO POSE
object from step 1

Item ID: 3
PICK FROM FEEDER
object type: Stretcher

Item ID: 4
PLACE TO POSE
object from step 3

Item ID: 5
GET READY

Program end

Program start

Fig. 4: Pick&Place program. The green edges represents
transitions, that are triggered if current instruction was suc-
cessfully executed, while the red ones represents transition
of instruction’s unsuccessful execution. The program is de-
signed to run in loop, until user decides to stop it.

(ii) User task load of the ISAR-HMD approach is lower
than the ISAR-KT approach.

(iii) In terms of UX, users will prefer ISAR-HMD over
ISAR-KT.

B. Tasks

Experiment workflow of tested methods consisted of fol-
lowing phases: introduction, training, first task, second task
and questionnaire ended up with discussion. After the user
finished the workflow using one of the methods, he/she
repeated it using the other one.

Within the introduction phase, participants got an overall
idea of the collaborative robotics purpose, its related prob-
lems we are solving and a brief description of the upcoming
experiment.

The training phase involved demonstrative and com-
mented setting of one pair of the pick from feeder and the
place to pose instruction, using currently tested method. In
case of the ISAR-HMD method, the training phase involved
getting familiar with the HMD (HoloLens). Participants went
through the Microsoft’s Calibration application – to calibrate
their interpupillary distance, which can improve the quality
of visuals – and the Microsoft’s Learn Gestures application
– to ensure they properly learn how to use the HoloLens
gestures.

The first task consisted of setting parameters for an unset
pick&place program. This program was composed of two
blocks, the first one for picking from feeder on user’s left
side and the second one for picking from feeder on user’s

64

(a) User selects pick from feeder instruc-
tion to be set.

(b) User moves the robot gripper to de-
tection position.

(c) Gripper’s detection position is saved.

(d) User selects place to pose instruction
to be set.

(e) User adjusts place position by drag-
ging it on the table.

(f) The place position is saved.

Fig. 5: An example of setting the pick&place program using the ISAR-KT approach during the experiment.

(a) User selects pick from feeder instruc-
tion to be set.

(b) User’s first person view. While gazing,
user sees the virtual gripper.

(c) Virtual object snaps to user’s gaze
after the Air tap gesture.

(d) Place position is adjusted by user’s
head movements.

(e) When user clicks (Air tap), virtual
object snaps to the table and the rotation
spheres are displayed.

(f) User saves the place position by click-
ing on the tick button.

Fig. 6: An example of setting the pick&place program using the ISAR-HMD approach during the experiment.

right side. Both blocks contained four parametric instructions
– two pick from feeder and two place to pose, and one non-
parametric instruction – get ready (moves the robot’s arms to
their default position). The pick from feeder instruction takes
two parameters – object type and robot’s gripper position for

detecting the objects in feeder followed up with picking the
closest one. The place to pose instruction takes just object’s
place position as the parameter (object type is referenced
from previous pick instruction). Structure of the program is
shown in Figure 4. An example of completing part of this

65

task using both tested methods is shown in Figure 5 (ISAR-
KT approach) and Figure 6 (ISAR-HMD approach).

The second task consisted of editing preset pick&place
program. Within made up backstory, we told participants that
someone mistakenly set the program with wrong parameters
(wrong object types, wrong place positions, overlapping
place positions, etc.). Their task was to detect those instruc-
tions with wrong parameters and correct them to fulfill the
assignment. The program had same structure as the program
in the first task.

In order to be able to record participant’s point of view
and head tracking for both conditions (which was necessary
for evaluation purposes), participants wore the HMD even in
condition where it was not actually used by them. Moreover,
this could prevent distortion of the results caused by potential
discomfort from wearing the HMD, which would not be the
case for forthcoming devices as e.g. HoloLens 2 (lighter,
better balanced).

C. Participants

Prior the main study, the experiment design was tested
out in pilot test with 2 participants. After that, 20 users
participated in the main experiment. Most of the participants
were IT students or faculty employees (18 male and 2
female, ages 20-31, M = 25.00). 13 participants never used
VR/AR HMD. There were total of 12 participants reporting
eye issues. 5 of them reported farsightedness, 1 reported
nearsightedness and 5 reported wearing glasses or contact
lenses without specifying exact eye issue. 1 reported color
blindness. On a Likert scale from 1 to 5, most of partici-
pants expressed positive attitude towards new technologies
(M = 3.55, CI =< 3.19, 3.91 >) and rather high IT skills
(M = 4.00, CI =< 3.41, 4.59 >). On the other hand,
experience with robots (M = 2.00, CI =< 1.50, 2.50 >)
and experience with AR (M = 2.20, CI =< 1.68, 2.72 >)
were self-assessed rather low, which could be expected to be
close to the situation in the target user group (employees in
SMEs).

V. RESULTS

This section summarizes the experiment results and pro-
vides its analysis and interpretation. Regarding the task
completion time measurement, intervals where participants
were asking questions, technical problem occurred or when
moderator had to intervene, were subtracted, in order to
measure a pure task completion time. All statistical tests were
done at the 5% significance level. Data were first tested for
normality (combination of D’Agostino and Pearson’s tests)
and based on the result, paired t-test (T) or Wilcoxon’s
signed-rank test (W) were used to test for the significant
difference between conditions.

A. Quantitative and Qualitative Data

Both tasks were completed quicker when using the pro-
posed solution (ISAR-HMD). Completing them both using
proposed solution saved up to 153.94 seconds in average,
which confirms the hypothesis (i).

TLX SUS UEQ/ATT UEQ/PRA UEQ/HED

30

40

50

60

70

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

ISAR-KT ISAR-HMD

Fig. 7: Obtained qualitative measures (mean values and 95 %
confidence intervals) for both evaluated conditions. The left
y axis belongs to TLX and SUS, while the right one to the
UEQ grouped scales.

Table I shows the results of measured metrics for both
tested methods. There is a statistically significant difference
for all metrics, except the TLX and majority of its subscales.
The mean TLX score of the proposed ISAR-HMD solution
was 32.78 which is less than 38.19 for the ISAR-KT;
however, the difference is not statistically significant. Thus
the hypothesis (ii) cannot be confirmed. For TLX subscales,
there is a significant difference for Temporal Demand, corre-
sponding to the objective measurement of task times, where
ISAR-HMD was significantly faster then ISAR-KT for both
tasks. Similarly to [12], the kinesthetic teaching required
lower mental load and higher physical demand. However, the
differences were not significant. We hypothesize, that higher
mental demands for the ISAR-HMD are mainly caused by a
hardware limitations of the used device, namely limited FoV
for visualization (leading to increased demands on the user’s
spatial cognitive abilities) and for capturing gestures. Also
the interface should cope with the given limitations better
– e.g. it could indicate direction to the interactive elements
which are currently out of the user’s FoV.

The hypothesis (iii) is well supported by obtained UX-
related ratings. The mean SUS rating of the ISAR-HMD
approach was 66.75 which means improvement over the
ISAR-KT (58.88). Figure 7 shows measured metrics – its
mean values and confidence intervals – in a graph. UEQ
consists of six categories, where some can be grouped
together – attractiveness (ATT); pragmatic quality (PRA)
that encapsulates perspicuity, efficiency and dependability;
and hedonic quality (HED) that encapsulates stimulation
and originality. According to the general benchmark [19],
ratings of all three main categories of the ISAR-KT approach
are ranked as Above Average. Ratings of the ATT and PRA
of the ISAR-HMD approach are ranked as Good, which is
one rank higher than the ISAR-KT and the HED score is
ranked as Excellent, moving it into the top rank.

Further, we divided both quantitative and qualitative data

66

Measure ISAR-KT ISAR-HMD T/W Value p
SUS 58.88;< 53.32, 64.43 > 66.75;< 62.84, 70.66 > T (20) = �3.55 0.002
NASA TLX 38.19;< 31.91, 44.48 > 32.78;< 25.20, 40.35 > T (20) = 1.31 0.206
NASA TLX / Mental Demand 17.5;< 8.56, 26.44 > 25.83;< 13.06, 38.61 > T (20) = 1.39 0.180
NASA TLX / Physical Demand 23.33;< 12.19, 34.48 > 16.67;< 7.20, 26.14 > T (20) = �1.22 0.237
NASA TLX / Temporal Demand 41.67;< 28.64, 54.69 > 24.17;< 12.44, 35.89 > T (20) = �2.27 0.035
NASA TLX / Overall Performance 90.00;< 80.74, 99.26 > 86.67;< 77.68, 95.65 > W (20) = 17.50 0.546
NASA TLX / Effort 30.83;< 19.16, 42.51 > 24.17;< 14.54, 33.80 > T (20) = �0.94 0.359
NASA TLX / Frustration Level 25.83;< 16.54, 35.12 > 19.17;< 8.06, 30.28 > T (20) = �1.51 0.148
UEQ/ATT 1.22;< 0.78, 1.66 > 1.66;< 0.78, 1.66 > T (20) = �2.26 0.036
UEQ/PRA 1.18;< 0.83, 1.53 > 1.72;< 1.32, 2.11 > T (20) = �2.90 0.009
UEQ/HED 1.12;< 0.56, 1.68 > 1.79;< 1.30, 2.29 > W (20) = 16.50 0.001
1st task completion time (s) 282.58;< 248.88, 316.28 > 196.18;< 152.84, 239.53 > W (20) = 22.00 0.002
2nd task completion time (s) 256.33;< 205.93, 306.73 > 188.78;< 145.85, 231.72 > T (20) = 2.60 0.017

TABLE I: Qualitative measures (System Usability Scale, NASA Task Load Index and its subscales, User Experience
Questionnaire which consists of three categories – Attractiveness, Pragmatic Quality and Hedonic Quality) and quantitative
measures (task completion times). The data for both methods are in format “mean; and respective 95% confidence interval”.
For a statistical comparison, we used paired t-test (T) and Wilcoxon (W) method.

into two parts according to following binary conditions:
previous experience with HMD, presence of an eye-related
health problem and order of evaluated method (whether user
tested ISAR-HMD first). Differences in measures between
aforementioned parts for both evaluated methods were tested
using a t-test for independent samples or Kolmogorov-
Smirnov’s test based on normality test result. No statistical
significant differences were found. Our interpretation is that
HMD is suitable even for novice users without previous
experience with HMD. Further, task completion times nor
subjective assessment of the method are influenced by an
existence of vision-related health problem or limitation,
meaning that the used HMD device (HoloLens 1) does not
posses problems for users wearing glasses, etc. Finally, in
contrary to [16] where users rated 2D interface significantly
lower after they interacted with the system using HMD, in
our case no order effect was identified. This could mean
that both methods (interfaces) are acceptable, likeable and
roughly equally hard to learn and use.

B. General Findings

Biggest downside of our setup was probably unreliable
touch-enabled table. False touches, double-clicks or unde-
tected touches were source of frustration for most partic-
ipants and probably caused the overall low ratings of the
qualitative data.

Three participants struggled with positioning the robot’s
gripper. They were not able to rotate the arm links properly
in order to find correct kinematic configuration.

On the other hand, 4 participants had troubles with
learning and adopting the HoloLens Air tap gesture. Main
source of such problems was caused by not having hands in
HoloLens cameras detection zone. Three complained about
the HMD’s text-to-speech, claiming that they already know
what to do and what is happening after the training phase
and few set instructions from the first task. One participant
reported headache after completing both tasks using the
HMD.

One participant suggested that it would be better, if he
could oversee all place poses at once. This suggestion needs

to be further tested, because an overwhelming number of
virtual objects displayed at once could cause user’s confusion
and inability to orientate within the program.

Interestingly, some participants preferred to use the touch
table to adjust object’s place position, even though they were
supposed to use primarily the HMD’s gestures. We also
noticed few situations where participants were not able to
distinguish SAR projections from HMD virtual objects. They
tried to interact with those projections using the HoloLens
gestures and not the touch-enabled table. This could be a
good indicator that ISAR can be visually believable merged
with the HMD’s AR without direct distinction.

VI. CONCLUSIONS

In this paper, we presented a novel approach to the end-
user robot programming using the unique combination of the
interactive spatial augmented reality and the head-mounted
display (ISAR-HMD). The purpose of this approach is to
reduce the users’ workload and to let them program the
collaborative workspace faster than in kinesthetic approaches
and without the need of the robot’s presence.

We evaluated the proposed ISAR-HMD approach on a
set of 20 participants using the within-subject experiment
design, where we compared it to the baseline approach,
that uses the interactive spatial augmented reality and the
kinesthetic teaching only (ISAR-KT). We reached up to
33.84% improvement in qualitative measures (SUS, NASA-
TLX, UEQ) and saved up to 28.46% of completion time of
setting the pick&place program.

In the future work, we will focus on lowering the task
load for HMD, which could be achieved by a constrained
FoV-aware visualization. Another direction of the research
will be further integration of ISAR and HMD. Additionally,
we are going to develop a detector of UX-related events,
based on combination of physiological data with data from
external sensors (e.g. user pose tracking) and input data
(e.g. clicks), which could be helpful for the system to
automatically provide timely assistance to the user as an
excessive amount of voice notifications was one of the most
common complains from users in the current experiment.

67

ACKNOWLEDGMENT

The work was supported by Czech Ministry of Educa-
tion, Youth and Sports from the National Programme of
Sustainability (NPU II) project “IT4Innovations excellence
in science – LQ1602”.

REFERENCES

[1] Z. Materna, M. Kapinus, V. Beran, P. Smrž, and P. Zemčı́k, “Interactive
spatial augmented reality in collaborative robot programming: User
experience evaluation,” in 2018 27th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), Aug
2018, pp. 80–87.

[2] G. Michalos, P. Karagiannis, S. Makris, Ö. Tokçalar, and G. Chrys-
solouris, “Augmented reality (ar) applications for supporting human-
robot interactive cooperation,” Procedia CIRP, vol. 41, pp. 370–375,
2016.

[3] S. Stadler, K. Kain, M. Giuliani, N. Mirnig, G. Stollnberger, and
M. Tscheligi, “Augmented reality for industrial robot programmers:
Workload analysis for task-based, augmented reality-supported robot
control,” in Robot and Human Interactive Communication (RO-MAN),
2016 25th IEEE International Symposium on. IEEE, 2016, pp. 179–
184.

[4] S. Magnenat, M. Ben-Ari, S. Klinger, and R. W. Sumner, “Enhancing
robot programming with visual feedback and augmented reality,”
in Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 2015, pp. 153–
158.

[5] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot
teleoperation with augmented reality,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction.
ACM, 2018, pp. 78–86.

[6] M. Walker, H. Hedayati, J. Lee, and D. Szafir, “Communicating robot
motion intent with augmented reality,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction.
ACM, 2018, pp. 316–324.

[7] E. Bunz, R. T. Chadalavada, H. Andreasson, R. Krug, M. Schindler,
and A. Lilienthal, “Spatial augmented reality and eye tracking for
evaluating human robot interaction,” in RO-MAN 2016 Workshop:
Workshop on Communicating Intentions in Human-Robot Interaction,
New York, USA, Aug 31, 2016, 2016.

[8] M. D. Coovert, T. Lee, I. Shindev, and Y. Sun, “Spatial augmented
reality as a method for a mobile robot to communicate intended
movement,” Computers in Human Behavior, vol. 34, pp. 241–248,
2014.

[9] M. Funk, A. Bächler, L. Bächler, T. Kosch, T. Heidenreich, and
A. Schmidt, “Working with augmented reality?: a long-term analysis
of in-situ instructions at the assembly workplace,” in Proceedings of
the 10th International Conference on PErvasive Technologies Related
to Assistive Environments. ACM, 2017, pp. 222–229.

[10] E. Kruijff, J. E. Swan, and S. Feiner, “Perceptual issues in augmented
reality revisited,” in Mixed and Augmented Reality (ISMAR), 2010 9th
IEEE International Symposium on. IEEE, 2010, pp. 3–12.

[11] R. S. Andersen, S. Bøgh, T. B. Moeslund, and O. Madsen, “Task
space hri for cooperative mobile robots in fit-out operations inside
ship superstructures,” in Robot and Human Interactive Communication
(RO-MAN), 2016 25th IEEE International Symposium on. IEEE,
2016, pp. 880–887.

[12] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. Machiel Van
der Loos, and E. Croft, “Robot programming through augmented
trajectories in augmented reality,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2018, pp.
1838–1844.

[13] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating robot arm motion intent through
mixed reality head-mounted displays,” CoRR, vol. abs/1708.03655,
2017. [Online]. Available: http://arxiv.org/abs/1708.03655

[14] D. Krupke, F. Steinicke, P. Lubos, Y. Jonetzko, M. Görner, and
J. Zhang, “Comparison of multimodal heading and pointing ges-
tures for co-located mixed reality human-robot interaction,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct 2018, pp. 1–9.

[15] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, and A. Raatz,
“Intuitive robot programming using augmented reality,” Procedia
CIRP, vol. 76, pp. 155–160, 01 2018.

[16] S. Yitzhak Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and
G. Konidaris, “End-user robot programming using mixed reality,” 10
2018.

[17] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[18] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” Advances in
psychology, vol. 52, pp. 139–183, 1988.

[19] M. Schrepp, “User experience questionnaire handbook,” 09 2015.

68

End-User Robot Programming Case Study:
Augmented Reality vs. Teach Pendant

Michal Kapinus, Zdeněk Materna, Daniel Bambušek, Vítězslav Beran
Faculty of Information Technology, Brno University of Technology, Czech Republic

ABSTRACT
The work presents a preliminary experiment aimed for comparing
a traditional method of programming an industrial collaborative
robot using a teach pendant, with a novel method based on aug-
mented reality and interaction on a high-level of abstraction. In the
experiment, three participants programmed a visual inspection task.
Subjective and objective metrics are reported as well as selected
usability-related issues of both interfaces. The main purpose of
the experiment was to get initial insight into the problematic of
comparing highly different user interfaces and to provide a basis
for a more rigorous comparison, that is going to be taken out.

ACM Reference Format:
Michal Kapinus, Zdeněk Materna, Daniel Bambušek, Vítězslav Beran. 2020.
End-User Robot Programming Case Study: Augmented Reality vs. Teach
Pendant . In Companion of the 2020 ACM/IEEE International Conference on
Human-Robot Interaction (HRI ’20 Companion), March 23–26, 2020, Cam-
bridge, United Kingdom. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3371382.3378266

1 INTRODUCTION
With novel and unusual interfaces and interaction methods, a sig-
nificant problem emerges: how to compare it with existing and
well-known methods or interfaces. While comparing partial inter-
faces’ features might be easy and intuitive, comparing two complex
and highly different systems is challenging in terms of experiment
design and evaluation of the results. Although experiments with
novel interfaces could provide good insight into whether the in-
terface is usable by measuring subjective data, a fair comparison
with existing method is crucial for measuring improvements in e.g.
efficiency, in order to provide justification that the new method
offers added value over the existing one and could be successfully
deployed in the real-world industrial settings.

Several experiments were conducted to evaluate usability of
our augmented reality (AR) interface ARCOR for end-user robot
programming [1, 5, 6]. This interface allows user to program the
robot using highly abstracted instructions such as PickFromTable,
DrillHole, etc., using a user-friendly graphical interface projected
on a touch-enabled table. Although the interface was evaluated
several times, no comparison with any existing method took place
yet, as our system did not support any standard industrial robotic
arm. Recently, support for Aubo i5 robotic arm was added. This

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HRI ’20 Companion, March 23–26, 2020, Cambridge, United Kingdom
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7057-8/20/03.
https://doi.org/10.1145/3371382.3378266

Figure 1: Participant programs a visual inspection task using
the ARCOR spatial augmented reality interface.

paper presents preliminary experiment designed as a case study
aimed to get the insight into comparing such different interfaces.

2 BACKGROUND
The traditional method of programming industrial robots is through
the teach pendant. There exist various pendant interfaces. Some of
them, as ABB FlexPendant with its text-based programming, are
targeted to expert users, while others are more suited for less skilled
users as Universal Robots Polyscope with its tree-based program
visualization and wizards. Emerging alternative methods aimed on
simplification of the robot programming for non-experts were so
far often not evaluated with a (user-friendly) pendant as a baseline
method. There exist only few examples of evaluations, where such
comparison have been carried out. However, the published experi-
ments have various limitations. For instance, [7, 10] were carried
out with only one pendant-expert user and [11] was carried out
in a simulation. The experiment in [3] seems well designed, with
sufficient number of participants, however only with a simple pick
and place task. Existing experiments are usually designed ad hoc,
as there is a lack of proven methodology. For instance, method to
compare HRI approaches is proposed in [8], however extension
beyond trajectory teaching task would be needed.

3 EXPERIMENT DESIGN
A preliminary 2-condition within-groups case study was conducted.
The main goal of presented case study was to verify, that the pro-
posed method of simplified robot programming is suitable for a
visual inspection task and performs better than the teach pendant
(which interface is similar to UR Polyscope). The robot is instructed
to pick the bottle opener from the table, put it in front of the cam-
era, trigger the inspection method and based on inspection result,
put the bottle opener to one of the boxes on the table. In order
to make the comparison more fair, a few high level functions as
pick, place or suction (on/off) were prepared in advance in pendant.
The experiment was conducted with 3 participants (2 males and 1
female), in a lab-like environment. All of the participants had little

Late-Breaking Report HRI ’20 Companion, March 23–26, 2020, Cambridge, United Kingdom

281

69

Participant Ap Aa Bp Ba Cp Ca
Introduction [s] 359 179 449 311 185 174
Task [s] 562 189 749 309 510 146
TLX [0, 100] 72.22 36.11 44.44 27.78 33.33 19.44
SUS [0, 100] 52.50 82.50 42.50 80.00 70.00 90.00
UEQATT [−3, 3] −1.17 2.00 −0.17 1.83 1.83 2.50
UEQPRA [−3, 3] 0.25 2.08 −0.50 1.83 1.58 2.25
UEQHED [−3, 3] −0.25 2.12 −1.25 1.62 0.25 2.00

Table 1: Durations of introduction and programming for
both (p)endant and (a)rcor modality. Subjective metrics for
each participant and both modalities. Higher means better
for all subjective metrics except TLX.

or no prior experience with AR, participants A and B had little or
no prior experience with teach pendant while participant C had
moderate prior experience with pendant.

The experiment involved two sessions (first with pendant, second
with ARCOR) consisting of training and programming the actual
task. Each of the sessions was followed by filling in the standard
questionnaires [2, 4, 9] and discussion. Participants were recorded
using standard camera for future analysis. Moreover, several physi-
ological data were recorded using the Empatica E4 wristband.

4 RESULTS
All participants were able to complete the task using both methods
(teach pendant, ARCOR). For each participant, the time needed for
both introduction and programming itself was lower for ARCOR
interface (see Table 1). The ARCOR also performed better in terms
of usability, UX and task load metrics. Detailed cases for each par-
ticipant follows.

4.1 Participant A (25, male, programmer)
While using the pendant, the moderator had to intervene approxi-
mately 8 times, to help the participant to overcome the issues with
the pendant interface, mainly finding the right buttons for desired
task. Participant was a bit frustrated when he wanted to copy block
of instructions, which was not possible.

With ARCOR, only one intervention of the moderator was nec-
essary, when the participant overlooked the dialog for saving the
robot position. Sometimes, the participant was unsure, what is the
next required step, but he was always able to resolve this uncer-
tainty using the notification area of the interface. The participant
complained about the positioning of some GUI elements, which
were sometimes hidden by real objects.

Overall, the participant considers the teach pendant too com-
plicated, slow and cumbersome. He prefers the ARCOR interface
more, because a lot of things are already prepared in advance and
it allows him to focus on the programming itself.

4.2 Participant B (41, male, application tester)
With the pendant, the participant struggled with the complex GUI:
there were difficulties in finding buttons, instructions and instruc-
tion lists. This was the main cause of frequent moderator’s interven-
tions. Moreover, the participant asked the moderator several times,
whether is he proceeding correctly in setting individual instructions
and waypoints.

When the participant was using the ARCOR interface, there
were significantly less moderator’s interventions, related only to
the touch surface problems (e.g. non-registered touches). The par-
ticipant was able to successfully use the notification area of the
interface when felt lost or didn’t knew how to proceed further.

Although the participant preferred, based on the results, the
ARCOR interface better, there were some complaints about setting
the box location area, where the interface could be more automated
and, for example, not allowing the user to move the UI elements
off the touch-enabled surface.

The participant considered the pendant approach difficult, but
admitted that it could be learned if there is no other option.

4.3 Participant C (23, female, programmer)
The prior experience with pendant of this participant is reflected
by the lowest time needed for introduction to this modality and
could explain better score in all measured metrics in compare to
other participants. However, she still ranked the ARCOR modality
better in all metrics. Despite the prior experience, the participant
was insecure at the beginning and was using quite a big amount of
help from the moderator. After few minutes however, she became
more certain about various elements of the interface.

For this participant, setting the position of the robot was physi-
cally challenging, which could be one of the reasons why ARCOR
interface was ranked better, as it requires less direct manipulation
with the robot.

The participant had no fundamental problem with ARCOR in-
terface, she only suffered from some design issues like ambiguous
buttons, visualization of inactive buttons or slow response from
the system, where she was uncertain whether e.g. some button was
successfully pressed.

She felt good using both interfaces, but she considered theARCOR
interface simpler and faster.

5 CONCLUSIONS
The conducted preliminary experiment was focused on comparing
two highly different methods of robot programming: spatial aug-
mented reality and user-friendly teach pendant. It was necessary
to deal with different complexity, level of abstraction (high for AR,
low for pendant) and specifics of each method. The results indicate
the potential of the ARCOR system, which was preferred by the
participants over the pendant and also required less time to train
as well as to program the visual inspection task. The upcoming
experiment will involve more participants in order to enable sta-
tistical analysis of the results, contain various tasks in order to
provide more generalizable results and will be performed out of the
lab. Moreover, more high-level functions for the pendant will be
prepared in advance, in order to improve the fairness of the com-
parison. Also, the pendant modality will require a more complex
training procedure. Gained experience will allow us to formulate
an exact methodology for this kind of experiments.

ACKNOWLEDGMENTS
The work was supported by Czech Ministry of Education, Youth
and Sports from the National Programme of Sustainability (NPU II)
project “IT4Innovations excellence in science – LQ1602”.

Late-Breaking Report HRI ’20 Companion, March 23–26, 2020, Cambridge, United Kingdom

282

70

REFERENCES
[1] Daniel Bambušek, Zdeněk Materna, Michal Kapinus, Vítězslav Beran, and Pavel

Smrž. 2019. Combining Interactive Spatial Augmented Reality with Head-
Mounted Display for End-User Collaborative Robot Programming. In 2019 28th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN).

[2] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[3] Yuxiang Gao and Chien-Ming Huang. 2019. PATI: a projection-based augmented
table-top interface for robot programming. In Proceedings of the 24th International
Conference on Intelligent User Interfaces. ACM, 345–355.

[4] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. Advances in psychology
52 (1988), 139–183.

[5] Zdeněk Materna, Michal Kapinus, Vítězslav Beran, Pavel Smrž, Manuel Giu-
liani, Nicole Mirnig, Susanne Stadler, Gerald Stollnberger, and Manfred Tsche-
ligi. 2017. Using Persona, Scenario, and Use Case to Develop a Human-Robot
Augmented Reality Collaborative Workspace. In Proceedings of the Compan-
ion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction
(HRI ’17). Association for Computing Machinery, New York, NY, USA, 201–202.
https://doi.org/10.1145/3029798.3038366

[6] Zdeněk Materna, Michal Kapinus, Vítězslav Beran, Pavel Smrž, and Pavel Zemčík.
2018. Interactive Spatial Augmented Reality in Collaborative Robot Programming:
User Experience Evaluation. In 2018 27th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN). IEEE, 80–87.

[7] Alexander Perzylo, Nikhil Somani, Stefan Profanter, Ingmar Kessler, Markus
Rickert, and Alois Knoll. 2016. Intuitive instruction of industrial robots: Seman-
tic process descriptions for small lot production. In 2016 ieee/rsj international
conference on intelligent robots and systems (iros). IEEE, 2293–2300.

[8] Guilherme Boulhosa Rodamilans, Emília Villani, Luís Gonzaga Trabasso, Wesley
Rodrigues de Oliveira, and Ricardo Suterio. 2016. A comparison of industrial
robots interface: force guidance system and teach pendant operation. Industrial
Robot: An International Journal 43, 5 (2016), 552–562.

[9] Martin Schrepp. 2015. User Experience Questionnaire Handbook. (09 2015).
https://doi.org/10.13140/RG.2.1.2815.0245

[10] Maj Stenmark, Mathias Haage, and Elin Anna Topp. 2017. Simplified program-
ming of re-usable skills on a safe industrial robot: Prototype and evaluation.
In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 463–472.

[11] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C
Shepherd, and Diana Franklin. 2018. Evaluating coblox: A comparative study of
robotics programming environments for adult novices. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. ACM, 366.

Late-Breaking Report HRI ’20 Companion, March 23–26, 2020, Cambridge, United Kingdom

283

71

Spatially Situated End-User Robot Programming in Augmented Reality

Michal Kapinus, Vı́tězslav Beran, Zdeněk Materna and Daniel Bambušek

Abstract— Nowadays, industrial robots are being pro-
grammed using proprietary tools developed by robot manu-
facturer. A skilled robot programmer is needed to create even
as simple task as pick a well-known object and put it somewhere
else. Contrary, in every-day life people are using end-user
programming to make different electronic devices work in
expected manner, without even noticing they are actually
programming. We propose augmented reality-enabled end-user
programming system allowing regular shop-floor workers to
program industrial robotic tasks. The user interface prototype
for this system was evaluated in the user study with 7 par-
ticipants with respect to usability, mental workload and user
experience.

I. INTRODUCTION

For decades, robots have been deployed in automated
manufacturing. Their use is mainly in large-scale production,
because the design and construction of such automated
production operation is very time-consuming and expensive.
This solution pays off for a type of production that runs for at
least several years. Although it is known that robotic systems
are unsuitable for some operations, when it is sometimes
almost impossible to replace humans, neither the method of
production nor the technological advancements have made it
possible to exploit the potential of humans in the production
process together with robots.

Today, however, the rapid development of technology
brings the ability to produce robots who are already able to
work in the vicinity of humans, can to some extent perceive
the world around and to some extent cooperate with human.
There are new possibilities of making automated production
more efficient by integrating human into the automated
process. This is especially important for smaller productions.
Nowadays, many manufacturing activities can be replaced by
a cheaper robot or robotized production line, which is not
able to handle all the tasks of the production process itself,
but thanks to the possibility to cooperate with human, these
tasks can be effectively solved. Smaller production in smaller
manufacturing companies, however, brings a new problem:
how to program these robots effectively for a new production
process?

