
 

BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF ELECTRICAL ENGINEERING 
AND COMMUNICATION 
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF TELECOMMUNICATIONS 
ÚSTAV TELEKOMUNIKACÍ 

RECENT ADVANCES IN FRACTIONAL-ORDER ANALOG 
CIRCUITS 
NEJNOVĚJŠÍ POKROKY V OBLASTI ANALOGOVÝCH OBVODŮ ZLOMKOVÉHO ŘÁDU 

HABILITATION THESIS 
HABILITAČNÍ PRÁCE 

AUTHOR Ing. DAVID KUBÁNEK, Ph.D. 
AUTOR PRÁCE 

BRNO 2022  



 

Abstract 
This habilitation thesis is focused on research in the area of analog linear electrical circuits 

of fractional, i.e. non-integer order. These function blocks provide new, more general and 

flexible characteristics that cannot be obtained by classic integer-order circuits or only at 

the cost of increasing their complexity. The thesis is divided into seven main chapters, 

which are initially focused on the motivation, the goals of the work and the description 

of the current state of the art. Subsequently, the method of realizing passive circuit 

elements with fractional-order impedance using layered resistive-capacitive structures 

with distributed parameters is presented. Further, the possibilities of transforming 

fractional-order impedances using active circuits to obtain a wider range of available 

parameters of these elements are described. This is followed by a chapter dealing with 

modeling the impedance properties of biological materials, specifically the cardiac cell 

membrane, using fractional-order impedance elements. The next part of the thesis is 

focused on frequency filters of fractional order. Different forms of transfer functions of 

these filters are presented and their coefficients are found for various types of filter 

characteristics. The final chapter deals with fractional-order oscillators and their specific 

features that distinguish them from their integer-order counterparts. For all presented 

solutions, properties are verified using computer simulations or experimental 

measurements, and the achieved results are evaluated. The text is written to have not only 

scientific but also pedagogical contribution. The thesis consists primarily of original 

research of its author in years after his Ph.D. thesis defense. All presented solutions were 

published in journals with impact factor or presented at international conferences. 

Keywords 
fractional-order circuit, fractional-order element, element with distributed parameters, 

impedance transformation, fractional-order impedance model, fractional-order filter, 

fractional-order oscillator 

Abstrakt 
Tato habilitační práce je zaměřena na výzkum v oblasti analogových lineárních 

elektronických obvodů zlomkového, někdy též označovaného fraktálního, tedy 

neceločíselného řádu. Tyto funkční bloky poskytují nové, obecnější a flexibilnější 

charakteristiky, které nemohou být získány klasickými obvody celočíselného řádu nebo 

pouze za cenu zvýšení jejich složitosti. Práce je členěna do sedmi hlavních kapitol, které 

jsou zpočátku zaměřeny na motivaci vzniku práce, cíle práce a popis současného stavu 

dané problematiky. Následně je představena metoda realizace pasivních obvodových 

prvků s impedancí zlomkového řádu pomocí vrstvových rezistivně-kapacitních struktur 



 

s rozprostřenými parametry. Dále jsou popsány možnosti transformací impedancí 

zlomkového řádu pomocí aktivních obvodů vedoucí k získání širší škály dostupných 

parametrů těchto prvků. Následuje kapitola zabývající se modelováním impedančních 

vlastností biologických materiálů, konkrétně membrány srdeční buňky, pomocí prvků 

s impedancí zlomkového řádu. Další část práce je zaměřena na kmitočtové filtry 

zlomkového řádu. Jsou představeny různé typy přenosových funkcí těchto filtrů a 

nalezeny jejich koeficienty pro různé druhy filtračních charakteristik. Závěrečná kapitola 

pojednává o oscilátorech zlomkového řádu a jejich specifických vlastnostech, kterými se 

odlišují od obvodů celočíselného řádu. U všech prezentovaných řešení je provedeno 

ověření vlastností pomocí počítačových simulací nebo experimentálního měření a 

dosažené výsledky jsou zhodnoceny. Práce je psána tak, aby měla nejen vědecký, ale i 

pedagogický přínos. Jejím obsahem jsou především originální výsledky výzkumu autora 

v době po obhajobě jeho doktorské práce. Všechna prezentovaná řešení byla publikována 

v impaktovaných časopisech nebo prezentována na mezinárodních konferencích. 
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INTRODUCTION 

Despite of strong effort to replace analog electronic systems by fully digital substitutes, 

there are still areas where analog circuits play an important role and cannot be simply 

overwhelmed. It is valid especially in the cases, where low power consumption, high-

frequency signal processing, high spectral purity, fast response, minimized delay, real-

time processing, and/or implementation of complex transfer functions are required. There 

are also many systems where analog approach is simpler, cheaper, or sufficient compared 

to the digital solution. The analog systems have typical drawbacks compared to their 

digital counterparts, such as aging of elements leading to long-lasting gradual change of 

their properties; dependence of parameters on temperature, supply voltage, 

electromagnetic field; more complicated design taking many conditions and parameters 

into account, etc. [1]. Many of these shortcomings of analog circuits have been minimized 

by various self-trimming and self-compensation techniques [2], [3] and analog signal 

processing is and will always be considered irreplaceable and indispensable in future 

circuit designs. 

The properties of analog electronic circuits are given by their structure and parameters 

of used components. If operational amplifiers are used as active elements, setting the 

characteristics of circuits is possible only by changing the values of passive elements, i.e. 

most often the resistance of resistors or capacitance of capacitors. To overcome this 

limitation, many advanced active elements with electronically adjustable parameters have 

been developed [4]. Most of the basic active elements offer only single parameter control, 

i.e. of the transconductance in the case of the operational transconductance amplifier 

(OTA) [5], resistance of current input terminal (X) in current controlled current conveyor 

of second generation (CCCII) [6], transresistance of the operational transresistance 

amplifier (OTRA) [7], etc. 

These elements enabled extensive options for setting the parameters of circuits 

intended for generation, conversion, modulation, compression/expansion, filtering, 

shaping, etc. of analog signals. However, the development in the possibilities of setting 

and universality of characteristics progressed even further, when fractional-order circuits 

appeared. These circuits, which are the main focus of this thesis and which will be 

discussed in more detail in the following parts, provide properties that cannot be realized 

by classic circuits or only at the cost of increasing their complexity. Possibility to obtain 

such arbitrary circuit characteristics is very beneficial in many applications e.g. for 

dynamic shaping of spectral character of particular signals in biomedical signal 

processing [8], [9], for modeling of electrical parameters of biological materials and 

tissues [10], [11], [12] in communications [13], or in automation and control systems [14].  
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1. THESIS OVERVIEW 

This chapter contains an overview of this thesis. In Section 1.1, the motivation of the 

thesis is described and the main goals are summarized in Section 1.2. The contribution to 

the scientific topic of the thesis and author’s related publication activities are briefly 

discussed in Section 1.3. Finally, organization of this thesis is introduced in Section 1.4. 

1.1 Motivation 

Fractional calculus is a branch of mathematical analysis that deals with derivatives and 

integrals having non-integer, i.e. fractional order [15], [16]. Its foundations were laid 

more than 300 years ago, but only a few decades ago it was found to be a very useful 

mathematical instrument that can be used in numerous seemingly diverse and widespread 

fields of practical science and engineering. Fractional calculus has gradually penetrated 

many disciplines, such as physics, system theory, signal processing, material theory, 

economics, electrical engineering, bioengineering, chemical engineering, medicine, 

optics, geology, etc. [8] – [22]. 

So far, several formulas have been defined for the calculation of fractional derivatives 

or integrals. As an example, let us present the Grünwald-Letnikov fractional derivative 

formula [16] 
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(1.1) 

Here, Γ(·) is the Gamma function, α is a real number representing the fractional order and 

t0 and t are the terminals of fractional differentiation. The Grünwald-Letnikov definition 

is presented here because it leads to a correct generalization of the current linear system 

theory [17], but it is important to note that other definitions e.g. by Riemann-Liouville 

and Caputo are also available for describing fractional derivatives. 

As mentioned, fractional calculus is increasingly employed in theory of systems, 

where differential and integral equations are widely used to describe their behaviour. It is 

proved that by generalizing the order of differentiation or integration in these equations 

from integer to fractional, it is possible to obtain more general properties or more accurate 

description of various dynamical systems. Such systems described by integro-differential 

equations of fractional order are called fractional-order (FO) systems. 

As it is common in electrical circuit theory, to avoid solving differential equations in 

the time domain, the Laplace transform with the complex variable s = jω is utilized, which 

leads to simpler algebraic expressions describing the analyzed circuit. By applying this 

transform to (1.1) with zero initial conditions with lower terminal t0 = 0, the derivative of 

a time-domain function f(t) can be converted to the frequency domain: 
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( )  ( )0 tD f t s F s = , (1.2) 

where F(s) is Laplace transform of f(t) and thus, the FO differentiation is expressed simply 

as multiplication by sα. 

Generalizing classic capacitor or inductor to FO domain, fractional-order elements 

(FOE) or fractors realizing differentiation or integration of fractional order between cross 

voltage and through current have been defined [23]. The admittance of FOE can be 

written as Y(s) = sαF0, where F0 is a proportionality constant generally referred to as 

fractance, and therefore FOE directly implements the FO differentiation according to the 

relation (1.2). Considering α   (0, 1), the element is called fractional-order capacitor 

(FOC), capacitive fractor or capacitive FOE and F0 represents its pseudo-capacitance with 

the unit Farad/sec1−α. For α   (−1, 0), the FOE is a fractional-order inductor (FOI), 

inductive fractor or inductive FOE with pseudo-inductance 1/F0 and the unit 

Henry/sec1−α. Apparently, choosing the values of α = −1, 0, 1, the classic inductor, 

resistor, and capacitor are obtained, respectively. FOEs with higher fractional order can 

be also defined for |α| > 1 as described e.g. in [24]. From the FOE admittance relation, it 

is apparent that the slope of its magnitude is 20α dB per frequency decade and its phase 

is απ/2 radians or 90α degrees. As the phase is independent of frequency, this element is 

also referred to as constant phase element (CPE). 

The complex variable s with a non-integer power can also be present in more complex 

functions describing not only the immittance but also the transfer properties of circuits or 

expressing their characteristic polynomial or equation. These FO functions can be 

obtained by connecting FOE to various known electrical circuits instead of standard 

passive elements, most often classic capacitors. Another possibility is to define 

completely new formats of circuit functions with the fractional power of the variable s 

and the subsequent search for their circuit implementation, e.g. by an approximating 

circuit of integer order. 

The simplest FO transfer function (TF) containing only sα multiplied by a constant is 

provided by the FO differentiator and integrator for α being positive and negative, 

respectively. More complex FO TFs in the rational form containing polynomials with the 

variable s raised to a non-integer exponent in at least one term are provided by FO 

frequency filters. There is usually a non-integer highest power of s in the denominator, 

and non-integer exponents may appear in other terms as well. In this area, the issue of the 

appropriate format of TFs and their coefficients for different types of filters (low-, high-, 

band-pass, band-stop) and their magnitude and phase frequency responses, as well as 

various time responses, still remains unexplored.  

Also interesting are FO oscillators, where the fractional order α is another degree of 

freedom in setting the oscillation condition, oscillation frequency and especially the 

mutual phase shift of output signals in the case of multi-output oscillators.  
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Significant attention is also paid to the research of the FOE itself. Despite the intensive 

efforts, it has not yet been possible to find an implementation of this element that would 

provide sufficiently accurate impedance characteristics in a sufficient frequency range, 

and at the same time be compatible with modern integrated circuit manufacturing 

technologies. FOEs are currently most often emulated using passive ladder circuits with 

resistors and classic capacitors [25], which have the disadvantage of a large number of 

elements with a high spread of their values. Other presented implementations of FOE are 

mainly prototypes using various chemical substances or biological materials [26]. Due to 

the numerous shortcomings of these structures and their unsuitability for integrated 

implementation, opportunities for further research open up here. 

It is obvious that the FO circuits represent an emerging field that expands the 

boundaries of realizable electrical systems, changing they are viewed, designed, and 

implemented. These changes bring the opportunity to pursue creative new designs which 

can reach applications ranging from biomedical signal processing to industrial control 

systems. Therefore, it is necessary to address this topic by tackling challenges in creating 

and applying new design methodologies, simulation and characterization of FO circuits, 

systems, and devices. 

1.2 Goals 

The aim of this thesis is to present new knowledge in the field of FO circuits, both those 

obtained by other experts and mainly those reached by the author of this work during his 

research activities. As described above, the importance of FO circuits is constantly 

growing and their further application possibilities are being sought. Their significant 

advantage is the possibility of realizing more general characteristics that cannot be 

realized by classic circuits or only at the cost of increasing their complexity. Therefore, it 

is necessary to advance both the theoretical understanding of the FO systems and the tools 

to easily implement them in order to accelerate their advancement and adoption in the 

practical areas of engineering instead of academic and research environments only. 

The specific goals that are addressed by this thesis include: 

• to provide readers with resources covering the fundamentals of FO electrical 

circuits and elements for analog signal processing, their usability and importance. 

It is also necessary to give explanation of these fundamentals and to present 

current state and trends in this research area; 

• to demonstrate and analyze principles and properties of FOE implementations, 

with emphasis on the resistive-capacitive layer structure with distributed 

parameters. This very promising configuration is suitable for fabrication by 

available integration technologies, such as thick- and thin-film, or complementary 

metal oxide semiconductor (CMOS); 

• to introduce the possibilities of transforming the impedance function of FOE using 
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circuits with active elements. Attention is paid mainly to the impedance inverter 

(gyrator), and also to the general immittance converter (GIC). Using these 

transformation circuits, it is possible to obtain a number of different FO elements 

with adjustable impedance magnitude and phase from one or a few FOEs. This 

technique addresses the current lack of availability of FOE with different 

parameter values. The aim is also to investigate the limitations of these impedance 

transformation circuits, to determine the influence of parasitic properties and to 

propose measures for their compensation; 

• to show the advantages of modeling the impedance properties of biological 

materials using a circuit with FOE. On the example of a cell membrane, it is 

demonstrated that it is more appropriate to model the membrane capacitance using 

FOE instead of a classic capacitor; 

• to design new types of FO frequency filter TFs providing responses that cannot 

be obtained with classic integer-order (IO) filters. Coefficients are sought for these 

functions, which ensure the required filter characteristics. Circuit topologies 

implementing these FO filtering functions are presented; 

• to investigate the specific properties of FO oscillator circuits, to focus on the effect 

of the fractional component α on their parameters, in particular the frequency and 

condition of oscillations and phase shifts between output signals; 

• to verify the properties of the designed structures by appropriate analyzes, 

simulations and in many cases also by experimental measurements. The obtained 

results are discussed, evaluated and compared with another solutions. 

1.3 Contribution 

The text of the thesis is written so that it has both a scientific and a pedagogical 

contribution. It should therefore serve not only experts in the field of FO circuits and 

systems, but also students interested in this topic to gain fundamental knowledge, 

overview of the current state of the art and to get acquainted with the latest scientific 

achievements. 

The Chapter 2 has both pedagogical and scientific benefits, as it presents basic 

published knowledge in the field of FO systems and circuits. Chapters 3 to 5 are based on 

the results of the author’s research activities obtained mainly in the years 2016 – 2022. 

These sections therefore have a predominantly scientific character, but are written to have 

also a pedagogical contribution and can serve, for example, Ph.D. students to gain new 

knowledge and build on it. The presented theoretical knowledge, methods or design 

procedures are supplemented by the respective circuit implementations, including the 

procedure of design of element parameters, and their functionality is verified by computer 

simulation and in many cases by experimental measurements. Attention was also paid to 

the analysis of real properties of the proposed solutions and the possibilities of 
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compensating the deviations from theoretical assumptions. Thus, the effort was to bring 

all the results of the author’s research into the final form, which can be realized using 

available elements, materials or technologies. Thanks to this, the correctness of the 

proposed solutions is verified and the results can be easily used in practical applications. 

1.3.1 Relation to Author’s Publications 

David Kubánek, the author of this thesis, has been engaged in research on analog 

electrical circuits since the beginning of his doctoral studies in 2002. Until the time of 

finishing this thesis, he is the author or co-author of 62 publications indexed in the Web 

of Science Core Collection database, whereas he is the main author in case of 19 of them. 

These results include 28 journal articles and 34 international conference papers and have 

so far received 499 citations.  

During his Ph.D. studies between 2002 and 2005, the author’s scientific activities 

mainly focused on frequency filters with non-traditional active elements. As a post-doc, 

he continued to research the design and analysis of linear and nonlinear analog circuits. 

In 2014, David Kubánek began to deal with systems, circuits and elements of fractional 

order, which are the content of this thesis. The results described in the following chapters 

have been published by the author in reputable journals and conference proceedings, and 

these own publications are properly cited in the text and included in the list of references. 

The goal is to base this thesis particularly on the most recent achievements of the author. 

None of the results presented in the following chapters were included in the author’s 

Ph.D. thesis or any past author’s theses. 

Research results described in the thesis are partially subject of the recent Czech 

Science Foundation research project No. GA16-06175S – Synthesis and analysis of 

fractional-order systems using non-conventional active elements. Author of the thesis 

participated in this project from 2016 to 2018. This thesis also includes the results of the 

INTER-COST project LTC18022 – Analogue fractional systems, their synthesis and 

analysis, on which the author collaborated between 2018 and 2020. This project was part 

of the COST Action CA15225 – Fractional-order systems – analysis, synthesis and their 

importance for future design, representing a network of researchers dealing with 

fractional calculus and its usage in system description, modelling and design. The thesis 

also includes the results of the project GA19-24585S – Synthesis of reliable electrical 

phantoms describing fractional impedance behavior of real-world systems, solved 

between 2019 – 2021, in which David Kubánek also participated. 

During his scientific activities, the author of this thesis collaborated with several 

foreign experts in the field and scientific workplaces. In the area of FOEs it was with prof. 

Ushakov from Kalashnikov Izhevsk State Technical University, Russia. The FO filters 

were investigated in collaboration with Dr. Todd Freeborn from University of Alabama, 

Tuscaloosa, USA and Dr. Shibendu Mahata from Dr. B. C. Roy Engineering College, 

Durgapur, India. In many topics of FO circuit design, the author collaborated with prof. 
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Costas Psychalinos from University of Patras, Greece and prof. Darius Andriukaitis from 

Kaunas University of Technology, Lithuania. 

1.4 Thesis Structure 

The thesis is divided into seven basic chapters. Chapter 1 gives the thesis overview 

including the motivation, goals and contribution. The state of the art in the field of FO 

elements and circuits is introduced in Chapter 2. Design techniques and verification of 

FOEs based on resistive-capacitive layer structures with distributed parameters are given 

in Chapter 3. Chapter 4 deals with impedance transformations of FOE resulting in an 

increase in the number or range of fractance or order values. Chapter 5 discusses 

employing FOEs in impedance models, particularly in cardiac cell membrane model. 

Chapters 6 and 7 describe design and evaluation of FO filters and oscillators, respectively. 

Chapter 8 concludes the thesis. 

 



15 

 

2. STATE OF THE ART 

As already mentioned in the Section 1.1, mathematical basics of description of FO 

systems were laid nearly 300 years ago as a foundation of fractional calculus. Since that 

it has gained deeply rooted mathematical concepts and today it is known that many real-

world dynamic systems cannot be exactly described by a system of simple differential 

equations of integer order. FO systems have lately been attracting significant attention 

and gaining more acceptance as generalization to classic IO systems. 

FO systems are an evolving area of multidisciplinary research, which gives rise to 

many new potential applications [22]. Evidence of this can be found in the study [21] 

which described the FO systems as “21st century systems”. The reason for the increased 

interest in fractional calculus and FO system design may be seen in the fact that the 

presence of fractional order represents another degree of freedom to mathematically 

describe the behavior of a function block. This enables one to provide characteristics in 

between integer orders in comparison to standard IO systems, which may become 

beneficial while more accurate signal generation, processing and measurement, and/or 

system modeling and control is required. 

Given that the contribution of this thesis can be divided into three main areas, 

including FO impedance elements, FO frequency filters, and FO oscillators, the further 

description of the current state of knowledge will be divided in this sense into the 

following three sections. 

2.1 Fractional-Order Elements 

Although mathematical description of fractional calculus, its derivatives and integrals is 

generally known [16] and is being further developed, e.g. [27], [28], there is a gap in 

availability of electronic function blocks needed to implement required FO operations on 

analog signals. This is due to the fact that FOEs are still not readily available as it is the 

case of other standard elements, such as resistors, capacitors, inductors, various types of 

active elements, etc.  

The recent survey on possible techniques and approaches to design single or multi-

component FOE as being proposed by different research groups can be found in [26]. 

Here the authors state that particularly single-component FOEs are being researched upon 

vigorously. They are mostly based on electrochemical principles utilizing various 

chemical substances, for example porous polymer materials [29], nanocomposites of 

conductive particles in dielectric [30], [31], [32] or layered structures in dielectric [33], 

[34]. These elements are mostly designed on the basis of choice of suitable materials, 

their arrangement and fabrication technologies by conducting many experiments, but no 

algorithms using exact circuit theory laws are employed. The experimental results are 

used to derive approximated design equations by regression methods. Common features 
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of these elements are low range of the fractional order α and/or narrow frequency band 

of the constant phase shift. None of the elements is currently commercially available in 

the solid-state form and most of them also do not have any dependence relation between 

the order α and the electrochemical parameters [26]. 

Thus, a common way to obtain FOEs is their emulation by multicomponent IO passive 

or active circuits. The method is based on the approximation of the term sα in the 

impedance function by IO rational function [35] – [39]. This function is then implemented 

for example in the form of Foster or Cauer passive ladder networks with resistors and 

standard capacitors (or inductors) [25]. However, the values of these resistors and 

capacitors must be precise to obtain the required accuracy of approximation [25]. 

Furthermore, when the values of α close to 0 or 1 are required, the ratio of the resistances 

and capacitances is very high [40]. This makes the integration in the film or 

semiconductor technology very difficult or even impossible. Also, the passive emulation 

structures cannot be tuned electronically. The last two drawbacks mentioned are 

eliminated by active emulation circuits, which are usually based on state-variable multi-

feedback structures whose TF equals to IO rational function approximating the required 

FOE impedance function [41]. These circuits can offer electronic adjustability thanks to 

the controlled active elements employed and are suitable for integrated implementation. 

The common feature of these emulation techniques is their validity only in a limited 

frequency band and the limited approximation accuracy highly dependent on the circuit 

complexity.  

Although these passive and active emulators do not replace the required FOE exactly, 

their use is suitable for the initial validation of the proposed FO circuit solutions. The 

advantage of this approach is also the fact that, given the expected commercial availability 

of FOEs, it will be possible to simply swap the emulator structures for a given FOE and 

the behavior of the originally designed FO circuit will not change. 

The author of this thesis with his research team focused on the development of solid-

state FOEs based on resistive-capacitive layer elements with distributed parameters (RC-

EDP) composed of appropriately interconnected R-C-NR structures (here R and C denote 

resistive and capacitive layers, respectively, and N is the ratio of layer resistances). The 

results of these scientific activities are described in Chapter 3. 

Obtaining different parameters of FOE, i.e. the fractance and order α, requires a new 

design of the structure of the element or, in the case of an emulator, all the parameters of 

its components. This led the author and his team to explore the concept of using GIC that 

is capable to design a wide set of FOEs with fractional order from a specified range and 

electronically adjustable fractance using a very limited set of so called “seed” FOEs. 

These achievements are presented in Chapter 4. It should be noted here that FOE 

transformations using GIC were also dealt with by other authors, see e.g. [42], and it was 

verified that it is possible to electronically adjust the fractance value and to obtain the 

order not only in the range (0, 1), but also (−2, 2). However, the article [42] does not 
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consider extended transformation capabilities of fractional order and generating such an 

amount of different order values using only a few (one or two) “seed” FOEs. 

Another large area of employing FOE is to model the electrical properties of various 

real-world substances, biological tissues and biochemical materials [10] – [12]. Modeling 

the impedance characteristics of various samples using electronic circuits (also called 

phantoms) is very important, especially in cases where it is difficult to maintain the 

properties of these samples over time. The Cole impedance model [43] is frequently 

utilized for characterizing bioimpedance properties, whereas many research studies 

confirmed that employing FOE instead of classic capacitor in the Cole model brings 

improvement in the modeling accuracy, see e.g. [10] and the references therein. The 

Section 5 deals with scientific achievements of the author in this field. 

2.2 Fractional-Order Filters 

Analog frequency filters can also be designed as FO. This approach provides more 

general properties, the most notable of which is the possibility of continuously adjusting 

the roll-off of the magnitude frequency response without limitation to multiples of 

20 dB/dec as is the case of IO filters [44]. FO low-pass (LP) and high-pass (HP) filters 

feature the stop-band slopes of −20(n + α) dB/dec and +20(n + α) dB/dec, respectively, 

where n is nonnegative integer component and α   (0, 1) is fractional component of the 

order, whereas the sum (n + α) is the fractional order of the filter. For example, a 2.4-

order LP filter thus provides magnitude frequency response stop-band slope of 

−48 dB/dec. This fine setting of attenuation values in the magnitude response is easily 

realizable using FO filters over their IO counterparts. The flexible and precise shaping of 

FO filter characteristics is an efficient feature which finds applications in many signal 

processing systems [45], [46], [47]. 

The design procedures of IO analog filters are well known [48], however obtaining a 

suitable analytic description, mostly as TF in s-domain, and circuit implementation of a 

FO filter is a more complex task. For this purpose, the following two approaches are 

mainly used: 

• Numerical search for coefficients of FO TF to minimize the error between the 

magnitude frequency response of this TF and the selected target function that 

determines the FO filter requirements over a defined frequency band. In the 

previous works e.g. the LP Butterworth [44], Chebyshev [49], inverse Chebyshev 

[50], elliptic [51], arbitrary quality factor [52], flat band-pass (BP) [53], and HP 

Butterworth [54] target magnitude responses have been approximated by the FO 

filter TF. Once the resulting coefficients of the FO TF are found, it is then usually 

realized using a circuit derived from a known IO analog filter, where a classic 

capacitor is replaced with FOC. As the implementations of FOE are currently 

being researched intensively and a solid-state FOE is expected to be available 

soon, it is important to focus on this design approach and to investigate the 
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utilization of FOE in traditional filter topologies to transform these into fractional 

order. The author of this thesis also dealt with this type of FO filters and his 

respective scientific results are presented in Sections 6.1, 6.2, 6.3, 6.4.1, and 6.4.2. 

• The second approach approximates the characteristic of FO filter by a higher IO 

rational TF, which is then implemented by an IO circuit of increased complexity 

but using classic off-the-shelf elements. The early works, e.g. [55], [56], [57], are 

based on IO approximation of sα in the FO TF resulting from the first approach, 

thus in fact two consecutive approximations are carried out. In the latter works 

[58], [59], [60], the IO rational approximant is found directly to fit the target 

characteristic of FO filter. However, the drawbacks here are the limited frequency 

bandwidth and higher number of components (both active and passive) compared 

to the first approach. Several author’s results concerning this kind of FO filter 

design are briefly described in Section 6.4.3. 

It should be noted that other approaches of obtaining the FO filter TF are also 

available. Conditions for FO Butterworth TF coefficients based on non-integer order 

generalization of the Butterworth squared magnitude frequency response are provided in 

[61]. The design of FO Butterworth-like filter in w-plane is presented and the TF 

coefficients are given in [62], however, the TF contains more poles and thus more terms 

in denominator and therefore it leads to more complex circuit realizations. Moreover, the 

procedure is designed for lower-order Butterworth responses having order just between 

zero and one. A more general approach is provided in [63], which determines the 

coefficients of FO TF using the transition bandwidth, stop-band frequency gain, and 

maximum allowable pass-band peak (and not a particular approximation type). The 

drawback is that the TF coefficients are not provided explicitly for a sufficient range of 

the input parameters and require designers to setup their own optimization search routines 

to calculate the required coefficients. 

2.3 Fractional-Order Oscillators 

Oscillators, i.e. circuits that generate sinusoidal signals, form an important group of 

electrical circuits. In most cases, they are designed as second- or third-order circuits, but 

many FO oscillators have emerged in recent years. These structures are also characterized 

by the generation of sinusoidal signals at one or more of their outputs, but they provide 

some specific properties that are not present in classic IO oscillators. This is the possibility 

of generating signals with extremely high or low frequencies [64], [65], tuning the 

oscillation frequency by changing the order of the used FOE(s) [66], [67], [68], setting a 

stepless phase shift of output signals without limitation to integer multiples of 90 degrees 

[67] – [70], etc. The disadvantage of FO oscillators is the complexity of their 

mathematical description, especially the relations for the oscillation frequency and the 

condition [69], [71]. Thus, the design is not simple and many properties, such as 

electronic adjustment of the oscillation frequency or condition and their effect on the 
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phase shifts of the output signals, are not investigated in the literature. Basic FO oscillator 

design techniques are given in [69]. Known second or third order oscillators with standard 

passive and active elements, such as operational amplifiers, are used here. These 

structures are transformed into their fractional counterparts by substituting classic 

capacitor(s) with FO one(s), with the order of the oscillator being reduced from 2 or 3 to 

slightly lower. Most of the above-cited works use a standard description of FO oscillators 

based on a characteristic equation. A simpler approach to the design of these circuits may 

be to use a resonator consisting of a FO capacitor and inductor in combination with a 

resistor (negative or positive) providing an undamped operation of the resonator [72]. It 

offers a straightforward way to understand the oscillator operations and logically derive 

all important design equations in a practically usable form. The author’s contribution to 

the field of FO oscillators is given in Chapter 7. 
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3. FOE WITH DISTRIBUTED RC LAYERS 

Elements with FO impedance, also known as FOEs or simply fractors, are very 

perspective building blocks for design and implementation of FO circuits and systems. 

These systems are described by FO differential and integral equations and their analytical 

description in the Laplace transform contains the non-integer power of the complex 

variable s. As already mentioned in Section 1.1, the admittance of FOE can be generally 

written as 

( ) 0Y s s F= , (3.1) 

whereas when 0 < α < 1 the FOC with its pseudo-capacitance F0 is concerned and when 

−1 < α < 0 the FOE represents FOI with pseudo-inductance 1/F0. From the viewpoint of 

FO circuit analysis and synthesis, both FOC and FOI can be assumed. However, as the 

capacitors are preferred instead of inductors in practical IO circuit design, most of the 

researchers understand under FOE the FOC only. 