Many robot manufacturers now offer a variety of robot
programming solutions, from desktop programming tools,
where drag&drop and intuitive icons can be used to quickly
program a manufacturing process (such as ABB RobotStudio
or RoboDK), to approaches where a user directly defines
the process by manipulating a robot (such as Baxter or

All authors are affiliated with the Brno University of Tech-
nology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Bozetechova 1/2, Brno, 612 66, Czech Republic. Contacts:
ikapinus, beranv, imaterna, bambusekd@fit.vutbr.cz

Fig. 1. ARCORO - Augment Reality for Connections and Operations of
Real Objects.

YuMi). Today, many aspects affecting user workload or user
experience when using UI devices to interact with the robots
are known: the user often has to switch the context between
workstation and computer, poor robot feedback worsens
human-robot communication when visual or aural feedback
is limited (light or sound signal, on-screen information, etc.).
Although today’s advanced technologies allow more natural
human-machine interaction, most of the solutions are still
based on a 50-year-old GUI concept. It implements a GUI
using WIMP and 2D display on a desktop computer using
real world metaphors.

The goal of our research is to return from a 2D desktop
user interface back to a real 3D environment. In this work we
present the application of this principle in the design of a new
tool for robot programming. We define the requirements for
a new type of user interface: integrate the programming tool
into a real 3D environment, use scene and object knowledge
to reduce user mental load, visualization of a program
stage and robot’s knowledge of the environment to improve
user’s feedback. We decided to address these challenges
for the natural interaction of human with machine in real
3D environment. We design and introduce an innovative
way of programming a spatial robotic task with high levels
of abstraction using Augmented Reality (AR) technology
(ARCORO1).

Based on our prior experience with simplified robot pro-

1Augment Reality for Connections and Operations of Real Objects

72

gramming in AR [1], an experimental ARCORO system,
using a new concept of robot programming in 3D space using
AR on a mobile device, was developed. Part of the work is
also the definition of use-case, which is designed according
to real demand from industry. This use-case was used to test
the new ARCORO interface. The experiment was conducted
with 7 participants and evaluated with respect to usability,
mental workload and user experience.

II. RELATED WORK

An increasing number of collaborative robots in SMEs
(small and medium enterprises) requires searching for new
methods for end-user robot programming. Various techniques
incorporating the AR were proposed, mostly based on visual
programming [2], [3], programming by demonstration [4],
[5] or combination of both [6], [1]. These methods may differ
in both input and output modalities and utilizes the AR for
both programming and giving visual feedback to the user.

Gadre et al. [3] proposed Mixed Reality (MR) system for
robot programming using Head-Mounted Display (HMD).
They compared this system against a 2D keyboard and mouse
system for programming pick & place task. Gadre et al. [3]
found that users were significantly faster and better able to
successfully program the robot using the MR interface than
the 2D interface.

Quintero et al. [7] designed AR system using Microsoft
HoloLens HMD capable of 3D robot trajectory specification,
virtual previews of robot motion and visualization of robot
parameters. Blankemeyer et al. [8] presents another HMD-
based system using Microsoft HoloLens for simple pick &
place task programming.

Stadler et al. [9] discussed possibility of lowering mental
demand of the robot programmer, by using tablet-based AR
approach in simplified industrial tasks.

Magnenat et al. [10] have shown, that overall performance
of the operator could be increased by incorporating AR and
visual feedback into tablet-based system for robot program-
ming system.

Recently, several solutions based on tabletop projections
emerged. Materna et al. [1] have developed Spatial Aug-
mented Reality (SAR) system using table with touch-enabled
surface and projector above the table, projecting both User
Interface to program collaborative robot and showing con-
textual information of objects on the table and the state
of the system. Gao et al. [11] provided another tabletop
SAR solution for industrial end-user robot programming of
manipulation tasks, using common hand gestures detected by
computer vision techniques.

To investigate effects of presenting robots intentions to
the human, Bunz et al. [12] conducted experiment involving
mobile robot with projector mounted on top of it, projecting
various patterns indicating its intended movement.

Head-up displays and projected user interfaces benefit
from freeing operator’s hands, which enables direct manip-
ulation with real objects. On the other hand, contemporary
head-up displays such as Microsoft HoloLens and others,

suffer from narrow field of view and potential user’s discom-
fort in long-term usage. Moreover, end-user programming
systems based on hand-held AR overcomes head-up based
systems in terms of speed and user experience [13]. While
projected interfaces does not suffer from these issues, they
are not currently able to present information in free 3D space,
and therefore only suitable for tabletop scenarios [1].

The AR systems often benefit from knowledge of the
environment and therefore offer new possibilities in end-user
programming. The spatial situated programming incorporates
real objects into programming process. For instance, Ivy [14]
enables user to link different smart devices, create automated
behaviour based on readings from smart sensors and visual-
ize data flows between those devices. Reality editor [15] is
another example of spatial situated programming, enabling
programming of behaviour and interactions of smart objects,
using hand-held AR device.

In our proposed approach, the tablet-based AR is com-
bined with semantic information of the objects on the table,
to enable regular shop-floor workers to create robotic pro-
grams. Contrary to some aforementioned solutions [11], [7],
[9], [1], our system aims to both defining the flow of the
program and setting its parameters. By using relatively cheap
mobile device, the cost of the solution can be significantly
lowered comparing to approaches using high-end HMD de-
vices [3], [8] while still remain more flexible than projection
based solutions [1], [11].

III. PROPOSED APPROACH

When designing a novel user interface concept for robot
programming, we first defined the following issues of current
solutions:

• Mental mapping of robot instructions to the physical
place in the environment

• Context switching between programming device (e.g.
computer) and the workspace

• Low abstraction of the robot instructions, relations
between the instructions, conditions and parallel exe-
cution.

A. Process-based vs. Object-based approach

The goal of the programmer is to prepare a list of steps
that describe: in what order the robot should perform various
actions, with what objects the action should be performed,
how and under what conditions the action should be per-
formed. The result is a sequence of actions - a program. In
principle, this programming task can be implemented in two
ways.

Process-based method of robot programming takes advan-
tage of the so-called top-down approach. It describes the
whole process with inputs and outputs and then it continues
in dividing the process into several sub-processes until it gets
to the low-level problems. On the other hand, object-based
method describes functionality of different low-level objects
and allows to use them to build a working system piece by
piece. This is also known as a bottom-up approach.

73

We used the real world metaphor, when we describe the
manufacturing process, we usually:

• first we describe the environment: components, devices,
tools and objects that are in the scene and what they do
or how to use them for the task,

• then we begin to describe the process step by step,
including the links between the environment objects,
their specific settings, and the expected outputs,

• Finally, we summarize the expected outputs and risk
parts

Based on this observation, we decided to follow an object-
based approach proposing concept using spatially-aware aug-
mented reality on mobile device.

B. Program representation

Most of the basic operations of a robotic task are related to
a particular place in 3D space, either by relation to a real or
virtual object, or directly to an absolute position in the scene.
The program representation in our concept was inspired by
flowcharts in 3D. Discrete operations (e.g. pick the object,
execute operation, etc.) are represented by nodes. Each node
is spatially adjacent to the position, where the action takes
place. For example node representing operation Place object
to the box is located above the intended box. This adjacency
helps the user with mental mapping of the instructions
to the physical space. Nodes hold information needed for
their execution, e.g. type of the object which should be
manipulated, position on the table, where object should
be placed, etc. In addition to setting individual operation
parameters, linking these nodes to create a program flow is
a key challenge for usable user interface.

Each node has inputs and outputs. By connecting the
inputs and outputs of various nodes, user can define the
flow of the program. By connecting one output to multiple
inputs, the user can specify conditional transition or parallel
execution. Based on the parameters of connected nodes,
the actual executed path is derived. On the Fig. 2, parallel
execution of the program is defined. Workpieces of all the
nodes are the same, i.e. once the Execute testing operations is
done, both Execute printing and Pick from tester operations
will be executed in parallel. This approach is valid only when
these parallel operations don’t physically manipulate the
workpiece. In this example, the workpiece will be picked by
robot using the Pick from tester operation and corresponding
label will be printed at the same time. This label will be stuck
to the workpiece later in the program.

Conditional execution can be seen on the Fig. 3. The Pick
from table node has set two different workpieces, e.g. red ball
and green cube, meaning one of them will be picked. From
this step, two different Place operation can occur, each with
one of the aforementioned object set as a workpiece. Based
on the picked object from step Pick from table, corresponding
Place operation is selected.

C. Spatially situated programming in AR

Spatially situated programming is useful in scenarios,
where spatial context is important, like: robot manipulating

Fig. 2. Parallel execution of the program. The Execute testing node is
connected with Pick from tester node and Execute printing node. All of the
nodes have set the same workpiece, so during the runtime, both paths will
be executed at once.

Fig. 3. Conditional execution of the program. There can be seen Pick from
Table node, connected with two Place nodes. The left and right nodes have
set different workpiece. The actual flow of the program is decided during
the runtime, based on type of the workpiece picked in the Pick from Table
node.

workpieces, picking them from conveyor belt, putting them
inside the pressing machine, etc. We propose the system,
which is aware of semantic properties of the objects in the
environment: knowledge that some object can be picked up,
that a box offers inserting of some object, etc. The user
can benefit from that shared knowledge of the environment
and by using these information, the user can define desired
actions more effectively.

The visual elements of the system are presented to the
operator using the augmented reality, either in head-up
display or using hand-held mobile device.

IV. PROTOTYPE OF THE USER INTERFACE

To evaluate the proposed approach, we developed the
prototype of the user interface, using hand-held mobile
device. In cooperation with our industrial partner, we have
selected a specific industrial use-case.

A. Use-case

The selected use-case represents the process of testing the
printed circuit board (PCB). The PCB has to be inserted into

74

Fig. 4. Testbed used during the experiment. On the table, you can see,
from right to left, example PCB, a mockup of the tester device, a printer
of the labels, a box for disposing nonfunctional PCBs and another table for
functional PCBs.

testing device (a.k.a. tester) and based on the test result either
disposed or forward to the next stage of processing. Besides,
the corresponding label should be printed and stuck to both
functional and nonfunctional PCB. A mockup of the testing
facility was prepared, as can be seen on Fig. 4.

The mockup environment consists of the table with the
PCB, the testing device, the printer and the box for nonfunc-
tional PCBs. Next to the main table, the other table intended
for functional PCBs is placed. To improve the feeling of near
future robotic facility, the PR2 robot was placed behind the
table. The whole procedure of the use case looks like this:

1) Pick the PCB from the table
2) Place the PCB inside the tester device
3) Execute testing
4) Do in parallel ...

a) Pick the PCB from the tester device
b) Print corresponding label

5) Place the PCB on the table
6) Stick the label to the PCB
7) Pick the PCB
8) Place the PCB to ...

a) the box OR
b) the other table

Steps 4 represents parallel execution of two operations at
the same time, as the robot is picking the PCB from the
tester and simultaneously the printer is printing the label.
The step 8 represents conditional transition, as the PCB is
placed either to the box or to the other table based on the
result of the testing process.

B. System

The prototype of the user interface was created using
Unity3D game engine. To register motion of the mobile
device and track its position in the real world, the ARCore

Fig. 5. The puck consists of central disc, two circles representing the input
and the output and two pipes connecting input/output with the disc. In the
first prototype, the type of the puck is represented by its color and the text
placed in front of the disk. Above the pipes, small 3D models of input and
output workpieces are placed.

framework was utilized. The prototype was developed for
an Android-driven handheld mobile device. Display of the
device shows the video stream from the back-facing camera
with superimposed user interface.

Using the Unity3D, the virtual scene was created
(see Fig. 7), spatially identical to the real scene described
above. The virtual and real scenes are mutually calibrated
using the AR marker placed in the lower left corner of the
table. This calibration needs to be done once during the
application startup.

The system simulates knowledge of the environment and
context of all objects and devices on the table. We placed
invisible virtual bounding box around each physical object
on the table, so user can interact with them by touching them
on the screen.

C. User interface elements

Several UI elements were designed for the prototype to
allow user to interact with the system. These elements are
either 2D or 3D. In this prototype, all elements representing
different operations, their connections etc. are static and
prepared for selected use-case, as can be seen on Fig. 7.

1) Operations: In our prototype, each operation is rep-
resented by so-called puck (see Fig. 5). The puck consists
of central disc, two circles representing the input and the
output and two pipes connecting input/output with the disc.
The input is placed on the left of the puck (with inside the
puck aiming arrowhead), output is placed on the right of the
puck (with arrowhead aiming outside of the puck).

The puck serves as a visualization of operation and its
parameters, and at the same time, as a main input point for
the operator. To change any operation’s parameter, the user
has to select desired operation first. To enable this, the so-
called edit mode was designed. User can switch between
the normal and edit mode by clicking on the puck. While
in edit mode, only the edited and directly connected pucks
are visible to the user and the others are hidden to lower

75

Fig. 6. Teleoperating user interface for navigating the 3D model of the
PCB to the tester device. There are two joysticks on the bottom left and
bottom right side of the tablet. Next to right joystick, there are two buttons
for controlling whether the PCB should move in horizontal or vertical plane.
Above the right joystick, there is a DRAG button. When it is held, the 3D
model moves in the same direction and speed as the tablet.

visual clutter. In the edit mode, parameters of the operation
are visible.

Most of the operations only manipulates the workpiece
without changing it, i.e. the workpiece on the input is the
same as the workpiece on the output of the puck. There are
two exceptions in our use-case: Pick from table and Execute
testing. The former has no workpiece on the input, because
it is the first operation in our program. The picked object
is automatically set as a workpiece for the output and it is
added to the inventory (will be discussed later). The Execute
testing operation works as follows. When the PCB is set as a
input workpiece, it automatically creates two new workpiece
types: PCB OK and PCB NOK. The former means tested
and OK (functional) and the latter means tested and not OK
(nonfunctional). These two workpiece types are also added
to the virtual inventory.

2) Connections: The pucks themselves are not sufficient
to define flow of the program, as they only define operations,
but not the order in which they shall be executed. To define
the flow, the operator can create connections between the
pucks, by connecting the output of one puck and input of
other puck. This connection is represented by a green spline
between these two pucks. To make it easier for the user, once
he clicks on the output of one puck, a big blue plus appears
on the input of all other pucks and vice versa. By clicking
on this plus, the connection is created.

In case of incorrectly created connection, the operator
can use a big red cross to remove said connection. This
cross is visible only for connections adjacent to currently
edited puck. There can be several connection attached to one
output or input allowing user to define conditions and parallel
execution.

3) Interactive objects and context menus: To define an
operation for any physical object on the table (e.g. printer,
tester, etc.), the operator has to create appropriate puck by the
object. As the system benefits from the semantic information
about objects in the scene, context menu with each possible

operations for the objects could be generated. By clicking
on any object, this menu emerges, allowing user to define
desired operation. This was enabled by creating a clickable
invisible bounding box around each object in the virtual
scene (semi-transparent boxes on the Fig. 7).

4) Inventory and teleoperating UI: While user composes
the program, each workpiece he use in the program (e.g.
PCB which shall be picked) appears in the inventory list.
By clicking on the workpiece image in the inventory while
in edit mode of some puck, user can set this object as a
workpiece for this puck.

The operation ”Place to tester” needs to specify 3D
position of the workpiece while placing inside the testing
device. To do so, a teleoperating user interface is prepared,
allowing user to move with 3D model of the workpiece.
There are two different approaches to control the position
of the desk. The user can adjust the position in vertical or
horizontal plane using two joysticks, placed on both side of
the screen (see Fig. 6). The other way to set the position
is by using so called DRAG button. When pressed, the desk
moves in the same direction and speed as the tablet, so the
operator can literally drag the desk by moving with the tablet
(see Fig. 6).

D. User interaction

The screen of the mobile device is used for both vi-
sualization of the process and as a main input for the
operator. The application on the device knows position and
semantic information of all objects in scene (hard-coded for
the prototype). Using the ARCore framework, the mobile
device knows its position and orientation in the space, which
enables the operator to interact with real objects by clicking
on their 2D image on the screen.

V. EVALUATION

We provide qualitative results obtained from the user study
with 7 participants. To evaluate our proposed approach, we
created the prototype of the user interface using ARCore-
enabled mobile device.

A. Experimental Procedure

Experimental protocol consisted of 4 phases: orientation,
training, programming, discussion.

1) Orientation: During the orientation, the moderator
introduced the evaluated system to the participant. He or she
then signed an informed consent form.

2) Training: In the second phase, the participant learned
how to use the mobile device to create robot instructions
(a.k.a. pucks), how to set parameters of the instructions and
how to connect them to create intended program. During
the second phase, the moderator proactively helped the
participant to complete the tasks and answered all questions.

3) Main task: The main task was presented to the partic-
ipant. He or she was asked to program the robot to pick the
PCB from the table, place it to the testing device, execute
the testing process, print and stick correct label based on the
result of the testing process and then place the PCB either

76

Fig. 7. Unity scene of the prototype UI. Semitransparent boxes define interactive places, which user can use to define intended operation. Above each of
these boxes, there are pucks of various colors, representing different operations. They are connected with green splines, representing flow of the program
(for the sake of clarity, only subset of possible connections are displayed in this figure).

to the box or on the other table (again, based on the result
of the test).

After the task was presented to the participant, he or she
began to work on the task by him or her self. The moderator
was available to answer additional question or to help in case
of problems with the prototype, but did not actively step into
the programming process. Each participant worked until he
or she claimed that the task is done. Moderator than reviewed
the created program and either confirmed the correctness or
suggested to the participant what should be altered.

4) Discussion: After completing the main task, the partic-
ipant filled out the questionnaire. Besides, participants were
asked for their thoughts of the system, additional questions,
etc.

B. Sensors and collected data

The whole process of the experiment was recorded on
several cameras. One of them was placed on participant’s
forehead, aiming to mobile device in participant’s hands,
other one was aiming towards the participant and two more
cameras were recording the workspace. The screen of the
mobile device was also recorded, together with indication of
participant’s input. To record voice of both moderator and
participant, lavalier microphones were used.

C. Participants

There were 7 participants of various ages and genders,
all of them with none or very limited knowledge of pro-
gramming and augmented reality. These participants will be
labeled as Participant A, B, C, D, E, F and G. Table I shows
the demographic data of the participants.

VI. RESULTS AND FINDINGS

The section provides measured results and observed find-
ings of the experiment. The main goal of the presented
experiment was to prove, that non-expert users are able to
program the selected use-case, using the ARCORO system.
We focused mainly on usability issues, mental workload of
the participants and the user experience.

A. Qualitative and quantitative data

As a metric for the system usability, the SUS2 [17] method
was chosen. To evaluate SUS score for our system, each
participant had to score 10 items with one of five responses
that range from Strongly Agree to Strongly disagree. Table II
shows the SUS score for each participant individually, the
mean SUS score from all participants was 82.86 (SD=9.29).
According to Sauro-Lewis curved grading scale [17], SUS
score in range of 80.8–84.0 is rated by grade A, and is at the
90–95th percentile. This shows promising potential for future
research in this field, and shows, that the created prototype
user interface is highly usable.

To measure the mental workload of the participants, sim-
plified NASA-TLX3 method was utilized. The mental work-
load can negatively affect the performance of the operator,
therefore is important to measure this attribute from the
earliest phases of prototyping. Although the mental workload
in laboratory scenarios cannot be generalized directly to the
workload in real environment, it still can be useful to reveal
potential issues. The mean TLX in our experiment was 27.38

2System Usability Scale
3NASA Task Load Index

77

Participant Age Gender Education Experience with Experience with Attitude towards
augmented reality programming new technology

A 24 F bachelor degree little little late majority
B 24 F bachelor degree some little early majority
C 34 M master degree none none early adopter
D 22 M secondary little little late majority
E 21 M secondary little little early adopter
F 24 F bachelor degree little none early adopter
G 33 M secondary little little early majority

TABLE I
DEMOGRAPHIC DATA OF THE PARTICIPANTS. THE SCALE FOR BOTH EXPERIENCE-RELATED QUESTIONS WERE NONE, LITTLE, SOME, QUITE A LOT,

MANY. THE ATTITUDE TOWARDS NEW TECHNOLOGY SCALE IS BASED ON ROGERS [16] DIFFUSION OF INNOVATIONS.

Participant SUS
NASA UEQ UEQ UEQ time to
TLX ATT PRA HED set (s)

A 95.00 25.00 2.67 2.50 2.12 535
B 80.00 25.00 2.00 2.42 0.75 427
C 67.50 47.22 1.17 2.00 1.75 460
D 85.00 27.78 1.67 2.25 2.25 507
E 92.50 27.78 2.67 2.75 2.88 431
F 82.50 19.44 2.00 2.08 2.38 521
G 77.50 19.44 1.33 1.83 0.88 806

TABLE II
DETAILED RESULTS OF ALL MEASURED RESULTS FOR EACH

PARTICIPANT.

(SD=9.41), which means that the workload was lower then
in at least 80% of studies analyzed by Grier [18].

For any interactive system to be successful, a high-quality
user experience is the key. Among several methods to mea-
sure the user experience, we selected the UEQ4, because of
its simplicity for both participant and evaluator and reliable
results. The system was overall rated as Excellent in all UEQ
categories, i.e. Attractiveness (mean score 1.93, SD=0.58),
Pragmatic attributes (mean score 2.26, SD=0.28) and He-
donic attributes (mean score 1.86, SD=0.72). All categories
were evaluated using the standard UEQ benchmark [19].

The mean time for the main task completion was 527
seconds (SD=130s). The main task consisted of settings
following operations and their parameters and of creating
connections between them: 3x pick object, 4x place object,
3x execute (testing, printing and sticking). For each opera-
tion, workpiece had to be set. Moreover, for one of the place
object operations, an exact position of the PCB inserted to
the tester had to be set. The completion time excludes delays
caused by prototype errors.

B. General findings

During the experiment, we found no fundamental problem
forcing us to reconsider the proposed approach. Although
minor issues were observed or self-reported by participants,
all participants were able to complete the task.

4User Experience Questionnaire

All participants reported, that the pucks (representing
operations) were unnecessary large. In cases when there were
more pucks above the same object, for instance place object
to tester, execute testing and pick object from tester, the state
and parameters of those pucks were unclear and it was hard to
recognize mutual connections. To avoid this, design of pucks
needs to be refined and better strategy of pucks placement
should be adopted in further versions.

The participants were instructed to inform the moderator
once they though they have successfully finished the pro-
gramming. Most of the created programs contained one or
more errors, which would lead to failure during execution.
The participant C explicitly reported, that he is unable to
check if the program is correct. The participant A in the
end went through all created pucks to check whether all
parameters are correctly set and connections between pucks
are as intended.

After the errors were pointed out by the moderator, each
participant was able to correct the error and to successfully
finish the task. This has shown, that debugging system has
to be improved and better system state indicators should
be involved. To support users awareness of the program
correctness, the program flow visualization needs to be
improved.

Only two of the participants found out, that they can
benefit from active movement of the mobile device inside the
scene, to achieve higher accuracy when clicking on interface
components. Most of them were just standing in certain
distance from the table and using only vertical rotation in
cases when FOV of the tablet was too narrow. The participant
B stated, that it was more comfortable for her to just stand at
one place to observe the whole situation and that she would
appreciate the possibility of zooming the scene on the screen
to avoid miss-clicks.

The usual procedure for most of the participants consisted
of creating the puck, followed by creating the connection
between said puck and previously created puck, repeated until
the whole program was created. The participant A followed
a different approach. At first she created most of the pucks to
label all desired operations and once she was satisfied with
pucks, she started to create connections between them.

Participants A, B, C and E were using only one hand
to control both joysticks (placed on different side of the

78

screen) while the rest of the participants were using both
hands, as was intended when designing the user interface.
The participant A was the only one to use a DRAG button,
to set the initial position of the desk, followed by refining
the final position using the joysticks.

Although minor issues were observed during the experi-
ment, all of the participants rated the system positively. The
participants agreed that the system is easy to use and requires
no special knowledge from the operator.

VII. CONCLUSIONS

The aim of this work is to reflect current needs in the area
of programming robots in low and medium complex tasks
in a shared collaborative environment. We have designed a
new concept of robot programming using augmented reality
on a mobile device. The main goals pursued in the design of
the new concept were: eliminating the need to switch user
context between desktop and work environment by mapping
instructions directly into a real 3D environment, reducing
user mental stress by using semantic information about real
objects and increasing the abstraction of instructions and
their relations.

We have defined a simple use-case that is inspired by
the real demands from the industry. In the experiment, we
observed mainly usability of designed UI, workload of user
and user experience with designed spatial programming con-
cept. We have evaluated with 7 users which has shown that,
despite some shortcomings discussed, this is the direction
that can be taken. All participants were able to perform all
the tasks independently after a short training. All participants
evaluated the usability of the interface mostly positively.

Positive adoption of the new concept can also be attributed
to the use of equipment that most users are used to working
with. In the future, we want to verify this unambiguity and
compare the usability of the concept with other, yet less
common devices, such as HoloLens glasses. In the next
research, we will also focus on improving the orientation in
the programmed task, solving the UX deficiencies found in
this study, and integrating the UI into a real robotic system.

ACKNOWLEDGMENT

The work was supported by Czech Ministry of Educa-
tion, Youth and Sports from the National Programme of
Sustainability (NPU II) project “IT4Innovations excellence
in science – LQ1602”.

REFERENCES

[1] Z. Materna, M. Kapinus, V. Beran, P. Smrž, and P. Zemčı́k, “Interactive
spatial augmented reality in collaborative robot programming: User
experience evaluation,” in 2018 27th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), Aug
2018, pp. 80–87.

[2] C. Mateo, A. Brunete, E. Gambao, and M. Hernando, “Hammer: An
android based application for end-user industrial robot programming,”
in 2014 IEEE/ASME 10th International Conference on Mechatronic
and Embedded Systems and Applications (MESA), Sep. 2014, pp. 1–6.

[3] S. Yitzhak Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and
G. Konidaris, “End-user robot programming using mixed reality,” 10
2018.

[4] J. Aleotti, G. Micconi, and S. Caselli, “Object interaction and task
programming by demonstration in visuo-haptic augmented reality,”
Multimedia Systems, vol. 22, no. 6, pp. 675–691, Nov 2016. [Online].
Available: https://doi.org/10.1007/s00530-015-0488-z

[5] P.-C. Li and C.-H. Chu, “Augmented reality based robot path planning
for programming by demonstration,” 12 2016.

[6] J. Huang and M. Cakmak, “Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts,” in HRI.
ACM, 2017, pp. 453–462.

[7] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. Machiel Van
der Loos, and E. Croft, “Robot programming through augmented
trajectories in augmented reality,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2018, pp.
1838–1844.

[8] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, and A. Raatz,
“Intuitive robot programming using augmented reality,” Procedia
CIRP, vol. 76, pp. 155–160, 01 2018.

[9] S. Stadler, K. Kain, M. Giuliani, N. Mirnig, G. Stollnberger, and
M. Tscheligi, “Augmented reality for industrial robot programmers:
Workload analysis for task-based, augmented reality-supported robot
control,” in Robot and Human Interactive Communication (RO-MAN),
2016 25th IEEE International Symposium on. IEEE, 2016, pp. 179–
184.

[10] S. Magnenat, M. Ben-Ari, S. Klinger, and R. W. Sumner, “Enhancing
robot programming with visual feedback and augmented reality,”
in Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 2015, pp. 153–
158.

[11] Y. Gao and C.-M. Huang, “Pati: A projection-based augmented
table-top interface for robot programming,” in Proceedings of the
24th International Conference on Intelligent User Interfaces, ser. IUI
’19. New York, NY, USA: ACM, 2019, pp. 345–355. [Online].
Available: http://doi.acm.org/10.1145/3301275.3302326

[12] E. Bunz, R. T. Chadalavada, H. Andreasson, R. Krug, M. Schindler,
and A. Lilienthal, “Spatial augmented reality and eye tracking for
evaluating human robot interaction,” in RO-MAN 2016 Workshop:
Workshop on Communicating Intentions in Human-Robot Interaction,
New York, USA, Aug 31, 2016, 2016.

[13] N. Dass, J. Kim, S. Ford, S. Agarwal, and D. H. P. Chau,
“Augmenting coding: Augmented reality for learning programming,”
in Proceedings of the Sixth International Symposium of Chinese CHI,
ser. ChineseCHI ’18. New York, NY, USA: ACM, 2018, pp. 156–159.
[Online]. Available: http://doi.acm.org/10.1145/3202667.3202695

[14] B. Ens, F. Anderson, T. Grossman, M. Annett, P. Irani, and
G. Fitzmaurice, “Ivy: Exploring spatially situated visual programming
for authoring and understanding intelligent environments,” in
Proceedings of the 43rd Graphics Interface Conference,
ser. GI ’17. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2017, pp. 156–162. [Online]. Available:
https://doi.org/10.20380/GI2017.20

[15] V. Heun, J. Hobin, and P. Maes, “Reality editor: Programming smarter
objects,” in Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication, ser. UbiComp ’13
Adjunct. New York, NY, USA: ACM, 2013, pp. 307–310. [Online].
Available: http://doi.acm.org/10.1145/2494091.2494185

[16] E. Rogers, Diffusion of innovations. Free Press of Glencoe,
1962. [Online]. Available: https://books.google.cz/books?id=zw0-
AAAAIAAJ

[17] J. Sauro and J. R. Lewis, Quantifying the User Experience: Practical
Statistics for User Research, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2012.

[18] R. A. Grier, “How high is high? a meta-analysis of nasa-tlx
global workload scores,” Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 59, no. 1, pp. 1727–1731,
2015. [Online]. Available: https://doi.org/10.1177/1541931215591373

[19] M. Schrepp, A. Hinderks, and J. Thomaschewski, “Construction of a
benchmark for the user experience questionnaire (ueq),” International
Journal of Interactive Multimedia and Artificial Intelligence, vol. 4,
pp. 40–44, 06 2017.