The idea of realizing impedances with given characteristics by resistive-capacitive 

(RC) circuits with distributed parameters was put forward already long ago, see e.g. [73], 

[74]. The synthesis method is based on utilizing homogenous RC lines of the form R-C-

0 (resistor-capacitor-conductor) described by voltage-current relations containing 

hyperbolic trigonometric functions. However, the synthesis of FOE is not considered in 

the aforementioned works, as well as the problem of its physical realization by film or 

semiconductor RC lines is not addressed. Therefore, the possibility of FOE synthesis 

based on R-C-0 lines has been investigated and the physical realization using modern film 

technologies has been evaluated. It turned out that the implementation is impossible under 

the existing restrictions on the specific parameters of resistive and dielectric materials, 

since it leads to element sizes that are comparable with the dimensions of neither ordinary 

discrete elements, nor integrated circuits. Next to the basic R-C-0 lines, also other types 

of RC lines were analyzed. As it will be discussed below, the R-C-NR layer structure 

shows to be suitable for efficient design of FOEs [75], [76], [77]. It contains two resistive 

layers with resistances R and NR, a capacitive (dielectric) layer with capacitance C 

between them and four connection terminals as shown in Fig. 3.1. 

    

(a)      (b) 

Fig. 3.1 (a) 3D view of R-C-NR structure; (b) its equivalent schematic 
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Analyzing the structure in Fig. 3.1(b), the relation between the currents I1, I2, I3, I4 

and voltages V1, V2, V3, V4 can be described using admittance matrix as [78] 
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where 

( )j 1RC N = + . (3.3) 

As the R-C-NR structure has fourth-order admittance matrix, the number of different 

synthesizable impedances is significantly larger than for RC lines of the form R-C-0. 

Therefore, a structural-parametric synthesis method of FOE composed of specifically 

connected four-terminal homogeneous R-C-NR structures (lines) has been developed 

[75], [79], [80]. This method described in the next section profits from genetic algorithm, 

is implemented as a computer program and has shown its effectiveness based on practical 

experience. 

3.1 Description of Synthesis Method and Algorithm 

The synthesis of any technical object involves creating its structure and determining its 

parameters. These two parts are called structural and parametric synthesis. The structure 

of the object determines what physical parts it consists of and how these parts are 

interconnected. The parameters of the object are understood as structural and 

electrophysical parameters of its parts. We consider the synthesis of FOE based on R-C-

NR structures with distributed parameters. Obviously, the structure of the element is 

given by the interconnection of the particular, in this case four, R-C-NR structures 

resulting in the connection diagram of the FOE components. The parameters include the 

properties of the resistive and dielectric rectangular layers, i.e. their lengths L (relative to 

the unity width W = 1 of all R-C-NR structures) and electrophysical characteristics, such 

as resistance and capacitance per unit length. Considering that FOE is supposed to be 

manufactured in one of the known integrated technologies, it is advisable that the 

electrophysical characteristics of the layers are the same for all the parts of the element. 

The synthesis objective is the constant level (with defined error) of the input 

impedance phase in the range from 0 to −90 degrees. The frequency range of phase 

constancy, restrictions on the ratio of the resistivity of the top and bottom resistive layers 
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N, the boundaries of resistance and capacitance per unit length, and fixed values of other 

parameters in the equivalent circuit model of the RC line, see [75], are set as constraints. 

The properties of FOE based on R-C-NR structures are described by a large number 

of internal factors. For example, there are more than 10 000 variants of connection 

schemes for four four-terminal R-C-NRs, not including combinations of structural and 

electrophysical parameters of the layers. Therefore, for such objects it is not rational to 

use common methods of minimizing objective functions. In such cases the heuristic 

optimization methods are the most effective, in particular evolutionary algorithms based 

on the generate-and-test principle. One of these methods is the genetic algorithm (GA) 

[81], which has been also used here for the synthesis of FOE. 

When designing the synthesis method, it was very important to specify the coding of 

R-C-NR FOE factors appropriately. All these factors that fully and unambiguously 

describe the design of the structure can be represented by a set Ψ of the form 

    = P С , (3.4) 

where P is a set of parametric factors, i.e. the parameters of individual R-C-NR structures. 

The set C includes circuit structure factors covering the interconnections of adjacent R-

C-NRs and their connection to the overall input nodes of the synthesized FOE denoted as 

in and gnd. The set P can be further defined as  

    = P N L , (3.5) 

where the sets N and L include the values of the parameters N (ratio of the resistivity of 

the top and bottom layers) and L (relative length of the layers) of each R-C-NR. The set 

C can be specified as 

      =  C E A B , (3.6) 

where the set E includes valid interconnection schemes of adjacent R-C-NRs, the set A 

determines the nodes of adjacent R-C-NRs connected to the gnd node, and the set B 

defines connections of external terminals of the series of R-C-NR structures to in and gnd 

nodes or contains information about their interconnection. Since the program for FOE 

synthesis has been developed in the MATLAB environment, it is advisable to express the 

introduced sets of the factors in matrix format. The detailed description of these matrices 

can be found in [79]. 

The requirements for the frequency response of the impedance phase of the 

synthesized FOE are determined in the form of a window as seen in Fig. 3.2. The width 

of the window determines the frequency range of phase constancy (ωminRC to ωmaxRC), 

and its height defines the permissible deviation (±ε) from a given level of the constant 

phase φc. Regardless of the shape of the phase response, it is important that all its points 

fall into this window. Therefore, the easiest way to evaluate the fitness function is to 

determine the number of the phase response points, which are located within a given 

window. 
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Fig. 3.2 Example of the allowed window of the phase response for fitness 

function calculation 

In this case the fitness function can be specified by the formula 
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φi is the value of the impedance phase of the evaluated FOE variant at a frequency ωiRC, 

i is the number of the frequency point in the given frequency range from ωminRC to 

ωmaxRC; i = 1, 2, …, Mω, whereas Mω is total number of frequency points. In the example 

in Fig. 3.2 based on the relation (3.7) we get Fit = 11 (with a maximum possible value of 

17). The value of φi is computed by the methods of circuit theory utilizing the admittance 

matrix of one R-C-NR structure appearing in (3.2) and parametric and circuit factors 

given by the sets P and C. 

When developing the general structure of GA, it was considered that the elements of 

the sets P and C have different physical nature, different mathematical representations of 

genes and chromosomes, as well as different algorithms for implementing crossover and 

mutation operators. Thus, the GA was implemented as multi-stage as seen in the flow-

chart of the proposed algorithm in Fig. 3.3. At the beginning of the synthesis, the allowed 

impedance phase window and the genetic algorithm parameters x, y (maximum number 

of iterations) and δ (threshold for Fit function) are defined by the user. The program 

continues with generating random elements of the set P. The block “Formation of parental 

individuals with parameters from the set C” deals with creating the initial parental pair 

by random generation of elements of the set C and computing their fitness functions in 

cycles until two individuals (i.e. parents) are found with the Fit value higher than a 

threshold specified internally in the program. A similar block “Formation of parental 

individuals with parameters from the set P” is also present in the program which randomly 

generates elements of the set P until their Fit value reaches another internally specified 
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threshold. The choice of parental individuals ensures initial approach of the fitness 

function to the optimum and essentially influences the fitness function growth in the 

following parts of the algorithm. 

 

Fig. 3.3 Flow-chart of algorithm for R-C-NR FOE synthesis 
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From this point the program is divided into two genetic algorithms GA(C) and GA(P). 

The first one searches for the optimized internal and external connections and the second 

one deals with optimizing the parametric factors of the R-C-NR FOE. The sets E, A, and 

B, see (3.6), are processed by GA(C) whereas the parametric factors are unaffected. In 

the case of GA(P), the sets N and L, see (3.5), are optimized without altering the 

connections. The standard blocks “Crossover”, “Mutation”, and “Selection” are included 

in both of the partial GAs. The algorithm GA(C) and also the whole synthesis program 

are terminated when the Fit value of the two selected individuals reaches a certain 

threshold δ. For the best results, δ is equal to the total number of frequency points Mω, 

hence the user sets Mω in the user interface. Another condition of termination of GA(C) 

is reaching a given number of iterations x. In this case the synthesis continues with 

execution of the algorithm GA(P) with fixed elements of the set C. As a result, the 

optimized parameters of the set P are found. The termination conditions of GA(P) are the 

same as in the case of GA(C). If the algorithm GA(P) is terminated by exceeding the 

allowed number of iterations x (and Fit value does not reach δ) the program proceeds 

again with GA(C). Both GAs can be alternated in this way up to y times, provided that 

the Fit value still does not reach δ. 

Based on the proposed algorithms, the main program modules and user interface for 

working with the synthesis program in interactive mode have been developed. The user 

interface dialog boxes are shown in Fig. 3.4. The dialog box in Fig. 3.4(a) is used to set 

the requirements for the phase response (in degrees) of the input impedance of the FOE 

in the form of a window. The window height, i.e. the allowed ripple of the phase response, 

is set by positive “PH(+)” and negative “PH(−)” deviation from the mean phase value at 

the respective frequency. The mean phase values at the lower and upper frequency 

boundaries are given by “PH(Fmin)” and “PH(Fmax)”, respectively. These values are 

equal for fractional orders that are real numbers. The values “lg(Fmin)” and “lg(Fmax)” 

are logarithms of lower and upper boundary frequencies (in Hz), which define the 

frequency range of phase constancy. By setting these values, it is possible to change the 

frequency bandwidth of the window of the phase constancy and also to shift it along the 

frequency axis. The values “No of iteration (of each GA)” and “No of GAs cycles” 

correspond to x and y respectively in Fig. 3.3. The parameter “No of frequency points” 

specifies the value of Mω. 

The program provides two synthesis modes. The button “Synthesis” executes the 

synthesis without taking into account the technological parameters, whereas 

“Synthesis(G)” considers these parameters. The technological parameter “G” is the 

coefficient of proportionality between the transition resistance between the resistive and 

capacitive layers and the resistance of the top-layer, “Rp” is the leakage resistance of the 

capacitive layer, and “Rk” is the resistance of metal contacts. These parameters are 

defined for elemental part of the multilayer R-C-NR network as presented in [75]. They 

depend on the manufacturing technology and therefore their values are to be determined, 
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for example by experimental measurement of test samples. The values stated here (G = 1, 

Rp = 108, Rk = 0.02) are typical for thick-film technology [82]. 

 

 

(a) 

 

(b) 

Fig. 3.4 Dialog windows of the FOE synthesis program; (a) input and (b) 

output data of synthesis 

When one of the conditions for exiting the synthesis program is fulfilled, the dialog 

box with synthesis results is displayed (Fig. 3.4(b)) along with the impedance phase graph 

of the synthesized FOE. The displayed frequency range and the parameters of the R-C-

NR structures can be changed in this box by user. The synthesis can continue with the 

changed parameters (but without changing the connections of particular R-C-NR 
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structures) when Continue is pressed. In addition, this box also provides the possibility of 

quick analysis of the FOE model with synthesized or user-modified parameters both 

taking into account the technological parameters “Analysis(G)”, and without taking them 

into account “Analysis”. 

3.2 Verification of Synthesis 

The synthesis of FOE based on four R-C-NR sections was carried out for the required 

constant phase −35° with deviation ±1° in the frequency range 1 kHz to 10 MHz and 50 

frequency points. The resulting element is described by the topology in Fig. 3.5 and the 

parameters N = 5.17, L1 = 3.8, L2 = 4, L3 = 2.4, L4 = 4. The original generated values of 

the layer resistance R0 = 3893 Ω, and capacitance C0 = 200 pF per unity length were 

modified to the new values R0 = 2280 Ω, and C0 = 77 pF to obtain more suitable 

dimensions of the thick-film experimental samples. This modification only shifts the FOE 

impedance characteristic to 4.4-times higher frequencies without changing its shape. 

Generally, if the resistance R0 and capacitance C0 are changed to the new values AR0 and 

BC0, the impedance characteristic is shifted to 1/(AB)-times higher frequencies without 

changing its shape. 

 

Fig. 3.5 Designed topology of FOE 

Based on the materials used within the thick-film technology to implement the 

required FOE, the final physical length (LFi) and width (WFi) of i-th R-C-NR section are 

defined as follows: 
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where Rsq and Csq are the sheet resistance (i.e. resistance per square) and capacitance per 

unit area of the resistive and dielectric inks used for practical realization, respectively. In 

this case the values are Rsq = 1925 Ω/sq and Csq = 4.06 pF/mm2. Using (3.9), the resulting 

final lengths of the sections are LF1 = 18 mm, LF2 = 18.95 mm, LF3 = 11.37 mm, and 

LF4 = 18.95 mm, whereas the width of all sections is WF = 4 mm. The designed FOE was 

fabricated as a prototype sample [83] in thick-film technology at Brno University of 

Technology and its photograph is depicted in Fig. 3.6. Note that the sections 3 and 4 are 

joined together. 

L1 = 3.8 L2 = 4 L3 = 2.4 L4 = 4
gnd

in
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Fig. 3.6 Photograph of the fabricated thick-film FOE sample [83] (dimensions 

approx. 43x16 mm) 

The theoretical FOE phase frequency characteristic displayed by the design program 

is shown in Fig. 3.7 by black line. The measured characteristic is shown by red color, 

whereas the blue line shows the simulated phase with the layer resistances and 

capacitances really achieved in the produced samples. The difference of this simulated 

(blue) characteristic compared to the synthesized (black) one is caused particularly by the 

error in the resistance ratio N of the fabricated samples. The measured characteristic 

matches the simulated one at low frequencies, however the measured phase exhibits 

parasitic decrease at high frequencies. This phenomenon is primarily caused by parasitic 

capacitances of the resistive layer contacts which are above each other in the FOE 

prototype and do not have zero area. To compensate this parasitic effect, the bottom 

resistive layer was extended by the contact width in order to move the bottom-layer 

contact and not let it overlap with the top-layer contact.  

 

Fig. 3.7 Phase characteristics of the synthesized R-C-NR FOE (black), 

measured samples (red), simulated with the real properties of the 

manufactured materials (blue), and measured samples with 

compensation of contact parasitic capacitances (green) 
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The modification was practically verified on fabricated samples and resulted in 

improvement which is confirmed by the green characteristic in Fig. 3.7. The compensated 

samples show the impedance phase value between −36° to −39° in the frequency band 

from 8.7 kHz to 3 MHz which is 2.5 decades. 

3.3 Conclusions of the Synthesis Method  

The principle of FOE synthesis has been proposed, which consists in the use of segments 

of R-C-NR lines interconnected in a certain way. A description of the synthesis method 

has been given with explanation of the employed GA. The method allows obtaining 

physically feasible designs with a range of fractional order α from approximately 0.06 to 

0.94, i.e. the phase from 5° to 85° in the operating frequency range 3 to 3.5 decades. The 

example of FOE has been synthesized with impedance phase characteristics constant at 

35°. The validity of the models employed in the synthesis program has been proven by 

the circuit simulation program and mainly by the experimentally fabricated samples of 

FOEs using the thick-film technology. The measurements of the test samples show that 

impedance phase characteristics correspond with sufficient accuracy to the requirements 

specified during the synthesis and prove the functionality of the proposed design tool. 

Although the verification of the synthesis procedure is presented in this thesis by 

measurements of only one fabricated sample, the presented method has been verified also 

by other designs of the author and his team, see [75], [80], [84]. In the future, the presented 

design method is expected to be verified also in thin-film [85] and in CMOS technology 

[86]. 

Methods for trimming parameters of the R-C-NR structures were also developed. 

These methods use two-dimensional models of the structures and a virtual trimming 

algorithm to design notches interrupting the upper resistive layer at certain locations. 

After the physical realization of these notches e.g. by laser, the impedance characteristics 

of the manufactured FOE will be optimized. Details on trimming can be found in the 

paper [80]. A parametric FOE is also described in [80], enabling the setting of the 

impedance order (phase) using the ratio N. Although this topic is still in its initial stage, 

it is very promising, and future research should be directed to the area of the realization 

of adjustable FOEs using CMOS technology. 
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4. IMPEDANCE TRANSFORMATIONS OF FOE 

The problem with most FOE implementations presented so far is that they do not provide 

electronic adjustability of their impedance magnitude and phase. As discussed in Section 

2.1, FOEs can be emulated by Foster or Cauer structures containing a ladder network of 

resistors and classic capacitors. However, in the basic form these structures are not 

adjustable. Changing the input impedance magnitude and phase of these structures would 

require adjusting all resistance and capacitance values. The author of this work and his 

team proposed a solution that brings controllability to these passive emulation RC 

structures in the article [87]. The designed circuit is based on Foster I topology, where 

the passive elements are replaced by adjustable subcircuits with electronically 

controllable active elements. The adjustable resistors are implemented by OTAs and the 

tunable capacitors are implemented using capacitance multipliers which employ Voltage 

Differencing Current Conveyor (VDCC). The proposed structure provides electronic 

control of the impedance order and electronic shifting of the frequency band of the 

emulation validity. 

Another solution to get adjustable FOE is to use an impedance converter with active 

elements. This block transforms the impedance of the connected FOE(s) to obtain a 

required value of its input impedance at specific frequency. In this context, the author of 

this work dealt with impedance magnitude transformations of FOEs using two-

operational-amplifier GIC as described in [88]. Of greater importance are then the 

author’s works on the design of OTA-based gyrator implementing FO inductance 

simulator, impedance transformations resulting in FOE of complementary order, and the 

use of GIC to obtain series of FOE values. These topics are described in more detail in 

the following sections. 

4.1 Gyrator-Based FO Inductor 

Although mainly capacitive FOEs are being developed and used, inductive FOEs (FOIs 

or inductive fractors) are also required in many FO circuits. Let us mention e.g. electrical 

equivalent models of biological tissues [10], parallel and series FO LC resonators [72], 

[89], [90], FO frequency filters [91], [92]. The FOIs can be emulated by e.g. Foster or 

Cauer ladder circuits consisting of resistors and classic inductors [93]. However, 

implementation of inductors by classic passive coils is currently being avoided due to 

their shortcomings, such as bulky dimensions, complicated fabrication, incompatibility 

with integrated technologies, low quality factor and other parasitic electrical properties. 

Assuming a solid-state FOC is expected to be available soon, it is advisable to design 

FOI by connecting such a FOC to a circuit that provides immittance inversion which is 

the case of gyrator, immittance inverter or GIC [94]. The convenient solution is a gyrator 

which can employ only two OTAs offering precise and broadband characteristics thanks 
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to recent improvements in CMOS technologies. In addition, OTAs allow electronic 

adjustability of the resulting synthetic inductance. The following part of this section is 

based on the articles [95] and [96] by the author of this thesis. 

Ideal OTA (Fig. 4.1) is a voltage-controlled current source defined by the following 

relation 

( )OUT mi g v v+ −= − , (4.1) 

 

 

Fig. 4.1 Schematic symbol of OTA 

where gm is the transconductance which is commonly adjustable by an external dc current 

ISET or dc voltage VSET. The internal impedance of input and output terminals of an ideal 

OTA is infinity. The schematic of the gyrator employing two OTAs is shown in Fig. 4.2 

[5]. 

 

Fig. 4.2 OTA-based gyrator 

The input admittance of the circuit can be written as: 

m1 m2
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g g
Y

Y
= . (4.2) 

Assuming transformation of FOC with Y(s) = sαF and 0 < α < 1, the resulting input 

admittance is 
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 , (4.3) 

which represents admittance of FOI with the following magnitude and phase: 
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( ) m1 m2
IN

2

g g
Y j

F
= −







. (4.4) 

Since it is not possible to produce perfectly ideal active elements, it is suitable to 

analyze the influence of parasitic properties of OTA on the gyrator function transforming 

capacitive fractor to inductive one. The deviations of the magnitude and phase impedance 

characteristic are investigated and the guidelines for minimizing these errors are given. 

Also steps for optimal utilization of OTA dynamic range are stated below. 

4.1.1 Influence of OTA Terminal Impedances 

Real properties of OTA are usually modeled by shunt resistances and capacitances of 

the input and output terminals. Input resistance can be very large, especially in CMOS 

technology, whereas input capacitance is typically tens of femtofarads. Output resistance 

reaches usually several hundreds of kiloohms and output capacitance up to a few hundreds 

of femtofarads [97]. Considering these parasitic properties of OTA, the gyrator schematic 

can be modified to the form in Fig. 4.3. 

 

Fig. 4.3 Gyrator with OTA parasitic properties 

The parasitic properties of OTA1 output and OTA2 input are together modeled with 

GP1 and CP1. The parasitics of OTA1 input and OTA2 output are modeled with GP2 and 

CP2. The relation for gyrator input admittance considering the OTA parasitic properties 

and loading the gyrator with FOC instead of the element Y is 

( ) m1 m2
IN P2 P2

P1 P1

g g
Y s G sC

s F G sC
 = + +

+ +
. (4.5) 

To illustrate the meaning of (4.5) the passive circuit with the identical input 

admittance YIN'(s) can be drawn in Fig. 4.4. Analyzing (4.5) and Fig. 4.4, the FOC 

connected to the gyrator is transformed to FOI with admittance gm1gm2/(s
αF) which is in 

accordance with the relation for ideal case (4.3). Naturally the parasitics CP1 and GP1 are 

also transformed by the gyrator and they appear in the structure in Fig. 4.4 as inductor 
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with admittance gm1gm2/(sCP1) and resistor with admittance gm1gm2/GP1. The elements GP2 

and CP2 appear directly at the input of the whole structure and thus their admittance is an 

additive part of the overall input admittance YIN'(s). 

 

Fig. 4.4 Passive circuit with the input admittance (4.5); the relations in the 

schematic express admittances of the particular elements 

Considering the aforementioned typical values of the OTA parasitic properties, the 

form of the admittance magnitude and phase frequency characteristics resulting from 

(4.5) can be depicted by the asymptotic Bode plots in Fig. 4.5. At low frequencies the 

input admittance is real and its magnitude has a constant value gm1gm2/GP1 (when 

neglecting GP2 which is much lower). This parasitic behavior with limited admittance 

magnitude and zero phase persists up to the frequency 

1

P1
GP1

G

F

 
  
 



 . (4.6) 

Above this frequency the admittance of the inductive fractor in Fig. 4.4 is lower than 

gm1gm2/GP1 and the operation of the gyrator can be considered correct, i.e. approximately 

providing admittance of FOI (4.3), which is marked by the red line in Fig. 4.5. The 

magnitude of the gyrator input admittance drops with the slope −20α dB/dec and the 

phase is −απ/2. Note that the admittance characteristics of an ideal inductive fractor can 

be obtained by linear extension of the red traces in Fig. 4.5 throughout the whole 

frequency range. The correct behavior of the gyrator may end at the frequency 

1

m1 m2
GP2

P2

g g

G F

 
  
 



 , (4.7) 

where the input admittance magnitude decreases to GP2. Above this frequency, the input 

admittance has again real character with the magnitude GP2. Further, above the frequency 
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  (4.8) 

the influence of the parasitic capacitance CP2 prevails and the admittance YIN' has purely 
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capacitive character which is far away from the desired FO inductor. As shown in Fig. 

4.5 by the dashed part of characteristic, it may happen that at the frequency 

1

1
m1 m2

CP2

P2

g g

C F

+ 
   

 



  (4.9) 

the FO admittance gm1gm2/(s
αF) equals to the admittance sCP2 while the conductance GP2 

is lower than both of the admittances. In this case the FO inductance produced at the input 

port of the gyrator resonates with the parallel parasitic capacitance CP2. This resonance 

can be potential source of instability. Analysis of (4.5) shows that the real part of YIN' can 

never decrease below GP2 which means that this parasitic element positively impacts the 

stability of the structure in Fig. 4.3. 

 

 

Fig. 4.5 Bode magnitude and phase admittance characteristics expressing (4.5) 

(the values at the magnitude characteristic denote the order of the 

admittance in the respective frequency band) 

The classic inductor in Fig. 4.4 arising from immittance inversion of CP1 has usually 

negligible effect on the gyrator input admittance. Its contribution can be in decreasing the 

input admittance at frequencies above ωCP2, however in this band the input admittance is 

increased by CP2 which outweighs. 
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The following recommendations can be drawn from the previous analysis to improve 

the performance of the gyrator mainly as far as operation bandwidth, and range of 

obtainable admittance magnitude are concerned: 

• If there is a possibility to modify the fractance F, increase the values of both 

(gm1gm2) and F such that the ratio (gm1gm2)/F remains constant. This decreases the 

lower cut-off frequency ωGP1, and thus, expands the band of correct operation of 

the gyrator to lower frequencies without affecting the FO inductance. Moreover, 

the maximum obtainable magnitude of input admittance gm1gm2/GP1 increases. 

• From the OTA parasitic properties, the main effort should be to decrease GP1, 

which also brings a decrease of ωGP1 and an increase of maximum input 

admittance magnitude. Adherence to the recommendation on decreasing GP1 will 

also efficiently increase ωGP2, as due to the gyrator topology, we may assume GP1 

≈ GP2. This can be achieved by choosing an OTA structure that offers low parasitic 

conductance at input and output terminals. An alternative way to reduce a parasitic 

conductance in the gyrator is connecting a negative conductance in parallel as 

described in the author’s article [96]. To further optimize the gyrator operation at 

high frequencies in terms of increasing ωCP2, it is recommended to choose an OTA 

structure with low CP2. 

It is also interesting that for lower values of α, the bandwidth of the correct operation 

is widened which is related to the lower steepness of the admittance magnitude 

characteristic. Thus, a gyrator implementing a FOI has a higher bandwidth than a gyrator 

implementing a classic inductor. 

4.1.2 Dynamic Properties 

Next to the non-ideal frequency analysis, it is also important to investigate the 

dynamic properties of the gyrator such that the amplifiers operate in linear mode and the 

maximum voltage and current values of their terminals are not exceeded. As far as 

common OTAs are concerned, the most limiting is the non-linearity of their input 

transistor stage, which takes effect already at differential input voltages of several tens of 

millivolts. Let us denote the maximum allowed amplitude of OTA input voltage for linear 

operation VOTA,MAX. The output drive current of OTA is also limited to a maximum value 

IOTA,MAX; whereas, it holds IOTA,MAX = gmVOTA,MAX. The value of VOTA,MAX, and also 

maximum allowable transconductance gm can be determined from the respective OTA 

documentation. The following two conditions must be met to avoid the non-linear 

operation of the gyrator: 

• The gyrator input voltage VIN must not be higher than the allowed input voltage 

range of OTA1 VOTA1,MAX 

IN OTA1,MAXV V  (4.10) 

• The second condition for VIN provides that the voltage swing across the gyrator 
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loading admittance Y does not exceed the maximum possible OTA2 input voltage 

VOTA2,MAX 

m2 OTA2,MAX

IN

IN

g V
V

Y
  (4.11) 

Apparently, the allowed VIN according to (4.11) changes with frequency. It reaches 

the minimum value at the lowest operating frequency where |YIN| is maximal. It can be 

concluded that the gyrator input voltage VIN must meet both the conditions (4.10) and 

(4.11) simultaneously when the linear operation of both OTAs is required. If the 

conditions for maximum gyrator input current IIN are required, they can be easily derived 

from (4.10) and (4.11) by substituting VIN = IIN/|YIN|. 

Practical guidelines for gyrator parameter design were compiled based on the above 

observations. For those interested they are available in the work [96]. By following these 

rules, in addition to the correct input admittance, the highest possible frequency and 

magnitude range of the gyrator are ensured and the active elements are prevented from 

non-linear operation and overloading.  

If the OTA2 with differential (balanced) output is available, it is possible to easily 

obtain a differential gyrator with floating input as also demonstrated in the author’s work 

[96]. 

4.1.3 Simulation Results and Concluding Remarks 

To verify the results presented in the Subsection 4.1.1, the computer simulation of the 

input admittance of the gyrator was carried out using OrCAD software. The parasitic 

properties were chosen 1/GP1 = 1/GP2 = 346 kΩ, CP1 = CP2 = 0.28 pF, which is in 

accordance with the CMOS OTA cell introduced in the work [97]. The OTA 

transconductances are gm1 = gm2 = 1 mS. A total of four loading admittances Y were 

employed with identical magnitude |Y| = 1 mS at 1 kHz and different α = 0.25, 0.5, 0.75, 

1, i.e. three of them FO and one classic capacitor. The respective values of the fractance 

F are 112 μF∙s−0.75, 12.6 μF∙s−0.5, 1.42 μF∙s−0.25, 159 nF. The simulation results are 

depicted in Fig. 4.6. 

The characteristics with solid lines were obtained using ideal FOCs modeled in 

OrCAD by GFREQ controlled source with interconnected input and output, similar to 

OTA-based resistor. For more details on the ideal FOC modeling by the GFREQ block 

see Subsection 6.1.3. The solid-line characteristics in Fig. 4.6 are in accordance with the 

Bode plots in Fig. 4.5. The important cut-off frequencies and asymptotic magnitude and 

phase values are confirmed by the simulations. The limited frequency band of the correct 

functionality of the gyrator can be observed. The maximum admittance magnitude at low 

frequencies reaches gm1gm2/GP1 = 346 mS in all cases. The constant magnitude section 

between ωGP2 and ωCP2 is not apparent in the simulations as the value GP2 = 0.0029 mS is 
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too low to take effect. It is also confirmed that the bandwidth of correct operation 

increases as α decreases. 

 

 

Fig. 4.6 Simulated magnitude and phase characteristics of gyrator input 

admittance 

The simulations with FOC emulated by 5th order Foster I structure containing 

standard resistors and capacitors computed for Oustaloup approximation [25] are also 

presented in Fig. 4.6 by dotted lines. Only the case with α = 0.5 was chosen to maintain 

clarity of the graph. Two different emulators of FOC were used, as covering the whole 

gyrator operating bandwidth which is more than seven decades would require a very 

complex emulator structure. Thus, the first emulator covers the frequency range 0.1 Hz 

to 1 kHz (marked with smaller dots in Fig. 4.6) and the second one 1 kHz to 10 MHz 

(marked with larger dots in Fig. 4.6). The schematic and values of resistors and capacitors 

of the Foster I emulator can be found in [95]. The dotted characteristics in Fig. 4.6 

simulated with the emulated FOC exhibit an additional error compared to the solid green 

characteristic obtained using ideal FOC. The operational frequency band of the emulator 

is lower than the bandwidth of the gyrator with ideal FOC and considering only the real 
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OTA properties. Thus, the bandwidth of the FOC is a limiting factor of the total 

bandwidth of the gyrator. 