79

Improved Indirect Virtual Objects Selection
Methods for Cluttered Augmented Reality

Environments on Mobile Devices
Michal Kapinus, Daniel Bambuˇ sek, Zdenˇ ek Materna, Vı́tˇ ezslav Beran, Pavel Smrž

Faculty of Information Technology, Brno University of Technology
Brno, Czech Republic

{ikapinus,bambusekd,imaterna,beranv,smrz}@fit.vut.cz

Abstract—The problem of selecting virtual objects within
augmented reality on handheld devices has been tackled multiple
times. However, evaluations were carried out on purely synthetic
tasks with uniformly placed homogeneous objects, often located
on a plane and with none or low occlusions. This paper presents
two novel approaches to indirect object selection dealing with
highly occluded objects with large spatial distribution variability
and heterogeneous size and appearance. The methods are de-
signed to enable long-term usage with a tablet-like device. One
method is based on a spatially anchored hierarchy menu, and the
other utilizes a crosshair and a side menu that shows candidate
objects according to a custom-developed metric. The proposed
approaches are compared with direct touch in the context of
spatial visual programming of collaborative robots problem, on
a realistic workplace and a common robotic task. The preliminary
evaluation indicates that the main benefit of the proposed indirect
methods could be their higher precision and higher selection
confidence for the user.

Index Terms—virtual object selection; augmented reality; spa-
tially situated visual programming

I. I NTRODUCTION

The need for selecting objects on a 2D screen arose with the
onset of graphical user interfaces and pointing devices. Tradi-
tional approaches for objects selections might be divided into
two categories: direct and indirect. For computers, the most
widespread method for object selection is indirect control of
the graphical cursor, either by mouse, keyboard, or touchpad.
The direct method is usually the most common for touchscreen
devices – using either the user’s fingers or stylus.

When it comes to a 3D user interface, such as augmented
reality (AR) on mobile devices, Bowman et al. [1] state that
the quality of interaction with 3D objects has a profound effect
on the quality of the entire 3D user interface. They also state
that selection of and manipulation with virtual objects is one
of the most crucial features of such an interface, because ”if
the user cannot manipulate virtual objects effectively, many
application-specific tasks simply cannot be performed” [1].

In the case of the cluttered scenes, with partially or fully
occluded objects, traditional methods may begin to lose their
breath in terms of precision or speed [2,3]. The problem
becomes even worse on mobile devices, where the primary

This project was implemented with financial support from the state budget
through the Ministry of Industry and Trade in the TRIO program (FV40052).

Fig. 1. A user observes the scene with robotic program visualized in AR.
There is a crosshair and side menu for indirect object selection.

selection tool is usually a human finger. In the case of large
displays (typically with tablets), the ergonomics of the whole
process needs to be taken into account due to the weight of
the device, especially when it comes to long-lasting operations,
such as robot programming.

We have selected spatial visual programming in AR as a
representative task, similar to the one presented in our previous
work [4], where a relatively high amount of virtual objects is
presented inside a small area, and these are partially occluded
(depending on a view angle).

We have prepared an experiment to compare two indirect
and one direct methods for object selection in AR:

1) Combination of the crosshair and a head-up side menu,
containing a set of nearby objects.

2) Combination of the crosshair and in-space hierarchical
menu, and 3) touch.

For this Late-Breaking Report, a pilot study (n = 3) was
conducted to get a first impression of both developed methods
and verify both experiment design and prototype application.
This evaluation is a part of our ongoing research on simplified
robot programming.

Late-Breaking Report HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

834978-1-6654-0731-1/22/$31.00 ©2022 IEEE

80

II. R ELATED WORK

The problem of selecting objects on a screen is well studied.
However, there are many specifics when it comes to AR
on handheld devices. First of all, objects on the screen are
not stable during interaction due to hand tremors or visual
tracking instability. Also, techniques intended initially for
virtual reality, as Go-Go [5], for instance, are less usable on
handheld devices [2].

In the literature, Fitt’s Law [6], a technique to quantify
the difficulty of a target selection task, is commonly used
to compare selection methods. The original one-dimensional
version was later adapted to 2D and even to 3D selection
problems [7–9]. However, it implies several unrealistic limita-
tions: participants have to be seated and locate homogeneous
un-occluded targets on a plane in front of them. There exist
several attempts to create more realistic conditions, where
targets were: displayed at mixed depth [9], of different sizes
with variable level of occlusion [10], highly occluded and with
similar appearance [11]. Although those publications made
some aspects of evaluation more realistic, they were carried
out on purely synthetic tasks in an empty environment. The
evaluation in a realistic industrial environment exists as an
isolated example [12].

There is also a lack of experiments carried out on larger
than phone form factors (device’s physical size and shape);
there are just indications that indirect methods might be more
suitable for them [13,14]. Moreover, there are signs that
indirect methods could be preferable for long-lasting tasks [3].

An example of a selection technique specifically designed
for handheld devices could be DrillSample [11], intended
to provide accurate selection in dense AR environments,
optimized for one-hand operation on the phone. It is a direct
method, using ray-casting (touch) and an optional refinement
step. A set of selection methods for phone-sized devices and
dense AR environments that outperformed ray-casting and Go-
Go were proposed and evaluated in [2]. A screen-centered
crosshair was compared with a relative one, bound to the
physical object’s frame in [14] for both phone and tablet.
The relative one was more accurate and less sensitive to the
registration jitter and the device’s form factor. The list-based
selection, with icons displayed on the side of the screen for
objects nearest to the crosshair, was compared with a touch-
based selection in [3]. The list-based method was designed
to minimize the number of touches by taking advantage of
device motion and is recommended for crowded scenes to
select multiple objects during longer-lasting tasks.

In this paper, we deal with the use case of robot visual
programming. Even a relatively simple pick and place task
results in a dense AR environment, with a high amount of
virtual objects of different appearance and semantic meaning,
typically clustered nearby spatially important points. The task
requires a large screen, and therefore, we were interested
in tablet-like devices. To allow long-term usage, we have
developed methods enabling users to hold the device with both
hands, control the interface using their thumbs, and evaluated

them on a realistic task.

III. P ROPOSED M ETHODS

The necessity to select virtual objects in dense AR environ-
ments arose during the development of robot programming
tools in AR using tablet devices where specific virtual objects
represent spatial anchors, robot actions, and process flow. Such
approaches usually have a solid connection to the natural
environment and thus show strong potential in AR [4,15].
Even relatively simple tasks usually involve many virtual
objects in the scene with some degree of occlusion. In such
an environment, the selection becomes problematic, so there
is a need for fast, accurate, and easy-to-use methods, specific
for large screens.

We have proposed two indirect methods for precise virtual
object selection in heavily cluttered environments in AR. Both
of them work with spatially clustered objects and use the
following algorithm to obtain the cluster from the scene:

1) Cast a ray from the center of the screen (crosshair) and
add the first hit object to the cluster (see Fig. 2, middle).

2) If the cluster is empty (i.e., the ray hit no object), cast
a thick, square ray with a side size 1 cm from the same
origin, allowing to select even tiny objects, and add the
first hit object to the cluster.

3) If the cluster is still empty (i.e., no ray hit any object),
return an empty cluster.

4) Search for any object colliding with a virtual sphere with
a radius of 3 cm, with a center in the position where the
cast ray hit the first object (see Fig. 2 right). Add all
these objects to the cluster and return it ordered by their
distance to the first hit object.

Proposed methods are meant to help the user select spatially
clustered objects in a cluttered environment. Each method
provides different access to hard-to-reach or occluded objects
by either hierarchical or flat representation. One of the pro-
posed methods uses the head-up menu, and the other the in-
space menu, which allows us to observe whether the attention
switches between the scene and the head-up menu will be
problematic or annoying for users.

Fig. 2. Principle of our cluster selection in two dimensions. Left: the camera
observes a scene. Middle: a ray is cast from the camera’s center and hits an
object (square with thick borders). Right: in the position of the hit, a circle
(sphere in 3D) is generated and all objects located inside or colliding with
are included into the cluster (squares with thick borders).

Late-Breaking Report HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

835

81

(a) Direct touch method. The user selects the
object by touching its visual representation on
the screen.

(b) Spatial hierarchical menu. The user selects
a cluster of objects by device movement, fol-
lowed by selecting quadrants of the menu.

(c) Selector menu. The user selects the object by
combining the physical movement of the device and
the selection of the object using a side menu.

Fig. 3. User interface of three selection methods studied in this work.

A. Spatial hierarchical menu

The first proposed method deals with the clustering of
objects not only by distance but also by the class or other
parameters of the object. Upon selecting a spatial cluster, the
objects are divided into four categories, each represented by
one quadrant of a full circle. If there are more than four classes,
one of the quadrants is used as a container for other classes,
through which the user could reach the remaining ones.

This menu is recursive, meaning that after selecting one
of the quadrants, it further divides contained objects into the
quadrants based on selected parameters (a color in our case).
We have based this approach on SQUAD [16] technique, used
for selection by progressive refinement of a cluster of objects
based on spatial, visual, and other parameters.

This hierarchical menu is rendered in the 3D space at a
certain distance in front of the device. The user selects desired
quadrant by the same crosshair used to select the initial cluster
and confirms the selection by clicking on the circular button
in the lower right corner of the screen. This limits the user’s
attention switches between the scene and a head-up display.

B. Selector menu

The second proposed selection method is similar to the Icon-
based selection presented by [3]. It shows the obtained cluster
in the form of a list on the side of the screen (head-up like),
easily reachable by the user’s right thumb when holding the
tablet device using both hands. Each item in the menu contains
an icon representing the object’s class and the object’s name.
The directly hit object is pre-selected, which is indicated by
highlighting the object in both scene and the menu, using an
outline. The user makes the selection by touching one of the
items in the list, regardless of whether the item is pre-selected
or not.

The list of the objects is continuously updated as the user
hovers the tablet over the environment. A simple hysteresis
supported the stability of the objects in the list, and updates
were limited to 2 Hz.

Fig. 4. The virtual scene rendered over the real environment, used in the
conducted experiment. The virtual objects represent a simple program, where
the small robot should pick a cube, move it to the conveyor belt and pass it
to the second robot. The second robot should pick the cube again, touch the
simulated device (represented by white foam box) on several places with the
cube attached, and drop the cube to the blue box.

IV. P ILOT E XPERIMENT

We organized the experiment as a within-subject study with
three methods in randomized order: direct touch – baseline
(A), spatial hierarchical menu (B), and selector menu (C). It
was carried out in a laboratory, on a demonstration workspace
for a visual programming framework, equipped with two
robots (Dobot Magician and M1) and a conveyor belt (see
Fig. 4). Robots were switched on but remained stationary
during the study.

The objects to be selected represent a simple pick and place
program. A total of 91 virtual objects were displayed above
the workplace, spread across the area of 1.3m 2 , grouped into
5 clusters (see Fig. 4). There were four categories of objects:
scene objects (e.g., a box or a robot), action points (spheres
representing important 3D space anchors), actions above ac-
tion points (cylinders representing program steps with the
purpose indicated by different colors), and lines (connections
between actions). For each tested selection method, the task
was to select 30 objects (3 scene objects, 6 action points,

Late-Breaking Report HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

836

82

TABLE I
D EMOGRAPHIC INFORMATION ABOUT PARTICIPANTS (AR x DENOTES EXPERIENCE WITH AR ON THE SCALE OF 1-5.) AND OBTAINED DATA , WHERE

OBJECTIVE MEASURES ARE TASK TIME (TOTAL TIME TO SELECT 30 OBJECTS), SUCCESS RATE (IN THE RANGE OF [0, 1]), TRAJECTORY (TOTAL DEVICE
DISPLACEMENT AS MEASURED BY VISUAL TRACKING) AND SUBJECTIVE MEASURE IS TLX (RANGE [0, 100], THE LOWER THE BETTER).

age AR x
task time [s] success rate [–] trajectory [m] TLX [–]
A B C A B C A B C A B C

p 1 35 4 114.56 258.42 187.39 0.77 1.00 0.93 15.40 26.60 20.10 19.44 66.67 41.67
p 2 25 2 135.93 380.55 240.26 0.73 0.90 0.93 16.44 24.11 15.80 2.78 11.11 13.89
p 3 30 2 142.46 319.42 311.92 0.83 0.90 0.80 39.78 40.96 32.66 2.78 25.00 16.67
mean 30 2.67 130.98 319.46 246.52 0.78 0.93 0.89 23.87 30.56 22.85 8.33 34.26 24.08

21 actions) – those were the same for all methods, however
in a different order (same across the participants). The task
inevitably contained a search phase (which Fitt’s Law tries to
avoid), as objects were spread across a large area, could not fit
into the field of view, and users could move freely. However,
the search phase was present for all methods and should not
affect the results.

We chose task time, success rate (both representing task
performance) and trajectory (distance reported by the tablet’s
visual tracking, therefore having limited precision; could be
related to necessary physical effort) as objective metrics and
NASA Task Load Index [17] (TLX) as an subjective metric.

Participants were recruited from faculty staff (3 males,
one Ph.D. student, two postdocs), further denoted as p 1 �3 .
They were first informed about the study purpose and signed
informed consent. The moderator explained the usage of each
method, and participants then tried to select four objects.
After that, they performed 30 selections and filled in the TLX
questionnaire for the method. In the end, the moderator carried
out a debriefing with the participant.

The order of methods assigned to participants was p 1 :=
{A, B, C }, p 2 := {B, C, A} and p 3 := {C, A, B }.

V. R ESULTS AND D ISCUSSION

From the results, it may be seen that both indirect methods
provide better success rates than the baseline, however, at
the expense of notably longer times. Those results seem to
be consistent between participants. The big difference in the
trajectory metric for all methods for the participant p 3 was
probably caused by the interaction strategy he adopted. Most
of the time, the first two participants stood in one place, while
the last one walked around the workplace to acquire the best
pose for selection.

Regarding the TLX metric, all participants ranked the A
method as the one with the lowest task load, which could be
influenced by the general acquaintance of the baseline method.
We will extend and improve the training session for the final
experiment, as we observed that most of the participants’
problems occurred during the first few selection attempts of
the main task.

During a debriefing, the p 3 stated that he felt confident
when using the C and especially the B method, as he was
informed about which objects were about to be selected. In
the A method, he was sometimes unsure because of the small
size and occlusion of the target. Participants p 1 and p 2 both
complained about the instability of the objects in the list. The
participant p 2 suggested a freeze button for the left thumb,

which will pause any changes in the selector menu and help
him comfortably select the desired object. Alternatively, the
adoption of some temporally stable labeling methods, such as
the one presented by Bobak et al. [18], could significantly
improve the stability of objects in the list. The p 2 generally
liked the method A, but he complained about the need to move
close to the object to be able to achieve a certain degree of
accuracy.

The participants p 1 and p 3 held the device with one hand on
the short side while using the other hand for object selections.
From our experience, such holding of a tablet device causes
arm fatigue in the case of longer sessions. Also, we identified a
few usability problems in the indirect methods’ design, which
might impact results. For B, participants p 2 and p 3 sometimes
had problems with stepping back in the hierarchy menu, and
they accidentally selected the wrong object instead, causing a
worse success ratio. Moreover, the labels of the quadrants were
too small and thus hard to read. In the case of C, the instability
of the order of menu items probably caused some wrong
selections and could lead to a higher task load. According
to observations, users tend to precisely aim an object with
a crosshair to get it pre-selected in the side menu, although
they could select any object listed there. We speculate that
removing the pre-selection mechanism and highlighting the
whole cluster (the content of the menu) in the scene will make
the method faster and improve its usability.

VI. C ONCLUSIONS

The conducted experiment initially compared three differ-
ent methods for virtual object selection, one direct and two
indirect. The purpose of this pilot experiment was mainly to
obtain first impressions and validate the study design.

A preliminary evaluation of our new methods suggested that
using indirect methods in AR on mobile devices could help
increase selection accuracy. The increase could be achieved
primarily in tasks with heavily cluttered environments, such as
robot visual programming, AR-enabled visualization of robotic
trajectories, editor of robotics workcells, or any other situated
visualization. We have collected valuable feedback for our
prototype, which will be addressed in a refined version of our
methods, thoroughly evaluated later.

A significantly higher number of participants will be in-
volved to observe statistical differences between methods for
the final experiment. The experiment design will be slightly
altered, as the training session will be extended, and the
methods will be explained more thoroughly to the participants.

Late-Breaking Report HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

837

83

R EFERENCES

[1] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev, 3D User
Interfaces: Theory and Practice. USA: Addison Wesley Longman
Publishing Co., Inc., 2004.

[2] J. Yin, C. Fu, X. Zhang, and T. Liu, “Precise target selection techniques
in handheld augmented reality interfaces,” IEEE Access, vol. 7, pp.
17 663–17 674, 2019.

[3] A. Samini and K. Lundin Palmerius, “Wand-like interaction with a
hand-held tablet device—a study on selection and pose manipulation
techniques,” Information, vol. 10, no. 4, p. 152, 2019.

[4] M. Kapinus, V. Beran, Z. Materna, and D. Bambuˇ sek, “Spatially
situated end-user robot programming in augmented reality,” in 2019
28th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2019, pp. 1–8.

[5] I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa, “The go-
go interaction technique: non-linear mapping for direct manipulation in
vr,” in Proceedings of the 9th annual ACM symposium on User interface
software and technology, 1996, pp. 79–80.

[6] P. M. Fitts, “The information capacity of the human motor system
in controlling the amplitude of movement.” Journal of experimental
psychology, vol. 47, no. 6, p. 381, 1954.

[7] R. J. Teather and W. Stuerzlinger, “Pointing at 3d targets in a stereo
head-tracked virtual environment,” in 2011 IEEE Symposium on 3D User
Interfaces (3DUI). IEEE, 2011, pp. 87–94.

[8] Y. Cha and R. Myung, “Extended fitts’ law for 3d pointing tasks using
3d target arrangements,” International Journal of Industrial Ergonomics,
vol. 43, no. 4, pp. 350–355, 2013.

[9] Y. Y. Qian and R. J. Teather, “The eyes don’t have it: an empirical
comparison of head-based and eye-based selection in virtual reality,” in
Proceedings of the 5th Symposium on Spatial User Interaction, 2017,
pp. 91–98.

[10] F. Argelaguet and C. Andujar, “Efficient 3d pointing selection in clut-
tered virtual environments,” IEEE Computer Graphics and Applications,
vol. 29, no. 6, pp. 34–43, 2009.

[11] A. Mossel, B. Venditti, and H. Kaufmann, “Drillsample: precise selec-
tion in dense handheld augmented reality environments,” in Proceedings
of the Virtual Reality International Conference: Laval Virtual, 2013, pp.
1–10.

[12] P. Perea, D. Morand, and L. Nigay, “Target expansion in context: the
case of menu in handheld augmented reality,” in Proceedings of the
International Conference on Advanced Visual Interfaces, 2020, pp. 1–9.

[13] I. Radu, B. MacIntyre, and S. Lourenco, “Comparing children’s crosshair
and finger interactions in handheld augmented reality: Relationships
between usability and child development,” in Proceedings of the The
15th International Conference on Interaction Design and Children,
2016, pp. 288–298.

[14] T. Vincent, L. Nigay, and T. Kurata, “Handheld augmented reality: Effect
of registration jitter on cursor-based pointing techniques,” in Proceedings
of the 25th Conference on l’Interaction Homme-Machine, 2013, pp. 1–6.

[15] S. M. Chacko and V. Kapila, “An augmented reality interface for human-
robot interaction in unconstrained environments,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 3222–3228.

[16] R. Kopper, F. Bacim, and D. A. Bowman, “Rapid and accurate 3d
selection by progressive refinement,” in 2011 IEEE Symposium on 3D
User Interfaces (3DUI), 2011, pp. 67–74.

[17] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in Pro-
ceedings of the human factors and ergonomics society annual meeting,
vol. 50, no. 9. Sage publications Sage CA: Los Angeles, CA, 2006,
pp. 904–908.

[18] P. Bob ´ ak, L. Cmolik, and M. Cadik, “Temporally stable boundary
labeling for interactive and non-interactive dynamic scenes,” Computers
& Graphics, vol. 91, 08 2020.

Late-Breaking Report HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

838

84

Springer Nature 2021 LATEX template

Augmented Reality Spatial Programming

Paradigm Applied to End-User Robot

Programming

Michal Kapinus1*, Vı́tězslav Beran1, Zdeněk Materna1

and Daniel Bambušek1

1Faculty of Information Technology, Brno University of
Technology, Božetěchova 1/2, Brno, 612 00, Czech Republic.

*Corresponding author(s). E-mail(s): ikapinus@fit.vut.cz;
Contributing authors: beranv@fit.vut.cz; imaterna@fit.vut.cz;

bambusekd@fit.vut.cz;

Abstract

The market of collaborative robots is thriving due to their increasing
affordability. The ability to program such a robot without requiring a
highly skilled robot programmer would increase the spread of collab-
orative robots even more. Visual programming is a common method
for end-user programming. It enables the end-users to quickly and
easily define the program logic, but it usually struggles with defin-
ing spatial features, which is crucial for robot programs. The solution
based on augmented reality (AR) would allow end-users to work in
the robot’s task space and easily and understandably define the spa-
tial parameters. We identified two problems of contemporary solutions
– program comprehension and spatial information setting. We have
proposed a method based on Spatially Anchored Actions to address
these issues and evaluated the method using a mobile AR-based user
interface. The proposed solution was compared against a commercially
available desktop-based visual programming solution in a user study
with 12 participants. According to the results, the novel method sig-
nificantly improves comprehension of pick and place-like programs and
is more preferred by users than the standard end-user robot pro-
gramming tool based on visual programming. Moreover, it greatly
supports the user with the tools for spatial information settings and
deals with the ergonomics of usage of AR interface on tablet devices.

185

Springer Nature 2021 LATEX template

2 AR Spatial Programming Paradigm Applied to End-User Robot Programming

Keywords: Robot programming, augmented reality, SME future

1 Introduction

In SMEs, small batches and frequent changes in production are typical. Many
tasks involve pick & place operations, machine tending, quality inspections,
packaging, and palletizing. The pick & place is one of the most common oper-
ations in the industry, and, at the same time, it is often a very repetitive
and straightforward operation. Many industrial tasks involve some machinery,
e.g., press, lathe, or CNC, which implies the need to tend the machine by the
operator, which is a repetitive operation.

Although all of the tasks mentioned above are relatively simple for the
human operator (and the cobot), the programming of such a task could be chal-
lenging, especially for a non-experienced person. The end-user programming
methods could make the automation of such tasks affordable and profitable
for SMEs. Moreover, it may help to free skilled workers from monotonous
work and therefore contribute to resolving a lack of workforce. These factors
make cobots, in conjunction with end-user programming methods, appealing to
SMEs. Moreover, the share of cobots in the industry rises each year (see Fig. 1).
Therefore, the need for simplified programming methods rises as well [1].

As robotic programs involve many operations within the real environment,
the programmer must easily understand individual actions’ spatial parameters.
At the same time, most contemporary programming solutions have a weak
connection between the program representation and the actual space where
the program takes place. Visualization of spatial parameters is usually done
using textual description (e.g., coordinates: X=0.5, Y=0.9, Z=1.8) or drawn
into a virtual workplace or robot model. In both cases, the user needs to map
the spatial representation to the actual environment mentally.

In addition, in the case of online programming, the programming often
takes place on the screen of some additional device, such as a teach pendant.
As robotic tasks take place in the real environment, the programmer needs to
constantly switch their attention between the robot and the screen (e.g., when
defining the spatial parameters of the program), which implies a high cognitive
and attention-related workload [2].

Another challenge that every robot programmer faces is a precise definition
of spatial information in the 3D world. The operator must be able to define
spatial parameters for robotic programs precisely. At the same time, it is often
quite challenging because the robot usually works with its coordinate system,
which is not always aligned with the world and not apparent by just observing
the robot. Many programming tools, especially those working with program-
ming by demonstration, use the robotic arm to define spatial coordinates. The
operator could use direct manipulation with the arm (if the robot supports it)
and manually drag the arm into the desired position. It is pretty fast, but the

86

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 3

Fig. 1: Share of traditional and collaborative robot unit sales worldwide from
2018 to 20221

precision could be limited, and it could be tiresome for the operator’s hands.
The other possibility is to use the robot’s teach pendant manipulation meth-
ods, such as jogging or joint manipulation. It would relieve the human’s arms,
and the precision is virtually unlimited. On the other hand, using this method
could be slow. The third possibility is the combination of both approaches.

Last but not least, the program must be represented understandably. The
program is typically represented as a sequence of actions of just a few types,
e.g., move line instruction, move joints instruction, or end-effector control
instruction. These could be visualized in the form of diagrams or just as lines
of code. By just looking at the program representation, it is hard to match
individual action to the actual step in the program, i.e.: “Which of the 20 MOVE

instructions is the one I am looking for?”.
We address the challenges mentioned above in this paper and propose a

method based on augmented reality (AR) for environment annotation and
end-user robot programming. This method provides in-situ creation and visu-
alization of the program and interaction with virtual and real elements of the
scene. The method benefits from the semantic knowledge of the environment,
i.e., of the present objects and their arrangement. Only relevant actions are
available for the programmer based on the present objects. The pose and shape
of present objects could be used for the program’s spatial parameters settings.
Therefore, the environment must be annotated (i.e., objects and their poses
specified) before the programming.

1statista.com/statistics/1018935/traditional-and-collaborative-robotics-share-worldwide/

87

Springer Nature 2021 LATEX template

4 AR Spatial Programming Paradigm Applied to End-User Robot Programming

AR has been previously shown to increase users’ understanding of spatial-
related problems [3]. On the other hand, current mobile AR setups suffer
from pose estimation imperfections [4–6]. It could affect the precision of spa-
tial parameters, which is crucial for robotic programs. Moreover, different AR
devices bring their problems; for example, the contemporary head-mount dis-
plays suffer from a narrow field of view and may not be convenient for some
users, mobile AR utilizes one or both user’s hands, and so on.

The main research objectives, based on the problems defined above, are:

RO1 – Improve the robotic program comprehension over the standard method.

RO2 – The creation and adaptation of programs in AR should be at least as
simple as in current end-user programming tools.

RO3 – Lower the perceived task load compared to the standard method.

RO4 – Provide good ergonomics of the mobile AR user interface.

RO5 – Allow precise specification of spatial information using mobile AR.

The main contribution of this paper lies in two domains: enhancement
of robotic program comprehension using AR and precise definition of spatial
parameters in AR.

The remainder of this paper is organized as follows: Section 2 presents the
theoretical background of our method, which is explained and discussed in
Section 3. Section 4 contains details of conducted user study and discovered
observations, results of the user study are further discussed in Section 5, and
everything is concluded in Section 6.

2 Related Work

The increasing spread of cobots in the industry raises the demand for allow-
ing end-users to program them. Naturally, robots can be programmed using
a vendor-specific language, such as ABB’s RAPID [7], Fanuc’s Karel, or Uni-
versal Robots’ URScript [8]. Although these languages offer relatively simple
syntax and programming commands, they still require programmers with
expertise in programming and robotics [1].

A certain form of simplified programming is offered by some teach pen-
dants. However, they often possess high mental and physical demands, lack
the ability to use common syntax structures, and have no option for visu-
alization [9]; therefore, their usability seems to be rather low [10]. Offline
programming tools, such as ABB RobotStudio2 [11], Fanuc RoboGuide3 or
RoboDK4, offer more functionalities and allow to program the robot in a simu-
lated environment, which reduces the robot downtime, but on the other hand,
still requires extensive training. Additionally, these desktop and pendant user
interfaces imply a high cognitive and attention-related workload for the user

2new.abb.com/products/robotics/en/robotstudio
3fanucamerica.com/products/robots/robot-simulation-software-FANUC-ROBOGUIDE
4robodk.com

88

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 5

due to a continuous switching of visual attention between the robot and the
user interface [2].

Many approaches for simplified robot programming have been proposed
throughout the past years. To allow end-users to program robots, some used
variations of visual programming [12–15], programming by demonstration
(PbD) [16], tangible programming [17, 18], natural language interface [19], and
some explored programming directly in the robot’s space using AR [20–26].
The published works usually differ in the type of device used for the interac-
tion and the level of robot programming. Some of them used a head-mounted
display (HMD) to program the robot by setting trajectory waypoints [22–24];
others used projected spatial AR [21], visual programming in combination with
visualization of spatial waypoints in the workplace [26], or an HMD in com-
bination with a handheld pointer [25]. Apart from robot programming, AR
has been found useful for visualizations of robot programs and motions [27],
inspection and maintenance [28], or training [29, 30]. Moreover, AR can display
the visual content directly in the working space, in one’s line of sight, which
reduces the user’s cognitive load when switching the context and attention
between the robot and an external device [31].

Recently, frameworks such as Google ARCore5 or Apple ARKit6 enabled
fast and easy development of AR applications for smartphones and tablets,
which are in general significantly more affordable than HMD devices, and well
known by users. Both deliver mandatory functionalities for AR using their
closed-source implementation of Visual-Inertial Simultaneous Localization and
Mapping [32–34], and both have their strengths and weaknesses [35]. How-
ever, with their current implementation, they are usable for simple, small-scale
environments [36] and non-complicated use-cases only, as hologram drifting
can often rise to above 30 cm in challenging scenarios [4]. The use of these
AR frameworks is suitable for visualization and interaction tasks but not for
the precise input of spatial information per se. If there is a need to input spa-
tial information with high accuracy, AR should be used in combination with
another technology, e.g., kinesthetic teaching.

3 Spatial Programming Paradigm and UI

The two crucial parts of typical robot programming are the specification of
individual program steps, i.e., what should happen, and the precise definition
of spatial information, i.e., where it should happen. Depending on the pro-
gramming method and selected level of abstraction, the first or latter could
be derived automatically by the system (e.g., in imitation learning) or hid-
den from the user (e.g., when computer vision and robot motion planning are
involved).

Both these parts are naturally related because most robotic actions use
predefined or calculated coordinates. Many contemporary robot programming

5developers.google.com/ar
6developer.apple.com/augmented-reality/arkit/

89

Springer Nature 2021 LATEX template

6 AR Spatial Programming Paradigm Applied to End-User Robot Programming

tools represent spatial data in a way that is not natural for non-experts, such
as textual coordinates. For non-expert to understand the spatial dimension of
a robotic program, more than just source code is required. When a 3D environ-
ment model is available, a visualization of important spatial parameters (points
in space or robot trajectories) could be made. Unfortunately, the quality of
the environment model heavily influences the immersion of the visualization
(low-quality models could be ambiguous or vague). Moreover, the visual repre-
sentation of spatial information is usually separated from the action definition
in the above-described example, as the visualization of waypoints occurs in a
3D scene in one window, and the source code is presented in another window.
To understand the program and its spatial meaning, the programmer needs to
merge these two pieces of information mentally.