To conclude, the immittance inversion by gyrator is suitable for obtaining FOIs as 

they are not as easy to manufacture in passive form as FOCs. Nevertheless, this approach 

has limitations caused by the active element real properties, affecting mainly the 

operational bandwidth, range of the obtainable input admittance and dynamic range. 

While designing the gyrator circuit it is essential to set sufficiently large OTA 

transconductances. This leads also to large fractance F, which reduces the circuit 

sensitivity to the parasitics GP1 and CP1.  

The Section 4.1 is based mainly on the findings of the paper [95]. As already 

referenced, a significant extension of this topic can be found in the author’s article [96], 

where, for example, the compensation of parasitic conductance of OTA terminals by 

means of a shunt negative resistor realized by a specially connected OTA is practically 

shown. Furthermore, the dynamic optimization following the rules introduced in the 

Subsection 4.1.2 is also performed in the article. The step-by-step guidelines for the 

design of gyrator parameters, including the flowchart, the floating gyrator variant, and 

practical design of FOI for an electrical model of the human respiratory system are also 

demonstrated in [96].  

4.2 FOE of Complementary Order 

Wider possibilities of FOE immittance transformations in comparison with the gyrator 

described in Section 4.1 are presented in articles [98] and [99], in which the author of this 

thesis also participated. Transformation of FOEs and their fractional order α to obtain the 

complementary order β = 1 − α is demonstrated there. The transformation also allows to 

obtain capacitive and/or inductive FOEs with adjustable pseudo-capacitance and/or 

pseudo-inductance, which results in significant reduction of the required FOEs or their 

RC emulators in a final circuit, where the feature of tunability and adjustability is 

required. Furthermore, FO frequency-dependent negative resistors of type I (FDNR-I) or 

fractional D elements specified with D parameter [100] can be obtained using the 

approach. 

Assume GIC as shown in Fig. 4.7 containing three admittances Y1 – Y3 as passive 

elements and a network of generally arbitrary types of active elements. 

 

Fig. 4.7 General view on immittance converter 

Let the input admittance YIN of this GIC be defined as 

Network of active elements

Y1
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2 3
IN

1

Y Y
Y

Y
= . (4.12) 

Selecting the specific types (i.e. resistor, capacitor and/or FOE) of the individual 

admittances Y1 – Y3, the following transformation cases can be described: 

• Case I: Y1 = sαFα, Y2 = sC, Y3 = G 

IN1

CG
Y s

F





= , (4.13) 

and FOC with complementary order β = 1 − α and pseudo-capacitance CG/Fα is 

obtained. 

• Case II: Y1 = G1, Y2 = sαFα, Y3 = G2 

2
IN2

1

F G
Y s

G

 = , (4.14) 

and the FO capacitance multiplier is designed with the multiplication constant 

G2/G1, whereas the fractional order remains unchanged. 

• Case III: Y1 = sαFα, Y2 = G1, Y3 = G2 

1 2
IN3

G G
Y

s F


= , (4.15) 

and the synthetic FOI is designed with the order α and its pseudo-inductance 

Fα/(G1G2). 

• Case IV: Y1 = sC, Y2 = sαFα, Y3 = G 

IN4

F G
Y

s C




= , (4.16) 

and the FOI with complementary order β = 1 − α and pseudo-inductance C/(FαG) 

is obtained. 

• Case V: Y1 = sαFα, Y2 = sC1, Y3 = sC2 

2 1 2
IN5

C C
Y s

F





−= , (4.17) 

and the FO FDNR-I with its order (2 − α) and the parameter D = C1C2/Fα is 

defined. 

• Case VI: Y1 = G, Y2 = sαFα, Y3 = sC 

1

IN6

F C
Y s

G

 += , (4.18) 

and again, the FO FDNR-I as in Case V is obtained, however here its fractional 
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order is (1 + α) and the parameter D = FαC/G. 

Assuming that only one discrete FOE is expected to be employed in the 

transformation cell, generally the Case VII can be defined for Y1 = sC1, Y2 = sαFα, 

Y3 = sC2. In this case, however, the definition of input impedance is given by (4.14) and 

fractional capacitor multiplier is designed again, just the multiplication constant is C2/C1. 

Note that all the Cases described above assume at most one FOE. Using more FOEs, other 

design cases of passive synthetic elements can be defined, but are not analyzed here. 

It is evident that for each of the possible design Cases described above the required 

fractional order and/or the value of the pseudo-capacitance, pseudo-inductance or pseudo-

D can be adjusted by properly selecting the parameters of the passive elements. Note that 

for Cases I – IV, the general admittance Y3 has the character of a basic conductor (i.e. G). 

Hence, OTA element defined with its adjustable transconductance gm can be 

advantageously used for the design of the transformation cell, as it offers electronic 

adjustability of the pseudo-capacitance or pseudo-inductance of the final FOE. 

Furthermore, the Cases I and IV show that FOEs of fractional order β being 

complementary to the original fractional order α of the assumed capacitive FOE are 

obtained. Hence, for the practical design and mainly in case of implementing the FO 

function blocks as integrated circuits, significantly reduced number of FOEs is required 

to offer sufficient tunability and adjustability. 

4.2.1 Implementation by GIC 

The above described theory of transforming FOEs is verified using the immittance 

converter. To follow the advantage of electronic adjustability of the final FO synthetic 

elements, the operational transconductance amplifier (OTA), see Fig. 4.1 and equation 

(4.1), is employed in this converter. The second active element used is a simple second-

generation current conveyor CCII (Fig. 4.8), whose behaviour is defined by the following 

relations for terminal currents and voltages: iY = 0; vX = vY; iZ = iX. 

 

Fig. 4.8 Schematic symbol of CCII 

Using the OTA and CCII as active elements, the GIC as shown in Fig. 4.9 can be used 

and its input admittance can be expressed as 

2 m
IN

1

Y g
Y

Y
= . (4.19) 
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Fig. 4.9 General immittance converter using CCII and OTA as active elements 

This relation corresponds to (4.12) assuming that Y3 = gm. Selecting the type of the 

admittances Y1 and Y2 according to the Cases I – IV as described above, the grounded 

FOC or FOI with the order α or β (β = 1 − α) and adjustable pseudo-capacitance or 

pseudo-inductance can be designed. 

The Cases I and II of transforming discrete FOE are further analyzed through 

simulations and also experimental measurements in the article [99]. For this purpose, the 

Foster I RC network emulating FOC with fractional order α = 0.2 is utilized. The active 

elements in the GIC were implemented using commercially available AD844 circuits 

[101]. It has been practically proven that with the help of GIC it is possible to 

electronically adjust the pseudo-capacitance by setting the transconductance gm without 

affecting the fractional order α = 0.2 or β = 1 − 0.2 = 0.8. See the article [99] for more 

details on verifying the functionality of the circuit in Fig. 4.9. 

4.3 FOE Series Using GIC 

This section further expands and generalizes the possibilities of FOE impedance 

transformations. It builds on the findings from the previous Section 4.2, while the GIC of 

Fig. 4.7 is further expanded in order to obtain greater variability of input admittances. 

This approach enables an efficient design of FOE series while using a very limited set of 

“seed” FOEs. The author’s works [102], [103] dealing with this topic show the use of 

only up to two “seed” FOEs with properly selected fractional order αseed (the same order 

for both FOEs) as passive elements that results in the design of a series of 17 synthetic 

FOEs with different α being in the range [−2; 2]. 

The final extension of these transformations is described by the author and his team 

in the article [24], on which this extensive Section 4.3 is based. A concept to efficiently 

design a series of floating synthetic FOEs using GIC is proposed here. Using even single 

or a very limited number of “seed” FOEs it is possible to obtain a wide set of new FOEs 

featuring fractional order α being in the range [−p; p], where p is arbitrary integer number. 

The concept is further developed by proposing a general circuit structure of the GIC that 

employs OTAs as active elements. To show the efficiency of the proposed technique, the 

use of only up to two “seed” FOEs with properly selected fractional orders as passive 

elements results in the design of a series of 51 FOEs with different α being in the range 
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[−2; 2]. Comprehensive analysis of the proposed GIC is given including effect of parasitic 

properties of active elements and optimization process to improve the overall 

performance. 

Assume a general function block as shown in Fig. 4.10 that is represented by general 

active/passive network to which general admittance elements Yi (i = 1, ..., p; p being even 

number) are connected. The general active/passive network may represent arbitrary 

interconnection of an arbitrary type of active and passive elements and is determined by 

its parameter g, a transconductance specific for this active/passive network.  

 

Fig. 4.10 View on general immittance converter as a function block 

Let the input admittance YIN of such a general function block be defined as 
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The general admittances Yi (i = 1, ..., p) may be represented by any type of passive 

element, such as conductor (i.e. resistor), inductor, capacitor, and FOE with their 

fractional orders αi equal to 0, −1, 1, and αFOE (−1 < αFOE < 0 or 0 < αFOE < 1), respectively, 

in accordance with the admittance format (3.1). Under these assumptions, for the 

fractional order α defining the phase angle of the input admittance (4.20) can be written 
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and the feasible range of fractional order α is defined as [−p, p]. To better demonstrate 

the advantageous features of the proposed concept of designing a series in fractional order 

α of FOEs, let p = 4. Then (4.20) and (4.21) simplify to: 

  2 4
IN

1 3

1 1

1 1

Y Y
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− 
, (4.22) 

and 

2 4 1 3= + − −     , (4.23) 

respectively. 
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As in practical analog circuit design, classic inductors, and/or inductive fractors are 

not commonly used, in the further text it is assumed that the general admittance elements 

Yi may be replaced only by conductors (αi = 0), capacitors (αi = 1), and/or capacitive 

FOEs (αi = αFOE, 0 < αFOE < 1). Consequently, the following set of synthetic passive 

elements observed at the input of the immittance converter and specific with their 

fractional order α can be described: 

• Frequency-dependent negative resistor - type I (FDNR-I), α = 2, 

• Fractional FDNR-I, 1 < α < 2, 

• Capacitor C, α = 1, 

• Capacitive FOE, 0 < α < 1, 

• Resistor R, α = 0, 

• Inductive FOE, −1 < α < 0, 

• Inductor L, α = −1, 

• Fractional frequency-dependent negative resistor - type II (FDNR-II), 

−2 < α < −1, 

• FDNR-II, α = −2. 

Note that the feasible range of fractional order α is now [−2, 2] only, which is caused 

by the fact that neither classic nor fractional inductors are assumed to replace one or more 

general admittance elements Yi. 

The frequency-dependent negative resistor-type I (FDNR-I) is also referred to as the 

D element (or double capacitor) and features purely real negative resistance that decreases 

in magnitude with increasing frequency [100], whereas FDNR-II also exhibits purely real 

negative resistance, however, its magnitude increases for increasing frequency. 

Additionally, comparing with [42], the inductive FOE, fractional FDNR-II, fractional 

FDNR-I, and capacitive FOE, may be referred to as Type-I fractor, Type-II fractor, Type-

III fractor, and Type-IV fractor, respectively. 

Using GIC allows to obtain a wide series of new FOEs using a very limited set of 

“seed” FOEs and their fractional order αseed. As an example, assume a “seed” FOE with 

fractional order αseed = 0.2. Using always at most two identical “seed” FOEs and two 

capacitors together with conductors to replace external admittance elements Yi 

(i = 1, ..., 4) in (4.22), then according to (4.23) 19 unique values of fractional order α from 

the range [−2, 2] are obtained. The combinations of external passive elements, i.e., of the 

conductors, capacitors, and “seed” FOEs, are listed in Tab. 4.1 in terms of their αi values. 

To better comprehend the advantage in utilizing “seed” FOEs, even 51 different 

values of fractional order α, still from the range [−2, 2], can be obtained by assuming two 

different order values αseed1 = 0.25 and αseed2 = 0.0625. As a result, for each α, the input 

admittance YIN given by (4.22) features a phase angle from the range [−180, 180] degrees 

as illustrated in Fig. 4.11. The specific combinations of external admittance types defined 

by their αi are summarized in Tab. 4.2. 
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Table 4.1 Combinations of admittances Yi, their αi and the unique fractional 

order α of YIN for αseed = 0.2 

α1 α2 α3 α4 α 

0 1 0 1 2 

0.2 1 0 1 1.8 

0.2 1 0.2 1 1.6 

0 1 0 0.2 1.2 

0 1 0 0 1 

0.2 1 0 0 0.8 

0.2 1 0.2 0 0.6 

0 0.2 0 0.2 0.4 

0 0.2 0 0 0.2 

0 0 0 0 0 

0.2 0 0 0 −0.2 

0.2 0 0.2 0 −0.4 

1 0.2 0 0.2 −0.6 

1 0.2 0 0 −0.8 

1 0 0 0 −1 

1 0 0.2 0 −1.2 

1 0.2 1 0.2 −1.6 

1 0.2 1 0 −1.8 

1 0 1 0 −2 

 

 

Fig. 4.11 Feasible phase angles of YIN (4.22) using up to two seed FOEs 

with αseed1 = 0.25 and αseed2 = 0.0625 
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Hence, it may be obvious that using a very limited set of “seed” FOEs, a broad series 

of new FOEs primarily with different fractional order α may be obtained. Furthermore, 

by adjusting the values of external capacitors (C), conductors (G), and most preferably 

also the transconductance g of the active/passive network it is possible to obtain a 

generally arbitrary value of the fractance being observed at the input of the GIC. 

Table 4.2 Combinations of admittances Yi, their αi and the unique fractional 

order α of YIN for αseed1 = 0.25 and αseed2 = 0.0625 

α1 α2 α3 α4 α  α1 α2 α3 α4 α 

0 1 0 1 2  0.0625 0 0 0 −0.0625 

0 1 0.0625 1 1.9375  0.0625 0 0.0625 0 −0.125 

0.0625 1 0.0625 1 1.875  0.25 0 0 0.0625 −0.1875 

0 1 0.25 1 1.75  0.25 0 0 0 −0.25 

0.0625 1 0.25 1 1.6875  0.25 0 0.0625 0 −0.3125 

0.25 1 0.25 1 1.5  0.25 0.0625 0.25 0.0625 −0.375 

0 1 0 0.25 1.25  0.25 0 0.25 0.0625 −0.4375 

0 1 0.0625 0.25 1.1875  0.25 0 0.25 0 −0.5 

0.0625 1 0.0625 0.25 1.125  1 0.25 0.0625 0.25 −0.5625 

0 1 0 0.0625 1.0625  1 0.0625 0 0.25 −0.6875 

0 1 0 0 1  1 0 0 0.25 −0.75 

0 1 0.0625 0 0.9375  1 0 0.0625 0.25 −0.8125 

0.0625 1 0.0625 0 0.875  1 0.0625 0 0.0625 −0.875 

0 1 0.25 0.0625 0.8125  1 0 0 0.0625 −0.9375 

0 1 0.25 0 0.75  1 0 0 0 −1 

0.0625 1 0.25 0 0.6875  1 0 0.0625 0 −1.0625 

0.25 1 0.25 0.0625 0.5625  1 0.0625 0.25 0.0625 −1.125 

0 0.25 0 0.25 0.5  1 0 0.25 0.0625 −1.1875 

0 0.25 0.0625 0.25 0.4375  1 0 0.25 0 −1.25 

0.0625 0.25 0.0625 0.25 0.375  1 0.25 1 0.25 −1.5 

0 0.25 0 0.0625 0.3125  1 0.0625 1 0.25 −1.6875 

0 0.25 0 0 0.25  1 0 1 0.25 −1.75 

0 0.25 0.0625 0 0.1875  1 0.0625 1 0.0625 −1.875 

0 0.0625 0 0.0625 0.125  1 0 1 0.0625 −1.9375 

0 0.0625 0 0 0.0625  1 0 1 0 −2 

0 0 0 0 0       

 

4.3.1 Implementation and Properties of GIC 

To prove the theoretical concept in designing series of floating FOEs, the novel 

configuration of GIC based on OTAs is shown in Fig. 4.12. Considering the relation (4.1) 

describing OTA and performing routine algebraic analysis, the input admittance is 

determined as 
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Fig. 4.12 Proposed OTA-based general immittance converter 

Comparing (4.24) with (4.20), it may be observed that the proposed circuit from Fig. 

4.12 fully follows the behavior of a GIC, whereas for the transconductance g it holds 
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The following beneficial features of the proposed GIC are identified: 

• Floating synthetic FOEs are designed; 

• only grounded external admittances are employed; 

• electronic tunability of |YIN| is possible by proper adjustment of the 

transconductances gm of the active elements; 

• there is no restriction concerning matching between passive (external) or active 

elements. 

In theory, using the proposed OTA-based GIC from Fig. 4.12, the feasible range of 

the fractional order α is [−p, p], whereas p is generally an arbitrary even integer number. 

For a more practical design of a series of FOE, let p = 4. The GIC from Fig. 4.12 simplifies 

to a circuit as shown in Fig. 4.13, whose input admittance according to (4.24) is specified 

as 
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Fig. 4.13 Proposed OTA-based general immittance converter for p = 4 

For the same reasons as already discussed above, assuming the external admittance 

elements Yi (i = 1, ..., 4) to be suitably replaced by conductors, capacitors, and capacitive-

type “seed” FOEs, the immittance converter from Fig. 4.13 is capable of designing a 

series of FOEs with the fractional order α in the range [−2, 2]. Once the inductors and 

inductive FOEs are used to replace one or more external admittances, the range of 

fractional order α will be [−4, 4]. 

For the purpose of analysis of the real behavior of the proposed GIC from Fig. 4.13, 

the OTA element designed in the 0.18 µm TSMC CMOS process as presented in [97] is 

used. The transconductance gm of this element can be controlled by external voltage 

according to the relation 

3

m SET2 10g V−=    (4.27) 

in the range of VSET from 0 to 0.5 V, i.e. gm ranging from 0 to 1 mS. Details on this OTA 

element can be found in the article [97] and in [24], from which this section is mostly 

based. 

4.3.2 Influence of OTA Parasitics and Optimization of GIC Performance 

Similarly to the gyrator case in Subsection 4.1.1, the influence of real (parasitic) 

properties of OTAs on the overall performance of the proposed GIC will be analyzed. In 

theory, the internal impedance of OTA input and output terminals is infinity. Considering 

a real OTA, its properties are commonly modeled by resistances and capacitances 
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connected between each of the terminals and ground. Considering these OTA parasitic 

properties, the proposed GIC from Fig. 4.13 can be redrawn as seen in Fig. 4.14. 

 

Fig. 4.14 Proposed GIC with OTA parasitic properties 

Assuming that all OTAs in the circuit are the same, the parasitic conductors GP 

symbolize a parallel combination of the input and output internal resistances of OTA. 

Similarly, the parasitic capacitors CP represent a parallel combination of OTA input and 

output internal capacitances. Based on [97], their approximate values used in this analysis 

are GP ≈ 1/(346 kΩ) = 2.89 µS and CP ≈ 0.28 pF. For clarity, the nodes and input port, 

where the modeled parasitics are present are labeled by circled letters A to F in Fig. 4.14. 

Note that the parasitic elements in the node E express the properties of twice the number 

of OTAs, thus their conductance and capacitance are double compared to the other 

parasitic elements, i.e., 2GP and 2CP. As the overall input port of the GIC labeled as F is 

differential, the terminal parasitic elements GP and CP are connected in series here 

(through ground) and thus these parasitics are considered to be GP/2 and CP/2. If the GIC 

is connected as single-ended, i.e., one of its input terminals is grounded, the values of the 

parasitic elements of the input node should be considered GP and CP. 

To solely evaluate the influence of OTA parasitic properties, the FOEs, resistors, and 

capacitors used to replace the external admittance elements are assumed to be ideal. 

i) Nodes, A, B, C, D 

The external admittance elements connected to these nodes are expected to be 

replaced by conductors (i.e., resistors), classic capacitors, or capacitive FOEs. In case of 

replacing by conductors, the parallel parasitic conductance GP is added, but it is usually 

very small compared to the external conductance and can be neglected. The capacitance 

CP is also in parallel and considering external conductance of the order of milisiemens 

(mS), the parasitic effect of CP becomes significant at a very high frequency (above 

approx. 500 MHz), and thus can also be neglected. 
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On the other hand, the replacement of external admittances by capacitors or capacitive 

FOEs is worth analyzing. At low frequencies these elements have a very low admittance 

magnitude and the parasitic conductance GP may prevail. In case of FOE with fractional 

order α and fractance F this happens below the frequency: 

1

P
GP

G

F




 

  
 

, (4.28) 

as illustrated by asymptotic admittance magnitude plot in Fig. 4.15. 

 

Fig. 4.15 Magnitude frequency characteristics of the working (red line) and 

parasitic (black line) admittances of the nodes A to D 

Note that (4.28) is also valid for a classic capacitor when considering α = 1 and a 

capacitance equal to F. It follows that for a higher value of F, correct operating range is 

extended to lower frequencies. Once for a specific F sufficiently low ωGP is not provided, 

the parasitic conductance GP can be reduced, e.g., by connecting in parallel a negative 

conductance as described in the Subsection 4.3.3 in detail. Using this approach, i.e., the 

negative conductance, the frequency ωGP can theoretically be shifted to very low values. 

However, the demands on the accuracy of the negative conductance increase. Reducing 

GP also decreases the lower bound of the obtainable admittance magnitudes of nodes A 

to D. 

ii) Node E 

In case of ideal OTAs, the order of the admittance of the node E (YE) equals to 

αE = −(α2 + α4), and hence can range from 0 to −2. Thus, the character of the admittance 

ranges from resistive through fractional inductive, inductive, fractional FDNR-II to 

FDNR-II. The resistive character will be not included in the analysis, as in this case the 

whole lower branch including OTA2, OTA4, and OTA6 can be omitted and replaced by a 

resistor and a similar conclusion as described in the previous part i) is reached. 

Considering all other possible characters of YE, the OTA parasitic properties affect the 

circuit mainly at high frequencies, since the admittance magnitude defined as 
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becomes comparable with or even lower than the admittance magnitude of the parasitics 

2GP or ω2CP, which may prevail. The situation is illustrated by the admittance magnitude 

asymptotic plots in Fig. 4.16. 

 

Fig. 4.16 Magnitude frequency characteristics of the working (red lines) and 

parasitic (black lines) admittances of the node E 

The black lines are defined by the admittances of the parasitic elements and their 

breakpoint is at the frequency ω2P: 
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This frequency is approximately 1.6 MHz for the above mentioned parasitics of the OTA. 

The red lines (|YE1| and |YE2|) in Fig. 4.16 show two cases of possible admittance 

magnitudes of the node E that are not affected by the parasitics 2GP and 2CP yet. When 

the red lines approach the black “boundary” line represented by the admittance of the 

parasitics, these parasitics start to take effect. The cut-off frequency of the correct 

operation for the first case (|YE1|) is: 
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Considering the second case (|YE2|), the cut-off frequency is: 
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Both these frequencies can be increased by increasing |YE|, which can be done by 

increasing the product gm2gm4gm6 as seen in (4.29). The decrease of the product F2F4 (F2 
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and/or F4) is also possible, however this may increase the lower cut-off frequency in the 

nodes B and/or D, see the part i) and (4.28). The orders α2 and α4 are fixed to obtain the 

required order of the GIC input admittance. The cut-off frequency ω2GP can also be 

increased by decreasing 2GP using the negative conductance compensation (see below in 

the Subsection 4.3.3 until ω2GP = ω2P. Decreasing further the parasitic conductance, the 

relation (4.32) starts to hold for the cut-off frequency. Note that if the compensation 

circuit with the negative conductance described below with the same OTA is used to 

reduce 2GP, in (4.30) and (4.32) it is necessary to assume 3CP instead of 2CP as the 

compensation circuit has its own parasitic capacitance equal to CP. 

Under certain conditions a sharp peak in the node E admittance magnitude 

characteristic can occur at the cut-off frequency. This happens when the sum of the 

phasors of ideal YE, jω2CP, and 2GP approaches zero as illustrated in Fig. 4.17. The 

behavior of the GIC can be unstable in this case and it is necessary to ensure a suitable 

damping of the oscillations. Damping can be provided by modifying the value of 2GP by 

connecting an appropriate positive or negative conductance in parallel. However, in most 

cases the circuit is damped by its own parasitic properties and no modification is 

necessary. Excessive damping is not recommended as it can lead to an exceedingly soft 

transition of input admittance phase in a very broad band around the cut-off frequency. 

 

Fig. 4.17 Phasor diagram resulting in zero admittance of node E 

iii) Port F 

The port F is the overall input node of the GIC and thus YF = YIN = sαFIN. This 

admittance is specified as the design criterion and thus cannot be modified during 

optimization. Due to the limited optimization possibilities (in fact involving only changes 

in parasitics) it is suitable to evaluate and optimize the GIC performance in the port F 

first. The optimization of other nodes beyond the performance of the port F brings no 

improvement. 

The fractional order α of YF is in case of ideal OTAs given by (4.23) and ranges from 

−2 to 2. If α is positive, the admittance at port F is capacitive and at high frequencies it 

reaches high values in magnitude compared to the admittance of parasitics GP/2 and 

ωCP/2 present at the port. Thus, the parasitics do not take effect in the port F at high 

frequencies and the upper frequency of the GIC operation is determined primarily by the 

properties of node E as described in the part ii) above. On the other hand, at low 
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frequencies YF can reach a low magnitude comparable with the parasitic conductance GP/2 

present at port F. This is similar to the situation described in the part i) for nodes A, B, C, 

and D. Since the admittance YF cannot be changed as mentioned above, the only way to 

broaden the operation band to lower frequencies is to reduce the parasitic conductance at 

port F, e.g., using the compensation technique as proposed below in the Subsection 4.3.3. 

Additionally, the cut-off frequencies of the nodes A, B, C, and D should be determined 

and if necessary adjusted in accordance with the cut-off frequency of port F. 

If α is negative, the admittance at port F is inductive and at high frequencies it can 

reach a low magnitude that is comparable with the admittance of parasitics GP/2 and/or 

ωCP/2. The analysis is then similar to node E, see the part ii), with the difference that in 

this case the magnitude of YF cannot be modified. Hence, the optimization can be done 

only by reducing GP/2 such that it is lower than both |YIN| and ωCP/2 at frequency, where 

these admittances are equal, that is: 

1
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, (4.33) 

and it is the maximum operation frequency of the port F and cannot be increased. Note 

that when the differential compensation circuit described in the Subsection 4.3.3 with the 

same OTA is used to reduce parasitic conductance at port F, in (4.33) it is necessary to 

assume CP instead of CP/2, as again the compensation circuit (its differential variant) has 

its own parasitic capacitance CP/2. The subsequent step is verification or prospective 

optimization of the cut-off frequency of the node E, whereas its value specified by (4.31) 

or (4.32) is to be at least as high as ωCP/2 given by (4.33). Also note that when the GIC is 

connected as single-ended, the parasitics in port F should be considered with values GP 

and CP instead of GP/2 and CP/2. The single-ended variant of the compensation circuit 

with negative conductance can be utilized as presented below. The effectiveness of the 

described compensation possibilities in individual nodes is demonstrated and discussed 

by two examples in the Subsection 4.3.5. 

4.3.3 OTA-Based Circuit with Negative Conductance 

When the parasitic conductance present in a node of the proposed GIC is to be decreased 

within performance optimization as described in the previous Subsection 4.3.2, simple 

compensation circuits as shown in Fig. 4.18 can be employed. The single-ended circuit 

from Fig. 4.18(a) is suitable for compensation of parasitic conductance at the nodes A to 

E, since compensation conductance in the COMP terminal relative to ground is 

COMP mC PG g G= − + , (4.34) 

whereas the differential circuit in Fig. 4.18(b) can be connected to the port F and its input 

conductance is 
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(a)    (b) 

Fig. 4.18 Circuit with negative conductance (a) between terminal COMP and 

ground; (b) between terminals COMP+ and COMP− 

We consider that the utilized OTAC element has the same parasitic terminal properties 

as the OTAs used in the proposed GIC. The conductance GCOMP can be set to an 

appropriate negative value by setting of gmC using the control voltage VSETC. It should be 

again noted that when connecting the circuits from Fig. 4.18 to a node or port, the total 

parasitic capacitance in the node or port increases by the parasitic capacitance of the 

compensation circuit which is CP or CP/2 in the case of Fig. 4.18(a), (b), respectively. 

Thus, it is necessary to take this value into account in the relations containing the parasitic 

capacitance of the node or port being optimized. 

4.3.4 Simulation Results 

To prove the functionality of the proposed GIC and mainly to show its advantageous 

feature in designing a wide set of FOEs using a very limited count of “seed” FOEs, the 

performance of the GIC was further verified by post-layout simulations in Cadence 

Virtuoso 6.1.6. First, two “seed” FOEs are designed and further utilized in the proposed 

GIC, whereas following the recommendations from the Subsection 4.3.2, the optimization 

steps are also verified to improve the overall performance of the GIC. 

To obtain the set of new FOEs and their fractional order α as listed in Tab. 4.2, the 

“seed” FOEs with αseed1 = 0.25 and αseed2 = 0.0625 are required. Due to the commercial 

unavailability of such FOEs, these “seed” FOEs were approximated by 7th-order Valsa 

topology with the resistances and capacitances determined using the approach described 

in [93]. The fractances (pseudo-capacitances) of the two “seed” FOEs are 

Fseed1 = 112.3 µF∙s−0.75 and Fseed2 = 578.9 µF∙s−0.9375, and their admittance at central 

frequency of approximation 1 kHz is 1 mS. The schematic and resistance and capacitance 

values of these emulators can be found in the article [24]. 

In Fig. 4.19 the magnitude and phase admittance frequency characteristics of the 

approximated “seed” FOEs are shown (solid lines) and compared with ideal “seed” FOEs 
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(dotted lines). The absolute errors in magnitude and phase of the approximated “seed” 

FOEs are also depicted (dashed lines), whereas the correct operation may be observed in 

4 frequency decades, i.e., from 10 Hz to 100 kHz. 