In the case of robotic programs, not even the source code could provide
insight into the program’s logic. Many robotic programs consist of just three
types of instructions: move instructions, end-effector manipulation (open/close
gripper, turn on/off suction), and IO control. The code could be tough to read
and understand without properly naming methods or thorough comments.
Some simulations using the 3D model of the environment could be utilized
to overcome this problem. However, it suffers from the same challenges which
had been already discussed, and preparation of such a simulation environment
could be costly and time demanding.

We define Spatial Programming Paradigm for mobile AR devices. The
concept namely defines:

• The program as a sequence of the actions in the 3D space.
• The effective usage of AR for visualization and interaction with virtual

objects in the 3D space.
• The interaction modes for seamless program editing in the 3D space on

mobile devices.
• Methods for direct and indirect virtual object fast, resp. precise manipula-

tion in the 3D space.

The defined spatial programming paradigm is applied for robot program-
ming task that is a suitable scenario for the proposed paradigm, and we use
it to explain and test the paradigm. The paradigm introduces the Spatially
Anchored Actions (SAA), which utilizes specific 3D elements to visualize spa-
tial information in the task space for development and program execution.
These elements serve as anchors for actions (program steps), meaning that
users can directly see where the individual actions of the program take place
during the execution. The effective usage of AR is designed with respect of
existing guidelines focusing on mobile device GUI ergonomy.

3.1 Spatially Anchored Actions

The proposed approach is based on flow diagrams and represents the robotic
program as a sequence of individual actions connected to the program flow.
Anchored actions represent the individual program steps (see Fig. 2). The

90

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 7

anchored actions are connected using the connections, and in terms of flow dia-
grams, the anchored actions are nodes of the graph, representing the program,
while the connections are the edges of the directed acyclic graph.

Fig. 2: The visualization of the Spatially Anchored Actions (SAA) concept.
The white circles denote the spatial anchors, which serve for both the defi-
nition and visualization of spatial information. Above each spatial anchor is
located one or more actions, represented by the yellow rectangle. The individ-
ual actions are connected by the blue lines, defining the program flow. Two
anchors are connected by the white dotted line representing that the upper
anchor is positioned relatively to the lower anchor.

Each action is anchored to one of the spatial anchors, representing the
spatial information, as stated above. Using the AR, the spatial anchors are
rendered on the exact place where the anchored action will take place, i.e.,
the action intended to pick a cube is located above said cube. This concept
combines the spatial meaning of programmed action with its spatial parame-
ters, which is crucial for robotic programs. Moreover, a single spatial anchor
could serve for more actions, simplifying modification of joint actions (such as
objects picking and placing on the same spot) and potentially enhancing the
program comprehension. The spatial anchors could be attached to so called
scene objects, which are virtual counterparts of real objects in the scene. This
enable the user to define some spatial parameter relatively to the real objects.

The spatial anchors represent either specific points or poses in space. To
visualize a specific point, a simple sphere that is natural for the observer is

91

Springer Nature 2021 LATEX template

8 AR Spatial Programming Paradigm Applied to End-User Robot Programming

sufficient. To visualize a pose, the model of the end-effector, with a specific
orientation applied, could be used.

3.2 Interaction modes

To enable fluent interaction with minimal interface overhead, the proposed
user interface introduces so-called Interaction modes. Based on the current
interaction mode, only relevant tools are available for the user so that they can
focus on the current task and are not disturbed by an unnecessary on-screen
interface. We propose five principal interaction modes.

The execution mode enables the user to execute selected action. The
transform mode opens the transform menu over the selected scene object or
spatial anchor. The remove mode enables the user to remove the selected
connection, action, or spatial anchor. The connection mode allows the user
to create arbitrary connections between two actions.

The programming mode allows the user to create program actions and
spatial anchors. Its effects vary based on the selected object. When triggered,
a context menu within the task space is opened, and the user can select desired
action to be created. Once the action is selected, a new spatial anchor is cre-
ated at a certain distance from the tablet in the forward direction and the
action is attached to this anchor. Moreover, a connection is created automat-
ically from the previous action. The transform mode is triggered afterward so
that the user can specify the position of the new spatial anchor. The procedure
differs slightly based on the currently selected object:

• Existing spatial anchor: the new action is created and attached to the
existing spatial anchor, and the transform mode is not triggered.

• Existing action: the new action is created and attached to the existing spatial
anchor to which the selected action is attached, and the transform mode is
not triggered.

• Scene object: the newly created spatial anchor is set relatively to the scene
object, so when the user moves with the scene object (using the transform
mode), the spatial anchor moves the same way.

• Connection: the newly created action is inserted in the program flow between
the two actions, connected by the selected connection.

3.3 Ergonomy of the user interface

Most applications nowadays (including some AR/VR apps) use WIMP7 to
interact with the user. In AR applications, it usually means that most of
the interaction is made using some “head-up” displays, which causes constant
context switching, where the user observes the scene for some time, then looks
at the head-up menu to interact, then looks into the scene again and so on. To
avoid this, we followed the design guidelines for UI elements in AR applications,

7Windows, Icons, Menus, Pointer

92

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 9

as defined by the authors of ARCore framework8. The main outcomes for our
user interface are:

• Move most of the interactive actions and feedback information directly in
the scene to minimize the head-up interaction.

• Make the necessary interactive elements (buttons, sliders, etc.), which would
be inconvenient to have in the scene, large enough and place them in fixed,
foreseeable places, so they could be easily remembered and quickly reached
without the need to look at them.

• Help user to recover from missteps end errors by utilization of notifications
displayed in the scene in front of the camera, so the user sees it comfortably.

Fig. 3: Schematic visualization of the user interface. The left side contains the
main menu allowing the user to select the appropriate interaction mode. In the
middle is a crosshair for indirect virtual object selection. On the right side are
two context-aware fixed mode buttons, easily reachable by the user’s thumb.

The proposed user interface’s layout is presented on Fig. 3. It consists of
three parts. The left part contains the main menu, allowing the user to select
one of the five interaction modes. The central part of the interface shows
the scene image obtained from the camera. Additionally, a crosshair is placed
in the middle of the screen, serving as a main virtual object selection tool.
The right side contains two fixed buttons. The left one is the so-called mode
button, whose appearance and function differ based on the currently selected
interaction mode. The right one serves to relax the robot joints in order to allow

8https://developers.google.com/ar/design/interaction/ui

93

Springer Nature 2021 LATEX template

10 AR Spatial Programming Paradigm Applied to End-User Robot Programming

the operator to manipulate the robot arm. Both buttons are large enough and
placed in the foreseeable place, according to the guidelines mentioned above.

The buttons have no textual labels to save space and make the interface
as minimal as possible. The help for each icon is shown upon the long button
press, and a training session is expected prior to usage of the interface.

3.4 Precise programming in AR

The main drawback of using AR is the low accuracy of camera tracking when
using standard devices (such as cell phones or tablets). In other words, using
just an AR device to specify an exact point in space is virtually impossible,
as the tracking error might reach tens of centimeters [4]. On the other hand,
when it comes to robot programming, there usually is a very precise device
available for point specification – the robot itself. The robot could be used for
the exact definition of points in space. The problem with this approach lies in
the visualization of the created program and the synchronization of the robot
with other devices used in the program.

Our approach utilizes the robot’s precision to specify certain places in the
environment, which serve as reference points. Interaction widgets could be
used to precisely define several relative points using the imprecise AR visu-
alization using these reference points (see Fig. 2). The “parent” anchor is set
using a precise method (i.e., manual guiding of robot or using computer vision
techniques). Other anchors are set using a combination of 2D and 3D widgets
with selectable precision (see Fig. 4). We assume that, for understanding the
program using its visualization in AR, the absolute precision (the correlation
between the rendered virtual element and its actual position in the real envi-
ronment) is not as important as the mutual relative precise position of virtual
elements defining the program.

3.5 Transforming Spatial Anchors

The crucial interaction task is a manipulation with the spatial anchor in a real
3D task space. The proposed concept introduces direct (fast, but low precision)
and indirect (slower, but precise) manipulation with the objects, i.e., spatial
anchors or scene objects. Direct manipulation utilizes the physical movement
of the handheld device. The transform menu, displayed on Fig. 4, contains a
palm-shaped button for direct manipulation – when pressed, the object moves
with the device’s movement, allowing fast movement over large distances.

We propose an indirect manipulation for higher precision in setting the
spatial parameters. The rotary transform element is placed on the right side
of the transform menu, which allows moving the virtual object by scrolling the
element. The numbers represent the number of steps by which the object will
be moved. The magnitude selector under the rotary element selects the length
of the step. Together, it allows to move the object by the exact length. On the
bottom are two buttons to change between the translation and rotation.

94

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 11

The user needs to see and select the direction in which the virtual object
will be moved. We propose a 3D gizmo (see Fig. 4) for both cases. The gizmo
consists of three perpendicular arrows representing the direction of the desired
movement, and it is attached to the virtual object selected for manipulation.
Close to the tip of each arrow, a current displacement from the original position
is visualized. The desired direction of movement is indicated by selecting one
of the arrows using the cross-hair.

In the left part of the transform menu are several buttons with an addi-
tional functionality. The arrows in the top serve for undo and redo operation.
Bellow the palm-shaped button is the so-called pivot button. This button
causes the object to move on the position of another object selected using the
cross-hair. Using this button, the user can, for example, move a spatial anchor
on the position of aforementioned reference point and subsequently define a
relative point using the rotary element.

4 Experimental Evaluation

The primary motivation for this work is to introduce a novel approach to
end-user robot programming. The method was implemented into a functional
prototype, and a user study was carried out to compare it with a traditional
approach for end-user programming on a 2D screen. The experiment was

Fig. 4: The schematic visualization of the tools available in the transform
mode. The left side contains the 3D widget, so-called gizmo, rendered over the
manipulated object. The right side contains the transform menu, with several
interactive elements.

95

Springer Nature 2021 LATEX template

12 AR Spatial Programming Paradigm Applied to End-User Robot Programming

designed as a within-subject, with two conditions, where C1 is the proposed
prototype, and C2 is a Blockly-based tool in the Dobot M1 Studio environment.
We have stated four hypotheses related to the objectives above:

• H1 – The user is faster acquainted with the program, seen for the first time,
using the C1 interface.

• H2 – The C1 interface is more usable than C2 and puts less task load on the
user.

• H3 – The user can create a new program faster using the C1 interface than
the C2 interface.

• H4 – The C1 interface provides similar precision for selected task as the C2

interface.

The following chapter presents a user study we have prepared and
conducted, which will help us to support or reject the stated hypotheses.

4.1 Prototype

A functional prototype9 was prepared for the experimental evaluation, con-
taining basic functionalities for programming of pick & place-like tasks. The
prototype application was developed in the Unity3D game engine, using the
AR Foundation framework10, which encapsulates the Google’s ARCore11, for
AR-related parts. The application is designed to run on Samsung Galaxy Tab
S6 or S7, a 10” Android tablet device compatible with the ARCore.

The prototype is designed as a non-immersive AR-enabled application,
following the guidelines described in the Section 3.3. The SAA (see Fig. 5) are
visualized as yellow arrows located above blue spheres. The spheres represent
spatial anchors, anchoring the actions for visualization and execution.

The prototype is fully functional, except for the object aiming procedure,
which allows the user to set a precise object’s position and orientation by
navigating the robot’s end-effector into several specific points on the object’s
body. In the experiment, this procedure was utilized to define the position of
the workpiece. However, it was done using the wizard of oz approach for the
sake of the experiment, which was unknown to the participants. Besides that,
the participants interacted with a real, functional robot and created a robotic
program from scratch.

4.2 Experiment design

The experiment was designed as a within-subject user study, comparing the
two different interfaces – our prototype interface based on presented SAA (C1)
and the standard programming tool for the Dobot M1 robot – M1 Studio (C2)
with the Blockly tool. Both selected interfaces utilize visual programming and
contain specialized elements for robot manipulation.

9Source code is available at github.com/robofit/arcor2 areditor.
10docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual
11developers.google.com/ar

96

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 13

(a) The remove mode. The user could delete
any virtual element by pressing the mode button
when an object is selected.

(b) The execution mode. The user could execute
any Action by pressing the mode button when
an Action is selected.

(c) The programming mode. After pressing the
mode button, an Action selector menu appears
in front of the user, and they can select the
Action to be created by selecting it with the
crosshair and pressing the mode button.

(d) The transform mode. The transform menu
is placed on the right side, allowing the user
to manipulate the selected virtual object using
the scrollable rotary element. The transform
axis is selected using the crosshair on the trans-
form gizmo (in the center of the screen). The
gizmo shows the offset from the object’s original
position.

Fig. 5: Graphical user interface of the prototype application. The left side
contains the main menu for mode selection. On the right side is placed either
mode button (a-c), depending on the selected mode, or the transform menu
(d) in case the object is being moved. The central part serves for viewing the
scene with the superimposed interface.

C1 utilizes a custom mobile AR application for visual programming in
task space, based on the presented method of SAA described in the previous
chapter. The participant was standing in front of the table and could interact
with the workplace from the front and right side of the table (see Fig. 6a).

C2 uses an application for desktop computers with the Google Blockly
framework for visual programming, where the user combines special puzzle-
shaped boxes into a functional program. These blocks represent instructions
such as MoveJoints, SetArmOrientation, etc. The parameters for each block
are defined using either the keyboard or, in the case of move-blocks, by physical
movement of the robot into the desired position. The participant was sitting
on a chair by the table equipped with a computer screen, mouse, and keyboard
in front of the workplace (see Fig. 6b). They could reach the robot from the

97

Springer Nature 2021 LATEX template

14 AR Spatial Programming Paradigm Applied to End-User Robot Programming

WP - original
WP - adapted

R1

R2

AR

(a) Scheme for C1. The person stands in front of
the workplace and holds the tablet. The work-
place is accessible from the front and the right
side. The computer is present but not utilized
in this condition.

WP - original
WP - adapted

R1

R2

(b) Scheme for C2. The person sits in front of
the computer, which is located in front of the
workplace. They can reach the robot from the
chair as well.

Fig. 6: Workplace scheme for both conditions. The R1 is the main robot,
the Dobot M1. The R2 is an additional robot, Dobot Magician, which was
utilized only in the visualization task. The red square is the original position
of the object the R1 should pick and manipulate. The blue squares represent
the workpiece in two positions, the original and the adapted.

chair as well. They were allowed to stand up if they required better robot
handling. The workplace was accessible from the front and right sides.

To minimize learning and transfer bias caused by the study being designed
as a within-subject, the order of both conditions is randomized for each par-
ticipant. For the safety purposes of both robot and subjects, each participant
was thoughtfully instructed on how to control the robots safely, the maximal
velocity and acceleration of the robots were lowered to safe levels, and robots
without sharp edges were selected for the study. The manipulated objects were
small cubes made of foam to minimize the potential risk of injury.

4.3 Experiment protocol

Each experimental run was organized as follows. At first, the moderator wel-
comed the participant and asked them to sign an informed consent and fill in
a demographic questionnaire. After that, a brief workplace introduction took
place.

The moderator randomly assigned the first condition to the participant and
introduced them briefly the programming tool, and after that, the participant
began with the training task (T1). The participant was told to program the
robot to pick a foam cube from the table and put it inside the box. The

98

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 15

(a) The position of reference points (the red
circles) and the trajectory points (the green
circles). The first trajectory point’s position is
referenced with respect to the reference points.

(b) The trajectory points (green circles) and
their mutual positions.

Fig. 7: The drawing of the intended trajectory for the main task, superimposed
over the workpiece used for the experiment.

created program was to be subsequently modified, so the robot followed a
specified path before the cube releasing (the path was defined as a 10 cm line
under the 45° angle, ending at a specific point on the bottom of the box).
During this phase, the moderator proactively helped the participant with the
programming, explained the required functionality, and answered all questions.

Following the training, the visualization task (T2) took place. An existing
program was presented to the participant. Their task was to identify some
program steps according to the moderator’s questions. The participant was
explicitly informed that they could use anything the user interface offers,
namely, the ability to run the program, program steps, or move the robotic
arm. The presented program differs for both conditions, so the participants
were not influenced by previous knowledge of the presented program. Both
programs involved the pick & place task with various objects and the usage of
the conveyor belt. All questions for both conditions are to be found below.

Questions for C1: Find the action, which causes. . .

1. the bigger robot to pick the box from the conveyor belt.
2. the smaller robot to pick the cube from the table.
3. the conveyor belt to shift from the bigger robot to the smaller one.
4. the bigger robot to pick the box from the table.

Questions for C2: Find the action, which causes the bigger robot to. . .

1. pick the yellow cube from the table.
2. place the red cube on the table.
3. move the green cube above the conveyor belt.
4. pick the blue cube from the table.

Next, the main task (T3) was presented to the participant. It simulates
precise robotic manipulation with workpieces in a structured environment.

99

Springer Nature 2021 LATEX template

16 AR Spatial Programming Paradigm Applied to End-User Robot Programming

Specifically, the robot should pick a cube and perform simulated grinding by
following a specific trajectory defined by a technical scheme (see Fig. 7), which
was available to the participant during the whole session. The scheme contains
the position of each waypoint and the speed of the end-effector’s movement
between two consecutive waypoints. Lastly, the robot should put the cube
back in the original spot on the table. The experiment task was the same for
both conditions. For the C1 condition, the participant had to annotate the
position of the workpiece first as a part of the T3 so that they could utilize its
reference points afterward. The procedure consisted of setting the position of
four reference points on the workpiece (the red circles at Fig. 7a) using the hand
movement of the robot. Once the annotation was done, the reference points
were automatically added to the scene as spatial anchors. The participants
were told to define other anchors relative to the reference points.

After the moderator answered the questions, the participant started to
work. The participant was allowed to ask questions during this phase, and they
were noted and categorized by the context of the question (i.e., if they were
related to the task or the programming tool).

When the T3 was successfully programmed by the participant, the mod-
erator moved the simulated workpiece to the new place, and the participant
had to adapt the program (T4). In the case of C1, it meant only annotating
the position of the workpiece again, as all related spatial anchors were defined
relative to the workpiece’s reference points. For the C2, setting a new position
for all the waypoints needed to be done again. For simplicity, the participants
were told only to set the first waypoint.

During all the tasks, the participant was allowed to test the execution of
both individual actions or the whole program. When the participant claimed
that they thought the program was completed, the moderator observed and
executed the program to check its functionality. In the case of problems,
the moderator suggested what needed to be altered, and the participant was
supposed to correct the program.

Once all four tasks were done with the first condition, the participant was
supposed to fill in questionnaires regarding the current condition. After that,
the same procedure was conducted using the other condition. In the end, an
open discussion took place. The moderator asked the participant for their
impressions, additional questions, and opinions.

4.4 Dependent Measures

As an objective measurement, the completion time was selected. This time is
computed for each task separately so that we can compare the duration of
each task individually for both conditions. As a subjective metric, standard
questionnaires were selected. Namely, the NASA Task Load Index [37] for
measuring mental and physical load, and the System Usability Scale [38] to rate
the usability of the prototype interface. Besides these standard questionnaires,
evaluated independently for each interface, another one containing specific
questions regarding the prototype interface was utilized. Moreover, for the C1

100

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 17

condition, the HARUS questionnaire [39], which is explicitly designed for the
usability of handheld AR interfaces, was incorporated.

5 Results

This section summarizes the user-study results and provides its analysis and
interpretation. Regarding the task completion time measurement, intervals
where participants asked questions, a technical problem occurred, or when the
moderator had to intervene, were subtracted to measure a pure task completion
time. All statistical tests were done at the 5 % significance level. Data were
first tested for normality (combination of D’Agostino and Pearson’s tests), and
based on the result, paired t-test or Wilcoxon’s signed-rank test were used to
test for the significant difference between conditions.

The user study was conducted with 12 subjects of various ages, self-
reported genders, and technical backgrounds. Eleven participants identified
themself as males; one identified themselves as female. Most subjects are ordi-
nary shop-floor workers, students, or graduates from humanities colleges with
little or no prior experience in programming. One participant works as a pro-
grammer, and one works as a robot operator. They reported their experiences
with robots on average 2.17 (on the scale of [1 . . 5], where higher means
more experienced), experiences with AR on average 2.25, and experiences
with programming on average 2.08. Each participant signed informed consent
to data recording and its usage for evaluation and eventually propagation in
anonymized form. Some participants reported eye defects, such as myopia or
amblyopia, but none reported that they affected them during the experiment.
The user study took place in a lab-like environment in a dedicated room,
where no external factors could influence the process of the experiment. All
participants were able to finish all the tasks using both conditions.

5.1 Quantitative and Qualitative Data

Results from SUS and NASA-TLX questionnaires (shown in Fig. 8a for both
conditions) show that, on average, the participants perceived a lower task load
using the C1 interface and ranked it as more usable. The mean TLX score for
the proposed SAA interface (C1) was 21.99, which is less than 32.18 for the C2.
Regarding the usability of the interfaces for both conditions, the SUS ques-
tionnaire results show that participants consider the interface from C1 more
useful, scoring 78.54, compared to the C2, scoring 71.04. However, differences
are not significant for both metrics according to paired t-test (p = 0.074 for
TLX, p = 0.312 for SUS); therefore, the H2 can not be confirmed. Besides, the
C1 was scored 82.90 using the HARUS method, which is specifically designed
to measure the usability of handheld AR systems. The score is higher than
that of comparable interface SlidAR [40], which is aimed at virtual object
manipulation and scored 76.3 (SD=10.83).

The training time (T1) was comparable for both interfaces, although
slightly longer with the C1 interface (see Fig. 8b). Contrary, the main task

101

Springer Nature 2021 LATEX template

18 AR Spatial Programming Paradigm Applied to End-User Robot Programming

TLX SUS HARUS

20

30

40

50

60

70

80

90

C1
C2

(a) The subjective measure-
ments. For the TLX, the
lower means better, for SUS
and HARUS, the higher
means better.

T1 T3
400

600

800

1000

1200

1400

C1
C2

(b) Time (in seconds) needed to
complete T1 (training) and T3

(main) tasks.

T2 T4

50

100

150

200

250

300

350 C1
C2

(c) Time (in seconds) needed
to complete the T2 (visual-
ization) and T4 (adaptation)
tasks.

Fig. 8: Comparison of subjective and objective measurements (mean val-
ues and corresponding 95 % confidence intervals) for conditions C1 (proposed
method) and C2 (standard method).

(T3) was significantly faster with the C1 interface according to the Wilcoxon
test (p = 0.042); therefore, the H3 was confirmed.

In the adaptation phase, the users were told to:

• complete the aiming procedure for the workpiece in the new position for C1

condition,
• set the position of the first point of the trajectory for C2 condition.

The completion times in Fig. 8c show that the adaptation using the C1

condition was significantly faster even when the participants did not adapt the
whole trajectory in the C2 condition, showing that the gap will get even wider
with the increasing amount of points in the trajectory.

Analyzing the completion times for the T2 (visualization task), it was shown
that for the C1 condition, the participants required significantly less time to
answer the questions (see Fig. 8c). This suggests that the AR interface greatly
supports the user in program comprehension, especially for the actions with the
spatial information, which are crucial for robotic program understandability;
therefore, the H1 is confirmed. The discussion with the participants showed
that they felt more certain when they had to identify the program steps using
the SAA presented in AR. Most of them could identify each step quickly by just
looking over the scene and benefit from the fact that most of the program steps
are represented by 3D objects placed on the spot where the action should take

102

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 19

place. The only problem occurred when they had to identify the step causing
the shift of the conveyor belt (third question within the C1 condition), which
has no clear spatial information. Most of the participants could identify it after
a short time, which shows that the users can identify even actions without
clear spatial information using the proposed interface. When using the M1
studio interface (C2), most users did not utilize the ability to run the program
(although they were explicitly remarked that they might run it). Instead, they
used the robotic arm to estimate the spatial coordinates of each program step
to identify them. This strategy was highly successful but very time-consuming.
The participants, on average, needed 1.17 attempts (SD: 0.38) to identify the
correct action for the C2 interface and 1.2 attempts (SD: 0.45) for the C1

interface, but over a significantly longer period of time.

5.2 Preferences

According to the questionnaire of the C1 interface, the vast majority, specifi-
cally 64.3 % of participants, preferred the rotary control element for the precise
movement of virtual objects. Both setting using the robot manipulation and
the free-form setting using the tablet motion were preferred by 16.67 % of
participants. On the other hand, for setting the coordinates where the approx-
imate position is sufficient, 50 % preferred using the robot manipulator, 33 %
preferred the free-form setting using the tablet motion, and 16.7 % preferred
the rotary control element.

According to the questionnaire regarding the C1 interface, the participants
considered the rotary control element more useful than the free-form movement
of the virtual objects (see Fig. 9). We argue that it is primarily because of the
selected task, as it required settings of several precise positions. In contrast, the
setting of non-precise positions was unnecessary, and the participants utilized
it only for a couple of intermediate movements.

The participants also liked the inserting of new spatial anchors on the
current position of the robot’s end-effector (see Fig. 9) than freely to the space
(in front of the tablet). We argue that this is because of a higher level of
certainty, as the participants knew precisely where the spatial anchor would
be placed and that the robot would be able to reach that position. As the
participants had to set a path for the robot based on specification, they usually
followed this pattern:

1. Set a waypoint.
2. Create a new waypoint on the position of the previous waypoint.
3. Move the new waypoint in a certain direction.

To achieve this pattern, the user had to create a new waypoint freely in
the space (or at the position of the robot) and then use the pivot functionality
(described in Section 3.5), which sets the position of the waypoint to another
virtual object (previous waypoint in this case). Most of the participants strug-
gled a bit on this at the beginning, and they would appreciate, according to
our observations and discussion with them, the possibility of adding a new

103

Springer Nature 2021 LATEX template

20 AR Spatial Programming Paradigm Applied to End-User Robot Programming

1 2 3 4 5 6

Rotary control

Free-form
movement

Add action free

Add action robot

Run action

Relaxing
robot motors

Fig. 9: Usefulness of selected features of C1 interface, rated by the participants
on a scale from 1 (useless) to 6 (very useful).

spatial anchor to an existing one, similar to adding it to the position of the
robot’s end effector.

Most users considered the robot motor’s unlock button very useful. How-
ever, some did not like the dead-man-trigger concept, as they reported that it
is hard to press that button while holding the tablet with one hand. Moreover,
it was difficult for some of them to move the robot with one hand only.

5.3 Observations

The participants generally liked the possibility of quickly executing actions,
using the C1 during the T3, as it enabled them to check the reachability of
the spatial anchors. With the C2 interface, the participants were using the
execution of individual actions more often, as they were using it also for iden-
tification of the actions in the programming tool, which was not needed in the
C1 interface because they saw the position of the spatial anchor in the AR.

Several participants reported that at the beginning, they were stressed out
by the C1 interface, mainly because of a rich set of functions, compared to
the C2 interface. Moreover, they claimed that the 3D interface elements were
entirely new to them, and it took some time to get used to them. Nevertheless,
most of them agreed that after a short time, they got used to the controls and
the programming was easier than with the C2 interface, despite their initial
concerns.

For the task T2, all but one participant preferred the C1 interface. They
claimed the spatial distribution of individual actions in task space helped
to distinguish the anchored actions. One participant stated that they could
quickly orient themselves because of the spatial visualization in C1. The other
claimed that spatial visualization hugely helps them to identify which “pick”
action is the one they are looking for, although they look the same.

104

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 21

Only two participants preferred the programming using the C2 interface
over the C1. Both are rather technically oriented people; one works as a junior
robot programmer (using RoboDK software), and the other has a background
in CNC programming. The latter claimed that the visualization task was also
easier for him using the C2 interface. Both of them stated that the C2 interface
was more straightforward for them and reminded them of the tools they are
or were using at their jobs.

All participants struggled with the visualization and control of the gizmo
element in C1. They were often unsure which axis was selected or accidentally
selected the wrong one. Many participants struggled with the magnitude of
the transform step selection, causing them to either move the object at the
wrong length or wonder why the object is not moving because it only moved
by several millimeters instead of centimeters. The transform widgets must be
enhanced to provide better feedback for the operator of both the magnitude
and direction of the desired movement.

Most participants considered the blue lines between the individual actions
in the C1 interface to be the robot’s trajectory, although they were explicitly
informed during the training that the blue line only indicates the order of the
actions.

In the C2 the users can modify the coordinates in textual form with vir-
tually unlimited precision. The C1 preserves the possibility to set the position
with a selectable degree of precision in a graphical way, utilizing the 2D and
3D widgets with user-defined coordinate systems. The participants finished
all tasks using both interfaces, which required setting several precise spatial
parameters. Therefore, we consider the H4 to be confirmed.

6 Conclusions and Future Work

This paper presents a novel paradigm for spatial programming in AR on mobile
devices. The paradigm defines Spatially Anchored Actions for program visu-
alization, their manipulation in real 3D space, and UI elements and rules for
interaction in AR on mobile devices. The new concept was introduced and
tested on a robot programming task. A fully-functional prototype was created
using a tablet-like handheld device, which was evaluated with 12 potential
users and compared to the existing visual programming method. The study
revealed that the SAA concept significantly helped the participant’s compre-
hension and understandability of the robotic programs, which correlates with
the research objective RO1. All participants successfully finished all tasks using
both interfaces at a similar time; therefore, it was shown that the simplicity
of program creation is similar to the standard tool (RO2). We also aimed to
lower the users’ task load (RO3). The study did not reveal any significant task
load reduction, which was relatively low for both tested conditions. A higher
number of participants could show significant differences. One of our objec-
tives was to provide good ergonomics for the mobile AR interface (RO4). To

105

Springer Nature 2021 LATEX template

22 AR Spatial Programming Paradigm Applied to End-User Robot Programming

do so, we have designed the user interface to be controlled by users’ thumbs,
enabling them to hold the tablet in an ergonomic position.

Moreover, we moved most of the interaction elements from the on-screen
menus to the 3D scene, allowing for lower context switching between the user
interface and the visualization of the scene. We have also proposed several
2D and 3D widgets, allowing precise specification of spatial information using
the AR (RO5). The users could finish the task with similar precision in both
conditions.

In future work, we plan to investigate some drawbacks revealed by the
study. The 3D gizmo widget for axis selection was sometimes unclear for
the participants as they were unsure which axis was selected or what dis-
tance / angle magnitude was currently selected for transformation. To check
if the set spatial anchor is reachable by the robot, the participants had to exe-
cute an action attached to the anchor. It would be beneficial to visualize the
reachability more clearly. We would also like to investigate more the possi-
bilities for the robot motor’s unlock button, as the dead-man-trigger concept
causes trouble to the participants, forces them to hold the device in a non-
ergonomic way, and causes troubles with robot manipulation. Moreover, we
will evaluate the feasibility of the proposed concept in different contexts than
robot programming in SMEs such as home automation, where there is also
high demand for end-user programming techniques and, at the same time, a
need to set spatial parameters as, e.g., the definition of various kinds of zones.

Code availability The source codes are available for download through GitHub.

Data availability The datasets generated during the current study are not publicly
available due to the participants’ privacy but are available from the corresponding
author on reasonable request.

Funding This work has been performed with financial support from the state budget
through the Ministry of Industry and Trade in the TRIO program (FV40052).

Declaration

Consent of participate Available, signed by each participant.

Conflict of interest There are no conflicts of interest/competing interests.

Ethical statement The manuscript complies with the Ethical Rules applicable for
this journal as stated in the Instructions for Authors of the journal Virtual Reality.

References

[1] Ajaykumar, G., Steele, M., Huang, C.-M.: A survey on end-user robot pro-
gramming. ACM Comput. Surv. 54(8) (2021). https://doi.org/10.1145/
3466819

[2] Weiss, A., Huber, A., Minichberger, J., Ikeda, M.: First application of
robot teaching in an existing industry 4.0 environment: Does it really

106

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 23

work? Societies 6(3), 20 (2016)

[3] Contero, M., Gomis, J.M., Naya, F., Albert, F., Martin-Gutierrez, J.:
Development of an augmented reality based remedial course to improve
the spatial ability of engineering students. In: 2012 Frontiers in Edu-
cation Conference Proceedings, pp. 1–5 (2012). https://doi.org/10.1109/
FIE.2012.6462312

[4] Scargill, T., Chen, J., Gorlatova, M.: Here to stay: Measuring hologram
stability in markerless smartphone augmented reality. arXiv preprint
arXiv:2109.14757 (2021)

[5] Morar, A., Băluţoiu, M.A., Moldoveanu, A., Moldoveanu, F., Butean, A.,
Asavei, V.: Evaluation of the arcore indoor localization technology. In:
2020 19th RoEduNet Conference: Networking in Education and Research
(RoEduNet), pp. 1–5 (2020). IEEE

[6] Battegazzorre, E., Calandra, D., Strada, F., Bottino, A., Lamberti, F.:
Evaluating the suitability of several ar devices and tools for industrial
applications. In: International Conference on Augmented Reality, Virtual
Reality and Computer Graphics, pp. 248–267 (2020). Springer

[7] ABB, R.: Technical reference manual: Rapid instructions, functions and
data types. ABB Robotics (2014)

[8] Robot, U.: The urscript programming language for e-series. Universal
Robot (2022)

[9] Ajaykumar, G., Huang, C.-M.: User needs and design opportunities in
end-user robot programming. In: Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, pp. 93–95 (2020)

[10] Schmidbauer, C., Komenda, T., Schlund, S.: Teaching cobots in learning
factories–user and usability-driven implications. Procedia Manufacturing
45, 398–404 (2020)

[11] Connolly, C.: Technology and applications of abb robotstudio. Industrial
Robot: An International Journal (2009)

[12] Huang, J., Cakmak, M.: Code3: A system for end-to-end programming
of mobile manipulator robots for novices and experts. In: 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI,
pp. 453–462 (2017). IEEE

[13] Gao, Y., Huang, C.-M.: Pati: a projection-based augmented table-top
interface for robot programming. In: Proceedings of the 24th International
Conference on Intelligent User Interfaces, pp. 345–355 (2019)

107

Springer Nature 2021 LATEX template

24 AR Spatial Programming Paradigm Applied to End-User Robot Programming

[14] Paxton, C., Hundt, A., Jonathan, F., Guerin, K., Hager, G.D.: Costar:
Instructing collaborative robots with behavior trees and vision. In: 2017
IEEE International Conference on Robotics and Automation (ICRA), pp.
564–571 (2017). IEEE

[15] Mayr-Dorn, C., Winterer, M., Salomon, C., Hohensinger, D., Ram-
ler, R.: Considerations for using block-based languages for industrial
robot programming-a case study. In: 2021 IEEE/ACM 3rd International
Workshop on Robotics Software Engineering (RoSE), pp. 5–12 (2021).
IEEE

[16] Alexandrova, S., Cakmak, M., Hsiao, K., Takayama, L.: Robot pro-
gramming by demonstration with interactive action visualizations. In:
Robotics: Science and Systems, pp. 48–56 (2014). Citeseer

[17] Sefidgar, Y.S., Agarwal, P., Cakmak, M.: Situated tangible robot pro-
gramming. In: 2017 12th ACM/IEEE International Conference on
Human-Robot Interaction (HRI, pp. 473–482 (2017). IEEE

[18] Sefidgar, Y.S., Weng, T., Harvey, H., Elliott, S., Cakmak, M.: Robotist:
Interactive situated tangible robot programming. In: Proceedings of the
Symposium on Spatial User Interaction, pp. 141–149 (2018)

[19] Fogli, D., Gargioni, L., Guida, G., Tampalini, F.: A hybrid approach
to user-oriented programming of collaborative robots. Robotics and
Computer-Integrated Manufacturing 73, 102234 (2022)

[20] Blankemeyer, S., Wiemann, R., Posniak, L., Pregizer, C., Raatz, A.: Intu-
itive robot programming using augmented reality. Procedia CIRP 76,
155–160 (2018)

[21] Materna, Z., Kapinus, M., Beran, V., Smrž, P., Zemč́ık, P.: Interactive
spatial augmented reality in collaborative robot programming: User expe-
rience evaluation. In: 2018 27th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pp. 80–87 (2018).
IEEE

[22] Quintero, C.P., Li, S., Pan, M.K., Chan, W.P., Van der Loos, H.M., Croft,
E.: Robot programming through augmented trajectories in augmented
reality. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1838–1844 (2018). IEEE

[23] Gadre, S.Y., Rosen, E., Chien, G., Phillips, E., Tellex, S., Konidaris, G.:
End-user robot programming using mixed reality. In: 2019 International
Conference on Robotics and Automation (ICRA), pp. 2707–2713 (2019).
IEEE

108

Springer Nature 2021 LATEX template

AR Spatial Programming Paradigm Applied to End-User Robot Programming 25

[24] Ostanin, M., Klimchik, A.: Interactive robot programing using mixed
reality. IFAC-PapersOnLine 51(22), 50–55 (2018)

[25] Ong, S.-K., Yew, A., Thanigaivel, N.K., Nee, A.Y.: Augmented reality-
assisted robot programming system for industrial applications. Robotics
and Computer-Integrated Manufacturing 61, 101820 (2020)

[26] Yigitbas, E., Jovanovikj, I., Engels, G.: Simplifying robot programming
using augmented reality and end-user development. In: IFIP Conference
on Human-Computer Interaction, pp. 631–651 (2021). Springer

[27] Rosen, E., Whitney, D., Phillips, E., Chien, G., Tompkin, J., Konidaris,
G., Tellex, S.: Communicating robot arm motion intent through mixed
reality head-mounted displays. In: Amato, N.M., Hager, G., Thomas, S.,
Torres-Torriti, M. (eds.) Robotics Research, pp. 301–316. Springer, Cham
(2020)

[28] Eschen, H., Kötter, T., Rodeck, R., Harnisch, M., Schüppstuhl, T.: Aug-
mented and virtual reality for inspection and maintenance processes in
the aviation industry. Procedia manufacturing 19, 156–163 (2018)

[29] Barsom, E.Z., Graafland, M., Schijven, M.P.: Systematic review on
the effectiveness of augmented reality applications in medical training.
Surgical endoscopy 30(10), 4174–4183 (2016)

[30] Werrlich, S., Nitsche, K., Notni, G.: Demand analysis for an augmented
reality based assembly training. In: Proceedings of the 10th International
Conference on PErvasive Technologies Related to Assistive Environments,
pp. 416–422 (2017)

[31] Suzuki, R., Karim, A., Xia, T., Hedayati, H., Marquardt, N.: Augmented
reality and robotics: A survey and taxonomy for ar-enhanced human-
robot interaction and robotic interfaces. In: CHI Conference on Human
Factors in Computing Systems, pp. 1–33 (2022)

[32] Liu, H., Chen, M., Zhang, G., Bao, H., Bao, Y.: Ice-ba: Incremental,
consistent and efficient bundle adjustment for visual-inertial slam. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1974–1982 (2018)

[33] Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: A sur-
vey from 2010 to 2016. IPSJ Transactions on Computer Vision and
Applications 9(1), 1–11 (2017)

[34] Terashima, T., Hasegawa, O.: A visual-slam for first person vision and
mobile robots. In: 2017 Fifteenth IAPR International Conference on
Machine Vision Applications (MVA), pp. 73–76 (2017). IEEE

109

Springer Nature 2021 LATEX template

26 AR Spatial Programming Paradigm Applied to End-User Robot Programming

[35] Nowacki, P., Woda, M.: Capabilities of arcore and arkit platforms for ar/vr
applications. In: International Conference on Dependability and Complex
Systems, pp. 358–370 (2019). Springer

[36] Feigl, T., Porada, A., Steiner, S., Löffler, C., Mutschler, C., Philippsen, M.:
Localization limitations of arcore, arkit, and hololens in dynamic large-
scale industry environments. In: VISIGRAPP (1: GRAPP), pp. 307–318
(2020)

[37] Hart, S.G., Staveland, L.E.: Development of nasa-tlx (task load index):
Results of empirical and theoretical research. Advances in psychology 52,
139–183 (1988)

[38] Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability evalua-
tion in industry 189(194), 4–7 (1996)

[39] Santos, M.E., Polvi, J., Taketomi, T., Yamamoto, G., Sandor, C., Kato,
H.: A usability scale for handheld augmented reality. (2014). https://doi.
org/10.1145/2671015.2671019

[40] Polvi, J., Taketomi, T., Yamamoto, G., Dey, A., Sandor, C., Kato, H.: Sli-
dar: A 3d positioning method for slam-based handheld augmented reality.
Computers & Graphics 55, 33–43 (2016). https://doi.org/10.1016/j.cag.
2015.10.013

110

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 1

ARCOR2: Framework for Collaborative End-User
Management of Industrial Robotic Workplaces

using Augmented Reality
Michal Kapinus, Zdeněk Materna, Daniel Bambušek, Vı́tězslav Beran, Pavel Smrž

Faculty of Information Technology, Brno University of Technology, Czech Republic
{ikapinus,imaterna,bambusekd,beranv,smrz}@fit.vut.cz

Abstract—This paper presents a novel framework enabling
end-users to perform management of complex robotic workplaces
using a tablet and augmented reality. The framework allows
users to commission the workplace comprising different types
of robots, machines, or services irrespective of the vendor, set
task-important points in space, specify program steps, generate
a code and control its execution. More users can collaborate at
the same time for instance at a large-scale workplace. Spatially
registered visualization and programming enable a fast and
easy understanding of the workplace processes, while a high
precision is achieved by a combination of kinesthetic teaching
with a specific graphical tools for relative manipulation of poses.
A visually defined program is for execution translated into
Python representation, allowing efficient involvement of experts.
The system was designed and developed in cooperation with
a system integrator, based on an offline PCB testing use case
and its user interface was evaluated multiple times during the
development. The latest evaluation was performed by three
experts and indicates the high potential of the solution.

Index Terms—visual programming, augmented reality, collab-
orative robot, end-user programming

I. INTRODUCTION

MOST often, robots are used for highly repetitive tasks.
For instance, in the automotive industry, the production

line is programmed once and then works for several years
without major changes. On the other hand, in Small and
Medium Enterprises (SMEs) the production changes more
often, each batch could be customized, the robot could be
used for multiple purposes. If there is a need to reprogram
the robot, the company needs its own highly skilled employee
or must use the external supplier services which might be
expensive or not flexible enough. Moreover, end-users might
not be experts in programming or robotics but certainly might
have invaluable task-domain knowledge. Therefore, there is
a trend towards allowing end-users to program the robots:
robot manufacturers are introducing simplified teach pendants
and collaborative robots able to be hand-taught, third parties
are developing visual programming tools, etc. Still, there are
several pitfalls:

• Robot programming interface is vendor-specific.
• Missing visualization of spatial information.

This project was implemented with financial support from the state budget
through the Ministry of Industry and Trade in the TRIO program (FV40052).

Fig. 1: A user observes the program for the PCB testing task
through the tablet.

• Robot-centric (does not allow to program the whole line).
• Requires textual coding or is not expressive enough.
• Doesn’t allow to work within the task space.
To overcome existing limitations, we present the ARCOR2

framework1 which enables end-users to perform complete
management of a robotic workplace or a production line:
initial setup, programming, adaptation, releasing to production,
controlling execution, etc. Its user interface can be seen as a
universal teach pendant for all robot types, machines, or APIs
where a new device or service can be integrated by writing a
custom plugin in Python. This integrative approach eliminates
the need to undergo training for the interface of each device
involved. The user interface is designed for commodity tablets
and utilizes augmented reality for visualization of program
data, including spatial points, program instructions, and even
a logic flow. One tablet can be used to manage multiple
workplaces.

The framework was developed in cooperation with a system
integrator2, who provided the PCB testing use case and cor-
responding testing site, participated in gathering the require-
ments and continuous testing of both the backend part and

1Source code and documentation (including integration for ABB YuMi,
Dobot M1 and Dobot Magician robots and for Kinect Azure sensor) are
available at github.com/robofit/arcor2.

2www.kinali.cz/en

0000–0000/00$00.00 © 2022 IEEE

111

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2

user interface of ARCOR2. The company has also developed
an integration for its services and robots.

This paper is both culmination of the three-year project as
well as our long-term research in the field of human-robot
interaction within the industrial environments, which research
questions could be summarized as follows:

• Q1 – How interaction can be brought from a 2D screen
back to the 3D world?

• Q2 – Is (affordable) handheld AR a viable modality?
• Q3 – How to allow precise work with imprecisely regis-

tered AR devices?
• Q4 – What is the proper level of abstraction for end-

users?
The goals of the paper are to summarize our work within

the field and on the framework, to present the framework’s
general applicability and utility, perform overall evaluation
(as previously published evaluations were focused on specific
aspects), and share the gained experience with the community.

II. RELATED WORK

In industrial settings, an ordinary worker operates the robot
most often at Level 0 (bystander) as defined in [1], while the
higher levels are handled by a specially trained person, or by
an external expert. With the increasing spread of collaborative
robots, rising needs for flexible or customizable production,
and deployment of robots into smaller industries, there is a
trend towards allowing end-user to program robots.

A. Established Solutions

Although some off-the-shelf teach pendants offer a certain
form of simplified programming, the usability seems to be
rather low [2] due to missing visualization, inability to use
common syntax structures as conditions and loops, high mental
and physical demands or lack of tools for debugging [1,3–5].

Moreover, pendants are vendor-specific and limited to pro-
gramming robots. On the other hand, offline programming
tools as RoboDK3 or ABB RobotStudio4 offer comprehensive
functionality but require extensive training. Additionally, PC-
based and pendant-like user interfaces are in general likely
not optimal for end-user programming, as they imply contin-
uous switching of a user’s attention [4] and therefore induce
high cognitive and attention-related workload. A kinesthetic
teaching is often employed in order to allow users to set
target poses or waypoints intuitively and therefore simplify
programming. However, depending on stiffness and size of
a particular robot, it could be physically demanding and not
desirable by users [3,5].

B. Proposed Approaches

Many alternative methods for simplified programming and
even third-party complete solutions were proposed. Some
of them are not intended as comprehensive tools and are
rather focused on a specific task, aspect of the process or

3url
4url

are limited to a certain robot. The simplification is usually
achieved through some form of visual programming [6–10],
spatial visualization enabling the user to work within the
task context [8,11,12], commonly combined with a kinesthetic
teaching [6,13,14] and/or perception [10]. Unfortunately, there
still exist many limitations. Only a little portion of evaluations
are carried out on non-trivial use-cases as in [9], or contain
comparison with an existing method as in [7,8,15]. Often, there
is only a simplified method available, which precludes the
possibility of (remote) expert intervention, where it can be
assumed that the expert prefers to work with source code.
The issue could be for instance solved by generating the
source code from visual representation [11,16] and probably
optimally by bidirectional synchronization between those two.

C. Visualization Methods

Augmented reality seems to be a promising visualization
method for simplified programming on a high level of ab-
straction. It may enable users to work within the task space,
avoid superfluous attention switches, mental transformations,
and related workload. However, only a few approaches really
allow programming in augmented reality [8,11,17] or provides
ability to setup a workspace [12] and therefore does not require
an additional intermediate user interface.

Often, the augmented reality is used only as an extension,
e.g. to visualize robot trajectories and in general, there is
a lack of tools for precise manipulation of robot or virtual
elements, which is necessary for industrial use cases. The
AR may be for instance realized by spatial projection [8,18],
which is however limited to visualization on surfaces. Head-
up stereoscopic displays are able to convey depth, but on
the other hand, are expensive, offer a limited field of view,
and require learning of unconventional control (e.g. gestures).
Usage of hand-held devices leads to problems with missing
depth perception [12], however, those are affordable, portable,
and easy to use.

D. Summary

As it can be seen from the previous related work overview,
there exist many approaches that aim on lowering the barrier
to entry robot programming by various means. However, there
is a lack of comprehensive yet simple environments, allowing
end-users to perform all tasks and steps that are necessary
for industrial-like applications. Also, it has to be taken into
account that modern workplaces may certainly contain not
only a robot but multiple (programmable) machines or special-
purpose devices. With Industry 4.0, there will be also a rising
need to perform communication with various services through
their APIs.

III. USE CASE

Although the framework was designed to be general, the
initial motivation came up from the use case of offline product
testing in an SME company, where relatively small batches
are tested and items’ storage is highly variable. Therefore
a program has to be adapted approximately once a week.

112

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 3

TABLE I: Comparison of the features of existing solutions for simplified programming of industrial applications.

property / feature ARCOR2 ArtiMinds CoStar RoboDK ???
license LGPL-3.0
price ($) 0
text programming yes
visual programming yes
integration of a custom hardware
multi-user yes
motion planning no
workplace setup
situated interaction yes
???

The process consists of picking up either unorganized items
from crates or organized ones from blisters, applying printed
barcodes, putting items into a tester, starting the test, and
placing items in boxes according to a functional test result.
So far, the process was done by human operators but their
time was not used efficiently, as they are idle for up to several
minutes while the test runs. Moreover, the work is highly
stereotypical. The goal was to optimize the use of a qualified
workforce as most of the operators after robotizing the process
could be reassigned to more creative work. The rest could be
trained to be able to adapt programs of testing workplaces
when needed and to supervise multiple workplaces during
execution.

In the case of the traditional approach, the 6 DoF robot
would be programmed using a teach pendant, the custom one
and all the other devices would be operated by a PLC. To
adapt such a heterogeneous workplace to a new product, a
highly trained operator would be needed. In the proposed
approach, the system integrator will develop an integration for
all devices into the ARCOR2 system, providing functionality
on the optimal level of abstraction for the task. The initial
setup of each workplace (for its visualization see Fig. 2) will
be also done by the system integrator. Then, changes can be
either done by a trained operator or remotely by an expert
programmer. The main advantage for end-user is that there is
just one configuration, programming, visualization, and control
interface.

Based on comprehensive discussion with the project partner,
a set of requirements on the system were defined:

1) Convenient integration of new robots, machines, and
services with variable level of abstraction.

2) Support collaboration between end-users and experts.
3) Ability to manage (perform CRUD operations on):

a) Setups of the workplaces (available objects, their
locations, and parameters).

b) Important points in space and associated data.
c) Program steps and their parameters.
d) Self-contained executable snapshots of programs.

4) Robot as a source of precision.
5) Control and visualization of an execution state.
6) Debugging capabilities.

We have also defined a set of different user’s roles, that are
divided into two categories (see Table II) and for each role,
there are different responsibilities and needs.

Fig. 2: Render of a PCB testing workplace with the Ensenso
3D camera for bin-picking, 6 DoF Aubo i5 robot, 2 DoF
custom-build robot, functional tester, barcode reader, and
printer, source, and target boxes.

IV. SYSTEM DESIGN

The design of the framework is mainly given by the defined
requirements. However, it was also influenced by the knowl-
edge gained during the development and evaluations of its
previous generation called ARCOR [18], which utilized spatial
augmented reality and a touch-enabled table for user interac-
tion and was focused mainly on table-top scenarios. Later, in
order to overcome inability to visualize information in free
3D space, HoloLens were integrated [19]. Although ARCOR
was successfully evaluated in an industrial use case [20], its
limitations (mainly complicated integration of new devices and
program instructions) lead us to the development of the next
generation.

A. Terminology

Object Type – plugin into the system that represents and
provides integration with a particular type of real-world object,
e.g. a certain type of robot, or a virtual object such as cloud
API. It is written in Python and can benefit from (multiple)
inheritance, in order to extend or share functionality. A set of

113

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 4

TABLE II: Expected types of users, divided into two main categories.

Category Role Responsibilities Principal needs

End User
Operator Manages program execution, solves simple problems. Visualization of execution state, controls to start/stop

program, notifications on errors.
Standard User Able to create a simple program or adapt an existing

one.
Program management (edit, copy, etc.), tools to edit
spatial points and program steps.

Advanced User Able to create complex program visually, can write
simple code.

Visual definition of advanced concepts, simple and well-
documented programming API.

Expert Technician Performs initial setup, called when serious problem
occurs.

Debugging tools, entering exact numbers.

Programmer Integrates new devices, creates new functionality.

built-in base classes is available, representing e.g. a generic
robot or a camera and its required API. It could be associated
to a model (representing both collision and visual geometry),
which might be a primitive, or a mesh.

Action Object – an instance of an Object Type within the
workplace, defined by its unique ID (UID), human-readable
name, pose (optionally), and parameters (e.g. API URI, serial
port, etc.).

Scene – set of Action Objects, represents a workplace, its
objects and spatial relations.

Action Point – a spatially anchored container for orienta-
tions, robot joints configurations and actions. The container’s
position together with an orientation comprises a pose usable
e.g. as a parameter for robot action.

Action – method of an Object Type exposed to the AR
environment. A named and parameterized action is called an
action instance. Actions may be implemented on different
levels of complexity, according to the application needs and
the target end-users competencies. However, in order to lower
program complexity and to reduce training time, the actions
should be preferably high-level and provide configurable skill-
like functionality. Such actions can be seen as equivalent to
reusable skills used e.g. in [7,13].

Project – set of Action Points, may contain logic definition.
The project is associated with a scene.

Execution Package – a self-contained executable snapshot
of a Project, which is created when there is a need to test the
whole task or release a project into a production environment.
The fact that the package is self-contained allows users to
make further changes in the scene or project without any
influence on already existing packages.

Main Script – contains a logic of the project, which may
be defined visually or could be written manually with help of
a set of generated classes providing access to project data as
e.g. defined Action Points.

B. Integrating New Devices

A new device is integrated into the system by implementing
an Object Type (Python wrapper) for it, that is based on some
of the provided abstract base classes and is dynamically loaded
into the system.

For instance, there is an abstract Robot class, and all
Object Types representing particular robots are derived from it.
It has a set of basic abstract methods representing mandatory,
or robot’s minimal functionality (e.g. method to get end
effector pose), that have to be implemented. Then, there is
a set of methods that may or may not be implemented, based

on the available functionality of the particular robot (e.g.
method for forward and inverse kinematics, or for toggling the
hand teaching mode). After the wrapper is loaded, the system
performs static analysis in order to determine in advance which
optional methods are available and based on that, certain
functionality is or is not made available to the user.

There are two main possibilities of how an Object Type
could be interfaced to a real-world object, e.g. a robot:

1) Directly – if the robot provides API with the necessary
functionality, the Object Type may communicate with it
directly.

2) Through an intermediate service – for instance, if the
robot lacks motion planning capability, there might be a
ROS-based container between the robot and the Object
Type.

In both cases, the Object Type is the main provider of all
Actions, available to the user, regardless the interface between
the Object Type and the real-world object.

C. Architecture

The framework is divided into a set of services (backend)
and a user interface (frontend). The main service of the system
is ARServer, which acts as a central point for user interfaces
and mediates communication with other services (see Fig. 3).

So far, only one implementation of a user interface has
been developed, a tablet-based app providing full functionality,
however, the intention is to allow involvement of several
simpler, complementary interfaces providing only some aspect
of functionality, e.g. RGB LED strip indicating system status
or hand tracking-based interface for controlling a robot. There-
fore, the server must be able to deal with multiple connected
interfaces even in single-user scenarios.

Interfaces are connected to ARServer through Websockets,
which allows bidirectional communication. The ARServer
holds the system state, while interfaces can manipulate it
using a set of RPCs and receives notifications on changes.
It is assumed, that each workplace runs its own instance of
ARServer and therefore, the server maintains only one session
for all users: if one user opens a project, the same project is
shown to other connected users as well. In order to support
efficient and safe collaboration between users, there is a
locking mechanism that prevents multiple users to manipulate
the same element (e.g. control the robot).

The ARServer also serves as a proxy between Python code
and AR environment, which is code-agnostic. It analyzes code
of Object Types in order to extract available Actions and their
parameters and creates JSON metadata, that is available to user

114

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 5

interfaces. The code analysis takes advantage of PEP 484 type
hints5 in order to extract e.g. parameter types and matching
nodes of Abstract Syntax Tree (AST)6 in order to e.g. inspect
value ranges, that are defined using assertions or check if a
method (feature) is implemented.

The scene or project opened within the server could be
either offline or online. In the online state, instances for all
objects are created meaning that e.g. connection to a robot is
made. In an online state, robots could be manipulated with and
any action instance added to a project may be executed, which
simplifies a programming and debugging process. However, it
is also possible to work offline, where just functionalities as
controlling a robot are not available. Moreover, in the offline
mode, the robot and other relevant machines does not have
to be connected, therefore, the operator may prepare the base
program in advance, without the need of the actual robot.

Project Service provides persistent storage for workplace-
relevant data: scenes, projects, Object Types, models, etc.

Scene Service, used e.g. in cases where underlying imple-
mentation is based on ROS, is responsible for the management
of collision objects.

The Build Service creates for a given project a self-
contained executable package. The logic could be defined
within the AR environment or provided in a standalone file.
When generating logic from its JSON representation, it is
first assembled in a form of AST and then compiled into
Python code. Moreover, a set of supplementary classes e.g.
simplifying work with Action Points are generated.

Execution Service manages execution packages created
by the Build Service. The most important functionality is
running the package when the service streams events regarding
execution state (e.g. which action with what parameters is
being executed) to ARServer. The execution can also be
paused or resumed when needed.

Calibration Service provides a method to perform camera
pose estimation based on ArUco marker detection [21]. The
service is configured with IDs, poses, and sizes of available
markers. When estimation is requested, markers are detected in
the provided image, respective camera poses are computed and
then all poses are averaged using a camera-marker distance and
camera-marker orientation as weights in order to produce the
final 6D pose. For averaging quaternions, a method from [22]
is used. This estimation can be either used by user interfaces
where e.g. an AR visualization needs to be globally anchored
or it could be used by ARServer to update the pose of the
camera in a scene. Another method of the service may be
used to adjust the pose of the robot using an RGBD camera.
The robot model in a configuration corresponding to the actual
robot state is rendered from point of view of a camera in
a robot’s current position within the scene, which therefore
serves as an initial guess. The virtual camera is used to
generate a point cloud, which is then registered using a robust
ICP (TukeyLoss kernel) with the point cloud from the real
RGBD camera observing the scene (1024 frames averaged),
that has been filtered to contain only close surroundings around

5www.python.org/dev/peps/pep-0484/
6https://docs.python.org/3.8/library/ast.html

ARServer

UI n

Project Service
(persistent storage)

Build Service
(generates and imports

execution packages)

Execution Service

Calibration Service
(estimates camera position)

Scene Service
(manages collision objects)

package 1

package n

arbitrary
device or
service 1

arbitrary
device or
service n

UI 1

object 1

object n

URDFs/meshes

Fig. 3: Block diagram of the system in a state, when object
instances are created in the ARServer (scene/project opened
and online). Green lines depict WebSockets connections (two-
way communication necessary), blue are REST APIs and for
red, an implementer is free to choose appropriate technology.

the robot in its initial pose. If the precision of such calibration
is not enough for the task, more precise methods must be used
and the pose of the robot or camera can be entered manually.

D. Program Representation

One of the goals of the framework is to support collabora-
tion between non-programmers who prefer creating programs
visually and programmers who prefer to work with code.
Because of this, there are two language representations. For
visual programming, there is an intermediate program repre-
sentation based on JSON format, which is language agnostic,
easy to serialize, supports common programming techniques
(cycles, conditions, variables), allows flexible parameter spec-
ification, and is easily manipulable from user interfaces. For
execution, the intermediate format is translated into Python,
which is currently the most popular scripting language7. The
same language is also used for the implementation of Object
Types, through which a new device can be integrated into the
system. This also allows a use case when a non-expert user
creates the program visually and the result is adjusted by an
expert programmer. The form of Python code was designed
with the possibility of transferring the code back into the
intermediate format. However, this was not implemented yet.

The structure of the JSON format is as follows. Within
a project, there might be [0, n] action points, where each
might contain [0, n] actions. Each action is assigned a UID,
unique human-readable name, type (scene object UID and cor-
responding underlying method/action), and [0, n] parameters
(corresponding to parameters of the method). Action parameter
can be given as literal or referenced to either a project variable
(constant shared by multiple actions) or a previous result
(return value of precedent action). On the project level, there
is an array of objects defining logical structure (visualized as
blue lines, see Fig. 5), where each contains UID of source
and target action and optional condition. Actions together
with those linkages then form a directed acyclic graph, where
the loops are forbidden at an application level. Without a

7According to PYPL Index for August 2021.

115

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 6

START END
inp_value

"get_in_val"
robot/get_input

"move_here"
robot/move true

false
"comp_vals"

logic/greater_than
"move_there"
robot/move

5

Fig. 4: The logical structure of an example program. Yellow
boxes are actions (text in quotes is the user-entered name for
the instance of action, below is an object and the corresponding
method), blue lines denote logical connections (flow of the
program), while black dashed lines denote data connections.
The example shows how previous results can be used as
parameters of a subsequent action and how logical flow can be
branched based on a numerable value (boolean in this case).

condition, two actions could be connected only with one logic
linkage. Conditions are meant to achieve simple branching
for numerable types as boolean, enums, and integers. E.g. for
branching according to a boolean value, two logical linkages
are added, one for true and the other for false (see Fig. 4 and
Listing 1). Any other type of condition has to be implemented
in a form of action, for instance, greater than(float1, float2)
returning a boolean value. Also, loops are not part of the
format definition and have to be implemented in form of
custom actions. This restriction keeps the intermediate format
simple and at the same time allows integrators to provide a
customized set of actions to their end-users.
inp_value = robot.get_input(an="get_in_val")
robot.move(an="move_here")
comp_res = logic.greater_than(inp_value, 5, an="comp")

if comp_res == True:
robot.move(an="move_there")

Listing 1: An example of generated Python code. Parameter
an denotes action name, which is human-readable counterpart
to action UID.