 

(a) 

 

(b) 

Fig. 4.19 Simulation results of admittance of designed “seed” FOEs with 

central frequency 1 kHz: (a) Magnitude responses; (b) phase 

responses 

To implement the proposed GIC, the OTA cell designed in the 0.18 µm TSMC CMOS 

process as described in detail in [24] and [97] was used. The overall circuit layout of the 

proposed GIC is shown in Fig. 4.20. Here, the cells OTAi (i = 1, ..., 7) correspond to 

prime active elements of the GIC circuit as shown in Fig. 4.13. The cells OTAC−j (j = A, 

B, ..., F) represent the single-ended or differential compensation circuit from Fig. 4.18 to 
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reduce the parasitic conductance GP present in the nodes A to E, or port F as labeled in 

Fig. 4.14. Additionally, the block IBIAS is a set of current sources to bias the OTA cells. 

The labels Y1, Y2, Y3, Y4, and YIN+, YIN− represent the pins, to which the external discrete 

elements, i.e., resistors, capacitors, and/or “seed” FOEs are to be connected, or the input 

terminal of the GIC, respectively. 

 

Fig. 4.20 Circuit layout of the proposed GIC 

Within the simulations, next to the “seed” FOEs as described in the beginning of this 

subsection, the external general admittance elements Y1, Y2, Y3, and Y4 of the GIC are 

always replaced by 1 mS conductances (i.e. 1 kΩ resistors) or 159.2 nF capacitors (as at 

the central frequency 1 kHz their admittance is 1 mS). The transconductances gm of all 

prime OTAs are 1 mS (i.e. VSET = 0.5 V). The resulting magnitude and phase 

characteristics of the input admittance of the immittance converter from Fig. 4.13 are 

presented in Fig. 4.21. The black dashed lines represent the results with ideal elements 

(OTAs, resistors, capacitors, and “seed” FOEs) employed. To maintain the clarity of the 

simulation results being displayed in Fig. 4.21, only the α values from the range [−2, 2] 

with the step 0.25 were selected. Based on the values of external admittances and setting 

of OTAs, the input admittance magnitude of the GIC is always |YIN| = 1 mS at 1 kHz. 

In Fig. 4.21 it is apparent that the input admittance magnitude and phase 

characteristics are affected by the parasitic properties of OTAs. Most distorted are the 

characteristics for |α| > 1, both at low and high frequencies, whereas peaking is evident in 

several cases in the magnitude characteristics (Fig. 4.21(a)). This peaking is caused by 

the resonance of the node E or port F admittance (which has a character of fractional- or 

integer-order FDNR-I or FDNR-II) with OTA parasitic conductance. Fortunately, 

damping of the oscillations is always ensured by the OTA parasitic capacitance and thus 

the circuit is stable. However, the overall bandwidth of correct operation for the highest 

values of |α| reduces down to two decades only, which is two decades lower than the 

bandwidth of the “seed” FOE emulators. To broaden the bandwidth of the GIC, 

optimization is required by the steps as described above in the Subsections 4.3.2 and 4.3.3, 

which are validated in the next Subsection 4.3.5. 
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(a) 

 

(b) 

Fig. 4.21 Simulation results of input admittance of the proposed GIC with 

OTA parasitics: (a) Magnitude responses; (b) phase responses 
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4.3.5 Optimization Examples 

The influence of the OTA parasitics on the significant reduction of the operational 

frequency band of the newly obtained FOEs can be observed in Fig. 4.21, mainly for 

|α| > 1. To reach an operational bandwidth of FOEs at the input of GIC to be at least the 

same as it is of the “seed” FOEs (i.e., 10 Hz – 100 kHz), optimization is necessary and is 

demonstrated on two following examples. 

i) Optimization Example for α = 1.75 

In this case, the fractional FDNR-I is obtained at the input of the GIC, i.e., port F, whose 

fractance is FIN = 22.55 nF∙s0.75. Decreasing frequency, the input admittance magnitude 

also decreases until the parasitic conductance GP/2 starts to prevail. This happens at a 

lower cut-off frequency at approximately 23.8 Hz (Fig. 4.21(a)) generally determined by 

(4.28), where GP was substituted by GP/2 (note that (4.28) is originally valid for nodes A, 

B, C, D where parasitic conductance GP is present). 

Within optimization, using the circuit from Fig. 4.18(b) to compensate the parasitic 

conductance at port F, the lower cut-off frequency is decreased down to 1 Hz to maintain 

a sufficient margin to frequency 10 Hz due to soft admittance phase transition (Fig. 

4.21(b)). To reach this new lower cut-off frequency, the input conductance GCOMP was 

set to −1.439 µS, whereas according to (4.35) compensation transconductance gmC equals 

to 2.885 µS. 

The upper cut-off frequency is determined by the parasitics of the node E as described 

in the respective part of Subsection 4.3.2. To increase this upper cut-off frequency, it is 

necessary either to increase the product gm2gm4gm6 or to decrease F2F4 (in this case 

capacitances C2 and C4 as α2 = α4 = 1). Since the transconductances gm of all OTAs are 

already set to 1 mS (which is maximum value of the utilized OTA structure [24]), the 

product gm2gm4gm6 cannot be further increased. Hence, having selected the upper cut-off 

frequency to be 100 kHz, using (4.31) new capacitances C2 and C4 (considering them 

equal) were determined to be 20.9 nF. Note that here the margin from the required 

100 kHz was not considered, as the damping in the node E is low and the admittance 

phase shows the transition in a narrow band. Moreover, the excessive increase of the 

upper cut-off frequency in node E would lead to lower capacitances C2 and C4 and 

undesirable deterioration of the cut-off frequency in nodes B and D. 

Within the optimization of the upper cut-off frequency, the ratio gm2gm4gm6/(F2F4) 

was increased. Hence, to keep the original value of the input fractance FIN unaffected, 

according to general formula (4.26), the ratio G1Fseed1/(gm1gm3gm5gm7) must decrease. As 

again the transconductances gm of all OTAs are already set to their maximum values (i.e., 

1 mS) and the “seed” FOE is not expected to be modified, the only possibility is to 

decrease G1 to 17.3 µS. 

ii) Optimization Example for α = −1.75 

For this case, the fractional FDNR-II with fractance 4 434 F∙s−2.75 is obtained at the input 
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of the GIC. The admittance magnitude decreases with increasing frequency, where the 

parasitics at port F define the upper cut-off frequency of approximately 42 kHz (Fig. 

4.21(a)) generally determined by (4.28), where again GP was substituted by GP/2. The 

only solution to increase the upper cut-off frequency is to reduce the parasitic conductance 

of the port F by using the compensation circuit from 4.18(b). In this case it is possible to 

decrease the port F parasitic conductance almost to zero, thus the transconductance of the 

compensation circuit is set slightly lower than GP, i.e., gmC = 2.888 µS. 

To reduce the lower cut-off frequency, it is necessary to increase capacitances C1 and 

C3 in the nodes A and C according to (4.28). The optimized lower cut-off frequency is set 

to 1 Hz to have again sufficient margin to 10 Hz due to soft phase transition. Hence, the 

new value of capacitances C1 and C3 is 460 nF. Within the optimization of the lower cut-

off frequency the product C1C3 was increased. Thus, the ratio 

gm2gm4gm6/(G2Fseed1gm1gm3gm5gm7) must decrease according to general formula (4.26) to 

keep the original value of the input fractance FIN unchanged. For this purpose, the 

transconductances gm2, gm4, and gm6 were set to 0.493 mS, whereas gm1, gm3, gm5, gm7, G2, 

and mainly Fseed1 are kept the same. As the transconductances gm2, gm4, and gm6 were 

changed, it is necessary to check the upper cut-off frequency of the node E if it is large 

enough. According to (4.32) the value of f2CP is 4.2 MHz, which is much more than the 

required upper cut-off frequency of 100 kHz. Hence no further optimization is needed. 

For the both optimized examples described, the resulting admittance magnitude and 

phase frequency characteristics are shown in Fig. 4.22 along with the characteristics of 

the non-optimized GIC taken from Fig. 4.21. It is evident that the optimized circuit 

provides a higher frequency bandwidth of the admittance characteristics covering the 

required 4 decades. The fractional FDNR-I (blue lines) reaches an upper cut-off frequency 

almost equal 100 kHz as considered during the optimization. The lower cut-off frequency 

reached approximately 5 Hz, which is higher than the projected value of 1 Hz, however, 

here the GIC function is affected by parasitics of multiple nodes and also the “seed” FOE 

emulator shows a higher error (see Fig. 4.19). The fractional FDNR-II (red lines) has also 

been optimized successfully. Its upper cut-off frequency is around 100 kHz and lower 

cut-off frequency is below 1 Hz. Additionally, as seen from Fig. 4.22(a), the dynamic 

range of the admittance magnitude has also increased thanks to the optimization. 

In conclusion, it should be noted that the described GIC with OTA cells designed in 

0.18 µm TSMC CMOS process as described in detail in [24] and [97] was already 

available at the time of writing this thesis as a custom integrated circuit “FGIC44 – Fully 

Controllable Immittance Converter” [104]. It was designed and fabricated within the 

Czech Science Foundation project GA19-24585S in the framework mini@sic of 

Europractice IC Service (IMEC, Belgium). The experimentally determined performance 

of FGIC44 and the OTAs forming its core are presented in [105]. The electronic 

controllability of the structure, its wide frequency range and also the possibility of 

compensation of parasitic internal conductances of the terminals are demonstrated in [24]. 
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(a) 

 

(b) 

Fig. 4.22 Simulation results of input admittance of proposed GIC with 

compensated OTA parasitics: (a) Magnitude responses; (b) phase 

responses 
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5. IMPEDANCE MODELS EMPLOYING FOE 

A frequent use of FOE is modeling the impedance characteristics of biological tissues and 

biochemical materials using substitute circuits also called phantoms. This is especially 

important in the case of biological materials that degrade rapidly over time or are difficult 

to obtain. Preservation of sample properties using circuit models is also important for the 

development of new measurement techniques of these samples and comparison of various 

results reached by different researchers dealing with the same topic and using different 

measurement methods. 

The author of this thesis also contributed to the development of knowledge in this 

field. He dealt with modeling of electrical properties of the cell membrane using FOC in 

the article [106] or realization of synthetic FOI for an electrical model of the human 

respiratory system in the work [96]. The following section is based on the first of these 

articles. 

5.1 FOE in Cardiac Cell Membrane Model 

The Cole impedance model shown in Fig. 5.1 is commonly used for characterizing 

bioimpedance properties [43]. It consists of a resistor R∞ that represents the model 

resistance at very high frequency, a resistor R1, and capacitor with capacitance C or FOC 

with fractance F and order α which is also known as the dispersion coefficient in this 

branch. The relations above the capacitor in Fig. 5.1 express its impedance. The resistance 

of the model at very low frequency is expressed as R∞ + R1. Many research studies 

confirmed that employing FOC instead of classic capacitor in the Cole model brings 

improvement in the modeling accuracy [10] and the author of this thesis attempted to 

validate this statement also for cardiac cells. 

  

Fig. 5.1 Single-dispersion Cole impedance model 

For accurate characterization of a particular object by the Cole model with FOC, it is 

necessary to determine the four parameters R∞, R1, α, and F from measured data. Early 

methods extracted the parameters from real-imaginary impedance plot, later numerical 

methods have been proposed that select the model parameters such that the analytical 

response of the model fits the experimental data with minimal least squares error [10]. 

The utilized response may be in frequency domain (impedance or its selected component) 

or time domain (voltage or current response to a defined waveform). The method 

R∞

R1 

1 1
 or 

sC s F
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described in this section uses time-domain current measurements with voltage excitation, 

whereas related techniques for extracting the Cole model parameters using current input 

signal and least squares fitting can be found in [107] and [108]. 

According to the best of author’s knowledge, the Cole model with FOC has not yet 

been used in modeling the electrical properties of the cardiac cell membrane. Usually, an 

equivalent circuit corresponding to Fig. 5.1 is used for this modeling, but instead of FOC, 

a standard capacitor is used [109], [110]. Hence, the objective and scientific novelty of 

this section is to determine whether the electrical impedance properties of the cell 

membrane show a fractional character, and thus whether it is possible to model them more 

accurately with the Cole circuit, where the α value is not equal to one, but is lower.  

It should be noted that so-called fractal behavior of a cell membrane is discussed in 

[111] where it is found that fractal dimension FD is a measure of the membrane 

morphological complexity. The fractal single-shell model describing dielectrics of 

mammalian cells proposed in [111] is in fact based on FOC with α = 1/(FD − 1). 

5.1.1 Cell Membrane Measurement Technique 

Fig. 5.2 shows experimental setup comprising an isolated cardiac cell (orange color) 

connected to a glass patch microelectrode [112], [113]. For the measurements, the 

cardiomyocytes were obtained by enzymatic isolation from right ventricles of adult male 

anesthetized Wistar rats. The isolated cardiomyocytes were placed in a measuring 

chamber containing Tyrode solution. Glass patch pipettes were pulled from borosilicate 

glass capillary tubes. Recordings of current responses have been performed using the 

whole-cell patch-clamp technique in the voltage-clamp mode using the Axopatch 200B 

equipment (Axon Instruments Inc., USA) and pCLAMP 10.2 software. 

Apparently, the schematic symbols indicated in Fig. 5.2 form an electrical equivalent 

circuit corresponding to the Cole model in Fig. 5.1. 

 

Fig. 5.2 Experimental setup for measuring current step response of cell 

membrane 
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The access resistance corresponding to the sum of glass electrode resistance (Rel) and 

resistance of extracellular solution between the second electrode and the measured cell 

(Rex) are modelled by R∞ in Fig. 5.1. The parallel RC circuit across the membrane can be 

represented in the model by the elements R1 and FOC. 

Measurement techniques used in cellular electrophysiology are based on the 

measurement of membrane currents and action potential of cells. The patch-clamp 

technique, a specialized version of the voltage-clamp, is used to measure membrane 

currents. This measurement method is based on evaluating current responses to changes 

in membrane voltage, most commonly rectangular pulses or harmonic waveforms. Small 

voltage pulses around the resting membrane voltage (represented by the voltage source 

in Fig. 5.2) are usually used to study the electrical properties of the membrane. In the 

subthreshold range of the imposed membrane voltage, the parameters of the model 

elements are regarded as constants [109]. Determination of the membrane parameters 

from the recorded responses is based on the analytical formulas describing the electrical 

equivalent circuit of the cell connected to the measuring device in time or frequency 

domain. The measurement in time domain using continuous rectangular wave stimulation 

allows for high-resolution determination of membrane model parameters [110], [114] and 

will also be used here to find the parameters of the Cole model. 

The typical waveforms of the imposed rectangular voltage and the membrane current 

responses are schematically sketched in Fig. 5.3. Only positive pulses are depicted, as 

only the time interval from t0 to tf will be further utilized for the extraction of model 

parameters. 

 

Fig. 5.3 Imposed voltage pulse and response of the membrane current 
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To simplify the following steps, it is convenient to shift the recorded current down by 

the value of the holding current Ih. Thus, the average holding current was detected and 

subtracted from the recorded current. This makes it possible to consider the current Ih 

equal to zero and the voltage oscillating between 0 V and Vm in the subsequent steps. 

Similarly, the time t0 will be considered zero to shift the rising edge of the input voltage 

to the base position. Note the initial transient event in the current response between t0 and 

ts associated with the limited slew rate of the setup where the recorded current differs 

from the expected theoretical response indicated by the dashed line. The maximum 

current value Im1 cannot be determined exactly from the measured data and only 

approximate value Im2 is available. 

5.1.2 Analytical Formulas and Least Squares Fitting 

The input impedance of the Cole model in Fig. 5.1 is given in Laplace transform by 

( ) 1

1 1

R
Z s R

s FR
= +

+
. (5.1) 

The current through the model can be computed by the Ohm’s law as I(s) = V(s)/Z(s), 

whereas the voltage V(s) is in this case Laplace transform of voltage step with amplitude 

Vm, i.e. V(s) = Vm/s. After substitution, the current is 

( )
( )

( )
m

1

1 1

V s V
I s

Z s R
s R

s FR


= =
 
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. 
(5.2) 

After rearranging, the relation (5.2) becomes a format 
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, (5.3) 

which is suitable for inverse Laplace transform leading to analytic description of transient 

response. For this purpose, the following formula is utilized [115] 
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where Eα,λ(−γtα) is the Mittag-Leffler function with two parameters defined as 
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,

0 Γ
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z
E z

i
 
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=

=
+

 , (5.5) 

where Γ(·) is the Gamma function. The resulting time domain expression of the Cole 

model current response due to the voltage step is 
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In case of replacing the FOC in the model by classic capacitor with capacitance C, the 

relation (5.6) simplifies to the following form containing exponential function 

( )
1

1m 1
int

1

1

R R
t

CR RV R
i t e

R R R





+
−

 

 
= + 

+   

. (5.7) 

The relations (5.6) and (5.7) will be used to obtain the parameters of the model by 

minimizing the error against the recorded current response. According to the resulting 

error, it will be evaluated whether FOC in the model brings an improvement in the 

modeling of the electrical properties of the cell compared to classic capacitor. 

Non-linear least squares fitting of the recorded current decay is used to find element 

values of the Cole model containing either FOE or classic capacitor. This numerical 

method aims to minimize the following Least Squares Error (LSE) 

( ) ( )
2

1

,
M

i i

i

LSE i X t RecCur t
=

= −   , (5.8) 

where X is the sought vector of Cole model parameters (R∞, R1, α, F), i(X, ti) is the time-

domain response calculated by (5.6) using X, and RecCur(ti) is the recorded current 

response. A total of M = 60 time instants ti are chosen from the interval between ts and tf. 

These instants are logarithmically distributed over time so that the fitting considers more 

datapoints at the beginning of the response where the current changes faster. 

The fitting was carried out by the MATLAB function fminsearch with the argument 

given by (5.8). This function finds the minimum of a user supplied unconstrained 

multivariable function using a nonlinear derivative-free method. The Mittag-Leffler 

function was evaluated with accuracy 10−10 by the routine [116]. The fminsearch function 

requires initial guess of the sought parameters X. Generally, the resistance R∞ would be 

determined as R∞ = Vm/Im1. However, as already mentioned at the end of Subsection 5.1.1, 

the maximum current value Im1 cannot be detected from the measured response. Anyway, 

the achieved maximum Im2 is sufficient for the initial guess of the resistances in the Cole 

model. Thus, the relations R∞G = Vm/Im2 and R1G = Vm/Is − Vm/Im2 can be used to get the 

initial guesses of the model resistances. 

Due to the fact that the cell membrane shows a current response close to standard 

exponential function, a relatively high value of α approaching one can be expected. 

Therefore, it is appropriate to choose αG = 0.9 as the initial guess. As an initial estimate 

of fractance F, it is possible to use a capacitance value CG determined by a method for 

extraction of classic membrane capacitance from exponential response, such as [117]. 
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To minimize probability of finding a local minimum, the function fminsearch is 

executed multiple (100) times, each time with randomly selected initial guesses from the 

intervals: 

• R∞ randomly selected from 0.1R∞G to R∞G (since Im2 is lower than Im1, the 

resistance R∞ must be lower than R∞G), 

• R1 randomly selected from 0.1R1G to 10R1G, 

• α randomly selected from 0.6 to 1, 

• F randomly selected from 0.1CG to 10CG. 

The resulting X parameters are then taken from the run with the lowest LSE. The 

pseudocode of the proposed method is presented in Algorithm 5.1. 

Algorithm 5.1 Pseudocode of the parameter extraction method 
____________________________________________________________________ 

Input: abf datafile, CG 

Output: Xfinal, LSEfinal, ifinal 

load Data from recorded abf datafile by abf2load function 

RecCur ← current waveform shifted to base position, i.e. Ih = 0, t0 = 

0 and selected 60 log-spaced samples between ts and tf (ts determined 

empirically from graph) 

Vm, Im2, Is ← detect values from Data and RecCur 

for i = 1 to 100 

Guess ← generate random initial guess of X parameters 

minimize the LSE error (eq. (5.8)) using fminsearch function with 

initial Guess 

if actual LSE is lower than LSE from previous cycle 

Xfinal ← X 

LSEfinal ← LSE 

end if 

end for 

ifinal ← compute current response (eq. (5.6)) using Xfinal 

display Xfinal, LSEfinal, ifinal 

____________________________________________________________________ 

5.1.3 Results and Discussion 

To verify the proposed method, the records of membrane current responses in rat 

cardiomyocytes to voltage rectangular pulse in Tyrode solution are used [112], [113]. The 

measurement has been performed by the setup described in Subsection 5.1.1 and averaged 

from last 20 pulses of a batch of total 200 pulses. 

Since the techniques of cell capacitance measurement are usually based on the 

application of small subthreshold voltage steps around the resting membrane voltage of 

the cell, the voltage levels of the rectangular stimulus signal are chosen −80 mV and 

−75 mV, thus the amplitude Vm is 5 mV. This limited amplitude prevents membrane 

depolarization and ensures constant parameters of the membrane electrical model shown 
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in Fig. 5.2. If the membrane was depolarized, the voltage-dependent ionic channels would 

be activated and the capacitance of cell membrane could not be measured [109]. 

The positive pulse width (tf − t0) of the imposed voltage is 20 ms and sampling time 

is 5 µs. The transient response of the recorded current with the initial point (t0, Ih) shifted 

to zero is shown in black in Fig. 5.4. The circle marker on the trace indicates the sample 

at the time ts = 185 µs where the initial transient event decayed and from which the 

response was subjected to processing. A logarithmic scale is used on the horizontal axis 

for better visibility of the waveforms at the time period close to origin. 

 

Fig. 5.4 Current transient responses: recorded (black), fitted with FOC (red), 

fitted with classic capacitor (green), and response with model 

parameters detected by 3P method [117] (blue) 

The red line in Fig. 5.4 represents the current response computed by the relation (5.6) 

corresponding to the Cole model with FOC and other parameters detected by the 

described fitting method. A very good agreement with the measured black response can 

be observed. Comparison of the results with the model corresponding to the Cole circuit 

but containing classic capacitor is also present. The parameters of this IO model are 

extracted by two methods. The first one employs the fitting procedure presented in this 

work, however the relation (5.7) instead of (5.6) is used in the LSE computation for the 

fminsearch function. The response resulting from this method is shown by green line in 

Fig. 5.4. The second method used for comparison stems from the work [117] where a 

three-point (3P) approach for detecting the model parameters is proposed. The element 

values computed by the 3P method and substituted into (5.7) result in the blue response 

in Fig. 5.4. The curves in Fig. 5.4 differ most from each other in the initial times, below 

100 µs. However, we have to recall that the fitting could be done first in the observed 

steady state starting with the circled initial sample at ts = 185 µs. For higher times (after 

the initial sample), the curves begin to converge, but the differences between them are 

ts
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still noticeable. To better assess the results in this area, the relative errors of the fitted 

current responses against the recorded one are plotted in Fig. 5.5. 

 

Fig. 5.5 Relative errors of responses fitted with FOC (red), fitted with classic 

capacitor (green), and model parameters detected by 3P method [117] 

(blue) against the recorded response 

It is apparent from the graph that the response obtained with Cole model with FOC 

and parameters extracted by the proposed method results in the lowest relative error 

mostly below ±2 %. The error of the model with extracted classic capacitance reaches its 

worst-case value of −7.6 % and the model corresponding to the 3P method provides the 

highest error about 12 %. Note that at the times lower than ts, it is not possible to evaluate 

the relative error because this interval is affected by the initial transient event. The 

extracted model parameters, LSE values and maximum absolute values of the relative 

errors for the three considered methods are summarized in Tab. 5.1. 

Table 5.1 Extracted parameter values and errors for the considered extraction 

methods 

Method 

Extracted model parameters 

LSE (A2) 

Max. abs. 

relative error 

(%) 

R∞ 

(MΩ) 

R1 

(MΩ) 
F or C α 

This work 

FOC 
0.8979 9.609 582.0 pF∙sα−1 0.9363 2.508∙10−21 2.599 

This work 

classic cap. 
1.004 8.612 366.0 pF 1 4.109∙10−20 7.626 

3P method 

[117] 
1.096 8.091 384.2 pF 1 2.256∙10−19 12.11 

 

ts
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From Tab. 5.1, it is seen that the three methods differ even more when compared in 

terms of the LSE parameter. Regarding LSE, the described method with FOC is again the 

best, followed by the same method with classic capacitor and the 3P method. 

It can be concluded that the Cole model containing FOC is able to better approximate 

the recorded current response compared to the corresponding models with classic 

capacitor. The extracted value of fractional order α is 0.9363, which may appear to be 

close to the value of 1 of a classic capacitor, but the maximum relative approximation 

error of the current response is reduced approximately three times when using FOC 

instead of classic capacitor. The method proved to be very robust, as it is able to deal with 

a recorded current response where it is not possible to perform the fitting from the 

beginning of the rise time due to the initial parasitic transient event. 

From the relatively high detected α value close to 1, it can be presumed that the 

membrane has a geometrically simple structure close to the arrangement of a classic 

capacitor. A lower α value can be expected for more morphologically complex structures. 

A lower α value was also observed when measuring responses of entire tissues composed 

of many cells, where numerous intracellular, extracellular, and cellular membrane 

resistances and capacitances appear. As the parameter α is also referred to a dispersion 

coefficient, it may be considered as a measure of heterogeneity of cell sizes and shapes 

[10]. 

Future research may address the relationship between the detected α value and various 

cell membrane properties. For example, the mentioned connections with the 

morphological complexity of the membrane or its various pathological phenomena can 

be investigated. 

 



69 

 

6. FO ANALOG FREQUENCY FILTERS 

As discussed in Section 2.2 dealing with state of the art, FO frequency filters provide 

more general characteristics compared to their IO counterparts. Above all, it is a 

possibility to adjust the slope of the magnitude frequency response continuously, not only 

in steps defined by an integer order. This is also related to the possibility of fine-tuning 

the phase frequency response, group delay and time characteristics such as the step 

response. Section 2.2 also stated that numerical methods are used to find the coefficients 

of FO filter TF so as to minimize the deviation of the filter magnitude frequency response 

from the selected target function, e.g. according to maximally flat Butterworth. These 

methods can lead either to a true s-domain FO TF, or to a TF of higher integer order 

approximating the fractional behavior. The author of this work dealt particularly with the 

first approach and his main contributions in this field are described in detail in the 

following Sections 6.1, 6.2, 6.3, 6.4.1, and 6.4.2. However, he also dealt with the second 

approach, i.e. the search for IO TF approximating different types of FO filter functions. 

As he participated in these works as a co-author, their content will be only briefly 

described in the Subsection 6.4.3. 

6.1 FO Filters with Arbitrary Quality Factor 

When considering the design of IO TF to realize filtering functions, obtaining the TF 

coefficients is very well described. On the other hand, getting the coefficients of FO TFs 

is not yet elaborated as deeply. Thus, there is a need to improve the methods of obtaining 

these coefficients for various FO TFs to improve their usability. In the work [52], the 

author of this thesis contributed to this topic by presenting design equations and 

coefficients of three FO LP TFs to aid in their design based on their arbitrary quality 

factor Q. The coefficients are found by minimizing the error between these FO TFs and 

the second-order TF using numerical optimization. 

6.1.1 Transfer Functions and Coefficient Search 

FO LP filters of order (1 + α), where 0 < α < 1, are typically designed by replacing the 

classic capacitor(s) in active second-order filter topologies by FOC as demonstrated e.g. 

in [44]. After this substitution the TFs of these FO circuits are determined, which can take 

different forms depending on which of the two capacitors were replaced (first, second, or 

both). Three general forms of FO TFs, resulting from different replacements, are given 

by 

LP-A
1 1

A0 A1 A2

1
( )H s

b s b s b
  + +

=
+ +

, (6.1) 
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LP-B
1 1

B0 B1 B2

1
( )H s

b sb s b
 + +

=
+ +

, (6.2) 

( )2 1 2

LP-C
1 0.5 1 1

C0 C1 C2 C0 C1 C2

1 1
( )H s

b s b s b b s b s b
     + + + +

= =
+ + + +

, (6.3) 

where in (6.3) the FOC orders α1 and α2 are the same for simplicity and it holds 

α1 + α2 = 1 + α. The TFs given by (6.1) and (6.2) correspond to cases when only one 

capacitor is replaced with its FO counterpart, with (6.3) corresponding to when both are 

replaced. These TFs describe LP filters with fractional orders between one and two. When 

designing a filter using (6.1) – (6.3), the coefficients bA0, bA1, bA2, bB0, bB1, bB2, bC0, bC1, 

and bC2 should be appropriately selected to obtain the desired characteristics (bandwidth, 

roll-off, quality factor, etc.) that meet the designers’ specifications. 

The second-order LP TF with a unity pole angular frequency (1 rad/s) is given by 

LP
2

2

1
( )

1
1

H s

s s
Q

=

+ +

. 
(6.4) 

This TF provides gain equal to the quality factor Q at the pole frequency and thus it is 

possible to obtain magnitude characteristics with a peaking around the pole frequency for 

Q > 0.707 or a flat characteristic for lower Q. To approximate (6.4) for an arbitrary quality 

factor, the coefficients b of (6.1) – (6.3) were obtained in MATLAB by applying the 

fminsearch function. The following relation expressing LSE was the argument of this 

function  

2
LP LP
1 2

1

( , ) ( )
M

i i

i

LSE H X H  +

=

 = −
  , (6.5) 

where X is the sought vector of the coefficients [bA0, bA1, bA2], [bB0, bB1, bB2], or [bC0, bC1, 

bC2] according to the respective TF (6.1) – (6.3); LP
1 ( , )iH X+   is the magnitude of the 

(1 + α) FO TF (6.1) – (6.3) calculated using X at the frequency ωi. This search used 

M = 100 frequency points logarithmically spaced from ω1 = 0.01 rad/s to ω100 = 1.4 rad/s. 

The upper frequency bound was chosen higher than 1 rad/s to include the entire pass-

band peak of the biquad magnitude response for the higher Q cases. This provides better 

approximation accuracy for TFs with higher Q especially for lower values of α. 

It should be noted that the fractional- and second-order TFs can be substituted into 

the optimization process also as logarithmic magnitudes (in dB). The logarithmic scale 

can be more convenient especially when approximating the TFs with high quality factor 

which feature extremely high magnitudes within the approximation frequency band. The 

linear scale brings increased accuracy in the area of the peak of the characteristic in this 
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case, however it can cause higher errors (in dB) at low frequencies where the gain should 

be around unity. 

6.1.2 Results and Discussion 

The resulting coefficients b that yielded the lowest LSE according to (6.5) for the TFs 

(6.1) – (6.3) when the order is increased from 1.01 to 1.99 (i.e. α from 0.01 to 0.99) in 

steps of 0.01 are given in Figs. 6.1 (a), (b), (c) for Q = 0.707, 2, and 5 respectively. 

It is apparent from the graphs that the coefficients bA0, bB0, bC0, bA2, bB2, and bC2 

converge to the value one as  approaches 1 and the coefficients bA1, bB1, and bC1 tend to 

the value 1/Q for high values of , i.e. for the fractional filter order close to two. This is 

in agreement with the values of coefficients of the second order TF (6.4). Both 

coefficients bB0 and bC0 remain close to one across the whole range of . This indicates 

that the pass-band gain is also approximately one for these cases. It also signifies that the 

TFs (6.2) and (6.3) would approximate (6.4) fairly well also with the coefficients bB0 and 

bC0 fixed to one, especially for low Q. On the other hand, the coefficient bA0 deviates from 

one for low  and high Q. Thus, in this case a more distinct deviation of the low-frequency 

gain from unity can be expected using TF (6.1). The values of b1 coefficients decrease 

with decreasing  and increasing Q. Probably the most interesting phenomenon in Fig. 

6.1 is that the b1 coefficients have negative values which are most apparent for high Q 

and low . This can evoke doubts regarding the stability of these TFs with such values. 

It is shown in the source paper [52] that these functions are stable for all coefficient values 

determined here. 
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(b) 

 

(c) 

Fig. 6.1 Coefficients b to approximate second-order magnitude response using 

(6.1) – (6.3) as blue, black, and green lines, respectively, for: (a) Q = 

0.707; (b) Q = 2; (c) Q = 5 

The interpolated fourth-order equations that describe the coefficients b for (6.1) – 

(6.3) found using the optimization process as functions of α and Q determined using the 

numerical data are given by the matrix equation (6.6). The equations given by (6.6) can 

be used for computing the coefficients b with good accuracy for any Q from 0.5 to 5 and 

any  from 0.2 to 0.99 (or even in a higher range, see below). In these intervals the 

maximum errors between b predicted by (6.6) and original b values obtained by the 

fminsearch function are [0.0803, 0.22, 0.266], [0.00682, 0.323, 0.149], and [0.00508, 

0.167, 0.23] for [bA0, bA1, bA2], [bB0, bB1, bB2], and [bC0, bC1, bC2] respectively. These 
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maximum errors occur at the borders of the intervals of Q and  considered. The error is 

lower in most cases which is illustrated by the average errors of b: [0.00692, 0.0181, 

0.0361], [0.000145, 0.0329, 0.0159], and [0.0004, 0.0196, 0.0228]. 

A0

A1

A2

B0

B1

B2

C0

C1

C2

0.8318 0.9584 -2.3994 -0.0663 -2.8642 9.9409 9.548e-3 0.03557 3.4256 -13.31 -5.76e-4 -3.02e-3 6.92e-3 -1.5025 5.9709

0.6714 -2.0255 3.3238 0.6183 1.3900 -8.088 -0.15
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 
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(6.6) 

To quantify the differences between each TF realizing the LP responses for arbitrary 

Q and , the maximum errors between (6.4) and (6.1) – (6.3) were computed according 

to the relation 

 LP LP
1 2

1
max 20log ( , ) 20 log ( )

M

i i
i

H X H  +
=

− . (6.7) 

These maximum errors are shown in Fig. 6.2 for Q = 0.707, 2, and 5 for  = 0.01 to 0.99 

in steps of 0.01. Fig. 6.2(a) demonstrates these errors using the original coefficients b 

found by the fminsearch function whereas Fig. 6.2(b) utilizes b values given by (6.6). 

This error is computed using the pass-band frequencies of the optimization search, that is 

i = 0.01 rad/s to 1.4 rad/s with 100 logarithmically spaced datapoints (M = 100). 

As seen in Fig. 6.2(a), the approximations found by fminsearch are most accurate for 

 close to one and for lower values of Q (given by the solid lines). Though for each TF, 

the error increases as the value of Q is increased. The TF (6.2) has the lowest relative 

error even for small values of  and high Q, making it the most appropriate of the three 

TFs for these situations. Alternatively, the TF (6.1) is the least suitable for approximating 

high Q transfer functions with the largest relative error for this case. In Fig. 6.2(b) the 

influence of using (6.6) for computing the b coefficients is apparent. The resulting errors 

from both graphs (a) and (b) are almost the same for Q = 0.707. For Q higher than 2 the 

error increases, especially at the borders of the  values which is most distinct for the 

function (6.2) and least distinct for (6.3). This is in agreement with Fig. 6.2(c) where the 

traces are most curved for b values from (6.2) whereas they are almost linear for b values 

from (6.3). 

Fig. 6.2(b) also shows that the relation (6.6) can be used for computing the b values 

also for  lower than 0.2 in some cases, while maintaining the approximation error low. 

For low values of Q up to approx. 1.5, (6.6) is valid in the full range of . and no 

significant increase of error occurs. In the case of computing the coefficients bC0, bC1, bC2 
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for (6.3), the eq. (6.6) is valid even in full ranges of  and Q considered, i.e. from 0.01 to 

0.99 and from 0.5 to 5 respectively. 

 

(a) 

 

(b) 

Fig. 6.2 Maximum errors of approximation of (6.4) by (6.1), (6.2), and (6.3) as 

blue, black, and green lines, respectively; for Q = 0.707, 2, and 5 as 

full, dashed, and dotted lines respectively: (a) values of b found by 

fminsearch; (b) values of b approximated by (6.6) 

For all further references to (6.1), (6.2), and (6.3) throughout this section, unless stated 

otherwise, it can be assumed that the coefficients b computed by (6.6) are being used in 

their respective TFs. Thus, the combination of the following two errors affect the results: 

one originated from using the fminsearch function to approximate the second-order TF 

and the second due to computing the b coefficients by the fitting polynomials in (6.6). 

This approach was chosen because readers of this thesis will probably more frequently 
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use (6.6) than create their own MATLAB script that provides more accurate b coefficients 

by the search of the minimum error between the TFs. 

To confirm that the TF given by (6.2) realizes the expected LP response using the 

coefficients computed by (6.6), MATLAB simulations of the magnitude and phase 

responses are given in Fig. 6.3 from 0.01 rad/s to 100 rad/s. These simulations present the 

cases where  = 0.25, 0.5, and 0.75 (as solid, dashed, and dotted black lines) when 

Q = 0.707, 2, and 5 in Figs. 6.3 (a), (b), and (c), respectively. Only one TF (6.2) is 

presented here to improve the clarity of comparison against the IO cases. The magnitude 

and phase responses of the second-order TF given by (6.4) with the respective quality 

factor and the first-order TF given by H(s) = 1/(s + 1) are also depicted as solid and 

dashed red lines, respectively, for comparison. These simulations confirm that the FO 

magnitude response has a low deviation from the second-order response in the pass-band. 

In accordance with Fig. 6.2(b) the maximum gain error is less than 2.5 dB for all values 

of quality factor and filter order. The phase characteristics increase their slope around the 

cut-off frequency with increasing Q as expected. The phase values at high frequencies in 

the stop-band tend to −112.5°, −135°, and −157.5° for  = 0.25, 0.5, and 0.75 respectively 

which is also in accordance with theory. 
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(c) 

Fig. 6.3 Magnitude and phase of TF (6.2) vs frequency for  = 0.25, 0.5, and 

0.75: (a) Q = 0.707; (b) Q = 2; (c) Q = 5 

The TF coefficients b were found to approximate the second-order TF (6.4) with a 

pole (or characteristic) angular frequency of 1 rad/s. Thus, the FO TFs are considered 

prototype having characteristic angular frequency approximately equal to 1 rad/s. 

However, designers must be able to frequency shift the response of the filter to meet the 

specifications of their target application. If the characteristic frequency of the FO TFs 

needs to be shifted to an arbitrary value 0 then (6.1) to (6.3) can be written as 

LP-A
1

1A1 A2
A0 1

0 0

1
( )H s

b b
b s s


 

  

+
+

+

=

+ +

, 
(6.8) 

LP-B
1

1B1 B2
B0 1

0 0

1
( )H s

b b
b s s




 

+
+

+

=

+ +

, 
(6.9) 

( )
( )

2 1 2

2 1 2

LP-C
1

0.5 1 1C1 C2 C1 C2
C0 C0 10.5 1

00 0 0

1 1
( )H s

b b b b
b s s b s s


   

      

+
++ +

+ ++

= =

+ + + +

. 

(6.10) 

From these relations it should be noted that the coefficients b with subscripts 1 and 2 

should be divided by the appropriate power of 0 to properly frequency scale the filter 

response. 

6.1.3 Circuit Implementation and Simulation  

To verify the previous results, computer simulations of a FO LP filter were carried out in 

the OrCAD PSpice design environment. For these simulations, a quality factor of Q = 5 

and fractional order of 1.5, i.e.  = 0.5, were selected. Additionally, TF given by (6.2) 
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was selected because it provides the lowest error of approximation for these values of Q 

and . The characteristic angular frequency was shifted to 0 = 10 krad/s and the 

resulting semi-symbolic TF after this scaling is 

LP-B
1 5 1.5 6

1
( )

1.0965 7.6738 10 1.4307 10
H s

s s
+ − −

=
−   +  

. (6.11) 

Note the negative coefficient for the s term in the denominator of (6.11) due to the high 

quality factor. This LP filter response was implemented with two Differential Voltage 

Current Conveyors (DVCC) [118], two resistors, one IO capacitor C1, and one FOC F2 as 

shown in the circuit of Fig. 6.4. 

 

Fig. 6.4 Fractional-order filter with DVCCs 

The following relations define the ideal behavior of the four-terminal DVCC: IY1 = IY2 = 

0, VX = VY1 − VY2, IZ = IX. Here the terminal voltages are referenced to ground and the 

terminal currents are taken as positive when flowing into the element. The TF of the 

circuit in Fig. 6.4 is given by 

( )

( )
OUT

1
IN 1 1 1 2 1 2

1

1

V s

V s sR C s R R C F+
=

− +
, (6.12) 

which has the same form as (6.11) and also contains the negative sign for the s term. The 

circuit can be easily modified to have positive sign at the term with s, achieved by 

interchanging the terminals Y1 with Y2 of both conveyors. The element values required 

to realize our target filter were computed by comparing the denominators of the TFs 

(6.11) and (6.12). Note that the circuit provides exactly unity pass-band gain whereas the 

function (6.11) has the pass-band gain slightly lower than one due to the denominator 

absolute term higher than one. This difference can be usually neglected as the absolute 

term bB0 (as seen e.g. in Fig. 6.1) is close to one for most values of Q and  considered. 

If an exact match is required, a block with voltage gain 1/bB0 should be added in cascade 

with the filter. Comparing the TFs (6.11) and (6.12) and choosing R1 = R2 = 10 k the 

resulting capacitor values are C1 = 7.674 nF, F2 = 1.864 μFsα−1 and  = 0.5. 

Simulating FOC using available circuit simulation packages typically requires 

replacement of this element with RC ladder emulation circuits whose parameters are 

computed to approximate the impedance characteristics of the element over a target 

C1
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frequency band [25]. An alternative technique to simulate FOE is possible in OrCAD 

utilizing the GFREQ behavioral block [119]. This block is a voltage-controlled current 

source whose transconductance frequency response is given by a table of frequencies and 

respective magnitudes (in dB) and phases (in degrees). A grounded FOE can be obtained 

by connecting the GFREQ block as shown in Fig. 6.5. The table of this block contains a 

set of discrete points of the frequency characteristic of the FO admittance that it models, 

i.e. for a frequency f and the pseudo-capacitance F2 the gain is 20log[(2f)αF2], and the 

phase is 90α. In the case of ideal FOE modeling it is enough to input two discrete points: 

one at the start frequency of interest and one at the stop. The values at frequencies in 

between are computed automatically. For the purpose of these simulations, the following 

text was used as the parameter TABLE of GFREQ: (1,-106.61,45) (1G,-16.61,45). 

 

Fig. 6.5 Grounded FOE implemented by GFREQ block in OrCAD 

The DVCC element with the grounded resistor connected to its terminal X is emulated 

in these simulations by the connection of the commercially available integrated circuit 

AD844. The overall implementation of the DVCC by two AD844s is shown in Fig. 6.6 

[120]. 

 

Fig. 6.6 Implementation of DVCC1 with R1 by two AD844s 

The magnitude and phase characteristics of the filter with AD844s compared to the 

MATLAB simulations of the ideal response given by (6.11) are depicted in Fig. 6.7 as 

solid and dotted lines, respectively. 
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Fig. 6.7 Simulated (solid) and ideal (dotted) magnitude and phase 

characteristics of the LP filter of the order 1.5 and Q = 5 

The magnitude and phase characteristics of the filter with DVCCs emulated by 

AD844 are in a very good agreement with the ideal ones. The slope of the magnitude 

characteristic in the stop-band is −30.7 dB/dec and −30.9 dB/dec in the case of the filter 

with AD844 and ideal function (6.11), respectively, which corresponds to the theoretical 

value −30 dB/dec for 1.5-order filters. The low-frequency pass-band gain of the simulated 

filter is 0.8 dB higher compared to the value from (6.11) as already discussed. The peaks 

of the magnitude characteristics reach 13.1 dB and 12.6 dB in the case of the filter with 

AD844 and ideal function (6.11), respectively. The second-order filter with Q = 5 would 

have the peak 14 dB. 

6.1.4 Concluding Remarks 

This section has shown that FO TFs with orders between one and two are capable of 

approximating the quality factor in the pass-band typical of second-order TFs. The 

maximum value of Q considered was 5 but the optimization search method can be further 

applied for higher values. The error when comparing the FO response to the second-order 

response that it approximates increases with higher quality factor, but can stay below 

several dB for most FO values considered and suitable selection of FO TF. The function 

(6.2) is the most accurate for high quality factors. It is recommended for each designer to 

use MATLAB or other software tools to compute the TF coefficients b for particular 

values of Q and α that may not be considered here. 

6.2 FO Band-Pass Filters with Adjustable Slope 

Most of the works on FO analog frequency filters published so far is focused largely on 

LP TFs, with little attention on the investigation of other kinds of FO filter TFs, such as 

HP or BP. In the works that have investigated FO HP and BP filters [121], [122], the FO 

TFs have been obtained after applying transformations from LP and using the coefficients 

determined for the LP function. While this does realize FO HP and BP filters, in the recent 
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analysis by the author of this thesis discussed in [123] it is shown that the properties of 

the FO HP and BP TF (e.g. pass-band ripple of magnitude response, characteristic 

frequency, pass-band gain, etc.) obtained in this way may not exactly correspond to the 

original FO LP function. As also demonstrated in [123], in the case of FO HP filter the 

only correct FO LP to HP transformation that maintains the FO LP properties is the 

standard substitution of s by 1/s in the prototype TF. The HP characteristic is then exactly 

symmetrical to the LP response with regard to the frequency 1 rad/s. In the case of FO 

BP filter, the traditional IO transformation can also be used; replacing s in FO LP function 

with (s2 + 1)/(s·BW), where BW is the desired bandwidth (in rad/s). This transformation 

maintains the original LP filter properties, however it leads to doubling the filter order 

(e.g. the order between one and two increases to the order between two and four), 

increased circuit complexity and symmetrical slopes of magnitude frequency 

characteristics below and above center frequency, although these slopes can be set 

continuously for this kind of filters. It should be noted that in many works by other authors 

that deal with FO BP filters (for example [92], [124], [125]), the coefficients of the TFs 

are determined without prior definition of the desired filter specifications. 

It is obvious that there is an absence of practical methods for the systematic design of 

FO BP TFs based on predetermined properties, which motivated the author of this thesis 

to the research presented in the papers [53] and [126]. In the work [53], FO BP filters of 

order (α + β) composed of two fractional components, with 0 < α ≤ 1 and 0 < β ≤ 1, are 

investigated. These TFs allow continuous and independent adjustment of the magnitude 

characteristic slopes from 0 to +20 dB/dec below and 0 to −20 dB/dec above the center 

frequency. The following subsections are based on the paper [53] in which the TF 

coefficients are presented to achieve desired stop-band characteristics with a flat pass-

band for two general FO TFs. The related paper [126] describes simplified FO BP TFs 

with only one fractional component α and thus allowing setting of only one stop-band 

slope either below or above the center frequency. 

6.2.1 Transfer Functions and Coefficient Search 

As already mentioned in the beginning of the Subsection 6.1.1, to obtain a FO filter, the 

commonly used approach is to transform an IO filter by substituting the traditional IO 

passive elements within a filter topology with elements that have FO impedance. This 

transformation has also been applied here to second-order active BP filter circuits where 

both classic capacitors are replaced by FOCs with impedance 1/(sαFα) and 1/(sβFβ), where 

Fα and Fβ are fractances (pseudo-capacitances) and α and β are the orders of each 

individual element. Replacing the two traditional capacitors with FOCs in a BP filter TF 

results in one of the following FO TFs: 

BP-A A0

A0 A1

( )
s a

H s
b s b s



    + +
=

+ +
, (6.13) 
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BP-B B0

B0 B1

( )
s a

H s
b s b s



    + +
=

+ +
. (6.14) 

The coefficients aA0, bA0, bA1, aB0, bB0, and bB1 are dependent on the circuit element 

parameters of the topology selected to realize the required BP TF. Both the TFs (6.13) 

and (6.14) provide stop-band attenuations of +20α dB/dec and −20β dB/dec for 

frequencies below and above the center frequency. Thus, these TFs realize asymmetric 

BP magnitude responses with stop-band attenuations that can be independently controlled 

through appropriate selection of the FO components (α, β) of the filter. 

While the TFs given by (6.13) and (6.14) can realize FO BP responses, it is still 

necessary to determine the coefficients of these TFs to obtain the desired properties for 

the filters’ specific application. Similarly to the Subsection 6.1.1, a numerical 

optimization method is applied here such that the error between the FO TF and an 

appropriate target magnitude response is minimized. This error function is in this BP filter 

case given by 

2
BP BP

targ

1

( , ) ( )
M

i i

i

LSE H X H   +

=

 = −
  , (6.15) 

where X is the sought vector of the coefficients (aA0, bA0, bA1) or (aB0, bB0, bB1) of the FO 

TF BPH +  given by (6.13) or (6.14) and BP
targH  is the chosen target TF that is to be 

approximated by BPH + . This search uses M frequency points in the interval from user 

defined frequencies ω1 to ωM which should be selected to include the filter pass-band. 

Note that the coefficients bA0, bA1, bB0, bB1 in (6.13) and (6.14) resulting from this 

optimization are different from the equally labelled coefficients appearing in the LP TFs 

(6.1) – (6.3) in the Section 6.1. 

During this optimization process, an important consideration is the selection of the 

target function BP
targH , as in the case of a FO BP TF it is not as straightforward as for the 

FO LP function. While IO BP TFs may be used as the target functions, these functions 

will always have stop-band attenuations with symmetric integer-step attenuations (i.e. 

±20n dB/dec) that will influence the fitting procedure. An alternative approach which is 

pursued here to overcome this challenge is to design target functions that better reflect 

the required design characteristics (in this case the stop-band attenuations) to improve the 

coefficients returned by the fitting procedure and subsequent designed filter. The target 

function proposed for this purpose is given by 

( )( )

( )( )

BP
targ BP2 LP1 BP2dB dB dBdB

HP1 BP2dB dB

( ) ( ) ( ) ( ) 1

( ) ( ) 1 ,

H H H H

H H

    

  

= + − − +

+ − −
 (6.16) 
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where |HBP2(ω)|dB is the magnitude (in dB) of the second-order Butterworth BP TF with 

center frequency 1 rad/s and pass-band gain −3 dB, |HLP1(ω)|dB and |HHP1(ω)|dB are the 

magnitudes (in dB) of the first-order Butterworth LP and HP TFs, respectively, with cut-

off frequency 1 rad/s and pass-band gain 0 dB. This provides | BP
targH (ω)|dB target function 

that has adjustable stop-band magnitude slopes based on the values of α and β. This target 

function is equal to the second-order BP magnitude |HBP2(ω)|dB if α = β = 1. As α 

decreases from one to zero in (6.16), the value of | BP
targH (ω)|dB increases at frequencies 

below 1 rad/s up to the value of |HLP1(ω)|dB and the lower stop-band slope corresponds to 

+20α dB/dec. Also, as β decreases from one to zero, | BP
targH (ω)|dB transitions from 

|HBP2(ω)|dB to the value of |HHP1(ω)|dB above 1 rad/s and the upper stop-band slope is 

−20β dB/dec. Therefore, this target function is able to capture variable and asymmetric 

FO BP magnitude slopes through weighting of the three IO TF magnitudes by the 

fractional components α and β. Fig. 6.8 illustrates an example of the | BP
targH (ω)|dB target 

function with α = 0.75 and β = 0.25 (dotted line) along with the IO individual parts 

|HLP1(ω)|dB, |HHP1(ω)|dB, and |HBP2(ω)|dB, given as solid green, blue, and black lines, 

respectively. Notice that the target function has FO slopes of 20α = 15 dB/dec and 

−20β = −5 dB/dec in the low and high frequency stop-bands, respectively, highlighting 

how the values of α and β are used to obtain the desired stop-band attenuation 

characteristics. 

 

Fig. 6.8 Target function (6.16) given as a dotted line compared to its IO 

components, specifically the first order LP response (green), first-

order HP response (blue), and second-order BP response (black) 

Here it should be noted that it is possible to use a target function other than (6.16) for 

this coefficient search. For example, the second-order Butterworth BP function can be 
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employed. However, in this case the minimization process must be performed using a 

sufficiently narrow pass-band around the center frequency. Using a wider frequency band 

introduces datapoints from the stop-bands with slopes ±20 dB/dec that cannot be realized 

with the FO BP TF for the selected fractional order. This results in large error terms at 

the frequencies of these datapoints in the optimization procedure that has a significant 

impact on the obtained coefficients; reducing the error at these frequencies will dominate 

the optimization procedure yielding coefficients that may not be optimal to represent the 

pass-band of the target function. Hence, using the target function as defined by (6.16) in 

the optimization process can provide flat FO filter magnitude characteristics which are 

analogous to the Butterworth characteristics of the IO filters and simultaneously have 

correct FO stop-band slopes. 

To find a set of coefficients that approximate the target function (6.16) for fixed values 

of α and β, the MATLAB routine fminsearch was again used to find the minimum error 

given by (6.15). Each combination of 0.05 < α,β ≤ 1 in 0.01 increments was searched, 

with M = 101 logarithmically spaced datapoints chosen to represent the functions in the 

frequency range from ω1 = 0.01 rad/s to ω101 = 100 rad/s. By including the unity values 

of α and β, this search also returned the special cases with one FO component and one IO 

component. Values of α and β less than 0.05 were not included, as the error from the 

target function increases for these values and the filter may become unstable. The 

resulting optimized coefficients for (6.13) and (6.14) can be computed depending on α 

and β by the following two equations. These equations were created by polynomial fitting 

the numerical results of the coefficients obtained during the optimization based on (6.15). 

A0

A0 2

A1

2

1

0.839 1.112 0.662 0.793 0.521 1.086

0.960 1.354 1.356 1.350 0.183 1.615

1.002 1.253 0.400 0.056 0.166 0.982

a

b

b











 
 
 

− − −     
     = − − −         − −     

 
 
 

, (6.17) 

B0

B0 2

B1

2

1

0.918 0.353 0.709 0.507 0.179 0.605

1.227 2.225 1.494 1.996 0.122 1.561

1.144 1.867 0.414 0.529 0.196 0.583

a

b

b











 
 
 

− − −     
     = − −         − −     

 
 
 

. (6.18) 

The average (and maximum in parentheses) absolute interpolation errors of aA0, bA0, 

bA1, aB0, bB0, and bB1 computed from (6.17) and (6.18) against the original values are 
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0.082 (1.313), 0.096 (1.315), 0.131 (1.623), 0.054 (1.121), 0.068 (1.101), 0.128 (1.553), 

respectively for any α and β from the range 0.05 to 1. 

It is important to verify the stability of the filters with TFs (6.13), (6.14) and the 

coefficients determined using (6.17) and (6.18). The stability analysis performed and 

described in the paper [53] confirmed stable behaviour of the filters for the values α and 

β from the range 0.05 to 1. 

6.2.2 Results and Discussion 

To validate that the FO TF given by (6.13) realizes the desired BP filter characteristics, 

simulations of the magnitude responses of (6.13) with the coefficients from (6.17) are 

given in Fig. 6.9 for all the combinations of α and β from the set {0.25, 0.5, 0.75} as solid 

lines. For comparison, the target function values given by (6.16) are also shown as dotted 

lines. 

In each case, the simulations of (6.13) using the found coefficients show very good 

agreement with the target function, confirming the FO asymmetric behavior. To quantify 

the FO behavior, the stop-band slopes of the TF (6.13) and of the target function (6.16) 

are summarized in Tab. 6.1. The lower and upper stop-band slopes are identified at 

frequencies around 0.05 rad/s and 20 rad/s, respectively. The theoretical slopes for the 

fractional components α and β (i.e. +20α dB/dec in the lower stop-band and −20β dB/dec 

in the upper stop-band) are also stated for comparison. The stop-band slopes obtained 

from the magnitude characteristics of (6.13) agree with the slopes of target function (6.16) 

and the theoretically predicted values. The error is several tenths of dB/dec and thus very 

small. 
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(b) 

 

(c) 

Fig. 6.9 Magnitude frequency characteristics of the TF (6.13) with new 

coefficients from (6.17) (solid lines), and the target function (6.16) 

(dotted lines) for α = 0.25 (green), 0.5 (blue), and 0.75 (black) and (a) 

β = 0.25; (b) β = 0.5; (c) β = 0.75 
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Table 6.1 Stop-band slopes (dB/dec) of the TF (6.13), of the target function 

(6.16), and theoretical slope values 

 
α = 0.25 

β = 0.25 

α = 0.5 

β = 0.25 

α = 0.75 

β = 0.25 

α = 0.25 

β = 0.5 

α = 0.5 

β = 0.5 

α = 0.75 

β = 0.5 

α = 0.25 

β = 0.75 

α = 0.5 

β = 0.75 

α = 0.75 

β = 0.75 

(6.13) 

lower stop-

band 

4.42 9.77 14.69 4.69 9.86 14.53 4.85 9.91 14.70 

(6.16) 

lower stop-

band 

4.92 9.93 14.94 4.93 9.94 14.96 4.94 9.96 14.97 

Theoretical 

lower stop-

band 

5 10 15 5 10 15 5 10 15 

(6.13) 

upper stop-

band 

−4.57 −4.66 −4.88 −9.97 −9.88 −9.93 −14.64 −14.50 −14.71 

(6.16) 

upper stop-

band 

−4.93 −4.94 −4.95 −9.94 −9.95 −9.96 −14.95 −14.96 −14.98 

Theoretical 

upper stop-

band 

−5 −5 −5 −10 −10 −10 −15 −15 −15 

 

To evaluate the accuracy of the TF (6.13) using the new coefficients for any α and β 

from the range between 0.05 and 1, the mean and maximum absolute dB magnitude errors 

of (6.13) compared to the target function (6.16) were computed according to the following 

two relations 

BP-A BP
targ

dB dB
1

1
mean ( ) ( )

M

i i

i

H H
M

   +

=

= − , (6.19) 

BP-A BP
targ

dB dB1
max max ( ) ( )

M

i i
i

H H   +
=

= − . (6.20) 

The mean errors calculated using (6.19) are presented in Fig. 6.10(a) and the 

maximum errors calculated using (6.20) are presented in Fig. 6.10(b) as surface plots 

depending on α and β. For these error calculations, a total of M = 101 frequency points in 

the range 0.01 rad/s to 100 rad/s were utilized. 

From Fig. 6.10(a), the mean error is less than 1.1 dB for all cases and the maximum 

error from Fig. 6.10(b) is less than 3 dB, however most combinations of α and β exhibit 

much smaller error values. Based on these errors, the target function is best approximated 

by (6.13) when both α and β are simultaneously in the range from approximately 0.4 to 

0.6. Small errors are also obtained for approximately equal values of α and β and also for 

the values α ≈ 1 − β in the whole range of α and β. The largest errors occur when α is 

around the middle of its range and β is on the edge of its range and vice-versa.  

The identical analysis for the FO TF given by (6.14) can be found in the source paper 

[53] resulting in similar observations and error values. However, it should be emphasized 
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that the coefficients found for the FO BP TFs (6.13) and (6.14) are different for each of 

the functions. 

 

(a)  

 

(b) 

Fig. 6.10 Mean (a) and maximum (b) absolute dB magnitude errors of the 

function (6.13) with the new coefficients compared to the target 

function (6.16) depending on α and β 

It should be noted that lower errors in magnitudes and slopes could be obtained by a 

higher degree of interpolation of the numerical values of coefficients, i.e. by a higher 

degree of matrix equations (6.17) and (6.18). Obviously, the most accurate results can be 

obtained using the original coefficient values from the numerical optimization, but this 

requires the reader to code the optimization procedure e.g. in MATLAB. The presentation 
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of the coefficients as their interpolated functions is aimed at simplifying the process for 

readers to reproduce the presented results and use for their own filter designs. 

6.2.3 Circuit Implementation and Simulation  

To verify the previous results, the FO TF given by (6.14) is further experimentally 

realized in hardware. This TF can be implemented using the Tow-Thomas filter topology 

when both traditional capacitors are replaced with FOCs as shown in Fig. 6.11 [122]. 

Note that in the case of implementing the function (6.13) the multi-loop feedback circuit 

presented in [127] can be employed. 