E. User Interaction

A working prototype, based on the concept presented by
Kapinus et. al. [23], was implemented and iteratively tested,
and improved in cooperation with the project partner. The
design of the application was modified in order to support
the two-handed operation of the tablet and control of interface
elements using the user’s thumbs, to lower the fatigue of arms
and hands.

The primary concept of our tablet user interface deals with
the fact, that most of the robotic programs interact with a
real environment in some manner. An operator, using our user
interface, is able to annotate the environment in a simplified
way and subsequently design programs’ logic. Thanks to the
utilization of augmented reality, this can happen within the
task space and therefore mental demands are lowered [5,17].

Our user interface uses several graphical elements for pre-
cise annotation of specific places in the environment (action
points). These places may later be used as spatial anchors for
elements representing specific actions. Visual elements repre-
senting actions (also known as pucks in our GUI) are therefore

Fig. 5: The application screen with a tool menu (left), selector
menu (right) and non-interactive 3D scene (center), with action
points (violet), actions (yellow, green for program loop start,
red for its end), logical connections (black/blue) and robot end
effectors (magenta). The visualized program realizes a simple
pick and place task consisting of low-level actions.

located at the place, where the action will be executed, which
improved users’ comprehension of spatial relations within the
program.

The whole interface consists of three main parts: sight in the
middle of the screen, main menu on the left side of the screen,
and tool context menu on the right side of the screen. The
sight is used to select virtual objects by the physical pointing
of the tablet. The tool selection menu shows actions available
for a currently selected object (e.g. duplicate object, transform
object, etc.) and the tool context menu serves as a sub-menu
for currently performed operations (e.g. move / rotate tools
when action object is being manipulated). See Fig. 5.

V. EVALUATION

During development, the system and its user interface were
evaluated multiple times using different methods and continu-
ously refined to provide a plausible user experience and fulfill
use case needs. Some of the presented evaluations focused on
certain aspects of the problem were already published, and
here, we only briefly report their results to provide a complete
overview summarizing the framework’s evolution.

A. Interface Concept

A high fidelity initial prototype of a user interface was
implemented and evaluated in a qualitative experiment (n = 7)
by Kapinus et. al. [20], focused on usability, mental workload,
and user experience. Participants were asked to create a simple
program using several highly abstracted actions. The task
consisted of 21 steps that has to be done.

Regarding subjective metrics, the user interface was ranked
A using SUS [24] (90-95th percentile) and it was overall rated
Excellent in all UEQ [25] categories, i.e. Attractiveness (mean
score 1.93, SD=0.58), Pragmatic attributes (mean score 2.26,
SD=0.28), and Hedonic attributes (mean score 1.86, SD=0.72).
Overall NASA-TLX [26] score was 27.38 (SD=9.41), making
it lower than 80% of studies analyzed in [27].

116

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 7

From the objective point of view, the main finding was that
all participants were able to successfully complete the task
in a reasonable time (average completion time was 527 s,
SD=130 s). No fundamental problem was discovered, although
some minor issues were observed or reported by participants.

Most of the participants complained about the design of
pucks (visual elements representing actions), mainly about
their size, appearance, and placing strategy. Based on that,
the design was altered and due to the fact that they are now
placed above action points, the position of the puck could now
be changed by the user, if the default position is not suitable.

The other important issue was related to the selection of
virtual objects. In the prototype, the object was selected by
touching it on the screen, causing the user has to hold the
device with only one hand, so they can use the other hand
to touch the object. This caused hand and arms fatigue.
Moreover, the selection was sometimes difficult, especially in
a cluttered environment. In order to cope with it, design of
the interface was changed to allow controlling all elements
by a user’s thumbs, when holding the device with both hands
in landscape mode, which also demanded utilization of some
indirect selection method.

Only two of the participants found out, that they can benefit
from the active movement of the mobile device inside the
scene, one participant explicitly stated that they would like to
stay on one spot and zoom inside the scene. To solve this issue,
a non-immersive VR mode was introduced, which allow users
to freely change position of a virtual camera and therefore
to see and interact with the workplace from any angle and
distance.

B. Virtual Object Selection

As the initial experiment with the prototype of the interface
has shown, direct selection of virtual objects on the screen was
problematic in some cases (high density of objects, occlusions,
similar objects) and necessity to hold the device with one
hand and touch the screen with the other lead to ergonomic
issues. Therefore, the design of the application was changed
in a way, that all interactable elements are within reach of the
user’s thumbs and we implemented and compared two indirect
selection methods, which were described and preliminarily
evaluated in [28]. Both of them work with spatially clustered
objects. One method is based on a spatially anchored hierarchy
menu, and the other utilizes a crosshair and a side menu
that shows candidate objects according to a custom-developed
metric. When compared with the direct touch method, the
results indicate that indirect methods might lead to better
precision and improved confidence for selecting the intended
object, however, at the expense of worse task performance.
The methods will be further developed and evaluated, however,
based on the experiment’s results, we chose the method with
a side menu (the selector menu, see Fig. 5) as it seems to
provide better performance (time to select an object), lower
task load (TLX) and similar success rate as the hierarchical
menu.

C. Non-immersive VR mode

When working with AR, there is often a need to move closer
in order to distinguish or inspect virtual objects, or in contrary
to move further in order to see the whole scene, which is
amplified by the limited field of view of handheld devices and
HMDs. Regarding handheld devices, it is also often necessary
to see the scene from different angles, to correctly judge
the placement of the objects, which is caused by a lack of
depth perception due to monoscopic display. Moreover, within
industrial environments there is typically limited floor space,
there are safety curtains, fences around robot cells, etc. These
constraints might make viewing the workplace from certain
poses physically challenging, or even impossible. Therefore
we proposed and evaluated an approach allowing temporal
switching from AR to a non-immersive VR [29]. In VR,
the application shows a 3D model of the workplace, and the
viewpoint is controlled by device motion in conjunction with
on-screen joysticks, with non-linear sensitivity. The conducted
experiment (n = 20), based on the object alignment task,
revealed that self-reported physical demands are significantly
lower when users are allowed to arbitrarily switch between AR
and VR. The usefulness of the VR mode was rated as high
and during the task and users spent 70% of the time within
it. Observations of users’ behavior have revealed that the VR
mode was often used to get an overview of the workspace, to
find an occluded object, or to avoid an uncomfortable position.

D. Multi-user Collaboration

In order to evaluate the collaborative aspects of the frame-
work, a small-scale user experiment (n = 3) was carried out
in a lab-like environment. The experiment was focused on
functionality, however also served as the very first usability
evaluation. The workplace consisted of two robots (Dobot M1
and Magician), a conveyor belt, and several collision objects.

The task was to collaboratively set up the workplace and
to create a simple program for moving cubes from one robot
to the other and back using the conveyor belt. In the setup
phase, each participant added one Action Object (a robot
or the belt) to the scene and positioned it. Subsequently, a
project was created and each participant created several Action
Points (using a hand-teaching and visual positioning tools) and
related Actions. Finally, the logical connections defining the
program flow were added and the project was executed. The
participants worked on separate sub-tasks most of the time but
shared the same workspace. Moreover, they had to collaborate
to successfully connect all sub-tasks into a working program.

From the technical perspective, the user experience during
the collaboration was smooth and user interfaces were kept
synchronized properly. Regarding usability, although users
communicated verbally during the experiment, they also appre-
ciated visual indication of which object is being used (locked)
by someone else. Based on the course of the experiment,
collaborative programming seems to be a viable approach and
we will investigate it more deeply in the forthcoming research.
In this case, the task was done by three users in approximately
15 minutes. It would be highly interesting to determine the

117

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 8

relation between task time and a number of collaborating users
on a significantly more complex task.

E. Iterative Testing and Refinement

The whole system was created in close cooperation with
our industrial partner, who has over 15 years of experience in
automation. During the development, the design of the user
interface and key parts of the system were discussed in detail
with the system integrator and potential end-users.

Besides individual testing, there were several integration
meetings, where the whole task programming process was
tested with the real production-like robotic cell, to maximize
simplicity and comprehensibility for the end-users. This helped
us with a better understanding of real-world scenario difficul-
ties, which are not obvious during in-lab testing, e.g. object
selection in heavily cluttered environments (e.g. caged robotic
cell), cooperation with safety precautions, etc.

As a result, several improvements were added to the user
interface, for example, better ray-casting strategy for virtual
object selection enabling user to disable several objects (e.g.
virtual safety walls), which has to be part of the scene, but
once they are created, are barely used anymore.

Additionally, an unstructured interview with the system
integrator representative was organized. They were asked to
state their opinion on the framework being developed from
the commercial perspective. Following key advantages were
claimed:

• Clear visualization of position and distribution of indi-
vidual actions in space.

• Ease and speed of programming for smaller-scale appli-
cations.

• Possibility of visual composition of the scene - collision
objects, positional relationships of individual elements.

• Simple and useful controls for the robot - stepping, end
effector alignment, integration of hand teaching.

And the following limitations were pointed out:
• Visual clutter for large-scale applications - too much

graphical information.
• Ergonomically demanding method requiring the creation

of the entire application in a standing position, while
holding a tablet.

Regarding the large-scale applications, it was suggested to
define categories of actions and to distinguish them e.g. by
color-coding or by icons. Moreover, the visual clutter may be
reduced by different techniques, as implementing e.g. level
of detail [30], or by implementing more complex actions on
a higher level of abstraction, which will reduce the number
of individual actions needed to realize a given task. The
ergonomy of use may be improved by the proper holding of the
device (needs to be covered during training) [31] and also by
already described VR mode, which allows users to temporarily
switch from AR to VR in order to reach physically unreachable
poses, zoom in, or to work while sitting.

F. Expert Review

At the point, where the system and interface design and
features were mostly stable, an expert review was conducted

in order to eliminate the most significant user experience
problems and to validate the overall concept of the system.
Three reviews were obtained.

The first reviewer (RA) is an experienced software tester.
The review was performed at the testing site of the project
partner with an Aubo i5 and one custom-built two-axis robot.
The second reviewer (RB) is a 3D data visualization and
processing specialist, with experience in the field of human-
robot interaction. The third one (RC) is an expert in cyber-
physical systems, computer graphics, user interface design,
and evaluation.

Reviews by RB and RC were performed at the university
robotics laboratory with an ABB YuMi robot. Reviewers RA

and RB used the same version of the interface, while RC

used a slightly updated one that was available at the moment.
Each session lasted approximately one and a half hours. The
Samsung Galaxy Tab S6 with a protective cover was used.
A reviewer was given a technical document describing the
solution in advance and then briefly introduced to the usage
of the interface. Then, they went through the core functionality
while commenting on their findings. The comments were
recorded and after the experiment processed into a review
protocol. The reviewer was then asked to verify the protocol,
provide a brief comment on each issue, and assign severity on
a scale of [1, 5].

A 39 unique issues (48 in total) of different severity (see
Fig. 7) were identified by all reviewers. Most of them were
ranked with low severity, dealing mostly with some minor user
interface usability issues, such as difficult number input (RA)
caused by the default Android keyboard, the unclear icon for
a favorite group of actions (RB), or issue with main menu
actions grouping, forcing the reviewer to navigate through the
menu to locate required action (RC). The most severe issues
are shown in Table III, together with self-reported severity and
brief suggestion provided by the reviewer.

The collected feedback was categorized into the following
groups:

• Control (12 unique issues, 14 total) – issues related to
user interface control.

• HUD design (13 unique issues, 17 in total) – problems
with the user interface itself - icons, menu design, etc.

• System Status (3 unique issues, 4 in total) – related to
notifications and system state visualization.

• Visualization (11 unique issues, 13 in total) – visualiza-
tion of 3D scene content (Action Points, Actions, etc.).

The RA suggested, that there are too many icon buttons,
and their purpose is not always very clear at the first sight.
The only way how to understand individual icons is to hold
a finger over them until a tooltip is shown. This issue will be
solved by providing proper documentation of the application,
together with onboarding mode, which will guide the novice
user through the application.

The reviewer also pointed out, that it was quite physically
demanding to hold the tablet for a longer period of time and
it was necessary to take rest periods regularly. It was partially
caused by improper holding of the device, where the RA hold
it by one hand on the left side of the screen for some time at
the beginning of the review, which caused fatigue to the arm.

118

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 9

(a) During hand teaching, the robot is locked by the user and therefore unavailable
for others, which is indicated within the 3d scene.

(b) Multiple users collaborating on the task of moving boxes between
robots using a conveyor belt.

Fig. 6: Technically oriented evaluation of the collaborative-related functionality.TABLE III: The most severe issues (rated 4 or 5) and suggestions on how to mitigate them as reported by the reviewers.

Issue Severity Suggestion Category

RA

Too much buttons and time-consuming determination of
their meaning. 5 Implement a guide helping new users to get comfortable

with application usage. Documentation

System status not visible in some cases (e.g. in case of
long lasting processes as calibration). 4 Add persistent notifications. System Status

Inability to aim objects through another object. 4 Add possibility to temporarily disable an obstructing
object. Control

Physical demands when working longer than 30 minutes. 4 Encourage both hand-holding, suggest rest period. Control

RB

A skill and a lot of physical movement are needed to
judge the position of virtual objects. 5 Add shadows to the virtual objects, to improve depth

perception. Visualisation

Complicated flow in order to add an action. 4 Allow to add an action without adding an action point
first. Control

RC

Reachability of action points by selected robot is not
visualised. 4 Add some indication of reachability. Visualisation

Difficult orientation in more complicated programs 4 Use different connections for different logic flow phases. Visualisation

1 2 3 4 5
0

5

10

15

20

Severity

N
u

m
b

e
r

o
f

is
s
u

e
s

8

17

15

6

2

Fig. 7: Histogram of all reported issues clustered by their
severity.

This issue could be addressed in the onboarding mode of the
application, where proper holding should be demonstrated and
rest sessions suggested.

The testing site of the project partner contained virtual walls
around the robotic cell, assembled from dummy action objects.
This complicated objects selections because these safety walls
were the first objects to be hit by the sight, making virtual

objects inside the cell virtually impossible to select by aiming.
This issue was already solved by enabling users to put selected
virtual objects on the blocklist, thus excluding them from the
selection process.

On the other hand, the RA really liked the visualization
of the logical flow of the program, which helped them both
to understand the meaning of the edited program and to
change the behavior of the program. Moreover, the reviewer
appreciated the simplicity of robot stepping available directly
from the programming application, without the necessity of
using the dedicated teach pendant. The reviewer explicitly
mentioned that the ability to align the robot’s end-effector with
the underlying table was crucial for the fast navigation of the
robot.

The main issue for the second reviewer, the RB , was
related to depth sensing. The reviewer had problems with
understanding where the manipulated object (e.g. action point)
is in the real world and they had to walk around heavily to
see its position from multiple angles. They pointed out that
it was probably caused by the lack of generated shadows,
which usually helps people to sense the depth. As a (partial)
solution, we have enabled shadows and light estimation in
our application. To even more support the user’s knowledge

119

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 10

of object position, a kind of projection in the plane of the
table, with information of the height above the table (or nearest
object bellow).

The reviewer also stated that the flow of action definition
is unnecessarily complex and difficult, meaning that the user
has to insert an action point first and then assign an action to
it. They suggested, that simplification of this process would
be a significant improvement. Among others, this particular
issue is currently being more deeply investigated in a separate
study, which will be published later.

The last but not least reviewer, the RC , stated that it makes
sense for him to define actions inside the real environment.
On the other hand, they were worried that it will be difficult
to understand a more complex program, where a high amount
of actions together with conditional execution will be incor-
porated. The reviewer suggested that selected parts of logical
flow should be differentiated either by color or shape.

Another important issue for the RC was that the robot’s
reachability of action points and executability of actions was
not visualized in any way. For actions, there could be quite
easily added a mark to indicate whether or not the action could
be executed. In the case of the reachability of action points,
the possibility of having more than one robot in the scene
needs to be taken into account. Moreover, any action point
could potentially have a number of orientations and each of
them needs to be evaluated separately.

In summary, the reviewers approved the overall concept of
the framework as suitable for end-users. As they tested the
framework through the user interface, naturally, most findings
were related to its usability, where several relevant suggestions
were collected.

VI. LIMITATIONS

VII. LESSONS LEARNT

The problem of designing a framework that should act as
a central point of integration for arbitrary devices and its user
interface should provide great usability for end-users while
serving a high amount of dynamically loaded functionality, is
a complex one and there certainly exist different ways how
to approach it. From our experience, it is crucial to have a
realistic use case and then, to define what type of users are
going to interact with the framework and its user interface
in what ways. We see the iterative design process, for both
the backend architecture and API as well as for user interface
design, as a key factor determining success. We would also
suggest making smaller and specifically focused experiments
as we did, rather than one all-embracing because it allows
faster iteration and provides better interpretable results.

The iterative design process led us to a state, where the user
interface is minimalistic and optimized for best performance
when used regularly, for several hours a day. The drawback
is, that some of its aspects as the indirect selection of objects
are slightly unintuitive for novel users. Moreover, there is a
specific terminology, etc. Therefore, a need for some form
of initial training is inevitable. The training, when executed
efficiently (video, in-application guide), is in our opinion worth
the improvement of performance during regular operation.

One of the main problems to solve was how to over-
come the imprecise registration of AR visualization to the
real environment. We chose to rely on work with relative
coordinates, where the precise coordinate is obtained through
a robot (usually the most precise device at the workplace)
and then, further points are added as relative to it. Points
are manipulated by visual tools providing virtually unlimited
precision. In practice, it turned out that it is highly useful to
let users navigate the robot to any point, then to step the robot
and update the point.

From the practical point of view, it proved useful to organize
the source codes of the backend (17 Python packages at the
moment) in a monorepo, utilizing the Pants build system8.
Especially in the early phases of development, monorepo
makes big refactoring easier. Moreover, it significantly reduces
necessary effort related to maintenance as there is only one
configuration of continuous integration, etc. Although using
tests may sound obvious, it is often skipped for academic
software. The adoption of continuous integration and im-
plementation of different levels of tests (unit, integration)
definitely took some resources, but finally, it saved us a lot of
valuable time and make us confident when performing changes
to the code-base.

VIII. CONCLUSIONS

The paper presented the ARCOR2 framework, which allows
end-users to program not only robots but whole complex
workplaces or production lines consisting of multiple robots
and other arbitrary machines. The framework was designed,
developed, and iteratively tested in close cooperation with the
industrial partner, who provided the realistic use case, testing
site, and valuable feedback. One of the main advantages of
the solution is that support for any device or service could be
added in a form of a plugin. The visual programming in the
AR interface allows specifying not only program steps and
their parameters but also logical flow, including conditions.
Kinesthetic teaching is utilized to obtain precise positions,
however, its usage is minimized to limit users’ fatigue only
to get reference points, and then, other necessary points
are manipulated by graphical tools relatively to the robot-
originating points. This way, we also cope with the inaccuracy
of AR registration to the real world. The framework also
supports multiple users working at the same time, which can
be useful for instance for large-scale workplaces or during
training.

Many rounds of internal testing were performed, focused
both on the user interface as well as on the API of the
framework, making sure that it is usable from both end-user
and expert-user point of view. The role of expert users is
mainly to develop the integration of devices and services and
prepare necessary functionality on a task-appropriate level of
abstraction. The end-users role is to program the task but as
the visual representation is compiled into a source code, expert
users can get easily involved even in this stage, when needed.
Despite internal testing, the initial concept of the user interface
was evaluated in a user study. After that, the interface design

8https://www.pantsbuild.org/

120

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 11

was changed e.g. to allow controlling of all UI elements by
users’ thumbs and thus reduce fatigue coming from holding a
tablet in one hand. After the functionality was stabilized, an
expert review was carried out, which results are presented in
this paper. Its main outcomes are the necessity to implement
onboarding mode to support novice users, to improve depth
perception by providing additional cues, and to simplify flow
for adding actions.

In summary, the framework when adopted by a system inte-
grator and its customer allows efficient collaboration between
professional (robot) programmers and end-users, who are
domain experts. By allowing end-users to set up a workplace,
create or adapt the program, high flexibility needed for SMEs
is achieved. Moreover, as SMEs are able to perform program
modifications/adjustments on their own, expenses are reduced.

The gained experience also helped us to at least partially
answer our long-term research questions. Within the context
of visual programming, it turned out, that situated interaction
could be realized using augmented reality and handheld de-
vices, when supported by specifically designed interfaces (Q1-
2). The solution we chose to overcome imprecise registration
of AR visualization, was to utilize the robot’s precision and
then to move virtual objects relatively to precisely obtained
positions. Then, visualization might be for instance slightly
shifted, or not fully stable, but the spatial relations between ob-
jects are kept and users can manipulate objects with arbitrary
precision (Q3). However, it has to be clearly communicated
to users that such imperfection might occur and that it has no
impact on the robot’s precision. From our experience, a low
level of abstraction makes visual representation incomprehen-
sible, and therefore basic program steps have to be merged
into more complex, parameterizable skill-like ones (Q4).

A. Future Work

There is ongoing work on comparing ARCOR2 with an
existing, commercially available solution for simplified pro-
gramming of robots. The paper under preparation will also
contain an in-detail description of the user interface, which
was here described only briefly. At the same time, we are
planning a out of the lab long-term study that will start once
the framework will be deployed at a PCB testing facility.

Moreover, collaborative programming by multiple end-users
deserves to be investigated more deeply, including evaluation
of effectiveness of such approach for larger workplaces. We
will also make the effort to reveal how to optimally sub-
stitute the missing depth perception when using monoscopic
displays. There is also a plan to implement decompilation of
Python code into visual representation allowing bidirectional
synchronization between AR environment and source code
(for this to be possible, a source code would have to follow
established conventions), which would in turn allow evaluation
of collaboration between experts and end-users.

We also plan to port and adapt the user interface to
other platforms as e.g. HoloLens 2 and to add support for
advanced programming constructs like functions, or visually
defined object actions allowing code reuse. It will be also
highly interesting to investigate, how the framework could

be applicable to other use cases than PCB testing, which
predominantly consists of picking and placing parts.

Finally, during the development of the framework, many
general questions related to handheld augmented reality arose.
For instance, what are optimal cues to compensate for the
limited depth perception, or how to motivate users (who tend
to be rather still during AR usage) to take advantage of free
movement.

REFERENCES

[1] T. B. Ionescu and S. Schlund, “A participatory programming model
for democratizing cobot technology in public and industrial fablabs,”
Procedia CIRP, vol. 81, pp. 93–98, 2019.

[2] C. Schmidbauer, T. Komenda, and S. Schlund, “Teaching cobots
in learning factories–user and usability-driven implications,” Procedia
manufacturing, vol. 45, pp. 398–404, 2020.

[3] G. Ajaykumar and C.-M. Huang, “User needs and design opportunities
in end-user robot programming,” in Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, 2020, pp. 93–95.

[4] A. Weiss, A. Huber, J. Minichberger, and M. Ikeda, “First application
of robot teaching in an existing industry 4.0 environment: Does it really
work?” Societies, vol. 6, no. 3, p. 20, 2016.

[5] C.-M. Huang, “Contextual programming of collaborative robots,” in
International Conference on Human-Computer Interaction. Springer,
2020, pp. 321–338.

[6] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar:
Instructing collaborative robots with behavior trees and vision,” in 2017
IEEE international conference on robotics and automation (ICRA).
IEEE, 2017, pp. 564–571.

[7] M. Stenmark, M. Haage, and E. A. Topp, “Simplified programming of
re-usable skills on a safe industrial robot: Prototype and evaluation,”
in Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, 2017, pp. 463–472.

[8] Y. Gao and C.-M. Huang, “Pati: a projection-based augmented table-
top interface for robot programming,” in Proceedings of the 24th
international conference on intelligent user interfaces, 2019, pp. 345–
355.

[9] C. Mayr-Dorn, M. Winterer, C. Salomon, D. Hohensinger, and R. Ram-
ler, “Considerations for using block-based languages for industrial
robot programming-a case study,” in 2021 IEEE/ACM 3rd International
Workshop on Robotics Software Engineering (RoSE). IEEE, 2021, pp.
5–12.

[10] J. Huang and M. Cakmak, “Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts,” in 2017
12th ACM/IEEE International Conference on Human-Robot Interaction
(HRI. IEEE, 2017, pp. 453–462.

[11] E. Yigitbas, I. Jovanovikj, and G. Engels, “Simplifying robot program-
ming using augmented reality and end-user development,” arXiv preprint
arXiv:2106.07944, 2021.

[12] Y. J. Thoo, J. Maceiras, P. Abbet, M. Racca, H. Girgin, and S. Cali-
non, “Online and offline robot programming via augmented reality
workspaces,” arXiv preprint arXiv:2107.01884, 2021.

[13] Y. S. Liang, D. Pellier, H. Fiorino, and S. Pesty, “iropro: An inter-
active robot programming framework,” International Journal of Social
Robotics, pp. 1–15, 2021.

[14] G. B. Rodamilans, E. Villani, L. G. Trabasso, W. R. de Oliveira, and
R. Suterio, “A comparison of industrial robots interface: force guidance
system and teach pendant operation,” Industrial Robot: An International
Journal, 2016.

[15] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll,
“Intuitive instruction of industrial robots: Semantic process descriptions
for small lot production,” in 2016 ieee/rsj international conference on
intelligent robots and systems (iros). IEEE, 2016, pp. 2293–2300.

[16] M. Ladeira, Y. Ouhammou, and E. Grolleau, “Robmex: Ros-based
modelling framework for end-users and experts,” Journal of Systems
Architecture, vol. 117, p. 102089, 2021.

[17] S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and G. Konidaris,
“End-user robot programming using mixed reality,” in 2019 Interna-
tional conference on robotics and automation (ICRA). IEEE, 2019, pp.
2707–2713.

121

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 12

[18] Z. Materna, M. Kapinus, V. Beran, P. Smrž, and P. Zemčı́k, “Interactive
spatial augmented reality in collaborative robot programming: User
experience evaluation,” in 2018 27th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). IEEE, 2018,
pp. 80–87.

[19] D. Bambuŝek, Z. Materna, M. Kapinus, V. Beran, and P. Smrž, “Com-
bining interactive spatial augmented reality with head-mounted display
for end-user collaborative robot programming,” in 2019 28th IEEE Inter-
national Conference on Robot and Human Interactive Communication
(RO-MAN). IEEE, 2019, pp. 1–8.

[20] M. Kapinus, Z. Materna, D. Bambušek, and V. Beran, “End-user robot
programming case study: Augmented reality vs. teach pendant,” in
Companion of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction, 2020, pp. 281–283.

[21] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and vision
Computing, vol. 76, pp. 38–47, 2018.

[22] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[23] M. Kapinus, V. Beran, Z. Materna, and D. Bambušek, “Spatially
situated end-user robot programming in augmented reality,” in 2019
28th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2019, pp. 1–8.

[24] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[25] M. Schrepp, “User experience questionnaire handbook,” 09 2015.
[26] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load

index): Results of empirical and theoretical research,” Advances in
psychology, vol. 52, pp. 139–183, 1988.

[27] R. A. Grier, “How high is high? a meta-analysis of nasa-tlx global
workload scores,” Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 59, no. 1, pp. 1727–1731, 2015.

[28] M. Kapinus, D. Bambušek, Z. Materna, and V. Beran, “Improved
indirect virtual objects selection methods for cluttered augmented reality
environments on mobile devices,” in Companion of the 2022 ACM/IEEE
International Conference on Human-Robot Interaction, 2022, accepted.

[29] D. Bambušek, Z. Materna, M. Kapinus, and V. Beran, “Handheld
augmented reality: Overcoming reachability limitations by enabling tem-
poral switching to virtual reality,” in Companion of the 2022 ACM/IEEE
International Conference on Human-Robot Interaction, 2022, accepted.

[30] M. Tatzgern, V. Orso, D. Kalkofen, G. Jacucci, L. Gamberini, and
D. Schmalstieg, “Adaptive information density for augmented reality
displays,” in 2016 IEEE Virtual Reality (VR), 2016, pp. 83–92.

[31] E. Veas and E. Kruijff, “Vesp’r: design and evaluation of a handheld ar
device,” in 2008 7th IEEE/ACM International Symposium on Mixed and
Augmented Reality, 2008, pp. 43–52.

Michal Kapinus is a Ph.D. student at the Fac-
ulty of Information Technology, Brno University of
Technology, Czech Republic, where he successfully
defended his master theses in the field of service
robotics. The topic of his emerging doctoral thesis
is “Bringing the Human-Computer Interaction Back
to the Real World”. His research interests are mainly
human-machine interaction in mixed/augmented re-
ality and the end-user robot programming.

Zdeněk Materna, Ph.D. received a bachelor’s de-
gree in computer systems in 2009 at College of
Polytechnics Jihlava. Then at the Brno University
of Technology, he received a master’s degree in
cybernetics, control, and measurements in 2011 and
later in 2019 defended a dissertation on the topic of
advanced task-oriented user interfaces for non-expert
users. His research interests are human-robot interac-
tion, augmented reality, semi-autonomous systems,
and intelligent home automation. He is currently a
post-doc at BUT.

Daniel Bambušek is a Ph.D. student at the Fac-
ulty of Information Technology, Brno University
of Technology, Czech Republic, where he focuses
on the use of augmented reality in the field of
human-robot interaction, including communication
of spatial information and end-user robot program-
ming. He is also interested in augmented reality and
augmented virtuality for efficient user interfaces of
drone operators.

Vı́tězslav Beran, Ph.D. is an assistant professor
at the Faculty of Information Technology, Brno
University of Technology, Czech Republic, where
he leads the Human-Robot Interaction group. His re-
search interests include human-machine interaction,
computer vision, video processing and augmented
reality. He has participated in several European and
contractual research projects.

Pavel Smrž, Ph.D. is an associate professor at the
Faculty of Information Technology, Brno University
of Technology, Czech Republic, where he leads
the Knowledge Technology Research Group. His
research interests include human-machine interac-
tion, embedded intelligence, machine learning, and
big data processing. He has participated in many
European and national research and development
projects.