 

Fig. 6.11 Tow-Thomas FO BP filter topology 

However, before this circuit can be validated, the circuit components necessary to 

realize (6.14) using the computed coefficients need to be determined. Prior to calculating 

these values, it is necessary to shift the center frequency from 1 rad/s to a required value 

ω0 by frequency scaling to the TF (6.14) resulting in 

0
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( )
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H s
b s b s

 

      



 + +
=

+ +
. (6.21) 

The filter center frequency is chosen f0 = ω0/(2π) = 10 kHz and the parameters of FOCs 

α = 0.8, Fα = 62 nF·s-0.2, β = 0.2, Fβ = 46.9 µF·s-0.8. Because FO passive elements are not 

available commercially for physical realizations, these devices need to be approximated. 

The 5th-order Foster I RC network used for this purpose is described in detail in the 

source paper [53]. The TF of the Tow-Thomas FO BP filter from Fig. 6.11 in terms of the 

element parameters obtained by routine circuit analysis is given as 
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. (6.22) 

Based on the specified values of α = 0.8 and β = 0.2, the TF coefficients computed by 

(6.18) are aB0 = 1.049, bB0 = 0.9803, bB1 = 0.1485. Thus, all the coefficients in (6.21) are 
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known and the relations for the passive element parameters in the Tow-Thomas filter can 

be derived by comparing (6.21) and (6.22). Choosing R3 = R4 = 1 k and R2 = R5, these 

element values are R1 = 2 231 , R6 = 15 759 , R2 = R5 = 2 341 . The Tow-Thomas 

filter in Fig. 6.11 was simulated using the calculated component values and LT1361 

operational amplifiers by OrCAD PSpice. Additionally, this circuit was designed in 

hardware and its characteristics were measured. The simulated and experimental 

magnitude responses are presented in Fig. 6.12 as dotted blue and solid black lines, 

respectively. The ideal simulation of (6.21) is also presented for comparison as a dashed 

green line. 

 

Fig. 6.12 Simulated and measured magnitude frequency characteristics of the 

Tow-Thomas filter in Fig. 6.11 with α = 0.8 and β = 0.2 

From Fig. 6.12 it can be seen that both simulated and measured magnitude responses 

correspond very well to the ideal response. The deviations at the borders of the displayed 

frequency band are caused by the limited validity of the FOC emulator.  

6.2.4 Concluding Remarks 

The simulations and measurements validate that the Tow-Thomas biquad filters do realize 

the proposed asymmetric FO characteristics using FOCs and the determined TF 

coefficients. This optimization method can also be extended for other target TFs, for 

example with a narrower peak in the pass-band around the center frequency, i.e. 

corresponding to a higher quality factor as described for the FO LP filter case in Section 

6.1 and in [52]. Also, examination of the influence of the frequency band utilized for the 

optimization search can be further investigated, as was previously done with the FO 

elliptic LP filter in the author’s paper [51], to quantify its effects on determined 

coefficients and filter characteristics. 
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6.3 (n + α)-Order Transfer Functions 

The limitation of most of the works dealing with FO analog filter design is that they are 

aimed at the order value between one and two only. Partial attention is paid to higher FO 

TFs in [44], [55], [57], where the product of a TF with fractional order 1 < (1 + α) < 2 

and a TF with integer order (n − 1) is considered to realize (n + α)-order FO filter by 

cascade approach. The problem is that both partial TFs are chosen as Butterworth and 

thus the resulting filter is no longer Butterworth with maximally flat magnitude in the 

pass-band. In a correct cascade synthesis of Butterworth filters the partial blocks differ in 

their quality factors. In addition, when the partial filters have the same −3 dB cut-off 

frequency, their cascade shows a decrease of 6 dB at this frequency. 

Therefore, the author of this thesis explored TFs with Butterworth maximally flat 

response and fractional order (n + α) higher than two (i.e. with the integer component 

n ≥ 2) in the paper [128], which is also the main source for this section. To better 

understand the origin of the higher-order FO TF format as defined in the following 

Subsection 6.3.1, the usual description of (1 + α) FO TF is reminded here again. As 

described in Subsection 6.1.1 or e.g. in [44], the second-order LP filter circuits can be 

transformed to the fractional domain by replacing classic IO capacitor by FOE resulting 

in one of the basic forms of FO LP TFs (6.1) or (6.2). The order of both these TFs is 

1 < (1 + α) < 2 assuming 0 < α < 1 and the coefficients determine the magnitude and 

phase frequency response of the filter and can be used to compute the element parameters 

of the filter circuit. The TFs (6.1) and (6.2) differ in the order (i.e. exponent of s) of the 

denominator middle term depending on which of the capacitors in the second-order filter 

structure is replaced by FOE. The coefficients in (6.1) and (6.2) have been numerically 

found in [44] to approximate the target Butterworth magnitude response with −3 dB cut-

off frequency 1 rad/s and the differences between (6.1) and (6.2) have been analyzed to 

find out which one is most suitable for approximating the target response. 

In this section, the theory of FO analog frequency filter TFs and their variant solutions 

is further extended and performance and accuracy analyses are provided. The main 

contribution is the mathematical description and analysis of fractional higher-order TF 

designated for non-cascade circuit implementation, namely inverse follow-the-leader 

feedback (IFLF) structure [129]. For each (n + α)-order, all possible variants of all-pole 

FO LP TF are examined to quantify the differences between them and to determine the 

most suitable (n + α)-order TFs for the approximated Butterworth magnitude responses. 

The coefficients of these selected TFs are numerically found and expressed in the form 

of interpolated matrix equations to enable the reader design of FO filter of up to the 

(5 + α)-order. 

6.3.1 Transfer Functions and Coefficient Search 

To introduce the (n + α)-order filter TF format, let us start from the (n + 1)-order IFLF 

LP filter structure presented in Fig. 6.13 [129]. Its all-pole rational TF between the input 
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IN and output LP OUT is given by (6.23). 

 

Fig. 6.13 Inverse follow-the-leader feedback (IFLF) structure implementing 

(6.23) 
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(6.23) 

Note that the filter order was intentionally chosen (n + 1) here for a more convenient 

notation of the order after extending (6.23) to fractional domain. Without loss of 

generality, it holds bn+1 = 1 throughout the whole Section 6.3. If the k-th IO integrator in 

the structure in Fig. 6.13 is interchanged to a fractional one (i.e. with its TF being 1/sα) 

and the other integrators remain unchanged, the TF of the IFLF filter modifies to the FO 

form 
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(6.24) 

The comparison of (6.23) and (6.24) reveals that the first k terms in denominator (i.e. 

with i [0, k − 1]) remained with integer exponent of the Laplace variable s. On the other 

hand, the terms with higher indexes i, i.e. i[k, n + 1] now contain non-integer exponent 

(i − 1 + α) of s. The number of fractional terms in (6.24) is thus (n + 2 − k). The order of 

the filter described by TF (6.24) is (n + α), i.e. in the range between two integer numbers 

n and (n + 1) when considering 0 < α < 1. As this section deals with the filter order higher 

than two, it holds n ≥ 2. Since the value of k indicates the number of the integrator 

converted to fractional order in Fig. 6.13, the possible range of k is from 1 to (n + 1). The 

parameter k represents another degree of freedom and extends the variety of TF formats 

for each filter order (n + α). The suitable choice of k thus must be examined in terms of 

implementation of the required target frequency response. The described transformation 

of the IO filter to fractional domain is advantageous, as only one FO integrator based on 

only one FOE is required for the circuit implementation. Note that the IFLF topology is 
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chosen here as an example, but also other multiple-feedback state-variable structures can 

provide the TF (6.24). 

The coefficients a0, b0, b1, … , bn (recall that bn+1 = 1) of the general (n + α)-order TF 

(6.24) are found using a numerical optimization algorithm to match the target Butterworth 

LP magnitude response. For each value of the selected filter order (n + α) and possible 

value of k an individual search run is carried out resulting in a unique vector of the 

coefficients (a0, b0, b1, … , bn). An optimal k value is found for each considered filter 

order (combination n and α) providing the lowest approximation error between the 

magnitude of (6.24) with the found coefficients and the target function. This optimal value 

of k then determines that the k-th integrator in the filter structure should be chosen as 

fractional and specifies which of the terms in denominator of the TF (6.24) are with 

integer and fractional exponent of s. Correspondingly, the process can be applied to other 

approximation types (such as Bessel, Chebyshev, etc.) as well. 

The relation for the magnitude of the Butterworth LP TF generalized to fractional 

order (n + α) that represents the target response is as follows [58], [60]: 

( )

LP

2

1
( )

1
n α

n α
B ω

ω
+

+
=

+

. (6.25) 

This function provides magnitude of −3 dB at cut-off angular frequency 1 rad/s, unity 

pass-band gain, and stop-band roll-off −20(n + α) dB/dec typical for FO LP filters. 

Numerical optimization has been employed to find the coefficients of TF (6.24) such that 

the maximum absolute error between magnitude in dB of (6.24) and (6.25) is minimized. 

For this purpose, the MATLAB function fminsearch was applied with the argument 

( ) ( )LP LP

1
max 20log , 20 log

M

k n α i n α i
i

H X ω B ω+ +
=

− . (6.26) 

Here X is the sought vector of the coefficients (a0, b0, b1, … , bn). Each search used 

M = 100 frequency points logarithmically spaced in the wide frequency range from 

ω1 = 0.01 rad/s to ω100 = 100 rad/s, covering both pass-band and stop-band of (6.25). For 

given n and k, the individual runs of fminsearch function were performed for the fractional 

component α decreasing from 0.99 to 0.01 with a linear step of 0.01. The first search was 

always performed with the highest α = 0.99 because in this case the non-integer exponents 

of s in (6.24) are closest to the integer exponents in (6.23) and the initial estimation of the 

sought coefficients (required input of fminsearch function) can be done on the basis of 

the well-known coefficients of the Butterworth TF of the integer order (n + 1). The next 

optimization run (with one step lower α) always uses the values of the coefficients 

determined in the previous run as initial estimation. Note that also other minimization 

criteria, such as LSE as used e.g. in (6.15), and techniques, e.g. metaheuristic algorithms, 

can be employed. 
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6.3.2 Results and Discussion 

The first minimization of (6.26) was carried out for n = 2, thus for fractional order (n + α)

(2, 3). All the possible k values (i.e. 1, 2, 3) are considered. To evaluate the performance 

of this optimization it is appropriate to use again the maximum absolute error in dB 

defined by (6.26). The resulting values of this error depending on α and k are shown in 

Fig. 6.14. 

 

Fig. 6.14 Maximum absolute error between magnitude in dB of (6.24) and 

(6.25) for n = 2 

It is apparent that the magnitude of (6.24) approximates the value of the target 

function (6.25) with the lowest error for k = 2 and values of α close to zero and one. The 

best results reached for the boundary values of α could be expected, as here TF (6.24) 

tends to integer order. The maximum error occurs for α around 0.6. Interestingly, the 

errors for k = 1 and k = 3 are identical. The value k = 1 signifies only one IO term in TF 

(6.24) and the first integrator of fractional order in Fig. 6.13, whereas k = 3 denotes only 

one FO term in (6.24) and the last integrator of fractional order in Fig. 6.13. From this 

point of view, it is possible to observe a certain symmetry of the results. 

Similarly, optimizations were performed for n = 3, n = 4, and n = 5, i.e. for filter 

orders (n + α)(3, 4), (n + α)(4, 5), and (n + α)(5, 6), respectively, and always with 

assuming all possible values of k, i.e. k[1, n + 1]. The reached maximum absolute errors 

computed by (6.26) are depicted in Figs. 6.15 to 6.17. Also, for n values from 3 to 5, the 

largest approximation errors occur for the boundary (highest and lowest considered) k 

values. The error is lowest for middle values of k, i.e. k = 2 and k = 3 for n = 3, and k = 3 

for n = 4. Up to n = 4, the error values show the symmetry with respect to the selected 

value of k observed already for the case n = 2. From the last Fig. 6.17 with n = 5 it is seen 

that it is no more possible to unambiguously determine for which value of k from 2 to 5 

the error of approximation reaches the lowest value, as the dependences on α are similar 
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for all error curves. Regardless of n, the boundary values of α provide lower error, 

whereas the highest error is obtained slightly above the middle of the range of α. The 

achieved absolute error values are almost always below 0.5 dB and for selected optimal 

values of k they stay below 0.3 dB in the whole range of α, which is a reasonable value. 

The findings can be generalized that it is appropriate to choose k value as follows: 

( ) ( )

2 1,  when  is even

1 2 or 3 2,  when  is odd.

n n
k

n n n

+
= 

+ +
 (6.27) 

 

Fig. 6.15 Maximum absolute error between magnitude in dB of (6.24) and 

(6.25) for n = 3 

 

 

Fig. 6.16 Maximum absolute error between magnitude in dB of (6.24) and 

(6.25) for n = 4 
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Fig. 6.17 Maximum absolute error between magnitude in dB of (6.24) and 

(6.25) for n = 5 

This optimization therefore helps to find the appropriate distribution of IO and FO 

terms in TF (6.24) and also location of FO integrator in the implementing structure, e.g. 

in Fig. 6.13. 

The coefficients resulted from the numerical optimization for the TF (6.24) with n = 2 

and k = 2 depending on α are graphically presented by solid lines in Fig. 6.18. 

 

Fig. 6.18 Coefficients of TF (6.24) with n = 2 and k = 2 found by fminsearch 

function (solid lines) and interpolated by (6.28) (dotted lines) 

The coefficients b1 and b2 are almost identical, thus their curves (green and violet) 

overlap. For α = 0.99 the values are close to the coefficients of the third-order Butterworth 

TF which, as already mentioned, have been used as initial estimation of the fminsearch 

function. When decreasing α, the coefficients change continuously and for α = 0.01 they 
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approach the coefficients of the second-order Butterworth TF providing that the sum of 

b1 and b2 corresponds to the coefficient of the first power of s in denominator, i.e. 1.414. 

The following interpolated equations as functions of α have been derived for 

computing the coefficients a0, b0, b1, …, bn. Only one value of k providing the best 

approximation result is selected for each of the values n = 2, 3, 4, and 5. The coefficient 

values computed by (6.28) are also displayed in Fig. 6.18 by dotted lines to demonstrate 

the accuracy of interpolation. 

• n = 2, k = 2 
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• n = 3, k = 2 
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• n = 4, k = 3 
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• n = 5, k = 2 
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It is very important to verify the stability of the TF (6.24). It has been examined in the 

source paper [128] and the filters described by the TF (6.24) with the coefficients 

determined by (6.28) to (6.31) and the respective values of n and k are found to be always 

stable. 

6.3.3 Extension to High-Pass Filters 

Applying the transformation s → 1/s, the FO LP TF (6.24) can be transformed to FO HP 

TF given by the relation 

( )HP 0

1 1
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k n α k n
n α i n i

i i
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a s
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b s b s

+

+ − +
+ − + −

= =

=

+ 
. 

(6.32) 

Compared to the TF (6.24), there are k fractional terms in the denominator of (6.32) 

and the term in numerator is also fractional. The order of the coefficients b in the 

denominator is reversed (b0 is in the term with highest exponent of s). This HP TF can be 

realized by the IFLF structure in Fig. 6.13, where the output of the filter is at the output 

of the first summation block (labeled HP OUT) and (n + 2 − k)-th integrator is fractional. 

The coefficients a and b determined for LP TF (6.24) can be used in HP TF (6.32) too 

and therefore no extra numerical search for HP coefficients is required. It is also not 

necessary to determine for which value of k the smallest deviation of the TF (6.32) from 

HP Butterworth response is achieved as it is the same as for LP FO TF. 

6.3.4 Circuit Implementation and Simulation  

As an example, an IFLF filter design with order 2.25 and parameters n = 2, α = 0.25, k = 2 

will be given. The coefficients of TF (6.24) were found for cut-off angular frequency 

1 rad/s. This frequency will be shifted to a more practical value ω0 = 10 krad/s, i.e. 

f0 = 1 592 Hz, using the frequency scaling demonstrated by the following relation 
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ω ω ω

= =
+ + +

+ + +

. 
(6.33) 

After substitution of the coefficients computed by (6.28) and the selected ω0 value into 

(6.33) we get 

( )
8

LP

2 2.25 9 4 3 1.25 2.25

9.8032 10

1 10 9.1933 10 9.1926 10
H s

s s s


=

 +  +  +
. (6.34) 

This TF is realized by the multiple-feedback filter shown in Fig. 6.19 containing three 

OTAs, two resistors, two standard capacitors, and one FOC with fractance F2 and order 

α = 0.25. The LT1228 amplifier [130] was used as OTA in the OrCAD PSpice 

simulations presented here. 
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Fig. 6.19 OTA-based 2.25-order LP filter 

The TF of the structure in Fig. 6.19 in terms of element parameters is 

( )

m1 m2 m32
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2 2.25
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1 2 3 2 3 3

g g gR

R R C F C
H s
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s s s

C F C F C C

+
=

+ + +
. (6.35) 

Choosing C1 = C3 = 47 nF and F2 = 63.162 μF·s-0.75, by comparing the coefficients in 

denominators of (6.34) and (6.35) we get the transconductances gm1 = 0.5112 mS, 

gm2 = 0.6317 mS, and gm3 = 0.4321 mS. The DC gain a0/b0 = 0.98032 is ensured by 

simple resistive divider R1 = 240 Ω, R2 = 12 kΩ at the filter input. 

Due to the commercial unavailability of FOC, this element was emulated by 7th-order 

Valsa ladder RC network as described in detail in the source paper [128]. The emulator 

operates correctly in the frequency band 80 Hz to 1 MHz (more than 4 decades) providing 

the admittance phase angle 90°·α = 22.5° with maximum deviation ±1°. 

The PSpice simulated magnitude frequency characteristic of the filter from Fig. 

6.19 with LT1228 OTAs and emulated FOE is depicted in Fig. 6.20 as dotted black line. 

The target characteristic computed by (6.25) and shifted to the cut-off frequency 

f0 = 1 592 Hz is represented by black solid line. The optimized magnitude characteristic 

given by (6.34) is displayed by dashed black line. The blue and green lines have been 

added to illustrate the position of the FO characteristics between the 2nd and 3rd filter 

order.  

Both the optimized and simulated characteristics of the filter are in a very good 

agreement with the target function. As these characteristics overlap, the magnitude errors 

of the optimized function and of the simulated characteristic against the target function 

are shown in Fig. 6.21 by the dashed and dotted lines, respectively. The error of the 

optimized characteristic (6.34) with the found coefficients vs. the target function is 

±0.17 dB which confirms also the result in Fig. 6.14 (blue line at α = 0.25). The error of 

the simulated characteristic follows the error of the optimized characteristic up to 1 kHz 
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and at higher frequency it turns to negative values, however it does not exceed −0.72 dB 

in the displayed band. 

 

Fig. 6.20 Target acc. to (6.25) (solid black), optimized acc. to (6.34) (dashed 

black), and simulated (dotted black) magnitude characteristics of the 

Butterworth LP filter of the order 2.25 

 

 

Fig. 6.21 Magnitude errors of optimized (6.34) (dashed), and simulated (dotted) 

characteristics from Fig. 6.20 vs. target function (6.25) 

The phase characteristics of the optimized function (6.34) and of the simulated filter 

from Fig. 6.19 are shown in Fig. 6.22 by dashed and dotted lines, respectively. Target 

phase is not present in Fig. 6.22 as only magnitude part is defined by the target function 

(6.25). Target phase response in a form of mathematical relation cannot be defined in this 

case. Thus only the asymptotic phase values 0° and −90°·2.25 = −202.5°, which the phase 
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theoretically approaches at the edges of the frequency band, are indicated by the red 

arrows in Fig. 6.22. Both of the black phase characteristics in the figure are close to each 

other and approach the expected asymptotic values at low and high frequencies. The 

phase characteristics of the 2nd and 3rd order Butterworth filter have been also added for 

illustration. 

 

Fig. 6.22 Optimized acc. to (6.34) (dashed), and simulated (dotted) phase 

characteristics of the Butterworth LP filter of the order 2.25 

6.3.5 Concluding Remarks 

New formats of all-pole LP filter TFs of the fractional order higher than two suitable for 

non-cascade circuit implementations, e.g. by state-variable structures with integrators and 

multiple feedbacks, have been introduced. The LP TFs of the fractional order from 2 to 6 

have been examined regarding the accuracy of the approximation of the Butterworth 

target function. Their slope of magnitude frequency response in stop-band is continuously 

adjustable between −40 dB/dec and −120 dB/dec and not limited to multiples of 

20 dB/dec only which is an important difference compared to IO filters. All the FO LP 

TF formats considered (depending on the selected values of n and k) show good 

agreement with the target function, while the maximum absolute error is mostly below 

0.5 dB. The error can be reduced even below 0.3 dB with the optimal choice of the value 

of k, i.e. the position of the FO integrator in the filter structure. It was found that the FO 

integrator should be located in the middle of the structure and for higher filter orders it 

should not at least occur at its edge to reach the lowest error of approximation of the 

magnitude target function. For these most suitable values of k and fractional orders from 

2 to 6 the relations for computing the FO LP TF coefficients are presented. 

The resulting FO filter structure differs from the conventional IO one only in replacing 

one standard capacitor with FOC. With the expected availability of FOC 
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implementations, it will be possible to easily design FO filters without increasing the 

circuit complexity compared to conventional IO filters. The structures with integrators 

and multiple feedbacks are practically well-proven and employ commonly available 

active elements. 

FO HP filters can be easily obtained from the proposed FO LP filters by the well-

known s → 1/s transformation. The described methodology can also be used to design 

FO filters based on other target functions (e.g. Chebyshev, Cauer, Bessel), but for this 

purpose it is necessary for the designer to program own optimization routine for finding 

the TF coefficients and possibly use a modified filter structure with feedforwards in case 

the TF contains transfer zeros. 

6.4 Other Author’s Works on FO Filters 

This section briefly introduces the works of the author of this thesis concerning FO filters, 

which are of less importance and for spatial reasons it is not possible to deal with them in 

more detail. Subsection 6.4.1 deals with earlier articles by the author of this thesis, where 

the FO TFs of other authors were used (e.g. [44]) and their main contribution is the 

verification and optimization of the possible circuit implementation of FO filters and 

various analyzes of their parameters and behavior, which distinguish them from IO filters. 

Subsection 6.4.2 deals with finding the FO TF coefficients for elliptic filters using a 

similar approach to Sections 6.1 - 6.3, i.e. obtaining the true FO filter TF and their 

coefficients based on error minimization against the elliptic (Cauer) target function. The 

next Subsection 6.4.3 deals with IO TFs of higher order approximating different kinds of 

FO filters. 

6.4.1 Implementations and Analyses of FO Filters 

The author’s paper [127] describes FO multifunction filter with two DVCCs, four 

grounded passive elements, one of which is FOC. The filter provides LP and BP TF 

simultaneously and its order can be set between one and two. The TF coefficients are set 

according to the rules in [44] and the filter provides maximally flat Butterworth response. 

Procedure of obtaining suitable parameters of passive elements is demonstrated in detail 

in order to give practical instruction, for example how to properly utilize the dynamical 

range of conveyors, or to tune the cut-off frequency. PSpice simulations confirm the 

theoretical expectations, show very good performance with AD844 amplifier [101] as 

conveyor replacement, and discover the most critical parasitic properties of conveyors. 

FO LP filter design based on a multiple-feedback filter with a single operational 

amplifier is presented in the author’s paper [131]. One of the capacitors is replaced in the 

original IO filter by FOC. The analytical description of the circuit is given and procedure 

of element computation for a Butterworth-like approximation is stated again according to 

the rules in [44]. The manufactured sample of FOC based on resistive-capacitive layers 
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with distributed parameters as described in Chapter 3 is employed in the filter. Simulation 

and measurement results are provided to verify the functionality of the design. 

In the paper [132] author analyses the influence of FOE properties on characteristics 

of frequency filter where the element is employed. Tow-Thomas topology with one 

capacitor replaced by FOC is examined. This element is emulated by fifth-order Foster I 

RC network which has limited validity of FO impedance properties resulting in distortion 

of the filter characteristics. Shifting the frequency band of FOE emulation is tested and 

recommendations regarding the correct filter functionality are provided.  

At this point, it is also worth mentioning the chapter in the book [133], which 

summarizes the scientific findings of the author and his team in the field of FO filters 

achieved by the year 2018. These results are also parts of the Sections 6.1 and 6.4.2. 

6.4.2 FO Filters with Elliptic Responses 

This subsection is based on the author’s publications [51] and [134] where FO TFs to 

approximate the pass-band and stop-band ripple characteristics of a second-order elliptic 

(Cauer) LP filter are designed and validated. The coefficients for these TFs are 

determined through the application of a least squares fitting process. These fittings are 

applied to symmetrical and asymmetrical frequency ranges to evaluate how the selected 

approximated frequency band impacts the determined coefficients using this process and 

the TF magnitude characteristics.  

MATLAB simulations of (1 + α) order LP magnitude responses are given as examples 

with fractional steps from α = 0.1 to α = 0.9 and compared to the second-order elliptic 

response. Further, MATLAB simulations of the order (1 + α) = 1.25 and 1.75 using all 

sets of coefficients are given as examples to highlight their differences. The FO elliptic 

filter responses were validated using both SPICE simulations and experimental results 

using two operational amplifier-based topologies realized with emulated FOCs for 

(1 + α) = 1.2 and 1.8 order filters. 

6.4.3 FO Filters Approximated by IO Rational Transfer Functions  

The author also dealt with the second basic approach of the design of FO filters, which is 

the approximation of the FO TF using IO rational function of higher order. As mentioned 

in the Section 2.2, the approach can be based on the following two techniques. The earlier 

of the techniques uses an intermediate step, where FO TF is first obtained using 

minimization of error versus a target function (similarly to Sections 6.1 – 6.3). Then the 

terms in the FO TF containing non-integer powers of s are approximated by IO rational 

function. This TF is then implemented by a known structure of IO filter. This technique 

is used in articles [121], [135] – [140].  

The paper [135] presents design and implementation of FO filters based on promising 

CMOS structure of low-voltage differential difference current conveyor (DDCC) 

designed and fabricated using the 0.35 μm CMOS AMIS process. In the papers [136] and 
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[137], FO LP and HP filters with universal voltage conveyors (UVC) derived by the 

continued fraction expansion are presented.  

The paper [138] deals with FO LP filter with electronically adjustable pole frequency 

and fractional order between 1 and 2. It is based on third-order follow-the-leader feedback 

(FLF) topology with OTAs and adjustable current amplifiers. 

Another FLF-based electronically reconfigurable FO filter, that is able to be 

configured as LP and HP filter, is introduced in [139]. It offers independent electronic 

control of the order between 1 and 2, pole frequency, and particular type of 

approximation.  

In the paper [140], six current conveyor-based multiple-feedback current-mode 

circuits approximating the FO LP filter response are proposed. A method of reducing 

number of circuit elements is demonstrated. 

Novel topologies of capacitorless FO filters, implemented using the internal gate-

source capacitance of metal oxide semiconductor (MOS) transistors, are introduced in 

[121]. The filters offer digital programmability in terms of selecting one of four standard 

filter functions and the capability for electronic tuning of frequency characteristics.  

The second technique of IO emulation of a FO filter, used in more recent works, is a 

direct approximation of a target function using IO rational function. This method is 

applied in the author’s articles [141] – [144]. 

In the paper [141], a new two-steps design strategy is introduced for the optimal 

rational approximation of FO Butterworth filter. At first, the weighting factors of the 

summation between n- and (n + 1)-order Butterworth filters are optimally determined. 

This model is then employed as initial point for another optimization, which minimizes 

the magnitude error relative to the (n + α)-order Butterworth response. 

Generalization of IO transitional Butterworth-Butterworth filter to the FO domain is 

presented in [142]. Rational approximants of this FO transitional filter are optimally 

realized and several design examples demonstrate the correctness of the design. 

The article [143] presents the optimal modeling of power-law filters with the LP, HP, 

BP, and band-stop (BS) responses and their inverse counterparts by means of IO rational 

approximants. The performances of the approximants exhibiting the fractional-step 

magnitude and phase responses are evaluated using various statistical indices. At the cost 

of higher computational complexity, the proposed approach achieved improved accuracy 

with guaranteed stability when compared to similar published solutions.  

This topic is further developed in [144] by a further generalization of FO filters whose 

limiting form is that of the second-order filter. This new filter class can also be regarded 

as a superset of the recently reported power-law filters [143]. The inverse FO filter 

variants can also be achieved using the suggested method. 
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7. FO OSCILLATORS 

As already mentioned in Section 2.3, FO oscillators provide some more general properties 

compared to classic IO oscillators thanks to their non-integer order. Their order affects 

both the oscillating condition and the oscillating frequency. If these FO oscillators are 

designed to be multi-output, the fractional order can allow setting the relative phase shift 

of the output signals by non-integer multiples of 90 degrees. The fractional order thus 

represents another adjustable parameter of the oscillator and provides another degree of 

freedom, but the relations for describing the oscillator’s operation become more complex 

compared to the integer order. The consequence is, for example, the impossibility of 

independent setting of the oscillation condition and the oscillation frequency. However, 

the possibility of setting very high oscillation frequencies for FO oscillators when using 

common component values can be an advantage. For IO oscillators, very low values of 

capacitances, which would be comparable to parasitic capacitances, would have to be 

used. 

The author of this thesis published the papers [70], [145], and [146] dealing with FO 

oscillators. The following Section 7.1 is based on the article [70] which provides a 

detailed description of practical FO oscillator design and verification. 

7.1 FO Oscillator Design and Evaluation 

The basic circuit selected for the FO oscillator design is shown in Fig. 7.1. Two DVCCs 

were employed as active elements and two grounded FO admittances (Yα, Y) are 

connected to Z terminals of the conveyors. The characteristic equation of the circuit is 

1 2 2 1 0Y Y R R Y R  − + = . (7.1) 

 

 

Fig. 7.1 Oscillator with current conveyors and FO admittances 

Assuming that |Y0| and |Y0| are the magnitudes of the admittances Yα and Y at the 

oscillation angular frequency ω0, the formulas for these admittances can be expressed as 

Yα = |Yα0|j
α and Y = |Y0|j. After substituting these relations into (7.1), rearranging terms 
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in order to separate real and imaginary parts and equating them to zero, we can derive the 

following relations 
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The expressions in (7.2) and (7.3) are used for computing the values of the resistances 

R1 and R2 in order the circuit to oscillate at the frequency ω0. In other words, the values 

described by (7.2) and (7.3) fulfill the condition of oscillation. No relation for oscillation 

frequency is presented here, as in fact it does not exist. The oscillation frequency is simply 

ω0, i.e. the value of frequency where the fractional admittances used in the oscillator have 

their magnitudes |Y0| and |Y0|. Unfortunately, the oscillation frequency and condition 

cannot be set independently, but this problem seems to be common to this class of FO 

oscillators. 

To tune the oscillation frequency to a new value 0   the following formulas can be 

used 
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. (7.4) 

Here |Yα0| and |Y0| are still the admittance magnitudes at the original oscillation frequency 

0 and the single quotes at R1, R2, α, and  mean that their values are going to be modified 

in order to tune, i.e. these are the new values of the element parameters. The whole 

relation (7.4) must be valid to keep the circuit at the oscillation boundary, i.e. it represents 

the oscillation condition. Obtaining the relation (7.4) is similar to deriving (7.2) and (7.3) 

from the characteristic equation (7.1) with the difference in the substitution of FO 

admittances by the relations ( )0 0 0jY Y



   


=  and ( )0 0 0jY Y




   


= . 

It is apparent that the oscillation frequency and condition are influenced not only by 

resistances and magnitudes of admittances as in the case of classic oscillators but also by 

the admittance orders α and . This increases the degree of freedom and brings other 

interesting properties that will be shown below. 
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Three voltage outputs (v0, v1, and v2) are available as indicated in Fig. 7.1. Their 

voltages are related in the following way 

j
2

0 1 0 1v v Y R e




= , (7.5) 
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0 2
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v e

Y R
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−
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It is seen that the phase shift between v0 and v1 is /2, between v2 and v1 is −/2, and 

between v0 and v2 is ( + )/2. The phase difference between the output voltages can be 

set continuously depending on the parameters  and . This property is unique and is not 

available at IO oscillators. 

It is also interesting to determine sensitivities of the normalized oscillation frequency 

(ω0'/ω0) to the passive element parameters: 
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The sensitivities increase in their absolute values with decreasing coefficients α and . 

The oscillation frequency can be controlled by setting α and  as seen in (7.4), but one 

must consider that especially for low values of α and  the oscillation frequency could be 

very sensitive to tolerances of passive element parameters. 

7.1.1 Oscillation Frequency Tuning 

Equation (7.4) suggests the possibilities of tuning the oscillation frequency. The first 

option is to modify the order (α' and  ') of the admittances which requires a controllable 

FOE. The second tuning possibility is varying the resistances R1 and R2. Both these tuning 

options are analyzed below. 

i) Tuning through the order of FOEs 

Let us aim at the tuning by the orders α' and  '. To simplify the analysis, both these values 

will be considered equal (α' =  ') and thus (7.4) is transformed to 
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Let us choose the initial magnitudes of FO admittances |Yα0| = |Y0| = 1/17 000 S and 

the orders α =  = 0.5. As already mentioned, if the admittances Yα and Y had these 

properties at a chosen frequency ω0 and the resistances R1 and R2 are computed by (7.2) 

and (7.3), ω0 would be the oscillation frequency. The calculated resistance values are R1 

= 12 021 ,  R2 = 24 042 . The effect of increasing or decreasing the value of ' 

compared to the initial value of 0.5 on the normalized oscillation frequency is presented 

in Fig. 7.2(a). It should be noted that the resistance R1 remained constant during this 

tuning (R1 = R1' = 12 021 ) and R2 was computed as a new value R2' by 

R2' = 4R1'cos2('/2) in order to keep the whole relation (7.9) valid and thus to meet the 

oscillation condition. The computed values of R2' vs ' are depicted in Fig. 7.2(b). 

 

(a) 

 

(b) 

Fig. 7.2 (a) Tuning of normalized oscillation frequency (ω0'/ω0) by changing 

the order of both FOEs (R1 = const.), and (b) computed values of R2' 

as a function of the order 
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Another possibility is to set R2 constant (R2 = R2' = 24 042 ) and to compute R1'. 

This variant is presented in Fig. 7.3. 

 

(a) 

 

(b) 

Fig. 7.3 (a) Tuning of normalized oscillation frequency (ω0'/ω0) by changing 

the order of both FOEs (R2 = const.), and (b) computed values of R1' 

as a function of the order 

The curve of the normalized oscillation frequency in Fig. 7.3(a) has inverse slope 

compared to the one in Fig. 7.2(a), i.e. the frequency decreases with increasing '. Fig. 

7.3(b) shows that the range of the computed resistance R1' is high and R1' increases 

dramatically at values of ' close to one. 

ii) Tuning through the resistances R1 and R2 

Another possibility of setting the oscillation frequency resulting from (7.4) or (7.9) is 

changing the resistances R1' and R2' while keeping the properties of FOEs constant. 
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Choosing |Yα0| = |Y0| = 1/17 000 S and α =  = const., the relation between R1' and R2' is 

similar to the previous subsection R2' = 4R1'cos2(/2). Fig. 7.4 depicts the tuning of the 

oscillator frequency by the resistances R1' and R2' for various values of α =  = const. 

 

Fig. 7.4 Tuning the normalized oscillation frequency (ω0'/ω0) by changing R1' 

(and R2') for various values of α =   

It is obvious from the figure above that the slope of the oscillation frequency vs R1' 

can be modified by the selected order α = . Of particular interest is the increased range 

of the oscillation frequency at lower values of the order. E.g. with α = 0.2 the oscillation 

frequency changes by five decades when the resistances R1' and R2' change by one decade. 

Thus, it is possible to obtain high oscillation frequencies when resistances and 

capacitances are relatively large compared to their values in IO oscillators. Similarly, very 

low oscillation frequencies can be reached without necessity to increase circuit 

resistances and capacitances excessively. Of course, one should again remember that 

sensitivities rise in this case as apparent from the relations (7.7) and (7.8). 

7.1.2 Simulation and Experimental Measurement 

The bulk-driven quasi-floating-gate (BD-QFG) structure of DVCC [147] designed at the 

author’s workplace was used for the purpose of the simulation and measurement of the 

FO oscillator in Fig. 7.1. The conveyor was designed in Cadence platform and fabricated 

using 0.35μm CMOS AMIS process with total chip area of 213 x 266 µm. The parameters 

of FOEs are α =  = 0.5, |Yα0| = |Y0| = 1/17 000 S at ω0 = 10 krad/s (f0 = 1 592 Hz). The 

resistances computed from (7.2) and (7.3) are again R1 = 12 021 , R2 = 24 042 . The 

value of oscillation frequency was chosen with respect to the properties of the BD-QFG 

conveyors and to the possible application of the oscillator in biomedical and/or other low-

power applications. 
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The FOCs were emulated using Foster I RC circuits. Structure with ten resistors and 

nine capacitors was chosen in order to approximate the FOC more accurately in a wider 

frequency range for the purpose of oscillator tuning verification. A simpler FOC emulator 

structure can be sufficient if frequency tuning is not necessary or is limited to a narrow 

band. Details regarding the emulator are given in the source article [70]. 

Cadence simulations of the designed oscillator have been carried out and the obtained 

output voltage waveforms are presented in Fig. 7.5.  

 

Fig. 7.5 Simulated output voltages of the designed oscillator vs time 

The oscillation frequency of the simulated circuit is 1 560 Hz which is near to the 

theoretically expected value 1 592 Hz. The amplitudes are V0 = 85 mV, V1 = 120 mV, 

V2 = 86 mV and phase shifts are 45 degrees as expected. 

In order to verify the tuning capability of the oscillator, the plot of the simulated 

oscillation frequency, setting α' =  ' and keeping R1 constant, as a function of the order 

is presented in Fig. 7.6. 

 

Fig. 7.6 Simulated oscillation frequency vs α' =  ' (R1 = const.) 
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The second considered possibility of tuning – by changing R1' (while keeping α = 

 = 0.5 and maintaining oscillation condition R2'  2R1') is shown in Fig. 7.7. 

 

Fig. 7.7 Simulated oscillation frequency vs R1' (α =  = 0.5) 

It is apparent from the two graphs above that the simulated oscillation frequency 

corresponds to the theoretical value. 

The oscillator was also implemented with fabricated samples of BD-QFG DVCC chip 

and passive element parameters mentioned at the beginning of this section. The measured 

output voltage waveforms are presented in Fig. 7.8. 

 

Fig. 7.8 Measured output voltages of the designed oscillator vs time 

The measured oscillation frequency is 1 600 Hz which is very close to the theoretical 

value. Also, the phase shifts between outputs (45.6 and 46.2 degrees) and amplitudes are 

in accordance with expectations. The measured spectrum of the first output signal is 
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shown in Fig. 7.9. The fundamental harmonic component is at least 40 dB larger than the 

other ones. The value of THD computed from measured spectral components is 

approximately 1 %. 

 

Fig. 7.9 Measured spectrum of the first output voltage (vertical scale 

20 dB/div, horizontal 2 kHz/div) 

Tuning the oscillation frequency of the experimental circuit by changing R1' was also 

carried out. With R1' = 24 k the oscillation frequency was 416 Hz (theoretically 399 Hz) 

and with R1' = 6.2 k the oscillation frequency was 6 kHz (theoretically 5.98 kHz). 

Both the simulated and the experimental results are very close to the theoretical ones 

and prove the attractive features of the designed FO oscillator. 

7.1.3 Concluding Remarks 

The author’s goal was to present design and evaluation of FO oscillator from the practical 

point of view. The oscillator is based on a simple structure with two DVCCs, two 

grounded resistors, and two grounded FOCs. The theoretical analysis showed design rules 

for passive elements and possibilities of oscillation frequency tuning which can be done 

also by setting the orders α and  of FOCs. With lower values of these orders, the 

oscillation frequency can have much higher range than in the case of classic IO oscillator 

with the same parameters of passive elements. An arbitrary phase shift of output signals 

is another unique property which is not present at IO oscillators. The main drawbacks of 

the designed circuit are non-orthogonal setting of oscillation frequency and condition and 

high sensitivities to passive element parameters for lower values of α and . 
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8. CONCLUSION 

The extension of classic linear electrical circuits from the integer to the fractional domain 

brings generalization of their characteristics, leading to a wider usability of these circuits. 

It is a recent research topic, which scientists have been focusing on in the last 10 – 15 

years. FO circuits find applications in a wide range of areas of electrical engineering. 

They provide qualitatively new properties and characteristics that are difficult to 

implement using classic IO circuits. As examples, let us mention their use for modeling 

the electrical properties of materials or objects occurring in nature, controlling processes 

and systems, filtering signals with the aim of extracting the required component or 

implementing the operation of FO derivation and integration of electrical quantities. 

The theoretical design of FO circuits must be carried out with regard to feasibility 

with a circuit structure of reasonable complexity and with available components. The 

basic element of FO circuits is FOE, i.e. an element with FO impedance. Currently, 

intensive research is underway on these elements resulting in their implementations based 

on various principles, e.g. emulation using structures containing resistors and classic 

capacitors, implementation by electrochemical principles utilizing various chemical 

substances that are, however, incompatible with integration technologies and provide 

non-accurate FOE properties. 

A key issue of FOE implementations is achieving sufficient accuracy of impedance 

magnitude and phase in a wide enough frequency band. At the same time, these 

parameters must be constant over time, and the structure should be compatible with 

current integrated circuit manufacturing technologies. In this respect, the implementation 

of FOE using RC layer structures with distributed parameters, which the author of this 

thesis also dealt with, brings promising results. These structures can be realized in well 

proven thick-film, thin-film and CMOS technology. Using the first mentioned 

technology, the author successfully practically verified the validity of the design method. 

The other two technologies will be part of future research and it is expected that the 

dimensions of the structures will be significantly reduced, higher operating frequencies 

will be achieved, and probably also the possibility of electronic control of these FOE 

elements will be attained. 

The lack of FOE with different parameters led the author to research the impedance 

transformations of FOE with the aim of obtaining new values of both the impedance 

magnitude and, above all, its order, and thus also the type of passive element. The 

simulation successfully verified the method of obtaining a FO inductor using a gyrator, 

as well as obtaining a whole range of fractional orders using the transformation of the 

“seed” FOE impedance by the GIC circuit. 

Using FOE, the author also managed to model the electrical properties of the cardiac 

cell membrane. The model presented in this thesis is more accurate than commonly used 

IO models. 
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Frequency filters and oscillators are wide group of electrical circuits that can be also 

designed with fractional order. FO filters provide characteristics that lie between the 

characteristics of classic IO filters. E.g. in the case of magnitude frequency 

characteristics, it is possible to obtain continuously variable slopes, in the case of phase 

characteristics, then continuously adjustable phases. For FO filters, it is necessary to 

create an analytical description, which is not available in the form of tables or 

mathematical relations, as with IO filters. The forms and coefficients of the TFs must be 

sought to obtain the desired filter characteristics and topology. For FO oscillators, the 

order can be used to set the oscillation frequency and, in particular, to change the dynamic 

range of the frequency, i.e. the steepness of the dependence of this frequency on the values 

of the passive elements. Furthermore, FO oscillators can provide phase shifts of output 

signals equal to non-integer multiples of 90 degrees. The author also dealt with these 

topics of FO filters and oscillators and verified the results on functional samples by 

computer simulations and experimental measurements. 

It is worth mentioning here that the thesis is also written from a pedagogical point of 

view, so that the reader familiar with classic IO electrical circuits can study the topic of 

FO circuits and understand their benefits. The thesis covers only selected topics of the 

author’s scientific and pedagogical work in years after Ph.D. defense, i.e. between 2006 

and 2022. The same is valid for own references that are included in the Bibliography – 

only 42 relevant references are cited in this thesis. As stated before, David Kubánek is 

author or co-author of 28 journal articles and 34 international conference contributions 

indexed in the Web of Science Core Collection (numbers were updated in October 2022). 

 

 



115 

 

BIBLIOGRAPHY 

[1] Gielen, G., Maricau, E. Analog IC Reliability in Nanometer CMOS. Springer New 

York, 2013, doi: 10.1007/978-1-4614-6163-0. 

[2] Ken, X., Min, C., He, X., Chen, Z., Zheng, W. An automatic DC-Offset 

cancellation method and circuit for RF transceiver. In Proc. of the 2015 IEEE 

11th International Conference on ASIC, ASICON 2015, Wangjiang, China, pp. 1-

4, 2015, doi: 10.1109/ASICON.2015.7517123. 

[3] Li, K., Teng, J., Liu, Q., Xuan, X., Lu, J., Jiang, D., Huang, Y. A Digital 

Controller Assisted Flexible Auto-tuning Method for Continuous-time Filters. 

Circuits Syst. Signal Process., no. 33, pp. 2401-2417, 2014, doi: 10.1007/s00034-

014-9765-x. 

[4] Biolek, D., Senani, R., Biolkova, V., Kolka, Z. Active Elements for Analog Signal 

Processing: Classification, Review, and New Proposals. Radioengineering, vol. 

17, no. 4, pp. 15-32, 2008, ISSN 1210-2512. 

[5] Geiger, R. L., Sanchez-Sinencio, E. Active filter design using operational 

transconductance amplifiers: A tutorial. IEEE Circ. And Devices Magazine, vol. 

1, no. 2, pp. 20-32, 1985, doi: 10.1109/MCD.1985.6311946. 

[6] Fabre, A., Saaid, O., Wiest, F., Boucheron, C. High frequency applications based 

on a new current controlled conveyor. IEEE Trans. on Circuits and Systems I, vol. 

43, no. 2, pp. 82-91, 1996, doi: 10.1109/81.486430. 

[7] Salama, K. N., Soliman, A. M. CMOS operational transresistance amplifier for 

analog signal processing. Microelectronics Journal, vol. 30, no. 3, pp. 235-245, 

1999, doi: 10.1016/S0026-2692(98)00112-8. 

[8] Wang, J. Ye, Y., Pan, X., Gao, X. Parallel-type fractional zero-phase filtering for 

ECG signal denoising. Biomedical Signal Processing and Control, vol. 18, pp. 36-

41, 2015, doi: 10.1016/j.bspc.2014.10.012. 

[9] Martinek, R., Ladrova, M., Sidikova, M., Jaros, R., Behbehani, K., Kahankova, 

R., Kawla-Sterniuk, A. Advanced Bioelectrical Signal Processing Methods: Past, 

Present and Future Approach - Part II: Brain Signals. Sensors, vol. 21, no. 19: 

6343, 2021, doi: 10.3390/s21196343. 

[10] Freeborn, T.J. A Survey of Fractional-Order Circuit Models for Biology and 

Biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, vol. 3, no. 3, pp. 416-424, 2013, doi: 10.1109/JETCAS.2013.2265797. 

[11] Mohsen, M., Said, L.A., Madian, A.H., Radwan, A.G., Elwakil, A.S. Fractional-

Order Bio-Impedance Modeling for Interdisciplinary Applications: A Review. 

IEEE Access, vol. 9, pp. 33158-33168, 2021, doi: 

10.1109/ACCESS.2021.3059963. 

[12] AboBakr, A., Said, L.A., Madian, A.H., Elwakil, A.S., Radwan, A.G. 

Experimental comparison of integer/fractional-order electrical models of plant. 

AEU - International Journal of Electronics and Communications, vol. 80, pp. 1-9, 

2017, doi: 10.1016/j.aeue.2017.06.010. 



116 

 

[13] Palaniappan, A., Palermo, S.A. Design Methodology for Power Efficiency 

Optimization of High-Speed Equalized-Electrical I/O Architectures. IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 8, pp. 

1421-1431, 2013, doi: 10.1109/TVLSI.2012.2211628. 

[14] Tepljakov, A. Fractional-order Modeling and Control of Dynamic Systems. 

Springer International Publishing: Berlin/Heidelberg, Germany, 2017, doi: 

10.1007/978-3-319-52950-9. 

[15] Oldham, K.B., Spanier, J. The Fractional Calculus: Theory and Applications of 

Differentiation and Integration to Arbitrary Order. Academic, New York, 1974, 

ISBN: 9780080956206. 

[16] Podlubny, I. Fractional Differential Equations: An Introduction to Fractional 

Derivatives, Fractional Differential Equations, to Methods of Their Solution and 

Some of Their Applications. Elsevier, 1998, ISBN: 9780080531984. 

[17] Ortigueira, M.D. Fractional Calculus for Scientists and Engineers. Springer: 

Dordrecht, Germany, 2011, doi: 10.1007/978-94-007-0747-4. 

[18] Kochubei, A., Luchko, Y., Tarasov, V.E., Petráš, I. Handbook of Fractional 

Calculus with Applications, Volume 1 Basic Theory. De Gruyter Grand Forks, 

2019, doi: 10.1515/9783110571622. 

[19] Hilfer, R. Applications of Fractional Calculus in Physics. World Scientific, 2000, 

doi: 10.1142/3779. 

[20] Gutierrez, R.E., Rosario, J.M., Machado, J.T. Fractional Order Calculus: Basic 

Concepts and Engineering Applications. Mathematical Problems in Engineering, 

vol. 2010, Article ID 375858, 2010, doi: 10.1155/2010/375858. 

[21] Ortigueira, M.D. An introduction to the fractional continuous-time linear systems: 

The 21st century systems. IEEE Circuits and Systems Magazine, vol. 8, no. 3, pp. 

19-26, 2008, doi: 10.1109/MCAS.2008.928419.  

[22] Elwakil, A.S. Fractional-order circuits and systems: An emerging interdisciplinary 

research area. IEEE Circuits and Systems Magazine, vol. 10, no. 4, pp. 40-50, 

2010, doi: 10.1109/MCAS.2010.938637. 

[23] Nakagawa, M., Sorimachi, K. Basic Characteristics of a Fractance Device. IEICE 

Trans. Fundam. Electron. Commun. Comput. Sci., vol. E75-A, no. 12, pp. 1814-

1819, 1992. 

[24] Koton, J., Kubanek, D., Dvorak, J., Herencsar, N. On Systematic Design of 

Fractional-Order Element Series. Sensors, vol. 21, no. 4: 1203, 2021, doi: 

10.3390/s21041203. 

[25] Tsirimokou, G. A systematic procedure for deriving RC networks of fractional 

order elements emulators using MATLAB. AEU - International Journal of 

Electronics and Communications, vol. 78, pp. 7-14, 2017. doi: 

10.1016/j.aeue.2017.05.003. 

[26] Shah, Z.M., Kathjoo, M.Y., Khanday, F.A., Biswas, K., Psychalinos, C. A survey 

of single and multicomponent Fractional-Order Elements (FOEs) and their 



117 

 

applications. Microelectronics Journal, vol. 84, pp. 9-25, 2019. doi: 

10.1016/j.mejo.2018.12.010. 

[27] Caputo, M., Fabrizio, M. On the Singular Kernels for Fractional Derivatives. 

Some Applications to Partial Differential Equations. Progress in Fractional 

Differentiation and Applications, vol. 7, no. 2, pp. 79-82, 202, doi: 

10.18576/pfda/0070201. 

[28] Losada, J., Nieto, J.J. Fractional Integral Associated to Fractional Derivatives with 

Nonsingular Kernels. Progress in Fractional Differentiation and Applications, 

vol. 7, no. 3, pp. 137-143, 2021, doi: 10.18576/pfda/070301. 

[29] Biswas, K., Sen, S., Dutta, P.K. Realization of a Constant Phase Element and Its 

Performance Study in a Differentiator Circuit. IEEE Transactions on Circuits and 

Systems II: Express Briefs, vol. 53, no. 9, pp. 802-806, 2006, doi: 

10.1109/TCSII.2006.879102. 

[30] Adhikary, A., Khanra, M., Sen, S., Biswas, K. Realization of a carbon nanotube 

based electrochemical fractor. In Proc. of the 2015 IEEE International Symposium 

on Circuits and Systems (ISCAS), pp. 2329-2332, 2015, doi: 

10.1109/ISCAS.2015.7169150. 

[31] Elshurafa, M., Almadhoun, N., Salama, K., Alshareef, H. Microscale electrostatic 

fractional-order capacitors using reduced graphene oxide percolated polymer 

composites. Appl. Phys. Lett., vol. 102, no. 232901, pp. 1-4, 2013, doi: 

10.1063/1.4809817. 

[32] Buscarino, A., Caponetto, R., Di Pasquale, G., Fortuna, L., Graziani, S., Pollicino, 

A. Carbon Black based capacitive Fractional-order Element towards a new 

electronic device. AEU - International Journal of Electronics and 

Communications, vol. 84, pp. 307-312, 2018, doi: 10.1016/j.aeue.2017.12.018. 

[33] Caponetto, R., Graziani, S., Pappalardo, F.L., Sapuppo, F. Experimental 

Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order 

Element. Advances in Mathematical Physics, vol. 2013, article ID 953695, 2013, 

doi: 10.1155/2013/953695. 

[34] Agambayev, A., Patole, S., Bagci, H., Salama, K.N. Tunable fractional-order 

capacitor using layered ferroelectric polymers. AIP Advances, vol. 7, no. 095202, 

2017, doi: 10.1063/1.4991659. 

[35] Carlson, G.E., Halijak, C.A. Approximation of Fractional Capacitors (1/s)^(1/n) 

by a Regular Newton Process. IEEE Transactions on Circuit Theory, vol. 11, no. 

2, pp. 210-213, 1964, doi: 10.1109/TCT.1964.1082270. 

[36] Charef, A., Sun, H.H., Tsao, Y.Y., Onaral B. Fractal system as represented by 

singularity function. IEEE Transactions on Automatic Control, vol. 37, no. 9, pp. 

1465-1470, 1992, doi: 10.1109/9.159595. 

[37] Matsuda, K., Fujii, H. H(infinity) optimized wave-absorbing control - Analytical 

and experimental results. Journal of Guidance, Control, and Dynamics, vol. 16, 

no. 6, pp. 1146-1153, 1993, doi: 10.2514/3.21139. 



118 

 

[38] Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M. Frequency-band complex 

noninteger differenciator: characterization and synthesis. IEEE Transactions on 

Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1, pp. 

25-39, 2000, doi: 10.1109/81.817385. 

[39] El-Khazali, R. On the biquadratic approximation of fractional-order Laplacian 

operators. Analog Integrated Circuits and Signal Processing, vol. 82, no. 3, pp. 

503-517, 2015, doi: 10.1007/s10470-014-0432-8. 

[40] Kapoulea, S. Design of Fractional-Order Circuits with Reduced Spread of 

Element Values. Master thesis. RN: 1058034, 2018, available online: 

https://www.researchgate.net/profile/Stavroula-

Kapoulea/publication/327396441_Design_of_Fractional-

Order_Circuits_with_Reduced_Spread_of_Element_Values/links/5b8d2494299bf

1d5a73ab881/Design-of-Fractional-Order-Circuits-with-Reduced-Spread-of-

Element-Values.pdf 

[41] Tsirimokou, G., Psychalinos, C., Elwakil, A.S. Emulation of a constant phase 

element using Operational Transconductance Amplifiers. Analog Integrated 

Circuits and Signal Processing, vol. 85, no. 3, pp. 413-423, 2015, doi: 

10.1007/s10470-015-0626-8. 

[42] Adhikary, A., Sen, P., Sen, S., Biswas, K. Design and Performance Study of 

Dynamic Fractors in Any of the Four Quadrants. Circuits, Systems, and Signal 

Processing, vol. 35, pp. 1909-1932, 2016, doi: 10.1007/s00034-015-0213-3. 

[43] Cole, K.S. Permeability and impermeability of cell membranes for ions. In Proc. 

of the Cold Spring Harbor Symp. Quant. Biol., vol. 8, pp. 110-122, 1940, doi: 

10.1101/SQB.1940.008.01.013. 

[44] Freeborn, T. Comparison of (1 + α) Fractional-Order Transfer Functions to 

Approximate Lowpass Butterworth Magnitude Responses. Circuits, Systems, and 

Signal Processing, vol. 35, no. 6, pp. 1983-2002, 2016, doi: 10.1007/s00034-015-

0226-y. 

[45] Biswas, K., Bohannan, G., Caponetto, R., Lopes, A.M., Machado, J.A.T. 

Fractional-Order Devices. Springer: Berlin/Heidelberg, Germany, 2017, doi: 

10.1007/978-3-319-54460-1. 

[46] Tsirimokou, G., Psychalinos, C., Elwakil, A.S. Design of CMOS Analog 

Integrated Fractional-Order Circuits: Applications in Medicine and Biology. 

Springer: Berlin/Heidelberg, Germany, 2017, doi: 10.1007/978-3-319-55633-8. 

[47] Helie, T. Simulation of Fractional-Order Low-Pass Filters. In IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, vol. 22, no. 11, pp. 

1636-1647, 2014, doi: 10.1109/TASLP.2014.2323715. 

[48] Tietze, U., Schenk, C., Gamm, E. Electronic Circuits: Handbook for Design and 

Application, 2nd edition, Springer, Berlin, Heidelberg, 2008, doi: 10.1007/978-3-

540-78655-9. 



119 

 

[49] Freeborn, T., Maundy, B., Elwakil, A.S. Approximated Fractional Order 

Chebyshev Lowpass Filters. Mathematical Problems in Engineering, vol. 2015, 

Article ID 832468, pp. 1-7, 2015, doi: 10.1155/2015/832468. 

[50] Freeborn, T.J., Elwakil, A.S., Maundy, B. Approximated fractional order inverse 

Chebyshev lowpass filters. Circuits, Systems, and Signal Processing, vol. 35, pp. 

1973-1982, 2016, doi: 10.1007/s00034-015-0222-2. 

[51] Kubanek, D., Freeborn, T.J., Koton, J., Dvorak, J. Validation of Fractional-Order 

Lowpass Elliptic Responses of (1 + α)-Order Analog Filters. Applied Sciences, 

vol. 8, no. 12: 2603, pp. 1-17, 2018, doi: 10.3390/app8122603. 

[52] Kubanek, D., Freeborn, T. (1 + α) Fractional-order transfer functions to 

approximate low-pass magnitude responses with arbitrary quality factor. AEU - 

International Journal of Electronics and Communications, vol. 83, pp. 570-578, 

2018, doi: 10.1016/j.aeue.2017.04.031. 

[53] Kubanek, D., Freeborn, T., Koton, J. Fractional-order band-pass filter design 

using fractional-characteristic specimen functions. Microelectronics Journal, vol. 

86, pp. 77-86, 2019, doi: 10.1016/j.mejo.2019.02.020. 

[54] Mahata, S., Kar, R., Mandal, D. Optimal fractional-order highpass Butterworth 

magnitude characteristics realization using current-mode filter. AEU - 

International Journal of Electronics and Communications, vol. 102, pp. 78-89, 

2019, doi: 10.1016/j.aeue.2019.02.014. 

[55] Freeborn, T.J., Maundy, B., Elwakil, A.S. Field programmable analogue array 

implementation of fractional step filters. IET Circuits Devices and Systems, vol. 4, 

no. 6, pp. 514-524, 2010, doi: 10.1049/iet-cds.2010.0141. 

[56] Hamed, E.M., AbdelAty, A.M., Said, L.A., Radwan, A.G. Effect of Different 

Approximation Techniques on Fractional-Order KHN Filter Design. Circuits, 

Systems, and Signal Processing, vol. 37, pp. 5222-5252, 2018, doi: 

10.1007/s00034-018-0833-5. 

[57] Maundy, B., Elwakil, A.S., Freeborn, T.J. On the practical realization of higher-

order filters with fractional stepping. Signal Processing, vol. 91, no. 3, pp. 484-

491, 2011, doi: 10.1016/j.sigpro.2010.06.018. 

[58] Mahata, S., Saha, S.K., Kar, R., Mandal, D. Optimal design of fractional order 

low pass Butterworth filter with accurate magnitude response. Digital Signal 

Processing, vol. 72, no. C, pp. 96-114, 2018, doi: 10.1016/j.dsp.2017.10.001. 

[59] Mahata, S., Saha, S., Kar, R., Mandal, D. Optimal integer-order rational 

approximation of α and α + β fractional-order generalised analogue filters. IET 

Signal Processing, vol. 13, no. 5, pp. 516-527, 2019, doi: 10.1049/iet-

spr.2018.5340. 