122

How Do I Get There? Overcoming Reachability
Limitations of Constrained Robotic Workspaces in

Augmented Reality Applications
Daniel Bambušek, Zdeněk Materna, Michal Kapinus, Vı́tězslav Beran, Pavel Smrž

Faculty of Information Technology, Brno University of Technology
Brno, Czech Republic

{bambusekd,imaterna,ikapinus,beranv,smrz}@fit.vut.cz

Abstract—The paper presents an approach for handheld aug-
mented reality in constrained industrial environments, where
it might be hard or even impossible to reach certain poses
within a workspace. Therefore, a user might be unable to
see or interact with some digital content in applications like
visual robot programming, robotic program visualizations, or
workspace annotation. To overcome this limitation, we propose a
temporal switching to a non-immersive virtual reality that allows
the user to see the virtual counterpart of the workspace from
any angle and distance using a unique combination of on-screen
control complemented by the physical motion of the handheld
device. Using such a combination, the user can position the virtual
camera roughly to the desired pose using the on-screen control
and then continue working just as in augmented reality. To
explore how people would use it and what the benefits would
be over pure augmented reality, we chose a representative task
of object alignment and conducted a study. The results revealed
that mainly physical demands, which is often a limiting factor
for handheld augmented reality, could be reduced and that the
usability and utility of the approach are rated as high. In addition,
suggestions for improving the user interface were proposed and
discussed.

Index Terms—augmented reality; virtual reality; mixed reality;
transitional interface; constrained industrial environments

I. INTRODUCTION

With the broad availability of augmented reality (AR)
capable devices, such as tablets or head-mounted displays
(HMD), more industry applications are emerging. AR has
been found useful in various areas – visualizations of robot
programs and motions [1], inspection and maintenance [2],
training [3,4] or robot programming [5,6]. Although the AR
seems promising and useful, it may not be usable universally,
especially in the context of industry environments. These
environments tend to be very limited in terms of space because
of both safety and high utilization of floor space [[nějakej
zdroj, co by to zkoumal/potvrzoval?]]. In scenarios, such as
spatially situated visual programming [7], where the user needs
to interact with some digital content bound to the physical
places of the workplace (fitting bounding boxes around the real
objects, workplace annotation, positioning of spatial actions,
etc.), it may be physically challenging or even impossible to
reach those places, due to the inconvenient workplace layout,

This project was implemented with financial support from the state budget
through the Ministry of Industry and Trade in the TRIO program (FV40052).

Fig. 1. A use case of the proposed solution. Top: An example of workspace,
where the robot is caged and accessible from the front and left sides only. A
user programming the robot in AR by setting spatial actions bound to physical
places has a limited working area and cannot easily access the places behind
the robot or the cage. Bottom: The user switched to VR, where the virtual
counterpart of the workspace is displayed, and positioned the virtual camera
to physically inaccessible pose to get a view from behind the workspace.

large machines, or safety fences (see Fig. 1). When comes to
handheld AR applications, users also suffer from a limited
depth perception, mainly because of monoscopic displays.
Although this problem could be mitigated by applying the
depth cues, such as shadows, occlusion, or shading [8–10],
it still requires looking at the content from at least two

123

different points of view to achieve the most precise depth
estimation results [11]. This further supports the idea that
within the constrained industrial environments, it may be
dangerous or even impossible to get to certain viewpoints
to estimate the depth of AR content precisely. Moreover, the
design of handheld AR forces users to have their arms in mid-
air position, pointing the device’s camera towards the observed
scene, which may result in discomfort, fatigue, or pain when
using the device for longer periods of time [12,13].

To resolve the problems of inaccessible workplace positions,
depth perception, and high physical load associated with the
use of handheld AR, we propose a solution that enables a
temporal switching from the AR to a non-immersive VR,
where the user can see the virtual counterpart of the workspace
from any angle and distance and can work with the virtual
content without any physical limitations. Additionally, in case
of spatial visual programming, it enables the user to program
the robot even during program executions, where it would
be dangerous to move around the workspace. It also gives
users the option to sit down, place the device in a comfortable
position and do the work in VR instead of AR, when it is
convenient.

We focus on mobile-AR on a tablet device mainly, because
they are more accessible for small and medium enterprises,
thanks to low price (compared to AR head-up displays), and
are simple to control using the touch screen, which most
people are already familiar with because of the widespread
use of smartphones.

II. RELATED WORK

Throughout the past years, many works on using AR for
HRI emerged. Some explored robot programming through
setting trajectory waypoints using HMD [14–16], or HMD
in combination with handheld pointer [17], some combined
visual programming with visualization of spatial waypoints
in the workplace [18], and some explored visualization of
robot motions [1]. However, most of the literature relies on
the ideal workplace layout and completely omits possible
limitations of industry environments (hard-to-reach places,
safety fences) [[pohledat zdroje, který by se zabývaly
rozloženı́m pracoviště, či programovánı́m robotů v klecı́ch,
na nepřı́stupných mı́stech, atp.]].

Recently, frameworks as Google ARCore1 or Apple ARKit2

enabled fast and easy development of AR applications for
phones and tablets, which are in general significantly more
affordable than HMD devices as i.e. Microsoft HoloLens, and
thanks to their widespread, their usage is well known for users.
Compared with a phone, a tablet provides better ordinal depth
perception and seems to be preferred by users [19,20]. How-
ever, consumer-grade handheld devices can not so far deliver
stereoscopic visualization, and therefore the need for viewing
a scene from different angles increases, especially in tasks of,
e.g., aligning virtual and real objects [21,22]. At the same time,

1developers.google.com/ar
2developer.apple.com/augmented-reality/arkit/

Fig. 2. An example of a fitting task, where a user is trying to fit the grey
object onto the red one, which is occluded by the real-world environment.

for certain tasks, it might be beneficial to observe the scene
from a physically demanding or even impossible pose, e.g.,
to zoom in or to switch to a bird’s eye perspective. The issue
has been addressed multiple times by enabling users to switch
from AR (egocentric) visualization to a VR (exocentric) one
for various applications such as 3D model exploration [23,24],
points of interest navigation [25] or furniture arrangement [26].
Despite such a feature inherently increases the complexity of
the user interface and therefore mental effort, existing results
show that it might be faster and more preferred by users [21] or
lead to better scene understanding [20,26]. Additionally, tasks
that were not possible with pure AR can be performed [27].

Transitioning into immersive VR requires either HMD ca-
pable of both AR and VR [26] or a user must put on a VR-
capable HMD when needed [28]. When using a tablet-based
AR without any additional device, there is the only possibility
to transition into non-immersive VR. In this case, there is a
question of how to control the virtual camera position, where
for instance [23] proposes the usage of real physical objects
and natural motions. Moreover, according to our knowledge,
the utility and usability of a transitional approach have not
been so far evaluated within an industrial context.

III. PROPOSED APPROACH

Handheld AR applications in constrained industrial envi-
ronments suffer from reachability limitations, where it may
be hard or even impossible to reach certain locations within
the workspace in order to interact with the AR content. Users
are also limited in terms of moving around the workplace
freely, because of inconvenient workplace layout or safety,
due to presence of large robots or robot fences. Handheld
devices also imply a high physical load when used for a longer
periods of time [12,13,29]. Therefore we propose an approach
of temporal switching to a VR environment, where the user
controls a virtual camera thanks to which is able to see the
workplace and the virtual content from any position.

124

Fig. 3. A user switched to the VR and moved the camera to the physically
inaccessible position in order to get a better view of the scene.

A. Seamless Switching Between AR and VR

Two cameras are needed to enable switching between AR
and VR – one mediating the AR (AR camera), controlled
by AR-capable framework (e.g. Google’s ARCore of Apple’s
ARKit), and the second one for displaying the VR environment
(VR camera). When the user switches the interface to VR, a
virtual counterpart of the workspace is displayed and the VR
camera is transformed to precisely match the AR camera trans-
formation. Using this approach, where the virtual environment
is displayed on the exact same place as the real one, should
limit potential disorientation issues. While in VR, having the
AR framework still active to continuously track the device’s
position in the real world enables immediate switch back
to AR, without the need of tracking re-establishment, which
would normally consume some time. Additionally, available
tracking data can be used to render a virtual model of the
person in the scene, which could help the user to better orient
in VR environment. Switching back to AR resets the VR
camera back to the position of the AR camera, thus to the
user’s position.

B. Movement in VR Environment

To control the VR camera, we propose a unique interaction
mode using a combination of on-screen controls and physical
motion of the handheld device. As a representative of the on-
screen controls, we chose on-screen joysticks. The joystick
approach was chosen mainly because of the effort to reduce the
physical load associated with the use of handheld devices. The
controls can be situated on the sides of the device, allowing
the user to hold it with both hands, thus spreading its weight.
There are three joysticks in total – one for moving the camera
in the axis perpendicular to the ground, second for moving
in the plane parallel to the ground, and third for rotating the
camera. Apart from joysticks approach, conventional gestures
such as drag and pinch can be used.

The on-screen controls are complemented by the physical
motion of the handheld device. That means the VR camera is
mapped to the motion of the AR camera, as tracked by the

AR framework, which enables the same level of interaction
as in AR. This functionality is achieved by keeping the AR
framework for device’s tracking enabled the whole time to get
the device’s transformation matrix for each frame and use it
to transform the VR camera.

Using this combination of controls, a user can move the VR
camera using the joysticks to the position where they want
to operate and then continue the work by moving the tablet
physically, just like when they are in AR.

C. Acquisition of the VR Environment

To complete the AR to VR switching concept, a virtual
counterpart of the real environment must exist, either modelled
in advance or dynamically generated. We assume that for most
industrial workplaces, there is an available model. This model
can be used as a base offline layer, which is sufficient in
scenarios, where the workplace is static and no live-action
is needed in the VR.

The base offline layer can be complemented by online data
acquired from various sensors, either present on the handheld
device or integrated to the workplace, in the form of point
clouds [30], detected surfaces [22,31] or reconstructed 3D
scene [32]. Since the current configuration of the robot is
known to the system, its 3D model in the same configuration
could be visualized as well, to further support the immersity
of the visualization and help the user with the orientation.

IV. EXPERIMENT APPLICATION DESIGN

For the sake of experimental evaluation of the proposed
approach, the prototype application was prepared and imple-
mented using the Unity3D and the AR Foundation frame-
work3, which encapsulates the Google’s ARCore. The appli-
cation was specifically developed for the Samsung Galaxy Tab
S6 device.

The virtual counterpart of the workspace was modelled in
advance, to match the physical workspace where the exper-
imental evaluation should happen. It comprises of a table, a
robot and several cardboard boxes simulating an industrial-like
workspace (see Fig. 3). Besides the static virtual model of the
workspace, a simplified model of a person holding a tablet
is rendered in the scene with the position and orientation of
the user (using the camera pose estimation provided by the
ARCore framework).

The VR camera is controlled by the proposed interaction
mode that uses a combination of three on-screen joysticks with
a physical motion of the tablet. We have designed the user
interface to support long-term usage by allowing the user to
hold the tablet with both hands, which spreads the weight
of it. According to that, all controllable elements of the user
interface are situated in bottom corners of the screen to be
reachable by thumbs. Therefore, two joysticks are placed in the
left bottom corner (one for moving in the axis perpendicular
to the ground, second for moving in the plane parallel to the
ground) and one is placed in the right bottom corner and serves

3docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual

125

for rotating the camera. Besides the proposed interaction mode
– the hybrid joystick control, we also included a pure joystick
control, which disables the mapping of the tablet motion to the
VR camera, so the camera can be controlled by the on-screen
joysticks solely. We added the possibility to switch between
these two control modes at any time to observe what type of
control would users prefer the most.

As a representative task for our experiment, a simple fitting
problem was selected, where users had to align a virtual object
with another one (details in the Section V-A). According to
that, the user interface offers a set of elements for manipulating
with the virtual object, consisting of a transform menu with
several 2D elements and a 3D gizmo (see Fig. 2). To select an
axis, three buttons with corresponding colors (matching the
colors of the different axis on the 3D gizmo) can be used.
The selected axis is represented by the solid background of
corresponding button and a high-contrast color on the gizmo.
A simple two-state button is used for switching between
translation and rotation of the object. To translate or rotate the
virtual object, the so-called transform wheel can be used. It can
be scrolled either up or down, depending if the object should
go in the direction of the gizmo arrow (scrolling down to
positive values) or against it (scrolling up to negative values).
The numbers indicate the number of units by which the
object will be moved or rotated. Unit precision (centimeters,
millimeters, etc.) can be changed by the units selector placed
beneath the wheel.

The transform wheel was designed to be used for a precise
manipulation with the virtual object. For fast manipulation, we
included a mode of free-form movement, where the movement
of the object copies the movement of the physical device. It
can be activated by holding the button with an icon of palm
and is especially useful for the initial, rough positioning of the
objects. A last set of buttons contains a button with an x-cross
inside, which can be used to reset the currently manipulated
object to its initial pose and a button with a check-mark that
is used to confirm the final pose.

V. EVALUATION

A study was conducted to evaluate the proposed approach
and observe users’ behavior. It was designed as a within-
subject and took place in an office-like environment. As a
representative task, a simple fitting was selected (details in
the Section V-A). Prior to the experiment, a preliminary test
took place.

A. Task

The task consisted of multiple alignments of two virtual
objects, inspired by [33]. It was also inspired by the industry,
where is a common need for annotating real-world objects,
encapsulating them by collision bounding boxes, etc. However,
to be able to evaluate the precision of alignment, we chose to
align a virtual on a virtual object instead of a virtual on a real
one. A grey object was first displayed above the workplace
for each sub-task to be easily visible. A slightly larger red
object with a different orientation was displayed within the

workplace. The user had to align the grey one over the red
one. The positions of red objects were chosen to be in hard-
to-reach and hard-to-see areas (occluded by the environment)
and were the same for all participants and both conditions.
The alignment was done using a menu with controls for axis
selection and manipulation (see Fig. 2). After a user was
satisfied with the precision of alignment, they pressed the
confirmation button, and another set of objects was shown.

B. Conditions

Two conditions were tested: CAR as AR-only baseline and
CAR/VR, which allowed switching between AR and VR. The
order of conditions was randomized.

C. Hypotheses

Prior to the experiment, the following hypotheses were
formulated:

• H1 – CAR will have a higher perceived physical load.
In CAR, users will have to perform all motions physically
while with CAR/VR, part of the physical motion will be
compensated by moving a virtual camera.

• H2 – CAR will have a lower perceived mental load.
CAR/VR will introduce new interface controls and will be
more difficult to learn; therefore, the perceived mental
load will be lower for CAR.

• H3 – There will be no significant difference in achieved
precision.
Achieving the same precision will be possible, just more
demanding with CAR, due to the need to move physically.

• H4 – With CAR, manipulation trajectory will be signifi-
cantly longer.
In CAR/VR, users will have the option to position the virtual
camera to a better viewpoint from which they will be
more effective in positioning the virtual object.

D. Participants

For the evaluation, 20 participants were recruited, mainly
from university staff and students with the mean age 28.50
(SD = 6.225) years. 16 participants identified them as male,
4 as female, and 0 as other / prefer not to specify. Participants
were prior to the experiment asked to assess on a Likert scale
from 1 (no experience) to 5 (very experienced) their experience
with 3D authoring software (mean value 2.25, CI [1.59, 2.91]),
AR (2.15, CI [1.59, 2.91]), playing computer games (3.25, CI
[2.65, 3.85]) and usage of either real or virtual controls as
joysticks or gamepads (2.60, CI [2.04, 3.16]). After completing
the evaluation, each participant was given a small material
reward.

E. Setup

The setup consisted of a table equipped with a non-
functioning robot (Dobot M1) in order to create an industrial-
like impression and several cardboard boxes simulating obsta-
cles or machines. The table was fully accessible only from
the front, non-accessible from the rear, while left and right
sides were moderately difficult to access. The purpose was

126

to simulate realistic settings, where unobstructed access from
any side can be hardly achieved. There was a chair available
next to the table. The user interface for evaluation was run
on the Samsung Galaxy S6 tablet. The application was also
used to collect objective metrics such as task time, achieved
accuracy, or traveled distances. Subjective metrics (NASA
TLX [34] and a set of custom questions) were collected using
a questionnaire. The whole experiment was video recorded for
later analysis.

F. Protocol

Each participant was first briefly told about the experiment’s
purpose and then asked to give a signed consent with it and its
recording. Then they filled in the first part of the questionnaire
containing demographic data and custom questions regarding
experience with several factors that may influence results.
After that, a participant was assigned the first condition and
completed a training consisting of alignment of one easy-to-
reach object. They were asked to work fast and precisely at
the same time, no exact duration of the test was mentioned.
Practically, there was a soft 20 minutes deadline meaning
they could finish the last object after the given time passed
out. After completing the first part, they filled in the TLX
questionnaire and continued with the other condition. When
both conditions were finished, participants answered a set of
questions related to VR mode usability and preference, and
then debriefing with a moderator took its place.

G. Preliminary test

In advance of the main evaluation, a preliminary test with
two participants was conducted to validate the task, the exper-
imental protocol, and the developed application.

In the initial draft of the experimental protocol, each partic-
ipant was supposed to align 20 targets in both conditions. The
preliminary test showed us that this would be too demanding
for most of the participants and the session would be too long,
potentially causing arms fatigue for the participants. This could
negatively affect the performance of the participant’s second
condition, as the arms would be already tired from the first
condition. For that reason, a soft limit of 20 minutes was
incorporated into the experimental protocol.

Also, issues with the virtual joysticks were revealed and
therefore, non-linear control was implemented and sensitivity
and dead zone of all joysticks were tuned, so both fast and
precise movements are comfortably available.

VI. RESULTS

As the experiment was designed as a within-subject, we
treated all obtained subjective and objective measures as paired
data. In order to examine differences between conditions, for
each measure, a paired t-test was done if the distribution was
normal or Wilcoxon’s test otherwise. The False Discovery Rate
(FDR) method was applied to cope with multiple comparisons
problem, namely Benjamini/Hochberg approach.

1 2 3 4 5 6

Mental
Demand

Physical
Demand

Temporal
Demand

Performance

Effort

Frustration

4

4.2

4.35

2.75

5.6

3.45

3.9

2.35

4.4

2.5

4.95

2.65

A (AR)

B (AR/VR)

Fig. 4. Mean values for subscales of (raw) NASA TLX (in the range of [1, 7])
with their respective 95 % confidence intervals for both conditions.

A. Statistical Data

The obtained data can be seen in Table I. A paired t-test was
used to detect significant differences between conditions for
the first seven normally distributed metrics and Wilcoxon’s test
was used for the rest. The FDR method (Benjamini/Hochberg)
was used to compensate for multiple comparisons. We found
a significant difference for the Physical Demand dimension of
TLX (p = 0.002), which was lower for CAR/VR, and for Time to
Align, which is the time needed to align one object and which
was lower for CAR. There were also noticeable differences in
Raw TLX (overall TLX) and Effort, however not significant.
The overall (raw) mean TLX for condition CAR was 50.97 and
for CAR/VR, it was 40.97, which is lower than at least 50 % of
studies analyzed [35]. The individual subscales of TLX (scaled
to range [1, 7]) are shown in Fig. 4.

The H1 hypothesis is supported by subjective metric Phys-
ical Demand, which is significantly higher for condition CAR.
For the metric Mental Demand, there is no significant dif-
ference, and therefore we have to reject the H2 hypothesis,
which is actually positive. Although CAR/VR does not seem
to be more mentally demanding than CAR, as we expected,
there is still room for improvements, especially regarding
control using virtual joysticks, which was rated as rather
hard to use (question “VR easy to control by joysticks”, see
Fig. 5). Regarding H3, a significant difference was not found
for Alignment Accuracy. Moreover, a two-one-sided t-tests
procedure (TOST) was used to test for equivalence of both
modalities, with bounds ∆L = −5 and ∆U = 5. With a p-
value 0.00002, we have to reject the TOST hypothesis that the
difference between the two samples is larger than the selected
bounds, and therefore we can not reject the hypothesis H3. For
the Object Distance metric, there is some difference, however,
not a significant one, so the hypothesis H4 has to be rejected.

Surprisingly, there is a significant difference in Time to Align
objective metric (time to align one object), meaning that the
performance was higher under condition CAR. In another word,

127

TABLE I
SUBJECTIVE (TLX) AND OBJECTIVE METRICS, MEANS WITH 95 % CI, STATISTICS, FDR-CORRECTED P VALUES, AND THE RAW ONES. A PAIRED T-TEST
WAS USED TO DETECT SIGNIFICANT DIFFERENCES BETWEEN CONDITIONS FOR THE FIRST SEVEN METRICS WHICH WERE NORMALLY DISTRIBUTED AND
WILCOXON’S TEST WAS USED FOR THE REST. THE FDR METHOD (BENJAMINI/HOCHBERG) WAS USED TO COMPENSATE FOR MULTIPLE COMPARISONS.

METRICS MARKED WITH * ARE NORMALIZED ACCORDING TO A NUMBER OF OBJECTS THAT WERE ALIGNED.

metric CAR (mean/CI) CAR/VR (mean/CI) statistic corrected p-val original p-val

Raw TLX (0-100) 50.97 [43.90, 58.05] 40.97 [32.24, 49.71] 2.05 0.1683 0.055

Mental Demand (1-7) 4.00 [3.45, 4.55] 3.90 [3.17, 4.63] 0.29 0.943 0.772

Physical Demand (1-7) 4.20 [3.45, 4.95] 2.35 [1.82, 2.88] 4.63 0.002 0.0002

Temporal Demand (1-7) 4.35 [3.76, 4.94] 4.40 [3.68, 5.12] -0.13 0.968 0.899

Performance (1-7) 2.75 [2.07, 3.43] 2.50 [1.90, 3.10] 0.75 0.717 0.460

Effort (1-7) 5.60 [5.11, 6.09] 4.95 [4.26, 5.64] 1.99 0.1683 0.061

Frustration (1-7) 3.45 [2.50, 4.40] 2.65 [1.77, 3.53] 1.54 0.31 0.141

Alignment Accuracy* [%] 94.18 [92.51, 95.85] 93.54 [91.33, 95.76] 94.00 0.968 0.968

Time to Align* [s] 162.43 [127.76, 197.10] 230.99 [175.94, 286.03] 23.00 0.007 0.001

Physical Distance* [m] 14.67 [12.11, 17.23] 15.28 [10.29, 20.27] 3.33 0.7173 0.521

Object Distance* [m] 25.05 [16.42, 33.69] 21.10 [13.42, 28.79] 2.17 0.712 0.388

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VR useful for
finding target

VR useful for
positioning

VR easy to control
by joystick

VR easy to control
by motion

VR mode is useful

I enjoyed the study

3.75

4.4

2.65

4.05

4.7

4.35

Fig. 5. Mean values for participants’ agreement with a set of custom questions
on a Likert scale (where 1 means ”I totally disagree” and 5 means ”I totally
agree”), with their respective 95 % confidence intervals.

users were able to align more objects within a given time.
We speculate, that users were slower with CAR/VR condition
because of usability issues with controlling the viewpoint. In
contrast, the self-reported Temporal Demand and Performance
differ very little for both conditions.

In summary, participants rated the usefulness of the VR
mode as rather high, with exception of controlling viewpoint
by virtual joysticks (see Fig. 5), and spent 70 % of the time
within it.

B. Observation Findings

When using the CAR/VR condition, 11 participants took
advantage of sitting down on a nearby chair to get to a more
comfortable and relaxed body pose while in VR (they were
not previously instructed to do so). The 5 of them sat most of
the time and were in VR for the whole experiment duration.
The most typical poses observed during the experiment are
depicted in Fig. 6. Regarding the movement, 17 participants
used the combination of the on-screen joysticks and the motion

of the tablet, of which 5 preferred joystick movement slightly
more. The remaining 3 participants chose to use joysticks only,
complaining about the troubles of simultaneous coordination
of two different sources of movement. 7 participants used the
option of fixing the view by disabling the motion-based control
in order to finish the task by using on-screen joysticks solely.

In favor of pure AR, 3 users claimed that it is easier
to use, faster, and enables a faster and more natural look-
around about the workplace. On the other hand, 5 claimed
that while in VR, they felt more confident and productive.
Using their words, the more time to position the virtual camera
was compensated by lower physical demands. Some claimed
that VR is good for improved spatial imagination about the
workplace, good for fast search of a virtual object. VR felt
more comfortable for the experiment task, mostly because of
the possibility to sit down and relax comfortably, instead of
moving around the workplace physically. 3 participants used
the AR only to quickly find the virtual object in the real world,
position it roughly using the physical motion of the tablet, and
then switched to VR, sat down, and finished the fitting task
from the chair. This supports the idea, that AR and VR can
coexist together in industrial applications when AR can be
more effective for natural interaction with the virtual content
within the workspace, while VR can be used to do the work
more comfortably when AR is no longer needed.

5 participants had large troubles using joysticks. They
complained about the difficulty of controlling them, non-
intuitiveness, and low sensitivity. 3 of them would replace
the joysticks with conventional gestures, like drag and pinch.
2 would prefer moving in the camera coordinate system,
instead of the global one (parallel to the ground plane). 1
even suggested connecting the physical joysticks to the tablet
to control the VR movement.

During the experiment, we also observed how the partici-
pants were searching for the virtual objects within the scene. 1
used the VR to get the camera to the bird’s eye view in order

128

Fig. 6. Demonstration of typical poses during the experiment. Left: While in CAR condition, users often had to stretch themselves into uncomfortable postures
in order to get the needed view about the virtual content. Right: When having the option to switch to VR, approximately half of the participants used a chair
to sit down and performed the task or part of it in a more comfortable and relaxed pose.

to get a fast outlook on the scene and to find the task-related
objects faster. Some used the AR camera solely for finding
virtual objects in the workplace. Exactly 3 started always in
AR, searched for the virtual object, moved it approximately to
the target position, switched to VR, moved the virtual camera
to better view, and finished the task in VR.

Switching from VR back to AR seemed confusing for one
participant. After moving the virtual camera, working on the
task from a different angle than the participant’s physical
position, and switching back to AR, they expected the virtual
content to appear at the same place as it was in VR. This
problem could be mitigated by smooth automatic camera
movement back to the user’s physical position.

VII. DISCUSSION AND PROPOSED IMPROVEMENTS

[[
• Konkrétnı́ návrhy, jak teda zlepšit ovládánı́ VR scény:

– Přednastavené viewpointy, kterými by klikali (viz
paper “Exploring real world points of interest:
Design and evaluation of object-centric explo-
ration techniques for augmented reality”, kde
jim ale právě ty viewpointy vyšly jako nejhůř
použı́vané - dalo by se zhodnotit a toto za-
vrhnout).

– Manipulace přı́mo se scénou - otáčı́m a zoomuju
scénu, nikoliv free-look kameru.

]]
Based on the gained experience from the conducted exper-

iment, we propose several improvements of our approach for
handheld-based AR in the context of industrial environments.
As movement in the VR environment using joysticks appeared
to be non-intuitive and hard to control to some participants,
especially those without any experience with game-pads, we
focused mainly on improving this particular problem. One
possible solution would be to replace the joysticks with
predefined viewpoints, as Tatzgern et al. [24] proposed in their

work for exploring distant landmarks in AR. They compared
the viewpoint approach for exploring the virtual model of the
landmark with free-form manipulation of the model. Based
on the results, the free-form manipulation outperformed the
viewpoint switching, mainly due to disorientation problems
when changing the views. Therefore, we transformed our free-
form movement using joysticks into a free-form manipulation
with the scene.

A. Improved Movement in VR Environment

Instead of free-form VR camera movement in the VR
environment using three joysticks, which was rated as rather
hard to use during the conducted experiment, we propose a
control method that should reduce the mental demand induced
by too many control inputs (three joysticks with different
functionality) by reducing the number of inputs and employing
a more natural interaction technique – gestures. The method
uses two gestures only – pinch and drag and fully compensates
the joystick-based approach. As depicted in Fig. 7, the VR
camera can be rotated around the z axis

VIII. CONCLUSIONS

The presented approach aims to improve the usability of
handheld AR, especially in constrained industrial environ-
ments, where reaching certain poses might be difficult or
impossible due to limited space or safety measures. It allows
users to temporarily switch from AR to non-immersive VR,
where they can freely adjust viewpoint in the virtual counter-
part of the real environment using on-screen controls in con-
junction with moving a tablet physically. In order to evaluate
the approach and gain knowledge about users’ behavior, the
within-subject user study (n = 20) was conducted, where an
object alignment was selected as a general representative task.

The results have shown that the ability to switch temporarily
between AR and VR has potential as physical demands were
significantly lower when compared to pure AR, whereas

129

Fig. 7. Proposed approach for improved movement in the virtual scene where
users, instead of moving the virtual camera using joysticks, are manipulating
the scene directly using pinch gesture for zooming and drag gesture for
rotating the scene in vertical axis.

physical demands could be considered as a limiting factor for
AR usage. User observations have revealed that the VR mode
was often used to get an overview of the workspace, to find
an occluded object, or to avoid an uncomfortable position.

In summary, the approach provided a clear advantage re-
garding the physical load of users and was well accepted.
The possible applications could be, i.e., workspace anno-
tation, spatially-oriented visual programming, monitoring of
processes, etc.

In future work, we will investigate other possibilities of
controlling the free-viewpoint in order to improve usability,
as joysticks were evaluated as cumbersome and complicated.
Moreover, adding smooth transitions between AR and VR
displays may help to enhance users’ experience. It could also
be interesting to compare the proposed approach with a pure
VR. Last but not least, the proposed solution will be integrated
into a framework for visual robot programming in AR.

REFERENCES

[1] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating robot arm motion intent through mixed
reality head-mounted displays,” in Robotics research. Springer, 2020,
pp. 301–316.

[2] H. Eschen, T. Kötter, R. Rodeck, M. Harnisch, and T. Schüppstuhl,
“Augmented and virtual reality for inspection and maintenance processes
in the aviation industry,” Procedia manufacturing, vol. 19, pp. 156–163,
2018.

[3] E. Z. Barsom, M. Graafland, and M. P. Schijven, “Systematic review on
the effectiveness of augmented reality applications in medical training,”
Surgical endoscopy, vol. 30, no. 10, pp. 4174–4183, 2016.

[4] S. Werrlich, K. Nitsche, and G. Notni, “Demand analysis for an
augmented reality based assembly training,” in Proceedings of the 10th
International Conference on PErvasive Technologies Related to Assistive
Environments, 2017, pp. 416–422.

[5] Z. Materna, M. Kapinus, V. Beran, P. Smrž, and P. Zemčı́k, “Interactive
spatial augmented reality in collaborative robot programming: User
experience evaluation,” in 2018 27th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). IEEE, 2018,
pp. 80–87.

[6] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, and A. Raatz,
“Intuitive robot programming using augmented reality,” Procedia CIRP,
vol. 76, pp. 155–160, 2018.

[7] M. Kapinus, V. Beran, Z. Materna, and D. Bambušek, “Spatially
situated end-user robot programming in augmented reality,” in 2019
28th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2019, pp. 1–8.

[8] D. Schmalstieg and T. Hollerer, Augmented reality: principles and
practice. Addison-Wesley Professional, 2016.

[9] M. Berning, D. Kleinert, T. Riedel, and M. Beigl, “A study of depth
perception in hand-held augmented reality using autostereoscopic dis-
plays,” in 2014 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE, 2014, pp. 93–98.

[10] T. D. Do, J. J. LaViola, and R. P. McMahan, “The effects of object
shape, fidelity, color, and luminance on depth perception in handheld
mobile augmented reality,” in 2020 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, 2020, pp. 64–72.

[11] J. E. Swan, L. Kuparinen, S. Rapson, and C. Sandor, “Visually perceived
distance judgments: Tablet-based augmented reality versus the real
world,” International Journal of Human–Computer Interaction, vol. 33,
no. 7, pp. 576–591, 2017.

[12] S. Boring, M. Jurmu, and A. Butz, “Scroll, tilt or move it: using mobile
phones to continuously control pointers on large public displays,” in
Proceedings of the 21st Annual Conference of the Australian Computer-
Human Interaction Special Interest Group: Design: Open 24/7, 2009,
pp. 161–168.

[13] J. D. Hincapié-Ramos, X. Guo, P. Moghadasian, and P. Irani, “Consumed
endurance: a metric to quantify arm fatigue of mid-air interactions,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2014, pp. 1063–1072.

[14] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. M. Van der Loos,
and E. Croft, “Robot programming through augmented trajectories in
augmented reality,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1838–1844.

[15] S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and G. Konidaris,
“End-user robot programming using mixed reality,” in 2019 Interna-
tional conference on robotics and automation (ICRA). IEEE, 2019, pp.
2707–2713.

[16] M. Ostanin and A. Klimchik, “Interactive robot programing using mixed
reality,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 50–55, 2018.

[17] S. Ong, A. Yew, N. Thanigaivel, and A. Nee, “Augmented reality-
assisted robot programming system for industrial applications,” Robotics
and Computer-Integrated Manufacturing, vol. 61, p. 101820, 2020.

[18] E. Yigitbas, I. Jovanovikj, and G. Engels, “Simplifying robot program-
ming using augmented reality and end-user development,” arXiv preprint
arXiv:2106.07944, 2021.

[19] A. Dey, G. Jarvis, C. Sandor, and G. Reitmayr, “Tablet versus phone:
Depth perception in handheld augmented reality,” in 2012 IEEE inter-
national symposium on mixed and augmented reality (ISMAR). IEEE,
2012, pp. 187–196.

[20] U. Riedlinger, L. Oppermann, and W. Prinz, “Tango vs. hololens: A
comparison of collaborative indoor ar visualisations using hand-held and
hands-free devices,” Multimodal Technologies and Interaction, vol. 3,
no. 2, p. 23, 2019.

[21] M. Sukan, S. Feiner, B. Tversky, and S. Energin, “Quick viewpoint
switching for manipulating virtual objects in hand-held augmented
reality using stored snapshots,” in 2012 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). IEEE, 2012, pp. 217–226.

130

[22] B. Nuernberger, E. Ofek, H. Benko, and A. D. Wilson, “Snaptoreality:
Aligning augmented reality to the real world,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, 2016,
pp. 1233–1244.

[23] M. Billinghurst, H. Kato, and I. Poupyrev, “The magicbook: a transi-
tional ar interface,” Computers & Graphics, vol. 25, no. 5, pp. 745–753,
2001.

[24] M. Tatzgern, R. Grasset, E. Veas, D. Kalkofen, H. Seichter, and
D. Schmalstieg, “Exploring real world points of interest: Design and
evaluation of object-centric exploration techniques for augmented real-
ity,” Pervasive and mobile computing, vol. 18, pp. 55–70, 2015.

[25] A. Mulloni, A. Dünser, and D. Schmalstieg, “Zooming interfaces for
augmented reality browsers,” in Proceedings of the 12th international
conference on Human computer interaction with mobile devices and
services, 2010, pp. 161–170.

[26] M. Mori, J. Orlosky, K. Kiyokawa, and H. Takemura, “A transitional ar
furniture arrangement system with automatic view recommendation,” in
2016 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR-Adjunct). IEEE, 2016, pp. 158–159.

[27] R. Grasset, A. Dünser, and M. Billinghurst, “Moving between contexts-a
user evaluation of a transitional interface,” 2008.

[28] J. S. Roo and M. Hachet, “Towards a hybrid space combining spatial
augmented reality and virtual reality,” in 2017 IEEE Symposium on 3D
User Interfaces (3DUI). IEEE, 2017, pp. 195–198.

[29] E. E. Veas and E. Kruijff, “Handheld devices for mobile augmented
reality,” in Proceedings of the 9th International Conference on Mobile
and Ubiquitous Multimedia, 2010, pp. 1–10.

[30] S. N. B. Gunkel, H. M. Stokking, M. J. Prins, N. van der Stap,
F. B. t. Haar, and O. A. Niamut, “Virtual reality conferencing: Multi-
user immersive vr experiences on the web,” in Proceedings of the 9th
ACM Multimedia Systems Conference, ser. MMSys ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 498–501.

[31] Y.-C. Kung, Y.-L. Huang, and S.-Y. Chien, “Efficient surface detection
for augmented reality on 3d point clouds,” in Proceedings of the 33rd
Computer Graphics International, ser. CGI ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 89–92.

[32] T. Zhou, Q. Zhu, and J. Du, “Intuitive robot teleoperation for civil
engineering operations with virtual reality and deep learning scene
reconstruction,” Advanced Engineering Informatics, vol. 46, p. 101170,
2020.

[33] M. Krichenbauer, G. Yamamoto, T. Taketom, C. Sandor, and H. Kato,
“Augmented reality versus virtual reality for 3d object manipulation,”
IEEE transactions on visualization and computer graphics, vol. 24,
no. 2, pp. 1038–1048, 2017.

[34] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in Pro-
ceedings of the human factors and ergonomics society annual meeting,
vol. 50, no. 9. Sage publications Sage CA: Los Angeles, CA, 2006,
pp. 904–908.

[35] R. A. Grier, “How high is high? a meta-analysis of nasa-tlx global
workload scores,” Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 59, no. 1, pp. 1727–1731, 2015.

131

Effective Remote Drone Control Using Augmented Virtuality

Kamil Sedlmajer1, Daniel Bambušek1 and Vı́tězslav Beran1

1Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova 1/2,
Brno, 612 66, Czech Republic.

kamilsedlmajer@gmail.com, {bambusekd, beranv}@fit.vutbr.cz

Keywords: Augmented Virtuality, UAV, Drone Piloting, Virtual Scene, Navigation Elements, First Person View, Third
Person View

Abstract: Since the remote drones control is mentally very demanding, supporting the pilot with both, first person view
(FPV) and third person view (TPV) of the drone may help the pilot with orientation capability during the
mission. Therefore, we present a system that is based on augmented virtuality technology, where real data
from the drone are integrated into the virtual 3D environment model (video-stream, 3D structures, location
information). In our system, the pilot is mostly piloting the drone using FPV, but can whenever switch to TPV
in order to freely look around the situation of poor orientation. The proposed system also enables efficient
mission planning, where the pilot can define 3D areas with different potential security risks or set naviga-
tion waypoints, which will be used during the mission to navigate in defined zones and visualize the overall
situation in the virtual scene augmented by online real data.

1 INTRODUCTION

Nowadays, the use of unmanned aerial vehicles
(UAVs) extends to a wide range of areas, from res-
cue services and police forces to the commercial sec-
tor. Drones are used to monitor the quality of high
voltage structures, the development of infrastructure
outages, or to support complex interventions by res-
cue or police units. In all cases, the use of a drone
requires high skill and mental demand for the drone
operator.

Recent research let arise to various autonomous
modes, where the drones are able to perform a pre-
cisely predefined mission independently and without
the need for operator intervention. Unfortunately, to-
day there is no problem in solving a wide range of
tasks with the autonomous capability of the drone,
but with the operator’s legal constraints. For this rea-
son, it is necessary to look for a different solution.
This article deals with solving this situation by link-
ing autonomous drone functions to operator control.
The article seeks to reduce the operator’s mental load
in controlling drone in action using semi-autonomous
drone functions.

Legal constraints today do not allow the full use
of autonomous drone functions. Similarly, existing
drone control solutions are now extremely burden-
some for the operator. Orientation in space, keeping

in safe zones, tracking key mission points, all of this
makes the operation of the drone operator quite chal-
lenging.

Based on the study of existing tools and published
results in the field, supported by own drone control
experience, this work aims to define the key attributes
of attention to the drone’s operator and proposes a
range of visualization and interactive features to re-
duce the drone operator’s mental load, using aug-
mented virtuality.

The key elements, that this study builds on, are the
use of available topography maps, elevation maps, 3D
data and virtual objects to enhance mission navigation
clarity. The proposed solution combines existing data
sources into a 3D virtual scene, augmented by on-
line drone camera video-stream and other drone sen-
sor data, as well as user-defined virtual objects such
as safe zone boundaries or key points of a planned
mission.

2 RELATED WORK

With an increasing popularity of drones, new effec-
tive methods for piloting them are emerging. Some
are concentrating solely on autonomous flights with
autonomous obstacle avoidance algorithms (Gageik
et al., 2015) and (Devos et al., 2018), others are fo-

132

cusing on various user interfaces for manual drone
controlling, such as gesture-based, voice-based, or re-
mote controllers along with head-mounted displays
(HMD). Recently, there were some experiments for
controlling drones using brain-computer interfaces
(Nourmohammadi et al., 2018) and (Mamani and
Yanyachi, 2017). More common are attempts of di-
rect drone control using gestures, which are detected
with use of vision based methods from either drone
attached cameras (Fernández et al., 2016), (Natara-
jan et al., 2018) or from additional hand tracking
devices, such as the Leap Motion (Gubcsi and Zse-
drovits, 2018). Unfortunately, such approaches are
usable only for piloting the drone within a close dis-
tance rather than piloting it remotely. When piloting
the drone remotely, but still from a visible distance,
using some remote controller, it is often difficult to
distinguish the drone’s front face, which causes high
workload on the operator. In order to lower this work-
load, Cho et al. introduced an egocentric drone con-
trol approach, which keeps the drone’s back face au-
tomatically rotating towards the operator, who is pi-
loting the drone from his/hers perspective (Cho et al.,
2017).

To enable the user to control the drone completely
remotely, without directly observing it, it is crucial to
provide the user some sort of vision from the drone
perspective. Currently, there are many commercially
available products that are able to transmit the image
from the drone attached camera into either the HMD,
handheld display or regular screen in order to provide
the first person view (FPV) for the operator. However,
most of them only sends monocular video feed, which
is insufficient in terms of perceiving distances, depths
and proportions inside the FPV. The solution to over-
come this problem has proved to be the attachment of
two cameras to the drone to enable the stereoscopic
vision inside the HMD (Smolyanskiy and Gonzalez-
Franco, 2017).

Using remote controllers require attention and de-
veloped skills during piloting. Replacing them with
wearable interfaces, such as exoskeleton suit with
smart glove, could enable a more natural and intu-
itive drone control, where the operator feels more im-
mersed (Rognon et al., 2018). Unfortunately, the op-
erator could still struggle with awareness of drone sur-
roundings that are out of drone camera’s field of view
(FoV). There comes in place the idea of placing the
camera image into a virtual environment model, in or-
der to extend the limited FoV (Calhoun et al., 2005).
The image, along with the virtual model, can be aug-
mented with waypoints, danger zones or points of in-
terest. We believe that enabling the operator to when-
ever switch from the FPV into a third person view

(TPV), where he/she can see whole drone situated in
a virtual environment, should improve operator’s sit-
uation awareness and reduce the mental load.

3 PROPOSED INTERFACE

The main goal of this work is to design a visualiza-
tion system and navigation elements that will reduce
the operator’s mental strain when piloting the drone
over longer distances. We define the following key
attributes and how to resolve them:

1. Off-line and on-line spatial and sensory data fu-
sion.

2. Virtual cameras.

3. Navigation or security structures.

Operator orientation might be improved by the
TPV. The presented solution is based on virtual 3D
scene augmented by real on-line data registered and
visualized in the virtual scene (Augmented Virtuality).
The 3D scene is created from the available free map
data sources (topological, elevation). The 3D model
of the drone inserted to the scene is controlled (posi-
tion and orientation) by the data transmitted from the
real drone. A video-stream from the camera on the
drone is also rendered to the virtual scene. All com-
bined spatial data must be properly registered into a
local coordination frame. The pilot is then able to
control the drone as usual (FPV), but can also unlock
the camera and move to the TPV and see the drone
and its surroundings. The operator’s FoV is signifi-
cantly expanded. This concept is depicted in the Fig-
ure 1.

The rendering of the video-stream to the vir-
tual scene can be realized in several different ways.
The first is to project it into a huge virtual screen (see
Figure 1). The screen size depends on the FoV of
the physical camera with either a plane or a suitably
curved surface. The screen is moving at a fixed dis-
tance from the drone and follows the drones’ position
and orientation. The other option is to project the im-
age directly onto objects in the scene. The usability of
the video projection onto virtual scene requires very
precise registration between the 3D virtual scene and
the drone.

Virtual cameras in the 3D scene provides the
user with ability to look into the scene from any view-
point and to manipulate the camera freely. E.g. the
operator can stop the drone in a safe position (safe dis-
tance from the obstacle) and move around the scene
by flying with the virtual camera. When the virtual
camera is fixed, the operator can switch back to con-

133

Figure 1: Concept of controlling the drone from the third
person view. The virtual screen (with the video feed) moves
at a certain distance in front of the drone and is synchro-
nized with the physical gimbal configuration.

trol the drone and observe the scene from a new vir-
tual position.

Another way to increase the safety of remote
drone control is visualization of other sensor data,
such as depth data, usually presented by 3D point
cloud, that samples outer surfaces of objects around.
This data significantly refine and complement the
world model created from off-line data and allow the
pilot to have a much better overview of the static
obstacles around the drone, such as trees, buildings,
cars, etc.

The use of augmented virtuality further provides
the operator with the ability to add navigation or se-
curity structures to the scene. One such element
may be virtual walls. These can define a space in
the scene, such as unauthorized entry or a safe zone.
Since such zones are often up to a certain height, dis-
playing them in 3D scene is far more perspicuous than
displaying them on a 2D map.

Another elements, e.g. for a flight in a more com-
plex environment with a number of obstacles, are
navigation arrows that point to waypoints. As a re-
sult, the pilot will always know which direction to fly
and the task is just to avoid the obstacles. These way-
poins can be placed not only on the ground, but also at
a specific height in the air. The application should also
be able to navigate back to the starting point and the
pilot should be able to display both navigation arrows
at once. One will point to the starting point, the other
to the current waypoint. In addition to the arrows, the
distance to a given point may also be displayed.

4 System Architecture

The testing application was developed using the Unity
game engine. For creating the 3D virtual envi-

Figure 2: Communication between the drone and the
ground station. On the application side, the ROS# library
communicates with the drone via Rosbridge, where the data
are transmitted via the WebSocket protocol. The applica-
tion also automatically downloads maps, 3D buildings and
heightmaps from the Internet.

ronment, we used the plugin MapBox1. The plu-
gin automatically loads the environment maps and
heightmaps in order to create the terrain in Unity.
MapBox also includes several map layers with 3D
building models, which are not perfect (rough build-
ing shapes, approximate heights, unrealistic textures
or fake rooftop shapes), but they are still sufficient for
our proof of concept. For a better quality virtual en-
vironment, virtual objects and textures from Google
Maps, which are currently the best on the market,
could be used. However, Google does not provide
them to third parties yet.

For a successful combination of the virtual scene
with the real drone, it is necessary to transmit follow-
ing data from the drone into the ground station:

• Drone’s position (pair of coordinates in WSG84
format).

• Drone’s rotation (yaw – angle obtained from an
electronic compass on the drone; pitch and roll).

• Compressed drone-attached camera stream.

• Drone-attached camera rotation (in respect to the
drone).

• Other available sensor data (e.g. point cloud, bat-
tery status, flight speed, flight mode).

The method is based on 3D virtual scene model.
The 3D virtual data are integrated from existing data
sources and the coordination system is registered to
actual real drone position. The GPS drone coordi-
nates and orientation data is used for registration with
virtual 3D frame. The augmentation of the virtual 3D
scene is achieved by rendering the live video-stream

1https://docs.mapbox.com/unity/maps/overview/

134

from the drone front camera to projection plane in
front of the virtual drone. The video latency is an im-
portant issue and highly influence the quality of the
interaction with the proposed system. The video la-
tency hardly depends on the quality of the WiFi sig-
nal, i.e. distance between the drone and the station.
The additional navigation UI elements, like mission
points, direction to next point or virtual walls, are ren-
dered into virtual scene and presented to the user. The
registration method might be improved by computer
vision techniques, but this step will be considered
later according to user tests, when the effect of rough
GPS and compass based registration and caused video
latency will be considered by professional pilots as an
important issue.

The communication protocol is dependent on the
drone manufacturer, drone’s control unit and used
software. In order to have customization possibil-
ities, we built our custom experimental drone (see
Figure 3), which comprises of the Pixhawk control
unit with PX4 Autopilot software, Nvidia Jetson TX2
with the Ubuntu OS, stereoscopic camera, GPS and
a compass. We chose the communication over WiFi
between the drone and the base station. WiFi com-
munication is limited in transmit distance, but has a
high data throughput. The PX4 Autopilot uses the
MAVlink communication protocol, which is trans-
ferred into the MavRos protocol of the ROS operating
system (running on the Nvidia Jetson) over the Ros-
bridge tool. The communication scheme is depicted
in the Figure 2. The system architecture is described
in more detail in (Sedlmajer, 2019).

5 RESULTS

A test application was created with the implementa-
tion of several basic elements described in the pre-
vious chapter; and several real drone tests were per-
formed. Since it was only an experimental platform
with a gimbal-free camera and connection to a ground
station via WiFi, which was limited in scope, it was
only possible to perform the testing with limited re-
strictions. In spite of this, it was possible to try out
a few basic use cases where the tests showed that the
concept works and it is possible to control the drone
with it. The application was built and tested on a lap-
top.

5.1 Test 1: Monitoring the area where
the drone must not fly

When using a drone, for example, in the service of the
police, it is often necessary to monitor an area (road,

Figure 3: Test drone with Pixhawk control unit, ZED stereo-
scopic camera and Nvidia Jetson supercomputer, shot just
above ground.

demonstration area, etc.). However, the police must
also comply with the legal constraints, therefore their
drones must not be flown, for example, near a high-
way or over a square full of people. If a pilot wants to
use the drone to track the area, but to keep it out of its
protective zone, he must constantly check where the
drone is.

The first designed test flight was supposed to
check whether adding virtual walls, representing bor-
ders of such areas, would help the pilot stay on their
edge while observing what is happening around.

Virtual transparent walls were very useful in this
test when flying inside the area, because the pilot sees
clearly that he is approaching the border, or that he has
just flown through it (see Figure 4). But the flight at
the walls’ border proved surprisingly difficult. When
flying near these walls (about 5-8m) it is really hard to
estimate their distance. Therefore, it would be useful
to hide them and display only the nearest part of the
border when the drone really approaches it. The sec-
ond option could be to gradually make the walls more
transparent if the drone moves away from them. Most
clearly, the part of the border that is closest to the
drone would shine, the distant parts would be com-
pletely hidden. So if the pilot saw a glowing grille in
front of him, he would know with absolute certainty
that the border is very close. The distance, at which
the boundary would appear, would be good to adjust
to the speed at which the drone is approaching it, so
that the pilot always has enough time to react, but at
the same time the boundary does not unnecessarily
interfere with the pilot’s vision.

Another problem was the blending of the virtual
wall with a virtual screen that was distracting and un-
pleasant. But even the proposed solution could at
least partially solve this problem, because only the
part of the boundary that is really needed at that mo-
ment would always be displayed.

135

5.2 Test 2: Exploration of a distant
object and flight between obstacles

This test mimicked another fairly common task – ex-
ploring a more distant object (such as a house or a
parked car) that is too far away from the drone, caus-
ing the pilot to fly closer to it. Here, the aim was to
test whether the application really could help to im-
prove the pilot’s spatial orientation during the flight
to this location, the object being explored, and the re-
turn to the starting point. In this test, it was assumed
that the pilot knows the position of the object in ad-
vance and can create a waypoint on the object’s po-
sition and navigate to it. The second part of the test
was a low altitude flight between obstacles, when it is
not possible to use an autonomous flight, but the pi-
lot must manually get through a lot of obstacles (e.g.
trees) and not to lose the spatial orientation and di-
rection of the flight even with no landmarks around.
It is not possible to use map data in this mode, be-
cause it is necessary to fly using a video only in order
to watch obstacles carefully. Here, however, naviga-
tion arrows could help, because they keep the pilot in-
formed about the direction to the waypoint and back
to the starting point. This allows the pilot to accom-
plish the task faster.

When testing a remote object survey, an object
was placed on the ground at a distance of approxi-
mately 60m from the starting point, and a waypoint
was created at that point. Between the starting point
and this point was an asphalt cycle path and several
rows of freshly planted young trees that created nat-
ural obstacles. Since there were only meadows and
low trees nearby, there were hardly any natural land-
marks. Orientation only by the poor quality video
stream was very demanding. However, during this
test, the navigation arrows, which performed perfectly
in their role, had greatly facilitated spatial orienta-
tion and significantly helped to reduce cognitive stress
during driving. It was not necessary to search for nat-
ural landmarks, it was enough to observe nearby ob-
stacles, a navigation arrow and a gradually decreas-
ing distance to the destination. After a while, a target
point indicator appeared on the ground.

But at this stage, there was a problem, because the
target waypoint was constantly traveling the ground
a few meters in all directions from a relatively small
target. This was probably due to the inaccuracy of
GPS navigation. In an effort to circumvent the exam-
ined object and explore it from all sides, the constant
movement of this point and the confused rotation of
the arrow was very annoying and confusing. Surpris-
ingly, this subject was complicated.

It was much easier to do the fly around and survey

Figure 4: Screen of the implemented application based on
augmented virtuality. The virtual environment model is
augmented with the data from the real drone – position and
orientation, which are used to render the virtual drone in
the scene; camera image that is aligned with the virtual en-
vironment model (marked with the red circles); and other
sensor data. This environment model can be enriched by
virtual walls (the green grille) that can mark restricted areas
or with a waypoints and direction arrows.

with the navigation arrow turned off, by video only.
At this point, it would probably be better if the nav-
igation elements were automatically hidden after ar-
riving close to the target and appeared again only if
the drone moved away from the target again.

On the other hand, the second arrow pointing to
the starting point could be used for orientation, as a
some sort of compass that makes clear how the drone
is being turned. In addition, for a pilot, a pointer to
the starting point is somewhat more natural than an
ordinary compass pointing to the north.

5.3 Discussion

Overall, the implemented application was relatively
pleasant to use and the fact that it was able to partially
compensate the absence of gimbal was positively ap-
preciated. Indeed, by moving the video according to
the current tilt of the drone, the objects on the video
were still displayed at approximately the same loca-
tion in the scene. Of course, the convenience of using
the application was reduced by controlling the cam-
era’s rotation with the arrow keys of the laptop key-
board. This convenience could be increased by con-
nection of VR glasses with head-tracker, which would
allow the pilot to naturally look around the scene.

On the other hand, the application did not work
very well at very low altitudes (up to 3m), where the
flight altitude and the distance from smaller objects
were very poorly estimated. However, this problem
also occurs in the first person view (FPV). Surpris-
ingly, adding a drone model to the scene did not re-
duce the problem, but slightly increased it.

136

Quite surprisingly, the virtual screen with the cam-
era image was relatively well-connected to the virtual
scene most of the time, which even slightly exceeded
expectations, especially given that the test drone cer-
tainly did not have the most accurate sensors avail-
able. Professional drone data is likely to be even more
accurate.

The further development will be primarily focused
on solving problems that were discovered during test-
ing and on other designed ideas that were not imple-
mented (e.g. the visualization of other sensor data,
the point cloud, and the completion of area boundary
visualization). Then, VR glasses with a head-tracker,
which allows natural looking around the scene, will
be connected to the application. Another such thing
is to implement a free camera and test its capabilities.

6 CONCLUSIONS

The aim of this work was to improve pilot’s orienta-
tion and to reduce his mental load during the drone
remote control. Based on research and experience,
a system has been designed that is based on aug-
mented virtuality, where on-line data from drone sen-
sors (video-stream, flight data, etc.) are integrated
into the virtual environment model. The 3D vir-
tual model consists of the data from external data
sources like topography maps, elevation maps and
3D building models. The model also includes the
user-specified planned mission information like way-
points, safe zone boundaries or flight directions.

The system architecture is designed to be scalable
to communicate with multiple drones simultaneously.
This could be useful in situations where more pilots
are simultaneously carrying out a mission and have to
work together.

The preliminary user tests proved that the pro-
posed concept and technical implementation of the
entire system improves the operator’s orientation and
navigation skills and so reducing the mental load.
More user tests are planned in future work. The pro-
fessional pilots will test the system to refine the con-
cept, to improve or include more UI elements and for
further development based on their needs.

ACKNOWLEDGEMENTS

The work was supported by Czech Ministry of Educa-
tion, Youth and Sports from the National Programme
of Sustainability (NPU II) project “IT4Innovations
excellence in science – LQ1602” and by Ministry of
the Interior of the Czech Republic project VRASSEO

(VI20172020068, Tools and methods for video and
image processing to improve effectivity of rescue and
security services operations).

REFERENCES
Calhoun, G., H. Draper, M., F Abernathy, M., Delgado, F.,

and Patzek, M. (2005). Synthetic vision system for
improving unmanned aerial vehicle operator situation
awareness. Proceedings of SPIE - The International
Society for Optical Engineering, 5802.

Cho, K., Cho, M., and Jeon, J. (2017). Fly a drone safely:
Evaluation of an embodied egocentric drone controller
interface. Interacting with Computers, 29(3):345–
354.

Devos, A., Ebeid, E., and Manoonpong, P. (2018). De-
velopment of autonomous drones for adaptive obsta-
cle avoidance in real world environments. In 2018
21st Euromicro Conference on Digital System Design
(DSD), pages 707–710.

Fernández, R. A. S., Sanchez-Lopez, J. L., Sampedro, C.,
Bavle, H., Molina, M., and Campoy, P. (2016). Nat-
ural user interfaces for human-drone multi-modal in-
teraction. In 2016 International Conference on Un-
manned Aircraft Systems (ICUAS), pages 1013–1022.

Gageik, N., Benz, P., and Montenegro, S. (2015). Obstacle
detection and collision avoidance for a uav with com-
plementary low-cost sensors. IEEE Access, 3:599–
609.

Gubcsi, G. and Zsedrovits, T. (2018). Ergonomic quad-
copter control using the leap motion controller.
In 2018 IEEE International Conference on Sens-
ing, Communication and Networking (SECON Work-
shops), pages 1–5.

Mamani, M. A. and Yanyachi, P. R. (2017). Design of com-
puter brain interface for flight control of unmanned air
vehicle using cerebral signals through headset elec-
troencephalograph. In 2017 IEEE International Con-
ference on Aerospace and Signals (INCAS), pages 1–
4.

Natarajan, K., Nguyen, T. D., and Mete, M. (2018). Hand
gesture controlled drones: An open source library.
In 2018 1st International Conference on Data Intel-
ligence and Security (ICDIS), pages 168–175.

Nourmohammadi, A., Jafari, M., and Zander, T. O. (2018).
A survey on unmanned aerial vehicle remote control
using brain–computer interface. IEEE Transactions
on Human-Machine Systems, 48(4):337–348.

Rognon, C., Mintchev, S., Dell’Agnola, F., Cherpillod,
A., Atienza, D., and Floreano, D. (2018). Fly-
jacket: An upper body soft exoskeleton for immersive
drone control. IEEE Robotics and Automation Letters,
3(3):2362–2369.

Sedlmajer, K. (2019). User interface for drone control using
augmented virtuality. Master’s thesis, Brno University
of Technology, Faculty of Information Technology.

Smolyanskiy, N. and Gonzalez-Franco, M. (2017). Stereo-
scopic first person view system for drone navigation.
Frontiers in Robotics and AI, 4.

137

	Introduction
	Background Technologies and Scientific Areas
	Mixed Reality
	Collaborative robots and programming
	Unmanned Areal Vehicles (UAVs/drones)
	Human-Computer Interaction Research

	Spatial Robot Programming
	Modalities and their error effect
	2D GUI in 3D task space
	3D GUI in 3D task space
	VR vs. AR in Robot Spatial Programming

	UAV Pilot Support by New UI Elements
	Augmented Virtuality for Pilot Situational Awareness
	Automatic Assistant for Safe Drone Control

	Conclusions
	References
	Appendix: Selected publications
	Simplified Industrial Robot Programming: Effects of Errors on Multimodal Interaction in WoZ experiment
	Using Persona, Scenario, and Use Case to Develop a Human-Robot Augmented Reality Collaborative Workspace
	Interactive Spatial Augmented Reality in Collaborative Robot Programming: User Experience Evaluation
	Combining Interactive Spatial Augmented Reality with Head-Mounted Display for End-User Collaborative Robot Programming
	End-User Robot Programming Case Study: Augmented Reality vs. Teach Pendant
	Spatially Situated End-User Robot Programming in Augmented Reality
	Improved Indirect Virtual Objects Selection Methods for Cluttered Augmented Reality Environments on Mobile Devices
	Augmented Reality Spatial Programming Paradigm Applied to End-User Robot Programming
	ARCOR2: Framework for Collaborative End-User Management of Industrial RoboticWorkplaces using Augmented Reality
	How Do I Get There? Overcoming Reachability Limitations of Constrained Robotic Workspaces in Augmented Reality Applications
	Effective Remote Drone Control Using Augmented Virtuality