[60] Mahata, S., Banerjee, S., Kar, R., Mandal, D. Revisiting the use of squared 

magnitude function for the optimal approximation of (1 + α)- order Butterworth 

filter. AEU - International Journal of Electronics and Communications, vol. 110, 

pp. 1-11, 2019, doi: 10.1016/j.aeue.2019.152826. 



120 

 

[61] Ali, A.S., Radwan, A.G., Soliman, A.M. Fractional order Butterworth filter: 

active and passive realizations. IEEE Journal on Emerging and Selected Topics in 

Circuits and Systems, vol. 3, no. 3, pp. 346-354, 2013, doi: 

10.1109/JETCAS.2013.2266753. 

[62] Acharya, A., Das, S., Pan, I., Das, S. Extending the concept of analog Butterworth 

filter for fractional order systems. Signal Processing, vol. 94, pp. 409-420, 2013, 

doi: 10.1016/j.sigpro.2013.07.012. 

[63] Said, L.A., Ismail, S.M., Radwan, A.G., Madian, A.H., El-Yazeed, M.F.A., 

Soliman, A.M. On the optimization of fractional order low-pass filters. Circuits 

Systems, and Signal Processing, vol. 35, no. 6, pp. 2017-2039, 2016, doi: 

10.1007/s00034-016-0258-y. 

[64] Elwakil, A.S., Allagui, A., Maundy, B.J., Psychalinos, C. A low frequency 

oscillator using a super-capacitor. AEU - International Journal of Electronics and 

Communications, vol. 70, no. 7, pp. 970-973, 2016, doi: 

10.1016/j.aeue.2016.03.020. 

[65] Lahiri, A. Low-frequency quadrature sinusoidal oscillators using current 

differencing buffered amplifiers. Indian Journal of Pure & Applied Physics, vol. 

49, no. 6, pp. 423-428, 2011. 

[66] Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M. Fractional order 

oscillators based on operational transresistance amplifiers. AEU - International 

Journal of Electronics and Communications, vol. 69, no. 7, pp. 988-1003, 2015, 

doi: 10.1016/j.aeue.2015.03.003. 

[67] Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M. Three Fractional-Order-

Capacitors-Based Oscillators with Controllable Phase and Frequency. Journal of 

Circuits, Systems, and Computers, vol. 26, no. 10, pp. 1750160-1750178, 2017, 

doi: 10.1142/S0218126617501602. 

[68] Fouda, M., Soltan, A., Radwan, A.G., Soliman, A.M. Fractional-order multi-phase 

oscillators design and analysis suitable for higher-order PSK applications. Analog 

Integrated Circuits and Signal Processing, vol. 87, no. 2, pp. 301-312, 2016, doi: 

10.1007/s10470-016-0716-2. 

[69] Radwan, A.G., Elwakil, A.S., Soliman, A.M. Fractional-order sinusoidal 

oscillators: design procedure and practical examples. IEEE Transactions on 

Circuits and Systems I: Regular Papers, vol. 55, no. 7, pp. 2051-2063, 2008, doi: 

10.1109/TCSI.2008.918196. 

[70] Kubanek, D., Khateb, F., Tsirimokou, G., Psychalinos, C. Practical Design and 

Evaluation of Fractional-Order Oscillator Using Differential Voltage Current 

Conveyors. Circuits, Systems, and Signal Processing, vol. 35, no. 6, pp. 2003-

2016, 2016, doi: 10.1007/s00034-016-0243-5. 

[71] Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M. Two-port two 

impedances fractional order oscillators. Microelectronics Journal, vol. 55, no. 9, 

pp. 40-52, 2016, doi: 10.1016/j.mejo.2016.06.003. 



121 

 

[72] Sotner, R., Jerabek, J., Langhammer, L., Kartci, A., Herencsar, N., Metin, B. 

Practical Design of Fractional-Order Resonator for Application in the Multiphase 

Oscillator. In Proc. of the 2020 27th IEEE International Conference on 

Electronics, Circuits and Systems (ICECS), pp. 1-4, 2020, doi: 

10.1109/ICECS49266.2020.9294799. 

[73] Wyndrum, R.W. Jr. The exact synthesis of distributed RC networks. Dept. of 

Elec. Engrg., New York University, New York, Technical Report, 400-76, May 

1963.  

[74] O'Shea, R. Synthesis using distributed RC networks. IEEE Transactions on 

Circuit Theory, vol. 12, no. 4, pp. 546-554, 1965, doi: 

10.1109/TCT.1965.1082508. 

[75] Koton, J., Kubanek, D., Ushakov, P.A., Maksimov, K. Synthesis of fractional-

order elements using the RC-EDP approach. In Proc. of the 2017 European 

Conference on Circuit Theory and Design (ECCTD), Catania, Italy, pp. 1-4, 2017, 

doi: 10.1109/ecctd.2017.8093314. 

[76] Gil’mutdinov, A.K., Ushakov, P.A. Physical implementation of elements with 

fractal impedance: State of the art and prospects. Journal of Communications 

Technology and Electronics, vol. 62, 2017, pp. 441-453, doi: 

10.1134/S1064226917050060. 

[77] Gil’mutdinov, A.K., Ushakov, P.A., El-Khazali, R. Fractal Elements and their 

Applications, Springer, Cham, 2017, doi: 10.1007/978-3-319-45249-4. 

[78] Kaiser, H.R., Castro, P.S., Nichols, A.J. Thin-film distributed parameter circuits. 

Space/Aeronautics, R&D Technical handbook, vol. 38, pp. E17-E23, 1962. 

[79] Ushakov, P.A., Maksimov, K.O., Stoychev, S.V., Gravshin, V.G., Kubanek, D., 

Koton, J. Synthesis of elements with fractional-order impedance based on 

homogenous distributed resistive-capacitive structures and genetic algorithm. 

Journal of Advanced Research, vol. 25, p. 275-283, 2020, doi: 

10.1016/j.jare.2020.06.021. 

[80] Ushakov, P., Shadrin, A., Kubanek, D., Koton, J. Passive fractional-order 

components based on resistive-capacitive circuits with distributed parameters. In 

Proc. of the 2016 39th International Conference on Telecommunications and 

Signal Processing (TSP), pp. 638-642, 2016, doi: 10.1109/TSP.2016.7760960. 

[81] Davis, L. Handbook of Genetic Algorithms. Nostrand Reinhold, New York. 1991. 

385 p. 

[82] White, N. Thick films. In: Kasap S., Capper P. (editors), Springer Handbook of 

Electronic and Photonic Materials. Springer; 2017, doi: 10.1007/978-3-319-

48933-9. 

[83] Kubánek, D., Koton, J., Jeřábek, J., Prášek, J., Dvořák, J., Sadílek, J. 

capFOE_045; Experimentální prototyp prvku s impedancí fraktálního řádu 0,45 v 

tlustovrstvé technologii (capFOE_045). Ústav telekomunikací, FEKT VUT v 

Brně, Technická 3082/12, functional sample. 



122 

 

[84] Kubánek, D., Koton, J., Jeřábek, J., Prášek, J., Dvořák, J., Sadílek, J. capFOE_05; 

Experimentální prototyp prvku s impedancí fraktálního řádu 0,5 v tlustovrstvé 

technologii (capFOE_05). Ústav telekomunikací, FEKT VUT v Brně, Technická 

3082/12, functional sample. 

[85] Venables, J.A. Introduction to Surface and Thin Film Processes (1 ed.). 

Cambridge University Press, 2000, doi: 10.1017/cbo9780511755651. 

[86] Razavi, B. Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-

Hill, 2001. 

[87] Dvorak, J., Kubanek, D., Herencsar, N., Kartci, A., Bertsias, P. Electronically 

Adjustable Emulator of the Fractional-Order Capacitor. Elektronika Ir 

Elektrotechnika, vol. 25, no. 6, pp. 28-34, 2019, doi: 10.5755/j01.eie.25.6.24823. 

[88] Koton, J., Sladok, O., Kubanek, D., Ushakov, P. Impedance transformation of 

RC-EDP based fractional-order elements. In Proc. of Fifth Forum of Young 

Researchers, pp. 94-101, 2017. ISBN: 9785752607530. 

[89] Adhikary, A., Sen, S. Biswas, K. Practical Realization of Tunable Fractional 

Order Parallel Resonator and Fractional Order Filters. IEEE Transactions on 

Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1142-1151, 2016, doi: 

10.1109/TCSI.2016.2568262. 

[90] Tsirimokou, G., Psychalinos, C., Elwakil, A.S., Salama, K.N. Electronically 

Tunable Fully Integrated Fractional-Order Resonator. IEEE Transactions on 

Circuits and Systems II: Express Briefs, vol. 65, no. 2, pp. 166-170, 2018, doi: 

10.1109/TCSII.2017.2684710. 

[91] Radwan, A.G., Fouda, M.E. Optimization of fractional-order RLC filters. 

Circuits, Systems, and Signal Processing, vol. 32, no. 5, pp. 2097-2118, 2013, doi: 

10.1007/s00034-013-9580-9. 

[92] Freeborn, T.J., Maundy, B., Elwakil, A.S. Fractional Resonance-Based RLβCα 

Filters. Mathematical Problems in Engineering, Article ID 726721, pp. 1-10, 

2013, doi: 10.1155/2013/726721. 

[93] Kartci, A., Agambayev, A., Farhat, M., Herencsar, N., Brancik, L., Bagci, H., 

Salama, K.N. Synthesis and Optimization of Fractional-Order Elements Using a 

Genetic Algorithm. IEEE Access, vol. 7, pp. 80233-80246, 2019, doi: 

10.1109/ACCESS.2019.2923166. 

[94] Deliyannis, T, Sun, Y., Fidler, J.K. Continuous-time Active Filter Design. CRC 

Press, USA, 1999. 

[95] Kubanek, D., Koton, J., Dvorak, J., Herencsar, N., Sotner, R. Analysis of OTA-

Based Gyrator Implementing Fractional-Order Inductor. In Proc. of the 2020 43rd 

International Conference on Telecommunications and Signal Processing (TSP), 

Milan, Italy. IEEE, pp. 583-588, 2020, doi: 10.1109/TSP49548.2020.9163406. 

[96] Kubanek, D., Koton, J., Dvorak, J., Herencsar, N., Sotner, R. Optimized Design of 

OTA-Based Gyrator Realizing Fractional-Order Inductance Simulator: A 

Comprehensive Analysis. Applied Sciences, vol. 11, no. 1: 291, pp. 1-19, 2021, 

doi: 10.3390/app11010291. ISSN: 2076-3417. 



123 

 

[97] Sotner, R., Jerabek, J., Kartci, A., Domansky, O., Herencsar, N., Kledrowetz, V., 

Alagoz, B.B., Yeroglu, C. Electronically reconfigurable two-path fractional-order 

PI/D controller employing constant phase blocks based on bilinear segments using 

CMOS modified current differencing unit. Microelectronics Journal, vol. 86, 

2019, pp. 114-129, doi: 10.1016/j.mejo.2019.03.003. 

[98] Koton, J., Herencsar, N., Kubanek, D., Psychalinos, C. Fractional-Order Elements 

of Complement Order. In Proc. of the 2017 10th International Conference on 

Electrical and Electronics Engineering (ELECO), Bursa, pp. 1212-1215, 2017, 

ISBN: 978-605-01-0737-1. 

[99] Koton, J., Kubanek, D., Herencsar, N., Dvorak, J., Psychalinos, C. Designing 

constant phase elements of complement order. Analog Integrated Circuits and 

Signal Processing, vol. 97, no. 1, pp. 107-114, 2018, doi: 10.1007/s10470-018-

1257-7. 

[100] Antoniou, A. Bandpass transformation and realization using frequency-dependent 

negative-resistance elements. IEEE Transactions on Circuit Theory, vol. 18, no. 2, 

pp. 297-299, 1971, doi: 10.1109/TCT.1971.1083241. 

[101] Analog Devices. AD844 60 MHz, 2000 V/µs Monolithic Op Amp with Quad 

Low Noise. Datasheet, Rev. G, 2017. 

[102] Koton, J., Dvorak, J., Kubanek, D., Herencsar, N. Design of Fractional Order 

Elements’ Series. In Proc. of the 2019 11th International Conference on 

Electrical and Electronics Engineering (ELECO), pp. 496-499, 2019 doi: 

10.23919/ELECO47770.2019.8990413. 

[103] Koton, J., Dvorak, J., Kubanek, D., Herencsar, N. Designing series of fractional-

order elements. Analog Integrated Circuits and Signal Processing, vol. 106, no. 3, 

p. 553-563, 2012, doi: 10.1007/s10470-021-01811-4. 

[104] Koton, J., Kubanek, D., Dvorak, J., Kledrowetz, V. FGIC44 – Fully controllable 

immittance converter. Brno University of Technology, FEEC, Dept. of 

Telecommunications, Technicka 12, 616 00 Brno, functional sample. 

[105] Dvorak, J., Kubanek, D., Koton, J. FGIC44 - Fully Controllable Immittance 

Converter: Chip Performance Evaluation. In Proc. of the 2021 13th International 

Congress on Ultra Modern Telecommunications and Control Systems and 

Workshops (ICUMT), pp. 182-187, 2021, doi: 

10.1109/ICUMT54235.2021.9631676. 

[106] Kubanek, D., Koton, J., Svecova, O. Extraction of Cardiac Cell Membrane 

Fractional-Order Capacitance from Current Response to Voltage Step. 

Elektronika Ir Elektrotechnika, vol. 28, no. 4, pp. 42-47, 2022, doi: 

10.5755/j02.eie.31151. 

[107] Freeborn, T.J., Maundy, B., Elwakil, A. Simplifying Cole-impedance extraction 

from the current-excited step response. In Proc. of the 2013 IEEE 56th 

International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 952-

955, 2013, doi: 10.1109/MWSCAS.2013.6674808. 



124 

 

[108] Freeborn, T.J., Maundy, B., Elwakil, A.S. Cole impedance extractions from the 

step-response of a current excited fruit sample. Computers and Electronics in 

Agriculture, vol. 98, pp. 100-108, 2013. doi: 10.1016/j.compag.2013.07.017. 

[109] Gillis, K.D. Techniques for membrane capacitance measurements. In: Sakmann, 

B., Neher, E. (Eds.), Single-channel recording, Springer, Boston, pp. 155-198, 

1995. doi: 10.1007/978-1-4419-1229-9_7. 

[110] Thompson, R.E., Lindau, M., Webb, W.W. Robust, High-Resolution, Whole Cell 

Patch-Clamp Capacitance Measurements Using Square Wave Stimulation. 

Biophysical Journal, vol. 81, no. 2, pp. 937-948, 2001, doi: 10.1016/S0006-

3495(01)75752-9. 

[111] Wang, X., Becker, F.F., Gascoyne, P.R. The fractal dimension of cell membrane 

correlates with its capacitance: a new fractal single-shell model. Chaos, vol. 20, 

no. 4: 043133, 2010, doi: 10.1063/1.3526972. 

[112] Simurda, J., Simurdova, M., Svecova, O., Bebarova, M. A new approach to the 

determination of tubular membrane capacitance: passive membrane electrical 

properties under reduced electrical conductivity of the extracellular solution. 

BioRxiv, Preprint (Submitted for publication), 2021, doi: 

10.1101/2021.11.12.468264. 

[113] Bebarova, M., Matejovic, P., Pasek, M., Simurdova, M., Simurda, J. Effect of 

ajmaline on action potential and ionic currents in rat ventricular myocytes. 

General Physiology and Biophysics, vol. 24, no. 3, pp. 311-325, 2005. 

[114] Hotka, M., Zahradnik, I. Reconstruction of membrane current by deconvolution 

and its application to membrane capacitance measurements in cardiac myocytes. 

PloS ONE, vol. 12, no. 11, e0188452, 2017, doi: 10.1371/journal.pone.0188452. 

[115] Monje, C.A., Chen, Y., Vinagre, B., Xue, D., Feliu, V. Fractional order systems 

and controls - Fundamentals and applications. Advances in industrial control 

series, Springer, Berlin, 2010, doi: 10.1007/978-1-84996-335-0. 

[116] Podlubny, I. Mittag-Leffler function 

(https://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-

function), MATLAB Central File Exchange. Retrieved September 05, 2022. 

[117] Simurda, J., Simurdova, M., Svecova, O. A new simple approach to estimation of 

membrane capacitance from current responses to voltage clamp steps. Progress in 

Biophysics and Molecular Biology, vol. 157, pp. 18-23, 2020, doi: 

10.1016/j.pbiomolbio.2020.04.005. 

[118] Elwan, H.O., Soliman, A.M. Novel CMOS differential voltage current conveyor 

and its application. IEE Proceedings of Circuits Devices System, vol. 144, no. 3, 

pp. 195-200, 1997, doi: 10.1049/ip-cds:19971081. 

[119] PSpice User’s Guide © 1985-2000, Cadence Design Systems, Inc. 

[120] Khatoon, S. Practical Realization of Current Mode Active Elements Using AD844 

and some Applications. Indian Journal of Applied Research, vol. 3, no. 5, pp. 

303-307, 2013, doi: 10.36106/ijar. 



125 

 

[121] Bertsias, P., Khateb, F., Kubanek, D., Khanday, F., Psychalinos, C. Capacitorless 

Digitally Programmable Fractional-Order Filters. AEU - International Journal of 

Electronics and Communications, vol. 78, pp. 228-237, 2017, doi: 

10.1016/j.aeue.2017.04.030. 

[122] Freeborn, T.J., Maundy, B., Elwakil, A. Fractional-step Tow-Thomas biquad 

filters. Nonlinear Theory and Its Applications, IEICE, vol. 3, no. 3, pp. 357-374, 

2012, doi: 10.1587/nolta.3.357. 

[123] Kubanek, D., Freeborn, T., Koton, J., Herencsar, N. Evaluation of (1 + α) 

Fractional-Order Approximated Butterworth High-Pass and Band-Pass Filter 

Transfer Functions. Elektronika Ir Elektrotechnika, vol. 24, no. 2, pp. 37-41, 

2018, doi: 10.5755/j01.eie.24.2.20634. 

[124] Ahmadi, P., Maundy, B., Elwakil, A.S., Belostotski, L. High-quality factor 

asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET 

Circuits, Devices & Systems, vol. 6, no. 3, pp. 187-197, 2012, doi: 10.1049/iet-

cds.2011.0239. 

[125] Verma, R., Pandey, N., Pandey, R. Electronically Tunable Fractional Order Filter. 

Arabian Journal for Science and Engineering, vol. 42, pp. 3409-3422, 2017, doi: 

10.1007/s13369-017-2500-8. 

[126] Kubanek, D., Freeborn, T., Koton, J., Dvorak, J. Transfer Functions of Fractional-

Order Band-Pass Filter with Arbitrary Magnitude Slope in Stopband. In Proc. of 

the 2019 42nd International Conference on Telecommunications and Signal 

Processing (TSP), Budapest, Hungary, pp. 655-659, 2019, doi: 

10.1109/TSP.2019.8769089. 

[127] Kubanek, D., Koton, J., Jerabek, J. Design and properties of fractional-order 

multifunction filter with DVCCs. In Proc. of the 2016 39th International 

Conference on Telecommunications and Signal Processing (TSP), pp. 620-624, 

2016, doi: 10.1109/TSP.2016.7760956. 

[128] Kubanek, D., Koton, J., Jerabek, J., Andriukaitis, D. (N + α)-Order low-pass and 

high-pass filter transfer functions for non-cascade implementations approximating 

Butterworth response. Fractional Calculus and Applied Analysis, vol. 24, no. 3, 

pp. 689-714, 2021, doi: 10.1515/fca-2021-0030. 

[129] Perry, D.J. New multiple feedback active RC network. Electronics Letters, vol. 

11, no. 16, pp. 364-365, 1975, doi: 10.1049/el:19750278. 

[130] Linear Technology. LT1228 100 MHz Current Feedback Amplifier with DC Gain 

Control. Datasheet, 2012. 

[131] Kubanek, D., Koton, J., Ushakov, P. Fractional-Order Multiple-Feedback Filter 

Employing RC Element with Distributed Parameters. In Proc. of the Fifth Forum 

of Young Researchers, Izhevsk, Russia: Publishing House of Kalashnikov ISTU, 

pp. 70-74, 2017, ISBN: 978-5-7526-0753-0. 

[132] Kubanek, D., Koton, J., Dvorak, J. Influence of Fractional-Order Element 

Properties on Frequency Filter Characteristics. In Proc. of the 2019 11th 

International Congress on Ultra Modern Telecommunications and Control 



126 

 

Systems and Workshops (ICUMT), Dublin, Ireland, pp. 1-5, 2019, doi: 

10.1109/ICUMT48472.2019.8970959. 

[133] Koton, J., Jerabek, J., Kubanek, D., Dvorak, J. Analog Filters with Arbitrarily 

Adjustable Frequency Response. In Fractional Order Systems: Optimization, 

Control, Circuit Realizations and Applications. Advances in Nonlinear Dynamics 

and Chaos (ANDC). Academic Press, pp. 383-419, 2018, doi: 10.1016/C2017-0-

04459-2. 

[134] Freeborn, T., Kubanek, D., Koton, J., Dvorak, J. Fractional-order Lowpass 

Elliptic Responses of (1 + α)-order Transfer Functions. In Proc. of the 41st 

International Conference on Telecommunications and Signal Processing (TSP), 

pp. 1-5, 2018, doi: 10.1109/TSP.2018.8441421. 

[135] Khateb, F., Kubanek, D., Tsirimokou, G., Psychalinos, C. Fractional-order filters 

based on low-voltage DDCCs. Microelectronics Journal, vol. 50, pp. 50-59, 2016, 

doi: 10.1016/j.mejo.2016.02.002. 

[136] Koton, J., Kubanek, D., Vrba, K., Shadrin, A., Ushakov, P. Universal voltage 

conveyors in fractional-order filter design. In Proc. of the 2016 39th International 

Conference on Telecommunications and Signal Processing (TSP), pp. 593-598, 

2016, doi: 10.1109/TSP.2016.7760950. 

[137] Koton, J., Kubanek, D., Sladok, O., Vrba, K., Shadrin, A., Ushakov, P. Fractional-

Order Low- and High-Pass Filters Using UVCs. Journal of Circuits, Systems and 

Computers, vol. 26, no. 12, pp. 1-22, 2017, doi: 10.1142/S0218126617501924. 

[138] Jerabek, J., Sotner, R., Kubanek, D., Dvorak, J., Langhammer, L., Herencsar, N., 

Vrba, K. Fractional-Order Low-Pass Filter with Electronically Adjustable 

Parameters. In Proc. of the 2016 39th International Conference on 

Telecommunications and Signal Processing (TSP), pp. 569-574, 2016, doi: 

10.1109/TSP.2016.7760945. 

[139] Jerabek, J., Sotner, R., Dvorak, J., Polak, J., Kubanek, D., Herencsar, N., Koton, J. 

Reconfigurable Fractional-Order Filter with Electronically Controllable Slope of 

Attenuation, Pole Frequency and Type of Approximation. Journal of Circuits, 

Systems and Computers, vol. 26, no. 10, pp. 1-21, 2017, doi: 

10.1142/S0218126617501572. 

[140] Koton, J., Jerabek, J., Herencsar, N., Kubanek, D. Current conveyors in current-

mode circuits approximating fractional-order low-pass filter. In Proc. of the 2017 

European Conference on Circuit Theory and Design (ECCTD), Catania, Italy, pp. 

1-4, 2017, doi: 10.1109/ECCTD.2017.8093277. 

[141] Mahata, S., Herencsar, N., Kubanek, D. Optimal Approximation of Fractional-

Order Butterworth Filter Based on Weighted Sum of Classical Butterworth 

Filters. IEEE Access, vol. 9, pp. 81097-81114, 2021, doi: 

10.1109/ACCESS.2021.3085515. 

[142] Mahata, S., Herencsar, N., Kubanek, D., Kar, R., Mandal, D., Göknar, I.C. A 

Fractional-Order Transitional Butterworth-Butterworth Filter and Its Experimental 



127 

 

Validation. IEEE Access, vol. 9, pp. 129521-129527, 2021, doi: 

10.1109/ACCESS.2021.3114182. 

[143] Mahata, S., Herencsar, N., Kubanek, D. On the Design of Power Law Filters and 

Their Inverse Counterparts. Fractal and Fractional, vol. 5, no. 4: 197, pp. 1-23, 

2021, doi: 10.3390/fractalfract5040197. 

[144] Mahata, S., Herencsar, N., Kubanek, D. Further Generalization and 

Approximation of Fractional-Order Filters and Their Inverse Functions of the 

Second-Order Limiting Form. Fractal and Fractional, vol. 6, no. 4: 209, pp. 1-25, 

2022, doi: 10.3390/fractalfract6040209. 

[145] Kubanek, D., Vrba, K., Ushakov, P. Oscillator with Current Conveyors and 

Fractional Capacitors. In Proc. of the Fourth Forum of Young Researchers. 

Izhevsk, Russia, pp. 343-347, 2014, ISBN: 978-5-7526-0649-6. 

[146] Dvorak, J., Kubanek, D., Koton, J., Jerabek, J., Smekal, D. Adjustable Multiphase 

Sinusoidal Oscillator with Fractional–Order Elements. In Proc. of the 2019 11th 

International Congress on Ultra Modern Telecommunications and Control 

Systems and Workshops (ICUMT), Dublin, Ireland, pp. 1-6, 2019, doi: 

10.1109/ICUMT48472.2019.8970842. 

[147] Khateb, F. The experimental results of the bulk-driven quasi-floating-gate MOS 

transistor. AEU - International Journal of Electronics and Communications, vol. 

69, no. 1, pp. 462-466, 2015, doi: 10.1016/j.aeue.2014.10.016. 



128 

 

ABBREVIATIONS AND SYMBOLS 

Abbreviations: 

ac alternating current 

BD-QFG Bulk-Driven Quasi-Floating-Gate  

BP Band-Pass 

BS Band-Stop 

C Capacitor 

CCCII Current Controlled Current Conveyor of Second Generation 

CMOS Complementary Metal Oxide Semiconductor 

COMP Compensation terminal 

CPE Constant Phase Element  

dc direct current 

DDCC Differential Difference Current Conveyor 

DVCC Differential Voltage Current Conveyor 

FDNR Frequency-Dependent Negative Resistor 

FLF Follow-the-Leader Feedback 

FO Fractional-Order 

FOC Fractional-Order Capacitor 

FOE Fractional-Order Element 

FOI Fractional-Order Inductor 

GA Genetic Algorithm 

GIC General Immittance Converter  

HP High-Pass 

IFLF Inverse Follow-the-Leader Feedback 

IO Integer-Order 

L Inductor 

LP Low-Pass 

LSE Least Squares Error 

MOS Metal Oxide Semiconductor 

OTA Operational Transconductance Amplifier 

OTRA Operational Transresistance Amplifier 

R Resistor 

RC Resistive-Capacitive 

RC-EDP Resistive-Capacitive Layer Elements with Distributed Parameters 

TF Transfer Function 

UVC Universal Voltage Conveyor 

VDCC Voltage Differencing Current Conveyor 
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Symbols: 

A Set defining nodes of R-C-NRs connected to gnd node  

a Coefficient of a polynomial or a function (-) 

B Set defining connections of terminals of R-C-NRs  

b Coefficient of a polynomial or a function (-) 

B(ω) Butterworth filter transfer function (-) 

BW Bandwidth (of a filter) (rad/sec) 

C Capacitance (F) 

C Set of circuit structure factors of R-C-NR FOE  

D Parameter of FDNR element (Ω·F2) 

E Set defining interconnections of adjacent R-C-NRs  

E(·) Mittag-Leffler function  

f Frequency (Hz) 

F Fractance (F/sec1−α) 

F(s) Laplace transform (s-domain image) of a function f(t)  

f(t) Function of time  

FD Fractal dimension (-) 

Fit Fitness function (-) 

G Conductance (S) 

gm, g Transconductance (S) 

h Auxiliary variable in mathematical relations (-) 

H(s) Transfer function of a filter in s-domain (-) 

i Auxiliary variable in mathematical relations (-) 

I, i Current (A) 

j Auxiliary variable in mathematical relations (-) 

j Imaginary unit  

k Parameter of FO filter TF, number of integrator converted to FO (-) 

L Dimensionless length of R-C-NR section (-) 

L Set of lengths (L) of R-C-NR sections  

{·} Laplace transform 

LF Final length of R-C-NR section (m) 

LSE Least Squares Error  

m Auxiliary variable in mathematical relations (-) 

M Constant defining limit of summation, number of datapoints (-) 

N Ratio of top and bottom layer resistances of R-C-NR structure (-) 

n Integer component of order (-) 

N Set of ratios of layer resistances (N) of R-C-NR FOE  

P Set of parametric factors of R-C-NR FOE  

p Range of FOE order α realized by GIC (-) 

Q Quality factor (-) 
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R Resistance (Ω) 

RecCur Recorded current response (A) 

s Complex variable in Laplace transform (rad/s) 

t Time (sec) 

T Time period (sec) 

V, v Voltage (V) 

W Dimensionless width of R-C-NR structures, here W = 1 (-) 

WF Final width of R-C-NR section (m) 

x Parameter of genetic algorithm (maximum number of iterations) (-) 

X Sought vector of coefficients of a function (-) 

y Parameter of genetic algorithm (maximum number of iterations) (-) 

Y, Y(s) Admittance (S) 

z Argument of Mittag-Leffler function (-) 

Z, Z(s) Impedance (Ω) 

α Fractional component of order, order of differentiation (-) 

β Fractional component of order, complementary order (1 − α) (-) 

γ Parameter of Mittag-Leffler function (-) 

Γ(·) Gamma function  

δ Parameter of genetic algorithm (threshold for fitness function) (-) 

Δ Absolute magnitude error (dB) 

ε Allowed phase deviation (rad), (deg) 

θ Auxiliary variable in R-C-NR structure admittance matrix (-) 

λ Parameter of Mittag-Leffler function (-) 

σ Auxiliary variable for computing fitness function (-) 

ϕ Phase of impedance (rad), (deg) 

Ψ Set of all factors of R-C-NR FOE  

ω Angular frequency (rad/s) 
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